Browsing by Subject "Gallium"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item Open Access Comparison of Au(III) and Ga(III) ions' binding to calf thymus DNA: Spectroscopic characterization and thermal analysis(Humana Press Inc., 2014) Sarioglu O.F.; Tekiner-Gursacli, R.; Ozdemir, A.; Tekinay, T.Metals have been studied as potential chemotherapeutic agents for cancer therapies due to their high reactivity toward a wide variety of substances. The characterization of metal ion-binding capacities is essential to understand the possible effects of metals on target biomolecules. In the present study, biochemical effects of Au(III) and Ga(III) ions on calf thymus DNA (ctDNA) were studied comparatively via bioanalytical, spectroscopic, and thermal methods. Briefly, UV-Vis absorbance spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy were utilized for spectroscopic characterization, and isothermal titration calorimetry (ITC) measurements were performed for thermal analysis. Our results reveal that both Au(III) and Ga(III) ions are capable of interacting with ctDNA, and Au(III) ions display a more favorable interaction and a higher binding affinity. ITC analyses indicate that the Au(III)-DNA interaction displays a binding affinity (Ka) around 1.43×106 M -1, while a Ka around 1.17×105 M -1 was observed for the Ga(III)-DNA binding. It was suggested that both metal ions are unlikely to change the structural B-conformation while interacting with ctDNA. © 2014 Springer Science+Business Media.Item Open Access The effect of insulator layer thickness on the main electrical parameters in (Ni/Au)/AlxGa1-xN/AIN/GaN heterostructures(Wiley, 2010) Altindal, S.; Şafak, Y.; Taşçloǧlu I.; Özbay, Ekmel(Ni/Au)Alx Ga1-x N/AlN/GaN(x = 0.22) heterostructures with and without a passivation layer of the SiNx were fabricated in order to see the effect of the insulator layer on the main electrical parameters such as zero-bias barrier height (BH) (φBO), ideality factor (n), series resistance (Rs) of the structure, and the interface state density (Nss). Some of these parameters were determined from both I-V and admittance (C-V and G/ω-V) measurements at room temperature and at 1 MHz and were compared. The experimental results show that the value of N ss in a Schottky contact without passivation is nearly 1 order of magnitude larger than that in a Schottky contact with SiNx passivation layers. Also, the values of Rs increase with the increasing thickness of the passivation layer. In the forward bias region, the negative values of capacitance are an attractive result of this study. This negative capacitance disappears in presence of the passivation layer. Copyright © 2010 John Wiley & Sons, Ltd.Item Open Access Electrical characterization of MS and MIS structures on AlGaN/AlN/GaN heterostructures(ELSEVIER, 2010) Arslan, E.; Bütün, S.; Şafak, Y.; Uslu, H.; Tascioglu I.; Altindal, S.; Özbay, EkmelThe forward and reverse bias I-V, C-V, and G/ω-V characteristics of (Ni/Au) Schottky barrier diodes (SBDs) on the Al 0.22Ga 0.78N/AlN/GaN high-electron-mobility-transistor (HEMTs) without and with SiN x insulator layer were measured at room temperature in order to investigate the effects of the insulator layer (SiN x) on the main electrical parameters such as the ideality factor (n), zero-bias barrier height ( B0), series resistance (R s), interface-state density (N ss). The energy density distribution profiles of the N ss were obtained from the forward bias I-V characteristics by taking into account the voltage dependence of the effective barrier height ( e) and ideality factor (n V) of devices. In addition, the N ss as a function of E c-E ss was determined from the low-high frequency capacitance methods. It was found that the values of N ss and R s in SBD HEMTs decreases with increasing insulator layer thickness.Item Open Access Electron momentum and energy relaxation rates in GaN and AlN in the high-field transport regime(The American Physical Society, 2003) Bulutay, C.; Ridley, B. K.; Zakhleniuk, N. A.Momentum and energy relaxation characteristics of electrons in the conduction band of GaN and AlN are investigated using two different theoretical approaches corresponding to two high electric-field regimes, one up to 1-2 MV/ cm values for incoherent