Browsing by Subject "Capacitive micromachined ultrasonic transducer"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Item Open Access Bandwidth, power and noise considerations in airborne cMUTs(IEEE, 2009-09) Şenlik, Muhammed N.; Olcum, Selim; Köymen, Hayrettin; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (cMUTs) offer wider bandwidth in air due to their low mechanical impedances. The impedance mismatch between the air and transducer decreases with the smaller device dimensions increasing the bandwidth at the expense of the degradation in the transmit power and the receive sensitivity. In this work, the bandwidth of cMUT is optimized by increasing its radiation resistance. This is done by properly choosing the size of cMUT membranes and their placement within an array. This selection not only brings an improvement in the transmitted power when it is used as a transmitter, but also improves the noise figure when it is used as a receiver. A further improvement in the noise figure is possible when the cells are clustered and connected to separate receivers. ©2009 IEEE.Item Open Access CMUT array element in deep-collapse mode(IEEE, 2011) Olcum, Semih; Yamaner F.Y.; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahCollapse and deep-collapse mode of operations have boosted the pressure outputs of capacitive micromachined ultrasonic transducers (CMUTs) considerably. In this work, we demonstrate a CMUT element operating in the deep-collapse mode with 25 V pulse excitation and without the effects of charge trapping. The fabricated CMUT element consists of 4 by 4 circular cells with 20 μm radius and 1 μm thick plates suspended over a 50 nm cavity. The overall size of the element is 0.190 mm by 0.19 mm. The collapse voltage of the plates is measured to be approximately 3V. By driving the CMUTs with 25V pulses in the deep-collapse mode without any bias, we achieved 1.2 MPa peak-to-peak pressure output on the surface of the CMUT element with a center frequency of 9 MHz and 100% fractional bandwidth. We applied 1000 consecutive electrical pulses with alternating polarity to the element and witnessed no change in the transmitted acoustic pulse. © 2011 IEEE.Item Open Access Deep-collapse operation of capacitive micromachined ultrasonic transducers(IEEE, 2011) Olcum, S.; Yamaner F. Y.; Bozkurt, A.; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (CMUTs) have been introduced as a promising technology for ultrasound imaging and therapeutic ultrasound applications which require high transmitted pressures for increased penetration, high signal-to-noise ratio, and fast heating. However, output power limitation of CMUTs compared with piezoelectrics has been a major drawback. In this work, we show that the output pressure of CMUTs can be significantly increased by deep-collapse operation, which utilizes an electrical pulse excitation much higher than the collapse voltage. We extend the analyses made for CMUTs working in the conventional (uncollapsed) region to the collapsed region and experimentally verify the findings. The static deflection profile of a collapsed membrane is calculated by an analytical approach within 0.6% error when compared with static, electromechanical finite element method (FEM) simulations. The electrical and mechanical restoring forces acting on a collapsed membrane are calculated. It is demonstrated that the stored mechanical energy and the electrical energy increase nonlinearly with increasing pulse amplitude if the membrane has a full-coverage top electrode. Utilizing higher restoring and electrical forces in the deep-collapsed region, we measure 3.5 MPa peak-to-peak pressure centered at 6.8 MHz with a 106% fractional bandwidth at the surface of the transducer with a collapse voltage of 35 V, when the pulse amplitude is 160 V. The experimental results are verified using transient FEM simulations.Item Open Access Designing transmitting CMUT cells for airborne applications(Institute of Electrical and Electronics Engineers Inc., 2014) Ünlügedik, A.; Taşdelen, A.; Atalar, Abdullah; Köymen, HayrettinWe report a new mode of airborne operation for capacitive micromachined ultrasonic transducers (CMUT), in which the plate motion spans the entire gap without collapsing and the transducer is driven by a sinusoidal voltage without a dc bias. We present equivalent-circuit-based design fundamentals for an airborne CMUT cell and verify the design targets using fabricated CMUTs. The performance limits for silicon plates are derived. We experimentally obtain 78.9 dB//20 μPa@1 m source level at 73.7 kHz, with a CMUT cell of radius 2.05 mm driven by 71 V sinusoidal drive voltage at half the frequency. The measured quality factor is 120. We also study and discuss the interaction of the nonlinear transduction force and the nonlinearity of the plate compliance. © 1986-2012 IEEE.Item Open