Browsing by Subject "Image representations"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Color graphs for automated cancer diagnosis and grading(Institute of Electrical and Electronics Engineers, 2010-03) Altunbay, D.; Cigir, C.; Sokmensuer, C.; Gunduz Demir, C.This paper reports a new structural method to mathematically represent and quantify a tissue for the purpose of automated and objective cancer diagnosis and grading. Unlike the previous structural methods, which quantify a tissue considering the spatial distributions of its cell nuclei, the proposed method relies on the use of distributions of multiple tissue components for the representation. To this end, it constructs a graph on multiple tissue components and colors its edges depending on the component types of their endpoints. Subsequently, it extracts a new set of structural features from these color graphs and uses these features in the classification of tissues. Working with the images of colon tissues, our experiments demonstrate that the color-graph approach leads to 82.65% test accuracy and that it significantly improves the performance of its counterparts. © 2006 IEEE.Item Open Access Image classification using subgraph histogram representation(IEEE, 2010) Özdemir, Bahadır; Aksoy, SelimWe describe an image representation that combines the representational power of graphs with the efficiency of the bag-of-words model. For each image in a data set, first, a graph is constructed from local patches of interest regions and their spatial arrangements. Then, each graph is represented with a histogram of subgraphs selected using a frequent subgraph mining algorithm in the whole data. Using the subgraphs as the visual words of the bag-of-words model and transforming of the graphs into a vector space using this model enables statistical classification of images using support vector machines. Experiments using images cut from a large satellite scene show the effectiveness of the proposed representation in classification of complex types of scenes into eight high-level semantic classes. © 2010 IEEE.Item Open Access Mining of remote sensing image archives using spatial relationship histograms(IEEE, 2008-07) Kalaycılar, Fırat; Kale, Aslı; Zamalieva, Daniya; Aksoy, SelimWe describe a new image representation using spatial relationship histograms that extend our earlier work on modeling image content using attributed relational graphs. These histograms are constructed by classifying the regions in an image, computing the topological and distance-based spatial relationships between these regions, and counting the number of times different groups of regions are observed in the image. We also describe a selection algorithm that produces very compact representations by identifying the distinguishing region groups that are frequently found in a particular class of scenes but rarely exist in others. Experiments using Ikonos scenes illustrate the effectiveness of the proposed representation in retrieval of images containing complex types of scenes such as dense and sparse urban areas. © 2008 IEEE.