Browsing by Subject "Hierarchical decomposition"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Constrained optimal hybrid control of a flow shop system(Institute of Electrical and Electronics Engineers, 2007) Gokbayrak, K.; Selvi, O.We consider an optimal control problem for the hybrid model of a deterministic flow shop system, in which the jobs are processed in the order they arrive at the system. The problem is decomposed into a higher-level discrete-event system control problem of determining the optimal service times, and a set of lower-level classical control problems of determining the optimal control inputs for given service times. We focus on the higher-level problem which is nonconvex and nondifferentiable. The arrival times are known and the decision variables are the service times that are controllable within constraints. We present an equivalent convex optimization problem with linear constraints. Under some cost assumptions, we show that no waiting is observed on the optimal sample path. This property allows us to simplify the convex optimization problem by eliminating variables and constraints. We also prove, under an additional strict convexity assumption, the uniqueness of the optimal solution and propose two algorithms to decompose the simplified convex optimization problem into a set of smaller convex optimization problems. The effects of the simplification and the decomposition on the solution times are shown on an example problem.Item Open Access State-dependent control of a single stage hybrid system with poisson arrivals(2011) Gokbayrak, K.We consider a single-stage hybrid manufacturing system where jobs arrive according to a Poisson process. These jobs undergo a deterministic process which is controllable. We define a stochastic hybrid optimal control problem and decompose it hierarchically to a lower-level and a higher-level problem. The lower-level problem is a deterministic optimal control problem solved by means of calculus of variations. We concentrate on the stochastic discrete-event control problem at the higher level, where the objective is to determine the service times of jobs. Employing a cost structure composed of process costs that are decreasing and strictly convex in service times, and system-time costs that are linear in system times, we show that receding horizon controllers are state-dependent controllers, where state is defined as the system size. In order to improve upon receding horizon controllers, we search for better state-dependent control policies and present two methods to obtain them. These stochastic-approximation-type methods utilize gradient estimators based on Infinitesimal Perturbation Analysis or Imbedded Markov Chain techniques. A numerical example demonstrates the performance improvements due to the proposed methods. © 2011 Springer Science+Business Media, LLC.