Browsing by Subject "Heating systems"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Response of porcine articular cartilage to irradiation by an ultrafast, burst-mode laser(Optical Society of America (OSA), 2019) Dzelzainis, T.; Hammouti, S.; Prickaerts, M.; Cassidy, K.; İlday, F. Ömer; Kalaycıoğlu, Hamit; Yavaş, S.; Karamuk, Ş.; Golaraei, A.; Barzda, V.; Akens, M.; Lilge, L.; Marjoribanks, R.Plasma-mediated ablation by ultrafast pulses is generally considered to be a material-independent process. We show that, in certain circumstances, this assumption may be invalid. Physical processes involved and the impact on applications are discussed.Item Open Access RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: a simulation study with realistic lead configurations(Institute of Electrical and Electronics Engineers, 2020) Kazemivalipour, Ehsan; Vu, J.; Lin, S.; Bhusal, B.; Nguyen, B. T.; Kirsch, J.; Elahi, B.; Rosenow, J.; Atalar, Ergin; Golestanirad, L.Patients with deep brain stimulation (DBS) implants are often denied access to magnetic resonance imaging (MRI) due to safety concerns associated with RF heating of implants. Although MR-conditional DBS devices are available, complying with manufacturer guidelines has proved to be difficult as pulse sequences that optimally visualize DBS target structures tend to have much higher specific absorption rate (SAR) of radiofrequency energy than current guidelines allow. The MR-labeling of DBS devices, as well as the majority of studies on RF heating of conductive implants have been limited to horizontal close-bore MRI scanners. Vertical MRI scanners, originally introduced as open low-field MRI systems, are now available at 1.2 T field strength, capable of high-resolution structural and functional imaging. No literature exists on DBS SAR in this class of scanners which have a 90° rotated transmit coil and thus, generate a fundamentally different electric and magnetic field distributions. Here we present a simulation study of RF heating in a cohort of forty patient-derived DBS lead models during MRI in a commercially available vertical openbore MRI system (1.2 T OASIS, Hitachi) and a standard horizontal 1.5 T birdcage coil. Simulations were performed at two major imaging landmarks representing head and chest imaging. We calculated the maximum of 0.1g-averaged SAR (0.1g-SAR Max ) around DBS lead tips when a B 1 + = 4 μT was generated on an axial plane passing through patients body. For head landmark, 0.1g-SAR Max reached 220±188 W/kg in the 1.5 T birdcage coil, but only 14±11 W/kg in the OASIS coil. For chest landmark, 0.1g-SAR Max was 24±17 W/kg in the 1.5 T birdcage coil and 3±2 W/kg in the OASIS coil. A paired two-tail t-test revealed a significant reduction in SAR with a large effect-size during head MRI (p <; 1.5×10 -8 , Cohen's d = 1.5) as well as chest MRI (p <; 6.5×10 -10 , Cohen's d = 1.7) in 1.2 T Hitachi OASIS coil compared to a standard 1.5 T birdcage transmitter. Our findings suggest that open-bore vertical scanners may offer an untapped opportunity for MRI of patients with DBS implants.