Browsing by Subject "Computational complexity theory"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Minimizing schedule length on identical parallel machines: an exact algorithm(1991) Akyel, H. CemalThe primary concern of this study is to investigate the combinatorial aspects of the single-stage identical parallel machine scheduling problem and to develop a computationally feasible branch and bound algorithm for its exact solution. Although there is a substantial amount of literature on this problem, most of the work in this area is on the development and performance analysis of approximation algorithms. The few optimizing algorithms proposed in the literature have major drawbacks from the computer implementation point of view. Even though the single-stage scheduling problem is known to be unary A/’P-hard, there is still a need to develop a computationally feasible optimizing algorithm that solves the problem in a reasonable time. Development of such an algorithm is necessary for solving the multi-stage parallel machine scheduling problems which are currently an almost untouched issue in the deterministic scheduling theory. In this study, a branch and bound algorithm for the single-stage identical parallel machine scheduling problem is proposed. Promising results were obtained in the empirical analysis of the performance of this algorithm. Furthermore, the procedure that is developed to determine tight bounds at a node of the enumeration tree, is an approximation algorithm that solves a special class of identical parallel machine scheduling problems of practical interest. This algorithm delivers a solution that is arbitrarily close to 4/3 times the optimum. To our knowledge this is the best result obtained for this problem so far.