Access Electrically unbiased driven airborne capacitive micromachined ultrasonic transducer design(IEEE, 2012) Ünlügedik, Aslı; Atalar, Abdullah; Kocabaş, Coşkun; Oğuz, H. Kağan; Köymen, HayrettinWe present a design method for airborne capacitive micromachined ultrasonic transducers (CMUT). We use an equivalent lumped element circuit to model both electrical and mechanical properties of CMUT and analyze it in frequency domain using harmonic balance approach. We use this method to design CMUTs for large transmitted power generation at low drive voltage amplitude. We determine the dimensions of an airborne CMUT using the proposed method that works at 30 kHz with 5 mm radius, 240 μm membrane thickness and 11.8 μm effective gap height. The CMUT is designed such that an atmospheric depression of 70% of effective gap height is maintained. © 2012 IEEE.Item Open Access An equivalent circuit model for transmitting capacitive micromachined ultrasonic transducers in collapse mode(IEEE, 2011) Olcum, S.; Yamaner, F. Y.; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahThe collapse mode of operation of capacitive micromachined ultrasonic transducers (CMUTs) was shown to be a very effective way to achieve high output pressures. However, no accurate analytical or equivalent circuit model exists for understanding the mechanics and limits of the collapse mode. In this work, we develop an equivalent nonlinear electrical circuit that can accurately simulate the mechanical behavior of a CMUT with given dimensions and mechanical parameters under any large or small signal electrical excitation, including the collapse mode. The static and dynamic deflections of a plate predicted from the model are compared with finite element simulations. The equivalent circuit model can estimate the static deflection and transient behavior of a CMUT plate to within 5% accuracy. The circuit model is in good agreement with experimental results of pulse excitation applied to fabricated CMUTs. The model is suitable as a powerful design and optimization tool for collapsed and uncollapsed CMUTs.Item Open Access Equivalent circuit-based analysis of CMUT cell dynamics in arrays(IEEE, 2013) Oğuz, H. K.; Atalar, Abdullah; Köymen, HayrettinCapacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.Item Open Access An improved lumped element nonlinear circuit model for a circular CMUT cell(IEEE, 2012) Köymen, Hayrettin; Atalar, Abdullah; Aydogdu, E.; Kocabas, C.; Oguz, H. K.; Olcum, S.; Ozgurluk, A.; Unlugedik, A.This paper describes a correction and an extension in the previously published large signal equivalent circuit model for a circular capacitive micromachined ultrasonic transducer (CMUT) cell. The force model is rederived so that the energy and power is preserved in the equivalent circuit model. The model is able to predict the entire behavior of CMUT until the membrane touches the substrate. Many intrinsic properties of the CMUT cell, such as the collapse condition, collapse voltage, the voltage-displacement interrelation and the force equilibrium before and after collapse voltage in the presence of external static force, are obtained as a direct consequence of the model. The small signal equivalent circuit for any bias condition is obtained from the large signal model. The model can be implemented in circuit simulation tools and model predictions are in excellent agreement with finite element method simulations.Item Open Access Interaction between a cMUT cell and a liquid medium around the parallel resonance frequency(IEEE, 2007-10) Şenlik, Muhammed N.; Atalar, Abdullah; Olçum, SelimIn this paper, we present how a capacitive micromachined ultrasonic transducer (cMUT) couples to the immersion medium, based on an accurate parametric model. We show that the velocity of cMUT membrane can be written as a sum of an average velocity term and a residual term. We demonstrate that this residual term carries non-zero energy at the parallel resonance frequency by investigating the interaction between the cMUT cell and a liquid medium. We develop a model that is also applicable around the parallel resonance frequency. © 2007 IEEE.Item Open Access Nonuniform membranes in capacitive micromachined ultrasonic transducers(2005) Şenlik, Muhammed N.Capacitive micromachined ultrasonic transducers (cMUT) are used to receive and transmit ultrasonic signals. The device is constructed from many small, in the order of microns, circular membranes, which are connected in parallel. When they are immersed in water, the bandwidth of the cMUT is limited by the membrane’s second resonance frequency, which causes an increase in the mechanical impedance of the membrane. In this thesis, we propose a new membrane shape to shift the second resonance frequency to higher values, in addition to keeping the impedance of the membrane as small as possible. The structure