Browsing by Author "Salihoglu, O."
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access A Comparative Passivation Study for InAs / GaSb Pin Superlattice Photodetectors(IEEE Institute of Electrical and Electronics Engineers, 2013-08) Salihoglu, O.; Muti, A.; Aydınlı, AtillaIn the quest to find ever better passivation techniques for infrared photodetectors, we explore several passivation layers using atomic layer deposition (ALD). We compare the impact of these layers on detectors fabricated under same conditions. We use ALD deposited Al2O3, HfO2, TiO2, ZnO, plasma enhanced chemical vapor deposition deposited SiO2, Si3N4, and sulfur containing octadecanethiol self assembled monolayer passivation layers on InAs/GaSb p-i-n superlattice diodes with an average cutoff wavelength of 5.1 mu m. Passivated and unpassivated photodetectors compared for their electrical performances.Item Open Access Crystallization of Ge in SiO2 matrix by femtosecond laser processing(American Vacuum Society, 2012-01-19) Salihoglu, O.; Kürüm, U.; Yaglioglu, H. G.; Elmali, A.; Aydınlı, AtillaGermanium nanocrystals embedded in a siliconoxide matrix has been fabricated by single femtosecond laser pulse irradiation of germanium doped SiO2 thin films deposited with plasma enhanced chemical vapor deposition. SEM and AFM are used to analyze surface modification induced by laser irradiation. Crystallization of Ge in the oxide matrix is monitored with the optic phonon at 300 cm(-1) as a function of laser fluence. Both the position the linewidth of the phonon provides clear signature for crystallization of Ge. In PL experiments, strong luminescence around 600 nm has been observed.Item Open Access Electronic and optical properties of 4.2 lm‘‘N’’ structured superlattice MWIR photodetectors(Elsevier B.V., 2013-01-05) Salihoglu, O.; Hostut M.; Tansel, T.; Kutluer, K.; Kilic A.; Alyoruk, M.; Sevik, C.; Turan, R.; Ergun, Y.; Aydınlı, AtillaWe report on the development of a new structure for type II superlattice photodiodes that we call the ‘‘N’’ design. In this new design, we insert an electron barrier between InAs and GaSb in the growth direction. The barrier pushes the electron and hole wavefunctions towards the layer edges and under bias, increases the overlap integral by about 25% leading to higher detectivity. InAs/AlSb/GaSb superlattices were studied with density functional theory. Both AlAs and InSb interfaces were taken into account by calculating the heavy hole–light hole (HH–LH) splittings. Experiments were carried out on single pixel photodiodes by measuring electrical and optical performance. With cut-off wavelength of 4.2 lm at 120 K, temperature dependent dark current and detectivity measurements show that the dark current is 2.5 10 9 A under zero bias with corresponding R0A resistance of 1.5 104 X cm2 for the 500 500 lm2 single pixel square photodetectors. Photodetector reaches BLIP condition at 125 K with the BLIP detectivity (D BLIP) of 2.6 1010 Jones under 300 K background and 0.3 V bias voltage.Item Open Access Electronic and optical properties of 4.2 μm"N" structured superlattice MWIR photodetectors(Elsevier, 2013) Salihoglu, O.; Hostut M.; Tansel, T.; Kutluer, K.; Kilic A.; Alyoruk, M.; Sevik, C.; Turan, R.; Ergun, Y.; Aydınlı, AtillaWe report on the development of a new structure for type II superlattice photodiodes that we call the "N" design. In this new design, we insert an electron barrier between InAs and GaSb in the growth direction. The barrier pushes the electron and hole wavefunctions towards the layer edges and under bias, increases the overlap integral by about 25% leading to higher detectivity. InAs/AlSb/GaSb superlattices were studied with density functional theory. Both AlAs and InSb interfaces were taken into account by calculating the heavy hole-light hole (HH-LH) splittings. Experiments were carried out on single pixel photodiodes by measuring electrical and optical performance. With cut-off wavelength of 4.2 μm at 120 K, temperature dependent dark current and detectivity measurements show that the dark current is 2.5 × 10 -9 A under zero bias with corresponding R0A resistance of 1.5 × 104 Ω cm2 for the 500 × 500 μm2 single pixel square photodetectors. Photodetector reaches BLIP condition at 125 K with the BLIP detectivity (DBLIP) of 2.6 × 10 10 Jones under 300 K background and -0.3 V bias voltage. © 2012 Elsevier B.V. All rights reserved.Item Open Access Femtosecond laser crystallization of amorphous Ge(American Institute of Physics, 2011) Salihoglu, O.; Kürüm, U.; Yaglıoglu, G. H.; Elmali, A.; Aydınlı, AtillaUltrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm -1 as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.Item Open Access Graphene as a Reversible and Spectrally Selective Fluorescence Quencher(Nature Publishing Group, 2016) Salihoglu, O.; Kakenov, N.; Balci, O.; Balci, S.; Kocabas, C.We report reversible and spectrally selective fluorescence quenching of quantum dots (QDs) placed in close proximity to graphene. Controlling interband electronic transitions of graphene via