Browsing by Subject "Dielectric spacers"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Dielectric inspired scaling of polarization conversion subwavelength resonances in open ultrathin chiral structures(A I P Publishing LLC, 2015) Serebryannikov, A. E.; Mutlu, M.; Özbay, EkmelIt is shown that the scaling of subwavelength resonances in open ultrathin chiral structures can be obtained by varying only the permittivity of dielectric spacers, while multiband one-way polarization conversion and related asymmetric transmission remain possible. These features are quite general and obtainable in a wide range of parameter variation. Surprisingly, the difference in the power of ε for the classical ε-1/2 scaling rule and the empirical rules obtained in the present letter does not exceed 22%, giving an important entry point for future theoretical studies and design strategies. Both spectral scaling and conservation of the polarization characteristics can be achieved by using either tunneling or real-index impedance matching. The scaled structures with strong polarization and directional selectivity may have thickness of λ/100 and smaller. © 2015 AIP Publishing LLC.Item Open Access Optically thin composite resonant absorber at the near-infrared band: A polarization independent and spectrally broadband configuration(Optical Society of American (OSA), 2011) Boratay Alici, K.; Burak Turhan, A.; Soukoulis, C.M.; Özbay, EkmelWe designed, fabricated, and experimentally characterized thin absorbers utilizing both electrical and magnetic impedance matching at the near-infrared regime. The absorbers consist of four main layers: a metal back plate, dielectric spacer, and two artificial layers. One of the artificial layers provides electrical resonance and the other one provides magnetic resonance yielding a polarization independent broadband perfect absorption. The structure response remains similar for the wide angle of incidence due to the sub-wavelength unit cell size of the constituting artificial layers. The design is useful for applications such as thermal photovoltaics, sensors, and camouflage. ©2011 Optical Society of America.