consists of a very thin membrane with a rigid mass at the center. The stiffness of the central region moves the second resonance to a higher frequency. This membrane configuration is shown to work better compared to conventionally used uniform membranes during both reception and transmission. The improvement in the bandwidth is more than %30 with an increase in the gain.Item Open Access A novel equivalent circuit model for CMUTs(IEEE, 2009-09) Oğuz, H. Kağan; Olcum, Selim; Senlik, Muhammed N.; Atalar, Abdullah; Köymen, HayrettinA nonlinear equivalent circuit for immersed transmitting capacitive micromachined ultrasonic transducers (CMUTs) is presented. The velocity profile across the CMUT surface maintains the same form over a wide frequency range. This property and the profile are used to model both the electromechanical conversion and the mechanical section. The model parameters are calculated considering the root mean square of the velocity distribution on the membrane surface as the through variable. The new model is compared with the FEM simulation results. The new model predicts the CMUT performance very accurately. ©2009 IEEE.Item Open Access Optimizing CMUT geometry for high power(IEEE, 2010) Yamaner F.Y.; Olcum, Selim; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (CMUTs) have demonstratedvarious advantages over piezoelectric transducers. However, current CMUT designsproduce low output pressures with high harmonic distortions. Optimizing thetransducer parameters requires an iterative solution and is too time consumingusing finite element (FEM) modelling tools. In this work, we present a method ofdesigning high output pressure CMUTs with relatively low distortion. We analyzethe behavior of a membrane under high voltage continuous wave operation using anonlinear electrical circuit model. The radiation impedance of an array ofCMUTs is accurately represented using an RLC circuit in the model. The maximummembrane swing without collapse is targeted in the transmit mode. Using SPICEsimulation of the parametric circuit model, we design the CMUT cell withoptimized parameters such as the membrane radius (a), thickness (tm),insulator thickness (ti) and gap height (tg). The modelalso predicts the amount of second harmonic at the output. To verify theaccuracy of the results, we built a FEM model with the same CMUT parameters. Thedesign starts by choosing ti for the given input voltage level.First, a is selected for the maximum radiation resistance of the array at theoperating frequency. Second, tm is found for the resonance at theinput frequency. Third, tg is chosen for the maximum membrane swing.Under this condition, a frequency shift in the resonant frequency occurs. Secondand third steps are repeated until convergence. This method results in a CMUTarray with a high output power and with low distortion. © 2010 IEEE.Item Open Access Radiation impedance and equivalent circuit for immersed CMUT array element(IEEE, 2006-10) Şenlik, Muhammed N.; Atalar, Abdullah; Köymen, Hayrettin; Olcum, SelimIn this paper, we present equivalent circuit for immersed capacitive micromachined ultrasonic transducers (cMUT), based on an accurate parametric model. We also present an accurate approximation for the radiation impedance cMUT. We develop a design approach for immersed cMUTs using the equivalent circuit. We demonstrate that the equivalent circuit predicts the performance of a cMUT array element composed of many cells in parallel. We investigate the applicability of the equivalent circuit in designing cMUT array elements. © 2006 IEEE.Item Open Access Radiation impedance of an array of circular capacitive micromachined ultrasonic transducers(IEEE, 2010) Senlik, M. N.; Olcum, S.; Köymen, Hayrettin; Atalar, AbdullahThe radiation impedance of a capacitive micromachined ultrasonic transducer (cMUT) with a circular membrane is calculated analytically using its velocity profile for the frequencies up to its parallel resonance frequency for both the immersion and the airborne applications. The results are verified by finite element simulations. The work is extended to calculate the radiation impedance of an array of cMUT cells positioned in a hexagonal pattern. A higher radiation resistance improves the bandwidth as well as the efficiency of the cMUT. The radiation resistance is determined to be a strong function of the cell spacing. It is shown that a center-to-center cell spacing of 1.25 wavelengths maximizes the radiation resistance, if the membranes are not too thin. It is also found that excitation of nonsymmetric modes may reduce the radiation resistance in immersion applications.Item Open Access Radiation impedance of an array of circular capacitive micromachined ultrasonic transducers in collapsed state(IEEE, 2011-10) Özgürlük, Alper; Atalar, Abdullah; Köymen, Hayrettin; Olcum, SelimRadiation impedance