dynamics, and the other at even higher fields for coherent dynamics where semiballistic and ballistic processes become important. For the former, ensemble Monte Carlo technique is utilized to evaluate these rates as a function of electron energy up to an electric-field value of 1 MV/cm (2 MV/cm) for GaN (AlN). Momentum and energy relaxation rates within this incoherent transport regime in the presence of all standard scattering mechanisms are computed as well as the average drift velocity as a function of the applied field. Major scattering mechanisms are identified as polar optical phonon (POP) scattering and the optical deformation potential (ODP) scattering. Roughly, up to fields where the steady-state electron velocity attains its peak value, the POP mechanism dominates, whereas at higher fields ODP mechanism takes over. Next, aiming to characterize coherent dynamics, the total out-scattering rate from a quantum state (chosen along a high-symmetry direction) due to these two scattering mechanisms are then computed using a first-principles full-band approach. In the case of POP scattering, momentum relaxation rate differs from the total out-scattering rate from that state; close to the conduction-band minimum, momentum relaxation rate is significantly lower than the scattering rate because of forward-scattering character of the intravalley POP emission., However, close to the zone boundary the difference between these two rates diminishes due to isotropic nature of intervalley scatterings. Finally, a simple estimate for the velocity-field behavior in the coherent transport regime is attempted, displaying a negative differential mobility due to the negative band effective mass along the electric-field direction.Item Open Access Fabrication and characterization of liquid metal-based micro-electromechanical DC-contact switch for RF applications(CRC Press, 2012) Çağatay, Engin; Noyan, Mehmet Alican; Damgaci, Y.; Cetiner, B. A.; Bıyıklı, NecmiWe demonstrate that room-temperature liquid metal alloy droplets of Eutectic Gallium Indium (EGaIn) and Gallium Indium Tin alloy (Galinstan) can be actuated using electro-wetting-on-dielectric (EWOD) effect. With the application of 80-100V across the actuation electrode and ground electrode, the metallic liquid droplets were observed to be actuated. We have studied the actuation characteristics using different electrode architectures in open-air configuration as well as in encapsulated microfluidic channel test-beds. The resulting microfluidic DC actuation might potentially be used for RF switching applications.Item Open Access Frequency and temperature dependence of the dielectric and AC electrical conductivity in (Ni/Au)/AlGaN/AlN/GaN heterostructures(Elsevier, 2010) Arslan, E.; Şafak, Y.; Taşçioğlu, I.; Uslu, H.; Özbay, EkmelThe dielectric properties and AC electrical conductivity (σ ac)of the (Ni/Au)/Al 0.22Ga 0.78N/AlN/GaN heterostructures, with and without the SiNx passivation, have been investigated by capacitance-voltage and conductance-voltage measurements in the wide frequency (5kHz-5 MHz) and temperature (80-400 K) range. The experimental values of the dielectric constant (ε'), dielectric loss (ε' '), loss tangent (tand), σ ac and the real and imaginary part of the electric modulus (M' and M' ') were found to be a strong function of frequency and temperature. A decrease in the values of ε' and ε' ' was observed, in which they both showed an increase in frequency and temperature. The values of M' and M' ' increase with increasing frequency and temperature. The σ ac increases with increasing frequency, while it decreases with increasing temperature. It can be concluded, therefore, that the interfacial polarization can occur more easily at low frequencies and temperatures with the number of interface states density located at the metal/semiconductor interface. It contributes to the e' and σ ac. © 2009 Elsevier B.V. All rights reserved.Item Open Access Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer(Optical Society of American (OSA), 2013) Zhang, Z.