Browsing by Subject "Activity recognition and classification"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Comparative study on classifying human activities with miniature inertial and magnetic sensors(Elsevier, 2010) Altun, K.; Barshan, B.; Tunçel, O.This paper provides a comparative study on the different techniques of classifying human activities that are performed using body-worn miniature inertial and magnetic sensors. The classification techniques implemented and compared in this study are: Bayesian decision making (BDM), a rule-based algorithm (RBA) or decision tree, the least-squares method (LSM), the k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW), support vector machines (SVM), and artificial neural networks (ANN). Human activities are classified using five sensor units worn on the chest, the arms, and the legs. Each sensor unit comprises a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer. A feature set extracted from the raw sensor data using principal component analysis (PCA) is used in the classification process. A performance comparison of the classification techniques is provided in terms of their correct differentiation rates, confusion matrices, and computational cost, as well as their pre-processing, training, and storage requirements. Three different cross-validation techniques are employed to validate the classifiers. The results indicate that in general, BDM results in the highest correct classification rate with relatively small computational cost.Item Open Access Investigating inter-subject and inter-activity variations in activity recognition using wearable motion sensors(Oxford University Press, 2016) Barshan, B.; Yurtman, A.This work investigates inter-subject and inter-activity variability of a given activity dataset and provides some new definitions to quantify such variability. The definitions are sufficiently general and can be applied to a broad class of datasets that involve time sequences or features acquired using wearable sensors. The study is motivated by contradictory statements in the literature on the need for user-specific training in activity recognition. We employ our publicly available dataset that contains 19 daily and sports activities acquired from eight participants who wear five motion sensor units each. We pre-process recorded activity time sequences in three different ways and employ absolute, Euclidean and dynamic time warping distance measures to quantify the similarity of the recorded signal patterns. We define and calculate the average inter-subject and inter-activity distances with various methods based on the raw and pre-processed time-domain data as well as on the raw and pre-processed feature vectors. These definitions allow us to identify the subject who performs the activities in the most representative way and pinpoint the activities that show more variation among the subjects. We observe that the type of pre-processing used affects the results of the comparisons but that the different distance measures do not alter the comparison results as much. We check the consistency of our analysis and results by highlighting some of our activity recognition rates based on an exhaustive set of sensor unit, sensor type and subject combinations. We expect the results to be useful for dynamic sensor unit/type selection, for deciding whether to perform user-specific training and for designing more effective classifiers in activity recognition.