Browsing by Subject "Cell death"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Acquired tolerance of hepatocellular carcinoma cells to selenium deficiency: a selective survival mechanism?(American Association for Cancer Research, 2003) Irmak, M. B.; Ince, G.; Ozturk, M.; Cetin Atalay, R.Selenium is essential to human health, and its deficiency is associated with different diseases including liver necrosis. Selenium is protective against viral hepatitis and hepatocellular carcinoma (HCC). The underlying molecular mechanisms of selenium effects are not well known. In this study, in vitro response of HCC-derived cell lines to selenium deficiency is examined alone or in conjunction with Vitamin E and copper/zinc. Here, we show that itt vitro selenium deficiency in a subset of HCC-derived cell lines causes oxidative stress and cytochrome c release with subsequent cell death by apoptosis. The oxidative stress and consequent cell death induced by selenium deficiency on these cells are reverted by the antioxidant effect of Vitamin E. However, most HCC cell lines (10 of 13) tolerate selenium deficiency. Consequently, they escape apoptosis. Moreover, nine of these tolerant cell lines have integrated hepatitis B Virus (HBV) DNA in their genomes, and some display p53-249 mutation, indicating past exposure to HBV or aflatoxins, established factors for oxidative stress and cancer risk in liver. An HBV-transfected clone (2.2.15) of the sensitive HepG2 cell line has gained tolerance to selenium deficiency. Our findings indicate that selenium deficiency induces apoptosis in some "hepatocyte-like" cells. However, most HCC cells, particularly HBV-related ones, tolerate selenium deficiency and escape its deadly consequences. Thus, as demonstrated by the gain of survival capacity of apoptosis-sensitive cell lines with Vitamin E, such malignant cells have acquired a selective survival advantage that is prominent under selenium-deficient and oxidative-stress conditions.Item Open Access Gauss tabanlı modelleme kullanarak canlı hücre görüntülerinin öğreticisiz bölütlenmesi(2011-04) Arslan, Salim; Durmaz, İrem; Çetin-Atalay, Rengül; Gündüz-Demir, ÇiğdemThe first step of targeted cancer drug development is to screen and determine drug candidates by in vitro measuring the effectiveness of the drugs. The tests developed for this purpose can be time consuming due to their procedures and cannot be conducted in every laboratory due to the required hardwares. On the other hand, an image-based screening test has a potential to be less time consuming since it can directly be carried out on the live cell images and to be more extensively used because of the availability of its required equipments and their relatively less expensive cost. With such an image-based test, it is possible to quantify the cell death by finding cellular regions and comparing it against the control group. In this work, we propose a new method that automatically locates the cellular regions by the unsupervised segmentation of live cell images. This method relies on approximately locating cellular regions and the background with gradient-based thresholding and morphological operators and then finding the final boundaries by modeling the gradient of these regions with Gaussians. Working on the images of different cell lines captured with different magnifications, our experiments show that the proposed method leads to promising results. © 2011 IEEE.Item Open Access Identification of differentially expressed microRNAs during lipotoxic endoplasmic reticulum stress in RAW264.7 macrophages(Turkish Biochemistry Society, 2016-06) Nadir, M.; Tufanlı, Ö.; Erbay, E.; Atalay, A.Objective: Increased fatty acids in the circulation and their accumulation in non-adipose tissues play a significant role in the development of obesity related metabolic and inflammatory disorders such as insulin resistance, diabetes and atherosclerosis. While fat tissue has the ability to store excess fatty acids, uptake of excess fatty acids to other tissues burdens intracellular metabolic organelles such as mitochondria and endoplasmic reticulum (ER), leading to stress response and lipotoxic cell death. Unfolded protein response (UPR) is a key adaptation of the ER to stress. It is still not completely clear how lipids engage the UPR and how UPR manages both the adaptive and destructive consequences under its control. Increasing evidence point to the importance of miRNA regulation of the UPR as well as UPR’s role in miRNA biogenesis. In order to understand how lipids engage the UPR, we set forth to identify microRNAs regulated by lipotoxic ER stress in macrophages. Methods: We stressed the mouse macrophage cell line (RAW 264.7) with a saturated fatty acid, 500μM palmitate, reflecting the levels found in the circulation of obese patients. We analyzed the microRNAome profiles of this cell line using QRT-PCR based miScript miRNA PCR array which contained all known mouse microRNAs in miRBase release16 and performed pathway analysis for potential targets. Results: 227 microRNAs showed altered expression levels; 43 microRNAs above 2 fold difference and 13 microRNAs 3-24 fold difference. Pathway analysis enriched the target mRNAs of these lipotoxic ER stress associated miRNAs. Conclusion: When exposed to high concentrations of saturated fatty acids that can induce ER stress, macrophages display a dynamic range of changes in their microRNAome profiles. Our findings reflect the consequences of lipotoxic stress on circulating monocytes and tissue-associated macrophages in obesity. Further studies are needed to deliniate which UPR arm is reponsible for the microRNA changes reported here.Item Open Access Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: towards a paradigm change in photodynamic therapy(Wiley-VCH Verlag, 2016) Kolemen, S.; Ozdemir, T.; Lee, D.; Kim, G. M.; Karatas, T.; Yoon, J.; Akkaya, E. U.The photodynamic therapy of cancer is contingent upon the sustained generation of singlet oxygen in the tumor region. However, tumors of the most metastatic cancer types develop a region of severe hypoxia, which puts them beyond the reach of most therapeutic protocols. More troublesome, photodynamic action generates acute hypoxia as the process itself diminishes cellular oxygen reserves, which makes it a self-limiting method. Herein, we describe a new concept that could eventually lead to a change in the 100 year old paradigm of photodynamic therapy and potentially offer solutions to some of the lingering problems. When gold nanorods with tethered endoperoxides are irradiated at 808 nm, the endoperoxides undergo thermal cycloreversion, resulting in the generation of singlet oxygen. We demonstrate that the amount of singlet oxygen produced in this way is sufficient for triggering apoptosis in cell cultures. EPT sees the light: When gold nanorods with tethered endoperoxides are irradiated with near-infrared light, the endoperoxides undergo thermal cycloreversion, resulting in the generation of singlet oxygen. The amount of singlet oxygen generated by these nanocomposites is sufficient for triggering apoptosis in cell cultures.