-H.; Tan, S.T.; Liu W.; Ju, Z.; Zheng, K.; Kyaw, Z.; Ji, Y.; Hasanov, N.; Sun X.W.; Demir, Hilmi VolkanThis work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced. © 2013 Optical Society of America.Item Open Access Low-temperature grown wurtzite InxGa1−xN thin films via hollow cathode plasma-assisted atomic layer deposition(Royal Society of Chemistry, 2015-08) Haider A.; Kizir S.; Ozgit Akgun, C.; Goldenberg, E.; Leghari, S. A.; Okyay, Ali Kemal; Bıyıklı, NecmiHerein, we report on atomic layer deposition of ternary InxGa1−xN alloys with different indium contents using a remotely integrated hollow cathode plasma source. Depositions were carried out at 200 °C using organometallic Ga and In precursors along with N2/H2 and N2 plasma, respectively. The effect of In content on structural, optical, and morphological properties of InxGa1−xN thin films was investigated. Grazing incidence X-ray diffraction showed that all InxGa1−xN thin films were polycrystalline with a hexagonal wurtzite structure. X-ray photoelectron spectroscopy depicted the peaks of In, Ga, and N in bulk of the film and revealed the presence of relatively low impurity contents. In contents of different InxGa1−xN thin films were determined by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. Transmission electron microscopy also confirmed the polycrystalline structure of InxGa1−xN thin films, and elemental mapping further revealed the uniform distribution of In and Ga within the bulk of InxGa1−xN films. Higher In concentrations resulted in an increase of refractive indices of ternary alloys from 2.28 to 2.42 at a wavelength of 650 nm. The optical band edge of InxGa1−xN films red-shifted with increasing In content, confirming the tunability of the band edge with alloy composition. Photoluminescence measurements exhibited broad spectral features with an In concentration dependent wavelength shift and atomic force microscopy revealed low surface roughness of InxGa1−xN films with a slight increase proportional to In content.Item Open Access Nanocrystal integrated light emitting diodes based on radiative and nonradiative energy transfer for the green gap(IEEE, 2009) Nizamoğlu, Sedat; Sarı, Emre; Baek J.-H.; Lee I.-H.; Demir, Hilmi VolkanRecently the photometric conditions for ultra-efficient solid-state lighting have been discussed [1-2]. These studies show that a luminous efficacy of optical radiation at 408 lm/Wopt and a color rendering index (CRI) of 90 at a correlated color temperature (CCT) of 3000 K are achievable at the same time. For this purpose light emitting diodes (LEDs) emitting in blue, green, yellow, and red colors at 463, 530, 573, and 614 nm with relative optical power levels of 1/8, 2/8, 2/8, and 3/8, are required, respectively [1-2]. Although InxGa1-xN material system is capable to cover the whole visible by changing the In composition (x), it is technically extremely challenging to obtain efficient green/yellow light emitting diodes especially at those wavelengths (i.e., at 530 nm and 573 nm, respectively) due to reduced internal quantum efficiency [2-4]. Furthermore, by using the (Al xGa1-x)1-yInyP quaternary alloy it is also possible to cover from 650 nm to 580 nm. However, the efficiencies significantly decrease towards green. Therefore, there exists a significant gap in the green-yellow spectral regions (known as "the green gap") to make efficient light emitting diodes. To address this green gap problem, we propose and demonstrate proof-of-concept nanocrystal (NCs) hybridized green/yellow light emitting diodes that rely on both radiative energy transfer and nonradiative energy transfer (i.e., FRET-Förster resonance energy transfer) for color conversion on near-ultraviolet (near-UV) LEDs.Item Open Access Plasmonics: merging photonics and electronics at nanoscale dimensions((AAAS) American Association for the Advancement of Science, 2006) Özbay, EkmelElectronic circuits provide us with the ability to control the transport and storage of electrons. However, the performance of electronic circuits is now becoming rather limited when digital information needs to be sent from one point to another. Photonics offers an effective solution to this problem by implementing optical communication systems based on optical fibers and photonic circuits. Unfortunately, the micrometer-scale bulky components of photonics have limited the integration of these components into electronic chips, which are now measured in nanometers. Surface plasmon-based circuits, which merge