Browsing by Subject "Cramer-Rao bounds"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access Algebraic error analysis of collinear feature points for camera parameter estimation(Elsevier, 2011-01-04) Urfalioglu, O.; Thormählen, T.; Broszio, H.; Mikulastik, P.; Çetin, A. EnisIn general, feature points and camera parameters can only be estimated with limited accuracy due to noisy images. In case of collinear feature points, it is possible to benefit from this geometrical regularity by correcting the feature points to lie on the supporting estimated straight line, yielding increased accuracy of the estimated camera parameters. However, regarding Maximum-Likelihood (ML) estimation, this procedure is incomplete and suboptimal. An optimal solution must also determine the error covariance of corrected features. In this paper, a complete theoretical covariance propagation analysis starting from the error of the feature points up to the error of the estimated camera parameters is performed. Additionally, corresponding Fisher Information Matrices are determined and fundamental relationships between the number and distance of collinear points and corresponding error variances are revealed algebraically. To demonstrate the impact of collinearity, experiments are conducted with covariance propagation analyses, showing significant reduction of the error variances of the estimated parameters.Item Open Access Çokyollu ortamda çapraz belirsizlik işlevi-yön bulma tekniğinin başarım analizi(IEEE, 2008-04) Güldoǧan, Mehmet Burak; Arıkan, OrhanBu bildiride, Çapraz Belirsizlik İşlevi-Yön Bulma (CAFDF) tekniğinin çokyollu ortamlardaki sinyallerin zaman gecikmesi, Doppler kayması, geliş yönü(GY) ve genlik kestirimindeki başarımı ile yiiksek çözünürlüklü algoritmalar olan Uzay-Almaşan Genelleşmiş Beklenti-Enbüyüitme (SAGE) ve Çoklu Sinyal Sınıflandırılması(MUSIC)'in sentetik sinyaller iizerindeki başarımları kıyaslanmıştır. Algoritmalann performansları, kök Ortalama Karesel Hata (kOKH) cinsinden degişik işaret Gürültü Oranı (iGO) değerlerinde Monte Carlo denemelerine dayalı olarak sunulmuştur. Sentetik kanallarda istatiksel kıyaslama amaçlı Cramer-Rao alt sınırları eklenmiştir. Simülasyon sonuçları göstermektedir ki, orta ve düşük iGO değerlerinde CAF-DF diğer iki algoritmaya göre üstünlük sağlamaktadır.Item Open Access Comparison of the CAF-DF and sage algorithms in multipath channel parameter estimation(IEEE, 2008-07) Güldoğan, M. Burak; Arıkan, OrhanIn this paper, performance of the recently proposed Cross Ambiguity Function - Direction Finding (CAF-DF) technique is compared with the Space Alternating Generalized Expectation Maximization (SAGE) technique. The CAF-DF, iteratively estimates direction of arrival (DOA), time-delay, Doppler shift and amplitude corresponding to each impinging signal onto an antenna array by utilizing the cross ambiguity function. On synthetic signals, based on Monte Carlo trials, performances of the algoritms are tested in terms of root Mean Squared Error (rMSE) at different Signal-to-Noise Ratios (SNR). Cramer-Rao lower bound is included for statistical comparisons. Simulation results indicate the superior performance of the CAF-DF technique over SAGE technique for low and medium SNR values. © 2008 IEEE.Item Open Access Enhanced position estimation via node cooperation(IEEE, 2010) Sahinoglu, Z.; Gezici, SinanTwo-way time-of-arrival (TW-ToA) is a widely used ranging protocol that can provide the distance between two devices without time synchronization. One drawback of the TW-ToA is poor positioning accuracy in the absence of a sufficient number of reference ranging devices. Also, for a self-positioning system with a limited battery life, it might be necessary to limit the number of transmissions while satisfying accuracy constraints. In this paper, a cooperative positioning protocol [1] is studied, which can improve positioning accuracy compared to the conventional TW-ToA based positioning systems and also facilitate positioning with fewer packet transmissions; hence, it can prolong battery life on average. The maximum likelihood estimator is obtained for the cooperative technique and the limits on the positioning accuracy are quantified in terms of the Cramer-Rao lower bound (CRLB). Simulation results are provided in order to show performance improvements. ©2010 IEEE.Item Open Access Fundamental limits and improved algorithms for linear least-squares wireless position estimation(John Wiley & Sons, 2010-09-22) Guvenc, I.; Gezici, Sinan; Sahinoglu Z.In this paper, theoretical lower bounds on performance of linear least-squares (LLS) position estimators are obtained, and performance differences between LLS and nonlinear least-squares (NLS) position estimators are quantified. In addition, two techniques are proposed in order to improve the performance of the LLS approach. First, a reference selection algorithm is proposed to optimally select the measurement that is used for linearizing the other measurements in an LLS estimator. Then, a maximum likelihood approach is proposed, which takes correlations between different measurements into account in order to reduce average position estimation errors. Simulations are performed to evaluate the theoretical limits and to compare performance of various LLS estimators.Item Open Access Hybrid TW-TOA/TDOA positioning algorithms for cooperative wireless networks(IEEE, 2011) Gholami, M.R.; Gezici, Sinan; Ström, E.G.; Rydström, M.The problem of positioning an unknown target is studied for a cooperative wireless sensor network using hybrid two-way time-of-arrival and time-difference-of-arrival measurements. A maximum likelihood estimator (MLE) can be employed to solve the problem. Due to the non-linear nature of the cost function in the MLE, a numerical method, e.g., an iterative search algorithm with a good initial point, should be taken to accurately estimate the target. To avoid drawbacks in a numerical method, we instead linearize the measurements and obtain a new two-step estimator that has a closed-form solution in each step. Simulation results confirm that the proposed linear estimator can attain Cramer-Rao lower bound for sufficiently high SNR. © 2011 IEEE.Item Open Access On the performance of linear least-squares estimation in wireless positioning systems(IEEE, 2008-05) Gezici, Sinan; Güvenç, İ.; Sahinoğlu, Z.A common technique for wireless positioning is to estimate time-of-arrivals (TOAs) of signals traveling between a target node and a number of reference nodes, and then to determine the position of the target node based on those TOA parameters. In determining the position of the target node from TOA parameters, linear or nonlinear least-squares (LS) estimation techniques can be employed. Although the linear LS techniques are suboptimal in general, they facilitate low-complexity position estimation. In this paper, performance of various linear LS techniques are compared, and suboptimality of the linear approach is quantified in terms of the Cramer-Rao lower bound (CRLB). Simulations are performed to compare the performance of the linear LS approaches versus the CRLBs for linear and nonlinear techniques. ©2008 IEEE.Item Open Access Theoretical limits for estimation of vital signal parameters using impulse radio UWB(IEEE, 2007) Gezici, Sinan; Şahinoğlu, Z.In this paper, Cramer-Rao lower bounds (CRLBs) for estimation of vital signal parameters, such as respiration and heart-beat rates, using ultra-wideband (UWB) pulses are derived. In addition, a simple closed-form CRLB expression is obtained for sinusoidal displacement functions under certain conditions. Moreover, a two-step suboptimal solution is proposed, which is based on time-delay estimation via matched filtering followed by least-squares (LS) estimation. It is shown that the proposed solution is asymptotically optimal in the limit of certain system parameters. Simulation studies are performed to evaluate the lower bounds and performance of the proposed solution for realistic system parameters.Item Open Access Theoretical limits on time delay estimation for ultra-wideband cognitive radios(IEEE, 2008-09) Gezici, Sinan; Celebi, H.; Arslan, H.; Poor, H. V.In this paper, theoretical limits on time delay estimation are studied for ultra-wideband (UWB) cognitive radio systems. For a generic UWB spectrum with dispersed bands, the Cramer-Rao lower bound (CRLB) is derived for unknown channel coefficients and carrier-frequency offsets (CFOs). Then, the effects of unknown channel coefficients and