Browsing by Author "Yazici, A."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Kinect based intelligent wheelchair navigation with potential fields(IEEE, 2014) Özçelikörs, M.; Çoşkun, A.; Say, M. Girayhan; Yazici, A.; Yayan, U.; Akçakoca, M.Increasing elderly people population and people with disabilities constitute a huge demand for wheelchairs. Wheelchairs have an important role on improving the lives and mobilization of people with disabilities. Moreover, autonomous wheelchairs constitute a suitable research platform for academic and industrial researchers. In this study, Finite state machine (FSM) based high-level controller and Kinect based navigation algorithm have been developed for ATEKS (Intelligent Wheelchair) which has high-tech control mechanisms, low-cost sensors and open source software (ROS, GAZEBO, ANDROID). © 2014 IEEE.Item Open Access A parallel boundary element formulation for tracking multiple particle trajectories in Stoke's flow for microfluidic applications(Tech Science Press, 2015) Karakaya, Z.; Baranoʇlu, B.; Çetin B.; Yazici, A.A new formulation for tracking multiple particles in slow viscous flow for microfluidic applications is presented. The method employs the manipulation of the boundary element matrices so that finally a system of equations is obtained relating the rigid body velocities of the particle to the forces applied on the particle. The formulation is specially designed for particle trajectory tracking and involves successive matrix multiplications for which SMP (Symmetric multiprocessing) parallelisation is applied. It is observed that present formulation offers an efficient numerical model to be used for particle tracking and can easily be extended for multiphysics simulations in which several physics involved. Copyright © 2015 Tech Science Press.Item Open Access Rule-based inference and decomposition for distributed in-network processing in wireless sensor networks(Springer, 2017) Sanli, O.; Korpeoglu, I.; Yazici, A.Wireless sensor networks are application specific and necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. A common type of application for wireless sensor networks is the event-driven reactive application, which requires reactive actions to be taken in response to events. In such applications, the interest is in the higher-level information described by complex event patterns, not in the raw sensory data of individual nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a continuous flow of raw sensor readings over the network. As communication operations are the most expensive in terms of energy usage, the distributed processing of information is indispensable for viable deployments of applications in wireless sensor networks. This method not only helps in reducing the total amount of packets transmitted in the network and the total energy consumed by the sensor nodes, but also produces scalable and fault-tolerant networks. For this purpose, we present two schemes that distribute information processing to appropriate nodes in the network. These schemes use reactive rules, which express relations between event patterns and actions, in order to capture reactive behavior. We also share the results of the performance of our algorithms and the simulations based on our approach that show the success of our methods in decreasing network traffic while still realizing the desired functionality. © 2016, Springer-Verlag London.