Browsing by Subject "Amphophile"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Angiogenic heparin-mimetic peptide nanofiber gel improves regenerative healing of acute wounds(American Chemical Society, 2017) Uzunalli, G.; Mammadov R.; Yesildal, F.; Alhan, D.; Ozturk, S.; Ozgurtas, T.; Güler, Mustafa O.; Tekinay, A. B.Wound repair in adult mammals typically ends with the formation of a scar, which prevents full restoration of the function of the healthy tissue, although most of the wounded skin heals. Rapid and functional recovery of major wound injuries requires therapeutic approaches that can enhance the healing process via overcoming mechanical and biochemical problems. In this study, we showed that self-assembled heparin-mimetic peptide nanofiber gel was an effective bioactive wound dressing for the rapid and functional repair of full-thickness excisional wounds in the rat model. The bioactive gel-treated wounds exhibited increased angiogenesis (p < 0.05), re-epithelization (p < 0.05), skin appendage formation, and granulation tissue organization (p < 0.05) compared to sucrose-treated samples. Increased blood vessel numbers in the gel-treated wounds on day 7 suggest that angiogenesis played a key role in improvement of tissue healing in bioactive gel-treated wounds. Overall, the angiogenic heparin-mimetic peptide nanofiber gel is a promising platform for enhancing the scar-free recovery of acute wounds.Item Open Access Biocompatible supramolecular catalytic one-dimensional nanofibers for efficient labeling of live cells(American Chemical Society, 2015) Khalily, M. A.; Gulseren, G.; Tekinay, A. B.; Güler, Mustafa O.Understanding complex cellular functions requires study and tracking of biomolecules such as proteins, glycans, and lipids in their natural environment. Herein, we report the first supramolecular nanocatalyst for bioorthogonal click reaction to label live cells. This biocompatible and biodegradable nanocatalyst was formed by self-assembled peptide nanofibers complexed with copper ions. The supramolecular nanocatalyst enhanced azide-alkyne cycloaddition reaction rate under physiological conditions and was shown to be useful for efficient bioorthogonal labeling of live cells.Item Open Access Chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-mimetic peptide nanofibers(American Chemical Society, 2016) Yaylaci, S .U.; Sen, M.; Bulut, O.; Arslan, E.; Güler, Mustafa O.; Tekinay, A. B.Glycosaminoglycans (GAGs) are important extracellular matrix components of cartilage tissue and provide biological signals to stem cells and chondrocytes for development and functional regeneration of cartilage. Among their many functions, particularly sulfated glycosaminoglycans bind to growth factors and enhance their functionality through enabling growth factor-receptor interactions. Growth factor binding ability of the native sulfated glycosaminoglycans can be incorporated into the synthetic scaffold matrix through functionalization with specific chemical moieties. In this study, we used peptide amphiphile nanofibers functionalized with the chemical groups of native glycosaminoglycan molecules such as sulfonate, carboxylate and hydroxyl to induce the chondrogenic differentiation of rat mesenchymal stem cells (MSCs). The MSCs cultured on GAG-mimetic peptide nanofibers formed cartilage-like nodules and deposited cartilage-specific matrix components by day 7, suggesting that the GAG-mimetic peptide nanofibers effectively facilitated their commitment into the chondrogenic lineage. Interestingly, the chondrogenic differentiation degree was manipulated with the sulfonation degree of the nanofiber system. The GAG-mimetic peptide nanofibers network presented here serve as a tailorable bioactive and bioinductive platform for stem-cell-based cartilage regeneration studies.Item Open Access Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels(Royal Society of Chemistry, 2017) Cinar, G.; Ozdemir, A.; Hamsici, S.; Gunay, G.; Dana, A.; Tekinay, A. B.; Güler, Mustafa O.Peptide amphiphiles (PAs) self-assemble into supramolecular nanofiber gels that provide a suitable environment for encapsulation of both hydrophobic and hydrophilic molecules. The PA gels have significant advantages for controlled delivery applications due to their high capacity to retain water, biocompatibility, and biodegradability. In this study, we demonstrate injectable supramolecular PA nanofiber gels for drug delivery applications. Doxorubicin (Dox), as a widely used chemotherapeutic drug for breast cancer treatment, was encapsulated within the PA gels prepared at different concentrations. Physical and chemical properties of the gels were characterized, and slow release of the Dox molecules through the supramolecular PA nanofiber gels was studied. In addition, the diffusion constants of the drug molecules within the PA nanofiber gels were estimated using fluorescence recovery after the photobleaching (FRAP) method. The PA nanofiber gels did not show any cytotoxicity and the encapsulation strategy enhanced the activity of drug molecules on cellular viability through prolonged release compared to direct administration under in vitro conditions. Moreover, the local in vivo injection of the Dox encapsulated PA nanofiber gels (Dox/PA) to the tumor site demonstrated the lowest tumor growth rate compared to the direct Dox injection and increased the apoptotic cells within the tumor tissue for local drug release through the PA nanofiber gels under in vivo conditions.Item Open Access Multivalent presentation of cationic peptides on supramolecular nanofibers for antimicrobial activity(American Chemical Society, 2017) Beter, M.; Kara, H. K.; Topal, A. E.; Dana, A.; Tekinay, A. B.; Güler, Mustafa O.Noncovalent and electrostatic interactions facilitate the formation of complex networks through molecular self-assembly in biomolecules such as proteins and glycosaminoglycans. Self-assembling peptide amphiphiles (PA) are a group of molecules that can form nanofibrous structures and may contain bioactive epitopes to interact specifically with target molecules. Here, we report the presentation of cationic peptide sequences on supramolecular nanofibers formed by self-assembling peptide amphiphiles for cooperative enhanced antibacterial activity. Antibacterial properties of self-assembled peptide nanofibers were significantly higher than soluble peptide molecules with identical amino acid sequences, suggesting that the tandem