Browsing by Subject "Inventory allocation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Computationally efficient optimization of stock pooling and allocation levels for two-demand-classes under general lead time distributions(Taylor and Francis Ltd., 2016) Vicil, Oğuzhan; Jackson, PeterIn this article we develop a procedure for estimating service levels (fill rates) and for optimizing stock and threshold levels in a two-demand-class model managed based on a lot-for-lot replenishment policy and a static threshold allocation policy. We assume that the priority demand classes exhibit mutually independent, stationary, Poisson demand processes and non-zero order lead times that are independent and identically distributed. A key feature of the optimization routine is that it requires computation of the stationary distribution only once. There are two approaches extant in the literature for estimating the stationary distribution of the stock level process: a so-called single-cycle approach and an embedded Markov chain approach. Both approaches rely on constant lead times. We propose a third approach based on a Continuous-Time Markov Chain (CTMC) approach, solving it exactly for the case of exponentially distributed lead times. We prove that if the independence assumption of the embedded Markov chain approach is true, then the CTMC approach is exact for general lead time distributions as well. We evaluate all three approaches for a spectrum of lead time distributions and conclude that, although the independence assumption does not hold, both the CTMC and embedded Markov chain approaches perform well, dominating the single-cycle approach. The advantages of the CTMC approach are that it is several orders of magnitude less computationally complex than the embedded Markov chain approach and it can be extended in a straightforward fashion to three demand classes.Item Open Access Supporting hurricane inventory management decisions with consumer demand estimates(Elsevier B.V., 2016) Morrice, D. J.; Cronin, P.; Tanrisever, F.; Butler, J. C.Matching supply and demand can be very challenging for anyone attempting to provide goods or services during the threat of a natural disaster. In this paper, we consider inventory allocation issues faced by a retailer during a hurricane event and provide insights that can be applied to humanitarian operations during slow-onset events. We start with an empirical analysis using regression that triangulates three sources of information: a large point-of-sales data set from a Texas Gulf Coast retailer, the retailer's operational and logistical constraints, and hurricane forecast data from the National Hurricane Center (NHC). We establish a strong association between the timing of the hurricane weather forecast, the forecasted landfall position of the storm, and hurricane sales. Storm intensity is found to have a weaker association on overall inventory decisions. Using the results of the empirical analysis and the NHC forecast data, we construct a state-space model of demand during the threat of a hurricane and develop an inventory management model to satisfy consumer demand prior to a hurricane making landfall. Based on the structure of the problem, we model this situation as a two-stage, two-location inventory allocation model from a centralized distribution center that balances transportation, shortage and holding costs. The model is used to explore the role of recourse, i.e., deferring part of the inventory allocation until observing the state of the hurricane as it moves towards landfall. Our approach provides valuable insights into the circumstances under which recourse may or may not be worthwhile in any setting where an anticipated extreme event drives consumer demand.Item Open Access Technical note-optimal structural results for assemble-to-order generalized M-Systems(INFORMS Inst.for Operations Res.and the Management Sciences, 2014) Nadar, E.; Akan, M.; Scheller-Wolf, A.We consider an assemble-to-order generalized M-system with multiple components and multiple products, batch ordering of components, random lead times, and lost sales. We model the system as an infinite-horizon Markov decision process and seek an optimal policy that specifies when a batch of components should be produced (i.e., inventory replenishment) and whether an arriving demand for each product should be satisfied (i.e., inventory allocation). We characterize optimal inventory replenishment and allocation policies under a mild condition on component batch sizes via a new type of policy: lattice-dependent base stock and lattice-dependent rationing. © 2014 INFORMS.