Browsing by Subject "Core/shell nanocrystals"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Continuously tunable emission in inverted type ‐ I CdS/CdSe core/crown semiconductor nanoplatelets(Wiley, 2015-07-15) Delikanlı, S.; Güzeltürk, B.; Hernandez - Martinez, P. L.; Erdem, T.; Keleştemur, Y.; Olutas M.; Akgül, M. Z.; Demir, Hilmi VolkanThe synthesis and unique tunable optical properties of core/crown nanoplatelets having an inverted Type-I heterostructure are presented. Here, colloidal 2D CdS/CdSe heteronanoplatelets are grown with thickness of four monolayers using seed-mediated method. In this work, it is shown that the emission peak of the resulting CdS/CdSe heteronanoplatelets can be continuously spectrally tuned between the peak emission wavelengths of the core only CdS nanoplatelets (421 nm) and CdSe nanoplatelets (515 nm) having the same vertical thickness. In these inverted Type-I nanoplatelets, the unique continuous tunable emission is enabled by adjusting the lateral width of the CdSe crown, having a narrower bandgap, around the core CdS nanoplatelet, having a wider bandgap, as a result of the controlled lateral quantum confinement in the crown region additional to the pure vertical confinement. As a proof-of-concept demonstration, a white light generation is shown by using color conversion with these CdS/CdSe heteronanoplatelets having finely tuned thin crowns, resulting in a color rendering index of 80. The robust control of the electronic structure in such inverted Type-I heteronanoplatelets achieved by tailoring the lateral extent of the crown coating around the core template presents a new enabling pathway for bandgap engineering in solution-processed quantum wells.Item Open Access Highly stable, near-unity efficiency atomically flat semiconductor nanocrystals of CdSe/ZnS hetero-nanoplatelets enabled by ZnS-Shell hot-injection growth(WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Yemliha, Yemliha; Quliyeva, Ulviyya; Güngör, Kıvanç; Erdem, Onur; Kelestemur, Yusuf; Mutlugün, Evren; Kovalenko, M.; Demir, Hilmi VolkanColloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c‐ALD) provides the ability to produce their core/shell heterostructures. However, as c‐ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near‐unity efficiency CdSe/ZnS NPLs are shown using hot‐injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI‐shell hetero‐NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c‐ALD shell‐coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI‐shell NPLs exhibit ultralow gain thresholds reaching ≈7 µJ cm−2. Despite being annealed at 500 K, these ZnS‐HI‐shell NPLs possess low gain thresholds as small as 25 µJ cm−2. These findings indicate that the proposed 573 K HI‐shell‐grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics.Item Open Access Observation of biexcitons in the presence of trions generated via sequential absorption of multiple photons in colloidal quantum dot solids(IEEE, 2012) Cihan, Ahmet Fatih; Hernandez-Martinez Pedro L.; Kelestemur, Yusuf; Demir, Hilmi VolkanMulti exciton generation (MEG) and multi exciton recombination (MER) in semiconductor quantum dots (QDs) have recently attracted significant scientific interest as a possible means to improve device efficiencies [1-5]. Convenient bandgap tunability, easy colloidal synthesis, and solution-based processability of these QDs make them further attractive for such device applications using MEG and MER. For example, recent theoretical and experimental studies have shown that MEG enables >100% peak external quantum efficiency where the generated multi excitons (MEs) are collected in a simple QD solar cell structure [1]. Furthermore, MEG has also been shown in QD photodetectors exhibiting substantially increased photocurrent levels [2]. Another promising application for MEs is the use of QDs as an alternative gain medium based on MER for lasers. Although MEG is very promising and supported with quite persuasive reports, there are still some debatable issues that need to be clarified. One of the issues that have generated great debates in the field has been the confusion of MER with the recombination of trions, which takes place in photocharged QDs. To utilize MEG and MER in practical devices such as QD solar cells and QD lasing devices, these phenomena need to be well understood. Here, we showed distinct spectrally-resolved temporal behavior of biexciton (BX), single exciton (X) and trion radiative recombinations in near unity quantum yield (QY) quasi-type II CdSe/CdS core/shell nanocrystal QDs. Upon sequential absorption of multiple photons, the extraction of Xs, BXs, and trions were achieved using time correlated single photon counting (TCSPC) measurements performed on low concentration thin film samples of these QDs at different emission wavelengths. The QDs were embedded in PMMA medium to obtain homogeneous samples and avoid Förster-type nonradiative energy transfer (NRET) between them. Here to extract Xs, BXs, and trions, we devised a new analysis approach for the time decays of the QDs that allowed us to attribute the physical events to their corresponding time decay terms, which were further verified with their excitation intensity dependencies [6]. © 2012 IEEE.Item Open Access Reordering orbitals of semiconductor multi-shell quantum dot-quantum well heteronanocrystals(American Institute of Physics, 2012-01-27) Sahin, M.; Nizamoglu, S.; Yerli, O.; Demir, Hilmi VolkanBased on self-consistent computational modeling of quantum dot-quantum well (QDQW) heteronanocrystals, we propose and demonstrate that conduction-electron and valence-hole orbitals can be reordered by controlling shell thicknesses, unlike widely known core/shell quantum dots (QDs). Multi-shell nanocrystals of CdSe/ZnS/CdSe, which exhibit an electronic structure of 1s-1p-2s-2p-1d-1f for electrons and 1s-1p-2s-2p-1d-2d for holes using thin ZnS and CdSe shells (each with two monolayers), lead to 1s-2s-1p-1d-1f-2p electron-orbitals and 1s-2s-1p-1d-2p-1f hole orbitals upon increasing the shell thicknesses while keeping the same core. This is characteristically different from the only CdSe core and CdSe/ZnS core/shell QDs, both exhibiting only 1s-1p-1d-2s-1f-2p ordering for electrons and holes.Item Open Access White light generation with CdSe/ZnS core-shell nanocrystals and InGaN/GaN light emitting diodes(IEEE, 2006) Nizamoğlu, Sedat; Özel, Sedat; Sarı, Emre; Demir, Hilmi VolkanWe present hybrid white light sources that integrate CdSe/ZnS core-shell nanocrystals on blue InGaN/GaN light emitting diodes (LED). We report on the demonstrations of white light generation using yellow nanocrystals (λPL=580 nm) hybridized on a blue LED (λEL= 440 nm) with tristimulus coordinates of x=0.37 and y=0.25, correlated color temperature of Tc=2692 K, and color rendering index of R a=14.6; cyan and red nanocrystals (λPL=500 nm and 620 nm) on a blue LED (λEL=440 nm) with x=0.37, y=0.28, T c=3246 K, and Ra=19.6; and green, yellow, and red nanocrystals (λPL=540 nm, 580 nm, and 620 nm) on a blue LED (λEL=452 nm) with x=0.30, y=0.28, Tc =7521 K, and Ra=40.9. © 2006 IEEE.