presentation of bioactive epitopes is important for designing new materials for bactericidal activity. In addition, bacteria were observed to accumulate more rapidly on peptide nanofibers compared to soluble peptides, which may further enhance antibacterial activity by increasing the number of peptide molecules interacting with the bacterial membrane. The cationic peptide amphiphile nanofibers were observed to attach to bacterial membranes and disrupt their integrity. These results demonstrate that short cationic peptides show a significant improvement in antibacterial activity when presented in the nanofiber form.Item Open Access Spatial organization of functional groups on bioactive supramolecular glycopeptide nanofibers for differentiation of mesenchymal stem cells (MSCs) to brown adipogenesis(American Chemical Society, 2016-12) Caliskan, O. S.; Sardan, Ekiz M.; Tekinay, A. B.; Güler, Mustafa O.Spatial organization of bioactive moieties in biological materials has significant impact on the function and efficiency of these systems. Here, we demonstrate the effect of spatial organization of functional groups including carboxylate, amine, and glucose functionalities by using self-assembled peptide amphiphile (PA) nanofibers as a bioactive scaffold. We show that presentation of bioactive groups on glycopeptide nanofibers affects mesenchymal stem cells (MSCs) in a distinct manner by means of adhesion, proliferation, and differentiation. Strikingly, when the glutamic acid is present in the glycopeptide backbone, the PA nanofibers specifically induced differentiation of MSCs into brown adipocytes in the absence of any differentiation medium as shown by lipid droplet accumulation and adipogenic gene marker expression analyses. This effect was not evident in the other glycopeptide nanofibers, which displayed the same functional groups but with different spatial organization. Brown adipocytes are attractive targets for obesity treatment and are found in trace amounts in adults, which also makes this specific glycopeptide nanofiber system an attractive tool to study molecular pathways of brown adipocyte formation.Item Open Access Supramolecular chirality in self-assembled peptide amphiphile nanostructures(Royal Society of Chemistry, 2015) Garifullin, R.; Güler, Mustafa O.Induced supramolecular chirality was investigated in the self-assembled peptide amphiphile (PA) nanosystems. Having shown that peptide chirality can be transferred to the covalently-attached achiral pyrene moiety upon PA self-assembly, the chiral information is transferred to molecular pyrene via weak noncovalent interactions. In the first design of a supramolecular chiral system, the chromophore was covalently attached to a peptide sequence (VVAGH) via an ε-aminohexanoic acid spacer. Covalent attachment yielded a PA molecule self-assembling into nanofibers. In the second design, the chromophore was encapsulated within the hydrophobic core of self-assembled nanofibers of another PA consisting of the same peptide sequence attached to lauric acid. We observed that supramolecular chirality was induced in the chromophore by PA assembly into chiral nanostructures, whether it was covalently attached, or noncovalently bound.Item Open Access Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells(American Chemical Society, 2017-08) Arslan, Elif; Koc,, Meryem Hatip; Uysal, Ozge; Dikecoglu, Begum; Topal, Ahmet E.; Garifullin, Ruslan; Ozkan, Alper D.; Dana, A.; Hermida-Merino, D.; Castelletto, V.; Edwards-Gayle, C.; Baday, S.; Hamley, I.; Tekinay, Ayse B.; Güler, Mustafa O.Chirality and morphology are essential factors for protein function and interactions with other biomacromolecules. Extracellular matrix (ECM) proteins are also similar to other proteins in this sense; however, the complexity of the natural ECM makes it difficult to study these factors at the cellular level. The synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as model systems. In this work, we demonstrate that mechanosensory responses of stem cells are directly regulated by the chirality and morphology of ECM-mimetic peptide nanofibers with strictly controlled characteristics. Structural signals presented on l-amino acid containing cylindrical nanofibers (l-VV) favored the formation of integrin β1-based focal adhesion complexes, which increased the osteogenic potential of stem cells through the activation of nuclear YAP. On the other hand, twisted ribbon-like nanofibers (l-FF and d-FF) guided the cells into round shapes and decreased the formation of focal adhesion complexes, which resulted in the confinement of YAP proteins in the cytosol and a corresponding decrease in osteogenic potential. Interestingly, the d-form of twisted-ribbon like nanofibers (d-FF) increased the chondrogenic potential of stem cells more than their l-form (l-FF). Our results provide new insights into the importance and relevance of morphology and chirality of nanomaterials in their interactions with cells and reveal that precise control over the chemical and physical properties of nanostructures can affect stem cell fate even without the incorporation of specific epitopes.Item Open Access Three-Dimensional Laminin Mimetic Peptide Nanofiber Gels for In Vitro Neural Differentiation(Wiley-VCH Verlag, 2017) Gunay, Gokhan; Sever, Melike; Tekinay, Ayse B.; Güler, Mustafa O.The extracellular matrix (ECM) provides biochemical signals and structural support for cells, and its functional imitation is a fundamental aspect of biomaterial design for regenerative medicine applications. The stimulation of neural differentiation by a laminin protein-derived epitope in two-dimensional (2D) and three-dimensional (3D) environments is investigated. The 3D gel system is found to be superior to its 2D counterpart for the induction of neural differentiation, even in the absence of a crucial biological inducer in nerve growth factor (NGF). In addition, cells cultured in 3D gels exhibits a spherical morphology that is consistent with their form under in vivo conditions. Overall, the present study underlines the impact of bioactivity, dimension, and NGF addition, as well as the cooperative effects thereof, on the neural differentiation of PC-12 cells. These results underline the significance of 3D culture systems in the development of scaffolds that closely replicate in vivo environments for the formation of cellular organoid models in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim