Browsing by Subject "Cost-efficient"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Cost-efficient approximation of linear systems with repeated and multi-channel filtering configurations(IEEE, 1998-05) Kutay, Mehmet Alper; Erden, M. F.; Özaktaş, Haldun M.; Arıkan, Orhan; Candan, Ç.; Güleryüz, Ö.It is possible to obtain either exact realizations or useful approximations of linear systems or matrix-vector products arising in many different applications, by synthesizing them in the form of repeated or multi-channel filtering operations in fractional Fourier domains, resulting in much more efficient implementations with acceptable decreases in accuracy. By varying the number and configuration of filter blocks, which may take the form of arbitrary flow graphs, it is possible to trade off between accuracy and efficiency in the desired manner. The proposed scheme constitutes a systematic way of exploiting the information inherent in the regularity or structure of a given linear system or matrix, even when that structure is not readily apparent.Item Open Access Wavelength tuning of the spirally drawn whispering gallery mode microfiber lasers and the perspectives for sensing applications(OSA - The Optical Society, 2017) Yang, Shancheng; Eugene, Tay Yong Kang; Wang, Yue; Zhao, Xin; Demir, Hilmi Volkan; Sun, HandongFacile and cost-efficient microcavities, as well as the tuning of the optical modes, especially for the application of top-grade optical devices, have been emerging as attractive research fields. In this work, controllable fabrication of the microfiber laser arrays in polymer matrix is achieved by employing the advanced spiral drawing technique. Besides the high-quality whispering gallery mode (WGM) lasing, wavelength tuning is also realized by applying external forces on the polymer matrix, which induce slightly enlarged cavity sizes. Furthermore, the perspectives of utilizing the microfiber arrays as force and strain sensors are discussed and demonstrated. � 2017 Optical Society of America.