Browsing by Subject "GaN HEMTs"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Unknown Design of multi-octave band GaN-HEMT power amplifier(IEEE, 2012) Eren, Gulesin; Şen, Özlem A.; Bölükbaş, Basar; Kurt, Gökhan; Arıcan, Orkun; Cengiz, Ömer; Ünal, Sıla T.K.; Durmuş, Yıldırım; Özbay, EkmelThis paper describes design, fabrication and measurement of 6 GHz - 18 GHz monolithic microwave integrated circuit (MMIC) amplifier. The amplifier is realized as coplanar waveguide (CPW) circuit using 0.3 μm-gate Gallium-Nitride (GaN) HEMT technology. The amplifier has a small signal gain of 7 ± 0.75 dB. The output power at 3dB compression is better than 24 dBm with 16%-19% drain efficiency for the whole 6 GHz-18 GHz frequency band under continuous wave (CW) power. © 2012 IEEE.Item Open Access Study of the power performance of gaN based HEMTs with varying field plate lengths(North Atlantic University Union, 2015) Kurt G.; Toprak, A.; Sen O.A.; Özbay, EkmelIn this paper, we report the optimum power performance of GaN based high-electron-mobility-transistors (HEMTs) on SiC substrate with the field plates of various dimensions. The AlGaN/GaN HEMTs are fabricated with 0.6 µm gate length, 3 µm drain-source space. And also, the field plate structures with the lengths of 0.2, 0.3, 0.5, and 0.7 µm have been fabricated on these HEMTs. Great enhancement in radio frequency (RF) output power density was achieved with acceptable compromise in small signal gain. A HEMT of 0.5 µm field plate length and 800 µm gate width is biased under 35 V, at 3 dB gain compression, The results showed that we obtained a continuous wave output power of 36.2 dBm (5.2 W/mm), power-added efficiency (PAE) of 33% and a small signal gain of 11.4 dB from this device. We also could achieve a continuous wave output power of 37.2 dBm (5.2 W/mm), poweradded efficiency (PAE) of 33.7% and a small gain of 10.7 dB from another HEMT with 0.5 µm field plate length and 1000 µm gate width. These results were obtained at 8 GHz without using a via hole technology. The results seem very stunning in this respect. © 2015, North Atlantic University Union. All rights reserved.Item Open Access X Band GaN Based MMIC power amplifier with 36.5dBm P1-dB for space applications(IEEE, 2018) Gürdal, Armağan; Yilmaz, Burak Alptug; Cengiz, Ömer; Şen, Özlem; Özbay, EkmelAn X-Band Monolithic Microwave Integrated Circuit (MMIC) High Power Amplifier (HPA) with coplanar waveguide (CPW) based on AIGaN/GaN on SiC technology is presented in this paper. Coplanar waveguide technology (CPW) is chosen for the simplicity and reduced cost of fabrication since CPW process has no via. High Electron Mobility Transistors (HEMTs) are matched for the 8 GHz-8.4GHz frequency band for maximum output power. The Amplifier has a small signal gain over 10 dB, output power of 36.5dBm at 1 dB gain compression point (P1dB) and 40% power added efficiency (P AE) at (PldB) in the desired frequency band (8 GHz-8.4 GHz) with Vds = 30V.Item Open Access X band GaN based MMIC power amplifier with 36.5dBm P1-dB for space applications(IEEE, 2018) Gürdal, Armağan; Yılmaz, Burak Alptuğ; Cengiz, Ömer; Sen, Özlem; Özbay, EkmelAn X-Band Monolithic Microwave Integrated Circuit (MMIC) High Power Amplifier (HPA) with coplanar waveguide (CPW) based on AlGaN/GaN on SiC technology is presented in this paper. Coplanar waveguide technology (CPW) is chosen for the simplicity and reduced cost of fabrication since CPW process has no via. High Electron Mobility Transistors (HEMTs) are matched for the 8 GHz-8.4GHz frequency band for maximum output power. The Amplifier has a small signal gain over 10 dB, output power of 36.5dBm at 1 dB gain compression point (P1dB) and 40% power added efficiency (PAE) at (PldB) in the desired frequency band (8 GHz-8.4 GHz) with Vds = 30V.