Browsing by Subject "Electron density measurement"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access 3D electron density estimation in the ionosphere(IEEE, 2014) Tuna, Hakan; Arıkan, Orhan; Arıkan, F.Ionosphere has ion distribution which is variable in space and time. There have been physical and empirical studies for modeling the ionosphere. International Reference Ionosphere extended to Plasmasphere (IRI-Plas) is the most recent model developed for this purpose. However, IRI-Plas presents a model about the ionosphere and its compliance with the instantaneous state of the ionosphere does not provide the accuracy needed for engineering purposes. One of the important information sources about the instantaneous state of the ionosphere is GPS signals. In this study, constructing the ionosphere which is compatible with both the instantaneous ionosphere measurements and the physical structure of the ionosphere is presented as an optimization problem, and solved by using the particle swarm optimization technique. The ionosphere over Turkey is investigated by using the proposed optimization method and the importance of the instantaneous ionosphere measurements obtained from GPS signals is demonstrated.Item Open Access Algorithms and basis functions in tomographic reconstruction of ionospheric electron density(IEEE, 2005) Yavuz, E.; Arıkan, F.; Arıkan, Orhan; Erol, C. B.Computerized ionospheric tomography (CIT) is a method to investigate ionosphere electron density in two or three dimensions. This method provides a flexible tool for studying ionosphere. Earth based receivers record signals transmitted from the GPS satellites and the computed pseudorange and phase values are used to calculate Total Electron Content (TEC). Computed TEC data and the tomographic reconstruction algorithms are used together to obtain tomographic images of electron density. In this study, a set of basis functions and reconstruction algorithms are used to investigate best fitting two dimensional tomographic images of ionosphere electron density in height and latitude for one satellite and one receiver pair. Results are compared to IRI-95 ionosphere model and both receiver and model errors are neglected.Item Open Access Estimation of 3D electron density in the Ionosphere by using fusion of GPS satellite-receiver network measurements and IRI-Plas model(IEEE, 2013) Tuna, Tuna; Arıkan, Orhan; Arikan F.; Gulyaeva, T.GPS systems can give a good approximation of the Slant Total Electron Content in a cylindrical path between the GPS satellite and the receiver. International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model can also give an estimation of the vertical electron density profile in the ionosphere for any given location and time, in the altitude range from about 50 km to 20000 km. This information can be utilized to obtain total electron content between any given receiver and satellite locations based on the IRI-Plas model. This paper explains how the fusion of measurements obtained from a GPS satellite-receiver network can be utilized together with the IRI-Plas model in order to obtain a robust 3D electron density model of the ionosphere. © 2013 ISIF ( Intl Society of Information Fusi.Item Open Access Investigation of hourly and daily patterns for lithosphere-ionosphere coupling before strong earthquakes(IEEE, 2009-06) Karatay, S.; Arıkan F.; Arıkan, OrhanThe ionosphere can be characterized with its electron density distribution which is a complex function of spatial and temporal variations, geomagnetic, solar and seismic activity. An important measurable quantity about the electron density is the Total Electron Content (TEC) which is proportional to the total number of electrons on a line crossing the atmosphere. TEC measurements enable monitoring variations in the space weather. Global Positioning System (GPS) and the network of world-wide receivers provide a cost-effective solution in estimating TEC over a significant proportion of global land mass. In this study, five earthquakes between 2003-2008 that occurred in Japan with different seismic properties, and the China earthquake in May 2008 are investigated. The TEC data set is investigated by using the Kullback-Leibler Divergence (KLI), Kullback-Leibler Distance (KLD) and L2-Norm (L2N) which are used for the first time in the literature in this context and Cross Correlation Function (CCF) which is used in the literature before for quiet day period (QDP), disturbed day period (DDP), periods of 15 days before a strong earthquake (BE) and after the earthquake (AE). In summary, it is observed that the CCF, KLD and L2N between the neighbouring GPS stations cannot be used as a definitive earthquake precursor due to the complicated nature of earthquakes and various uncontrolled parameters that effect the behavior of TEC such as distance to the earthquake epicenter, distance between the stations, depth of the earthquake, strength of the earthquake and tectonic structure of the earthquake. KLD, KLI and L2N are used for the first time in literature for the investigation of earthquake precursor for the first time in literature and the extensive study results indicate that for more reliable estimates further space-time TEC analysis is necessary over a denser GPS network in the earthquake zones. ©2009 IEEE.Item Open Access İyonosfer TEİ verilerinin uzay-zamansal aradeğerlemesi(IEEE, 2011-04) Yıldız, Aykut; Arıkan, Orhan; Arıkan, F.GPS sinyalleri iyonosferdeki elektron yoğunluğunun kestirilmesi için önemli bir bilgi kaynağıdır. Ancak, GPS alıcılarında sinyallerin kaydedilemediği durumlar olmaktadır. Bu kesinti sırasında iyonosfer elektron içeriğinin kestiriminin yapılabilmesi için kesinti sureleri içinde kalan verilerin aradeğerleme ile kestirimi gereklidir. Bu çalışmada, bir GPS ağındaki ölçümlerin uzay-zamansal ilintileri kullanılarak yeni bir aradeğerleme tekniği geliştirilmiştir. Gerçek veriye dayalı sonuçlar, geliştirilen tekniğin yüksek başarımlı kestirimler ürettiğini göstermiştir. GPS signals are crucial, because they are used to estimate the electron density in the ionosphere. However, sometimes GPS receivers can not receive signals. In order to estimate ionospheric electron density during this cutoff, the interpolation of the data is necessary. In this paper, a new interpolation scheme that uses spatio-temporal correlation in the GPS network is proposed. The simulation results on real data show that the proposed technique produces promising results. © 2011 IEEE.Item Open Access Possibility of superconductivity of two-dimensional electrons on the surface of liquid heliuM, films(Pergamon Press, 1993) Tanatar, Bilal; Hakioǧlu T.We consider the possibility of superconductivity in a system of two-dimensional electrons on the surface of liquid helium films. Taking into account of the interaction between electrons and the surface excitations of liquid helium films-ripplons, within the weak coupling BCS theory, we estimate the superconducting transition temperature for various interaction strengths, film thicknesses, and electron densities. The superconducting transition temperature Tc, under experimentally realizable conditions, is calculated to be a few mK's. © 1993.Item Open Access Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT(Wiley-Blackwell Publishing, Inc., 2015) Tuna, H.; Arıkan, Orhan; Arikan, F.Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.