CFOs are investigated for linearly and non-linearly modulated training signals by obtaining specific CRLB expressions. It is shown that for linear modulations with a constant envelope, the effects of the unknown parameters can be mitigated. Finally, numerical results, which support the theoretical analysis, are presented. © 2008 IEEE.Item Open Access Time delay estimation in cognitive radio systems(IEEE, 2009-12) Koçak, Fatih; Çelebi, H.; Gezici, Sinan; Qaraqe, K. A.; Arslan, H.; Poor, H. V.In cognitive radio systems, secondary users can utilize multiple dispersed bands that are not used by primary users. In this paper, time delay estimation of signals that occupy multiple dispersed bands is studied. First, theoretical limits on time delay estimation are reviewed. Then, two-step time delay estimators that provide trade-offs between computational complexity and performance are investigated. In addition, asymptotic optimality properties of the two-step time delay estimators are discussed. Finally, simulation results are presented to explain the theoretical results. © 2009 IEEE.Item Open Access Time-delay estimation in dispersed spectrum cognitive radio systems(SpringerOpen, 2010) Kocak, F.; Celebi, H.; Gezici, Sinan; Qaraqe, K. A.; Arslan, H.; Poor, H. V.Time-delay estimation is studied for cognitive radio systems, which facilitate opportunistic use of spectral resources. A two-step approach is proposed to obtain accurate time-delay estimates of signals that occupy multiple dispersed bands simultaneously, with significantly lower computational complexity than the optimal maximum likelihood (ML) estimator. In the first step of the proposed approach, an ML estimator is used for each band of the signal in order to estimate the unknown parameters of the signal occupying that band. Then, in the second step, the estimates from the first step are combined in various ways in order to obtain the final time-delay estimate. The combining techniques that are used in the second step are called optimal combining, signal-to-noise ratio (SNR) combining, selection combining, and equal combining. It is shown that the performance of the optimal combining technique gets very close to the Cramer-Rao lower bound at high SNRs. These combining techniques provide various mechanisms for diversity combining for time-delay estimation and extend the concept of diversity in communications systems to the time-delay estimation problem in cognitive radio systems. Simulation results are presented to evaluate the performance of the proposed estimators and to verify the theoretical analysis.Item Open Access Time-delay estimation in multiple-input single-output systems(IEEE, 2010) Koçak, Fatih; Gezici, SinanIn this paper, the time-delay estimation problem is studied for multiple-input single-output (MISO) systems. First, a theoretical analysis is carried out by deriving the Cramer-Rao lower bound (CRLB) for time-delay estimation in a MISO system. Then, the maximum likelihood (ML) estimator for the time-delay parameter is obtained, which results in a complex optimization problem in general. In order to provide a solution of the ML estimator with low computational complexity, ML estimation based on a genetic global optimization algorithm, namely, differential evolution (DE), is proposed. Simulation studies for various fading scenarios are performed to investigate the performance of the proposed algorithm. ©2010 IEEE.Item Open Access Ultra-wideband range estimation: Theoretical limits and practical algorithms(IEEE, 2008-09) Güvenç, İ.; Gezici, Sinan; Şahinoğlu, Z.The high time resolution of ultra-wideband (UWB) signals enables wireless devices to perform accurate range estimation. In order to realize UWB systems with accurate ranging capabilities, both theoretical limits on range estimation and practical algorithms that approach those limits should be investigated. This paper provides a survey of various UWB ranging algorithms and discusses their performance and complexity tradeoffs. In addition, theoretical limits on range estimation are discussed in terms of Cramer-Rao and Ziv-Zakai lower bounds. Index Terms- Ultra-wideband (UWB), time-of-arrival (TOA) estimation, ranging, Cramer-Rao lower bound (CRLB), Ziv-Zakai lower bound (ZZLB). ©2008 IEEE.