Browsing by Subject "Global Positioning System (GPS)"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Investigation on the reliability of earthquake prediction based on ionospheric electron content variation(2013) Akyol, Ali AlpIonosphere region of Earth’s upper atmosphere ranging from 90 km to 1000 km altitude, has a significant effect on military and civilian communications, satellite communications and positioning systems. Solar, geomagnetic, gravitational and seismic activities cause variations in the electron distribution of the atmosphere. The number of electrons within a vertical column of 1 m2 cross section, which is called as Total Electron Content (TEC), is a measurable feature of the ionosphere that provides valuable information about the ionosphere. TEC can be measured fast and accurately by using the phase difference between transmitted satellite positioning signals such as in the Global Positioning System (GPS). To investigate the reliability of earthquake prediction based on detection of local ionospheric anomalies, TEC measurements obtained from a network of GPS receivers over a period of 2 years in 2010 and 2011 are used to generate detection signals. For a day of interest, after selecting a receiver station surrounding GPS stations that are located within 150 km of the chosen station used to estimate TEC measurements at the chosen station. In one of the proposed techniques, detection of ionospheric anomalies is based on distance between measured TEC and its estimate. Detection threshold is obtained based on statistical variation of this distance for the days with insignificant seismic activities. Also, another detection technique based on temporal variation of TEC measurements is proposed. Both individual and fused detection performances of these techniques are investigated for a given level of false alarms. It is observed that the fused detection has superior performance and able to detect 15 out of 23 earthquakes of magnitude larger than 5 in Richter scale while generating 8 false alarms.Item Open Access İyonküre elektron içeriği kullanılarak deprem öncül tespit sinyali oluşturulması(IEEE, 2014-04) Akyol, Ali Alp; Arıkan, Orhan; Arıkan, F.Sismik olayların iyonküredeki elektron dağılımını etkilediği ve bu etkinin bir kaynağının sismik hareketlilik öncesi kayaçların sıkışması sonucu kayaç yüzeylerinde oluşan elektrik alanın yol açtığı iyonlaşma olduğu yakın zamanda yapılan deneyler ile gösterilmiştir. Sismik olayların yol açtığı bu tür bir etkinin iyonkürenin dinamik yapısı içinde güvenilir şekilde tespit edilebilmesi depremlerin erken tahminini sağlayabilecek önemdedir. Bu çalışmada bir YKS alıcı ağından düzenli olarak elde edilen Toplam Elektron İçeriği (TEİ) ölçümleri kullanılarak iyonküredeki yerel değişimlerin tespit edilmesine yönelik bir teknik geliştirilmiş ve bu tekniğin güvenilir bir deprem öncül sinyali üretip üretemediği 2010 ve 2011 yıllarını kapsayan bir zaman aralığında test edilmiştir. Geliştirilen deprem öncül tespiti tekniğinin bu tarih aralığında Türkiye’de Richter ölçeğinde 5 ve üzeri büyüklükte meydana gelen 23 depremin 15’ini tespit edebildiği ve 8 yanlış alarm verdiği gözlemlenmiştir.Item Open Access A machine learning‐based detection of earthquake precursors using ionospheric data(Blackwell Publishing, 2020) Akyol, Ali Alp; Arıkan, Orhan; Arıkan, F.Detection of precursors of strong earthquakes is a challenging research area. Recently, it has been shown that strong earthquakes affect electron distribution in the regional ionosphere with indirectly observable changes in the ionospheric delays of GPS signals. Especially, the total electron content (TEC) estimated from GPS data can be used in the seismic precursor detection for strong earthquakes. Although physical mechanisms are not well understood yet, GPS-based seismic precursors can be observed days prior to the occurrence of the earthquake. In this study, a novel machine learning-based technique, EQ-PD, is proposed for detection of earthquake precursors in near real time based on GPS-TEC data along with daily geomagnetic indices. The proposed EQ-PD technique utilizes support vector machine (SVM) classifier to decide whether an observed spatiotemporal anomaly is related to an earthquake precursor or not. The data fed to the classifier are composed of spatiotemporal variability map of a region. Performance of the EQ-PD technique is demonstrated in a case study over a region covering Italy in between the dates of 1 January 2014 and 30 September 2016. The data are partitioned into three nonoverlapping time periods, that are used for training, validation, and test of detecting precursors of earthquakes with magnitudes above 4 in Richter scale. The EQ-PD technique is able to detect precursors in 17 out of 21 earthquakes while generating 7 false alarms during the validation period of 266 days and 22 out of 24 earthquakes while generating 13 false alarms during the test period of 282 days.