Browsing by Subject "Compressive sensing (CS)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Autofocused spotlight SAR image reconstruction of off-grid sparse scenes(Institute of Electrical and Electronics Engineers Inc., 2017) Camlıca, S.; Gurbuz, A. C.; Arıkan, OrhanSynthetic aperture radar (SAR) has significant role in remote sensing. Phase errors due to uncompensated platform motion, measurement model mismatch, and measurement noise can cause degradations in SAR image reconstruction. For efficient processing of the measurements, image plane is discretized and autofocusing algorithms on this discrete grid are employed. However, in addition to the platform motion errors, the reflectors, which are not exactly on the reconstruction grid, also degrade the image quality. This is called the off-grid target problem. In this paper, a sparsity-based technique is developed for autofocused spotlight SAR image reconstruction that can correct phase errors due to uncompensated platform motion and provide robust images in the presence of off-grid targets. The proposed orthogonal matching pursuit-based reconstruction technique uses gradient descent parameter updates with built in autofocus. The technique can reconstruct high-quality images by using sub Nyquist rate of sampling on the reflected signals at the receiver. The results obtained using both simulated and real SAR system data show that the proposed technique provides higher quality reconstructions over alternative techniques in terms of commonly used performance metrics.Item Open Access Scalable learning-based sampling optimization for compressive dynamic MRI(IEEE, 2020) Sanchez, T.; Gözcü, B.; van Heeswijk, R. B.; Eftekhari, A.; Ilıcak, Efe; Çukur, Tolga; Cevher, V.Compressed sensing applied to magnetic resonance imaging (MRI) allows to reduce the scanning time by enabling images to be reconstructed from highly undersampled data. In this paper, we tackle the problem of designing a sampling mask for an arbitrary reconstruction method and a limited acquisition budget. Namely, we look for an optimal probability distribution from which a mask with a fixed cardinality is drawn. We demonstrate that this problem admits a compactly supported solution, which leads to a deterministic optimal sampling mask. We then propose a stochastic greedy algorithm that (i) provides an approximate solution to this problem, and (ii) resolves the scaling issues of [1, 2]. We validate its performance on in vivo dynamic MRI with retrospective undersampling, showing that our method preserves the performance of [1, 2] while reducing the computational burden by a factor close to 200. Our implementation is available at https://github.com/t-sanchez/stochasticGreedyMRI.