Browsing by Subject "Gallium compounds"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Coulomb drag effect in parallel cylindrical quantum wires(Pergamon Press, 1996) Tanatar, BilalWe study the Coulomb drag rate for electrons in two parallel quantum wires. The double-quantum wire structure is modeled for a GaAs material with cylindrical wires having infinite potential barriers. The momentum transfer rate between the wires (Coulomb drag effect) is calculated as a function of temperature for several wire separation distances. We employ the full wave vector and frequency dependent random-phase approximation (RPA) at finite temperature to describe the effective interwire Coulomb interaction. We find that the drag rate at high temperatures (i.e., T ≥ EF/2) is dominated by the collective modes (plasmons) of the system similar to the case in double-well structures. Including the local-field effects in an approximate way we estimate the importance of intrawire correlations to be significant. Copyright © 1996 Published by Elsevier Science Ltd.Item Open Access Efficiency and harmonic enhancement trends in GaN-based Gunn diodes: Ensemble Monte Carlo analysis(American Institute of Physics, 2004) Sevik, C.; Bulutay, C.Gallium nitride can offer a high-power alternative for millimeter-wave Gunn oscillators. Hence, an ensemble Monte Carlo-based comprehensive theoretical assessment of efficiency and harmonic enhancement in n-type GaN Gunn diodes is undertaken. First, the effects of doping notch/mesa and its position within the active channel are investigated which favors a doping notch positioned next to cathode. It is then observed that the width of the notch can be optimized to enhance the higher-harmonic operation without degrading its performance at the fundamental mode. Next, the effects of dc bias and channel doping density are investigated. Both of these have more significant effects on the higher-harmonic efficiency than the fundamental one. The lattice temperature is observed to have almost no influence up to room temperature but severely degrades the performance above room temperature. As a general behavior, the variations of temperature, channel doping, and the notch width primarily affect the phase angle between the current and voltage wave forms rather than the amplitude of oscillations. Finally, the physical origin of these Gunn oscillations is sought which clearly indicates that the intervalley scattering mechanism is responsible rather than the Γ valley nonparabolicity or the effective mass discrepancy between the Γ and the lowest satellite valleys.Item Open Access Forward tunneling current in Pt/p-InGaN and Pt/n-InGaN Schottky barriers in a wide temperature range(Elsevier, 2012-07-27) Arslan, E.; Çakmak, H.; Özbay, EkmelThe current-transport mechanisms of the Pt contacts on p-InGaN and n-InGaN were investigated in a wide temperature range (80-360 K) and in the forward bias regime. It was found that the ideality factor (n) values and Schottky barrier heights (SBHs), as determined by thermionic emission (TE), were a strong function of temperature and Φb0 show the unusual behavior of increasing linearly with an increase in temperature from 80 to 360 K for both Schottky contacts. The tunneling saturation ( JTU(0)) and tunneling parameters (E 0) were calculated for both Schottky contacts. We observed a weak temperature dependence of the saturation current and a fairly small dependence on the temperature of the tunneling parameters in this temperature range. The results indicate that the dominant mechanism of the charge transport across the Pt/p-InGaN and Pt/n-InGaN Schottky contacts are electron tunneling to deep levels in the vicinity of mixed/screw dislocations in the temperature range of 80-360 K.Item Open Access High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths(American Institute of Physics Inc., 2017) Emani, N. K.; Khaidarov, E.; Paniagua-Domínguez, R.; Fu, Y. H.; Valuckas, V.; Lu S.; Zhang X.; Tan S.T.; Demir, Hilmi Volkan; Kuznetsov, A. I.The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.Item Open Access Lateral and vertical heterostructures of h-GaN/h-AlN: electron confinement, band lineup, and quantum structures(American Chemical Society, 2017-11) Onen, A.; Kecik, D.; Durgun, Engin; Çıracı, SalimLateral and vertical heterostructures constructed of two-dimensional (2D) single-layer h-GaN and h-AlN display novel electronic and optical properties and diverse quantum structures to be utilized in 2D device applications. Lateral heterostructures formed by periodically repeating narrow h-GaN and h-AlN stripes, which are joined commensurately along their armchair edges, behave as composite semiconducting materials. Direct-indirect characters of the fundamental band gaps and their values vary with the widths of these stripes. However, for relatively wider stripes, electronic states are confined in different stripes and make a semiconductor-semiconductor junction with normal band alignment. This way one-dimensinonal multiple quantum well structures can be generated with electrons and holes confined to h-GaN stripes. Vertical heterostructures formed by thin stacks of h-GaN and h-AlN are composite semiconductors with a tunable fundamental band gap. However, depending on the stacking sequence and number of constituent sheets in the stacks, the vertical heterostructure can transform into a junction, which displays staggered band alignment with electrons and holes separated in different stacks. The weak bonds between the cations and anions in adjacent layers distinguish these heterostructures from those fabricated using thin films of GaN and AlN thin films in wurtzite structure, as well as from van der Waals solids. Despite the complexities due to confinement effects and charge transfer across the interface, the band diagram of the heterostructures in the direct space and band lineup are conveniently revealed from the electronic structure projected to the atoms or layers. Prominent features in the optical spectra of the lateral composite structures are observed within the limits of those of 2D parent constituents; however, significant deviations from pristine 2D constituents are observed for vertical heterostructures. Important dimensionality effects are revealed in the lateral and vertical heterostructures.Item Open Access Low-temperature Raman scattering spectra of GaSexS1-x layered mixed crystals(WILEY-VCH Verlag GmbH & Co. KGaA, 2002) Gasanly, N. M.; Aydınlı, AtillaRaman scattering has been used to study the vibrational spectra of GaSexS1-x layered mixed crystals at 10 K. We report the frequency dependencies of different modes on composition x, with particular emphasis on A′1 (2) (A1g 1) and A′1 (4) (A1g 2) intralayer compressional modes having low dispersion in the Brillouin zone. The appearance of additional bands is attributed to multimode behavior typically exhibited by mixed crystals of anisotropic compounds.