electronics and photonics at the nanoscale, may offer a solution to this size-compatibility problem. Here we review the current status and future prospects of plasmonics in various applications including plasmonic chips, light generation, and nanolithography.Item Open Access Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method(American Institute of Physics, 2010-07-15) Lisesivdin, S. B.; Yildiz, A.; Balkan, N.; Kasap, M.; Ozcelik, S.; Özbay, EkmelWe carried out the temperature (22-350 K) and magnetic field (0.05 and 1.4 T) dependent Hall mobility and carrier density measurements on Al 0.22Ga0.78N/GaN heterostructures with AlN interlayer grown by metal-organic chemical-vapor deposition. Hall data is analyzed with a simple parallel conduction extraction method and temperature dependent mobility and carrier densities of the bulk and two-dimensional (2D) electrons are extracted successfully. The results for the bulk carriers are discussed using a theoretical model that includes the most important scattering mechanisms that contribute to the mobility. In order to investigate the mobility of two-dimensional electron gas, we used a theoretical model that takes into account the polar optical phonon scattering, acoustic phonon scattering, background impurity scattering, and interface roughness scattering in 2D. In these calculations, the values are used for the deformation potential and ionized impurity density values were obtained from the bulk scattering analysis. Therefore, the number of fitting parameters was reduced from four to two. © 2010 American Institute of Physics.Item Open Access Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity(American Institute of Physics, 2002) Bıyıklı, Necmi; Aytur, O.; Kimukin, I.; Tut, T.; Özbay, EkmelWe report on the design, fabrication, and characterization of solar-blind Schottky photodiodes with low noise and high detectivity. The devices were fabricated on n-/n+ AlGaN/GaN heterostructures using a microwave compatible fabrication process. True solar-blind operation with a cutoff wavelength of ∼274nm was achieved with AlxGa1-xN (x=0.38) absorption layer. The solar-blind detectors exhibited <1.8nA/cm2 dark current density in the 0-25 V reverse bias regime, and a maximum quantum efficiency of 42% around 267 nm. The photovoltaic detectivity of the devices were in excess of 2.6×1012cmHz1/2/W, and the detector noise was 1/f limited with a noise power density less than 3×10-29A2/Hz at 10 kHz. © 2002 American Institute of Physics.Item Open Access Spin-polarized ballistic transport in a thin superlattice of zinc blende half-metallic compounds(The American Physical Society, 2005) Qian, M. C.; Fong, C. Y.; Pickett, W. E.; Pask, J. E.; Yang, L. H.; Dag, S.We examine theoretically ballistic conduction in thin layers of zinc blende half metals, considering as an example a superlattice consisting of monolayers of GaAs and MnAs, a bilayer of CrAs, and a bilayer of GaAs. By artificially separating bilayers, we show that surface states thwart half metallicity. However, capping the metal-As bilayers restores half metallicity, and ballistic conduction of electrons within ∼0.3 eV of the Fermi level will give nearly 100% spin-polarized transmission in the direction of the superlattice. Recent developments suggest atomic layer epitaxy can be used to produce such thin layers for spintronic applications.Item Open Access Theoretical study of Ga-based nanowires and the interaction of Ga with single-wall carbon nanotubes(American Physical Society, 2004) Durgun, Engin; Dag, S.; Çıracı, SalimGallium displays physical properties which can make it a potential element to produce metallic nanowires and high-conducting interconnects in nanoelectronics. Using first-principles pseudopotential plane method we showed that Ga can form stable metallic linear and zigzag monatomic chain structures. The interaction between individual Ga atom and single-wall carbon nanotube (SWNT) leads to a chemisorption bond involving charge transfer. Doping of SWNT with Ga atom gives rise to donor states. Owing to a significant interaction between individual Ga atom and SWNT, continuous Ga coverage of the tube can be achieved. Ga nanowires produced by the coating of carbon nanotube templates are found to be stable and high conducting.