is one of the important parameters in designing efficient and wideband capacitive micro-machined ultrasonic transducer (CMUT) arrays. It determines how much acoustical power is generated in the surrounding medium given the membrane motion. Recently, considerable effort has been put to characterize the radiation impedance of CMUT arrays in conventional uncollapsed regime. However, the radiation impedance of an array of CMUT cells in collapsed state has not yet been investigated. To calculate the array radiation impedance in collapse mode, we first calculate the radiation impedance of a single cell CMUT. For the array case, the mutual impedances between the neighboring cells must also be taken into account.We consider an array of 7, 19, 37, and 61 cells placed in a hexagonal pattern and try to determine the radiation impedance for different degrees of collapse. We find that in the collapsed case the peak radiation resistance value is reached at higher kd values, where k is the wavenumber and d is the center to center cell spacing, compared to the uncollapsed regime.Item Open Access Radiation impedance of collapsed capacitive micromachined ultrasonic transducers(Institute of Electrical and Electronics Engineers, 2012) Ozgurluk, A.; Atalar, Abdullah; Köymen, Hayrettin; Olçum, S.The radiation impedance of a capacitive micromachined ultrasonic transducer (CMUT) array is a critical parameter to achieve high performance. In this paper, we present a calculation of the radiation impedance of collapsed, clamped, circular CMUTs both analytically and using finite element method (FEM) simulations. First, we model the radiation impedance of a single collapsed CMUT cell analytically by expressing its velocity profile as a linear combination of special functions for which the generated pressures are known. For an array of collapsed CMUT cells, the mutual impedance between the cells is also taken into account. The radiation impedances for arrays of 7, 19, 37, and 61 circular collapsed CMUT cells for different contact radii are calculated both analytically and by FEM simulations. The radiation resistance of an array reaches a plateau and maintains this level for a wide frequency range. The variation of radiation reactance with respect to frequency indicates an inductance-like behavior in the same frequency range. We find that the peak radiation resistance value is reached at higher kd values in the collapsed case as compared with the uncollapsed case, where k is the wavenumber and d is the center-to-center distance between two neighboring CMUT cells.Item Open Access Rayleigh-bloch waves in CMUT arrays(Institute of Electrical and Electronics Engineers Inc., 2014) Atalar, Abdullah; Köymen, Hayrettin; Oğuz, H. K.Using the small-signal electrical equivalent circuit of a capacitive micromachined ultrasonic transducer (CMUT) cell, along with the self and mutual radiation impedances of such cells, we present a computationally efficient method to predict the frequency response of a large CMUT element or array. The simulations show spurious resonances, which may degrade the performance of the array. We show that these unwanted resonances are due to dispersive Rayleigh-Bloch waves excited on the CMUT surface-liquid interface. We derive the dispersion relation of these waves for the purpose of predicting the resonance frequencies. The waves form standing waves at frequencies where the reflections from the edges of the element or the array result in a Fabry-Pérot resonator. High-order resonances are eliminated by a small loss in the individual cells, but low-order resonances remain even in the presence of significant loss. These resonances are reduced to tolerable levels when CMUT cells are built from larger and thicker lates at the expense of reduced bandwidth. © 2014 IEEE.Item Open Access Wafer bonded capacitive micromachined underwater transducers(IEEE, 2009-09) Olcum, Selim; Oǧuz, Kaan; Şenlik, Muhammed N.; Yamaner F. Y.; Bozkurt, A.; Atalar, Abdullah; Köymen, HayrettinIn this work we have designed, fabricated and tested CMUTs as underwater transducers. Single CMUT membranes with three different radii and 380 microns of thickness are fabricated for the demonstration of an underwater CMUT element. The active area of the transducer is fabricated on top of a 3″ silicon wafer. The silicon wafer is bonded to a gold electrode coated glass substrate wafer 10 cm in diameter. Thermally grown silicon oxide layer is used as the insulation layer between membrane and substrate electrodes. Electrical contacts and insulation are made by epoxy layers. Single CMUT elements are tested in air and in water. Approximately 40% bandwidth is achieved around 25 KHz with a single underwater CMUT cell. Radiated pressure field due to second harmonic generation when the CMUTs are driven with high sinusoidal voltages is measured. ©2009 IEEE.