electrostatic gating greatly modifies the fluorescence lifetime and intensity of nearby QDs via blocking of the nonradiative energy transfer between QDs and graphene. Using ionic liquid (IL) based electrolyte gating, we are able to control Fermi energy of graphene in the order of 1 eV, which yields electrically controllable fluorescence quenching of QDs in the visible spectrum. Indeed, our technique enables us to perform voltage controllable spectral selectivity among quantum dots at different emission wavelengths. We anticipate that our technique will provide tunable light-matter interaction and energy transfer that could yield hybrid QDs-graphene based optoelectronic devices with novel functionalities, and additionally, may be useful as a spectroscopic ruler, for example, in bioimaging and biomolecular sensing. We propose that graphene can be used as an electrically tunable and wavelength selective fluorescence quencher. � 2016 The Author(s).Item Open Access Graphene-quantum dot hybrid optoelectronics at visible wavelengths(American Chemical Society, 2018) Salihoglu, O.; Kakenov, N.; Balci, O.; Balci, S.; Kocabas, C.With exceptional electronic and gate-tunable optical properties, graphene provides new possibilities for active nanophotonic devices. Requirements of very large carrier density modulation, however, limit the operation of graphene based optical devices in the visible spectrum. Here, we report a unique approach that avoids these limitations and implements graphene into optoelectronic devices working in the visible spectrum. The approach relies on controlling nonradiative energy transfer between colloidal quantum-dots and graphene through gate-voltage induced tuning of the charge density of graphene. We demonstrate a new class of large area optoelectronic devices including fluorescent display and voltage-controlled color-variable devices working in the visible spectrum. We anticipate that the presented technique could provide new practical routes for active control of light-matter interaction at the nanometer scale, which could find new implications ranging from display technologies to quantum optics.Item Open Access N structure for type-II superlattice photodetectors(American Institute of Physics, 2012-08-14) Salihoglu, O.; Muti, A.; Kutluer, K.; Tansel, T.; Turan, R.; Ergun, Y.; Aydınlı, AtillaIn the quest to raise the operating temperature and improve the detectivity of type II superlattice (T2SL) photodetectors, we introduce a design approach that we call the "N structure." N structure aims to improve absorption by manipulating electron and hole wavefunctions that are spatially separated in T2SLs, increasing the absorption while decreasing the dark current. In order to engineer the wavefunctions, we introduce a thin AlSb layer between InAs and GaSb layers in the growth direction which also acts as a unipolar electron barrier. Unlike the symmetrical insertion of AlSb into GaSb layers, N design aims to exploit the shifting of the electron and hole wavefunctions under reverse bias. With cutoff wavelength of 4.3 mu m at 77 K, temperature dependent dark current and detectivity measurements show that the dark current density is 3.6 x 10(-9) A/cm(2), under zero bias. Photodetector reaches background limited infrared photodetection (BLIP) condition at 125 K with the BLIP detectivity (D-BLIP*) of 2.6 x 10(10) Jones under 300 K background and -0.3 V bias voltage.Item Open Access Plasmon-polaritons on graphene-metal surface and their use in biosensors(A I P Publishing LLC, 2012) Salihoglu, O.; Balci, S.; Kocabas, C.We studied excitation of surface plasmon-polaritons on graphene-metal surface. The metal surface is functionalized by transfer printing of graphene grown by chemical vapor deposition on copper foils. Surface plasmon resonance characteristics of monolayer and multilayer graphene on the metal surface are presented. We were able to obtain the dispersion relation of graphene-metal surface which reveals the essential feature of the plasmon-polaritons. As an application, we fabricated a surface plasmon resonance sensor integrated with a microfluidic device to study nonspecific physical interaction between graphene layer and proteins. © 2012 American Institute of Physics.Item Open Access Skin-like self-assembled monolayers on InAs / GaSb superlattice photodetectors(IOP Institute of Physics Publishing, 2012) Salihoglu, O.; Muti, A.; Kutluer, K.; Tansel, T.; Turan, R.; Aydınlı, AtillaWe report on the effects of monolayer (ML) thick skin-like octadecanethiol (ODT, CH 3[CH 2] 17SH) on type-II InAs/GaSb MWIR photodetectors. Circumventing the ageing effects of conventional sulfur compounds, we use ODT, a self-assembling, long molecular chain headed with a sulfur atom. Photodiodes coated with and without the self-assembled monolayer (SAM) ODT were compared for their electrical and optical performances. For ODT-coated diodes, the dark current density was improved by two orders of magnitude at 77K under 100mV bias. The zero bias responsivity and detectivity were 1.04AW 1 and 2.15 × 10 13 Jones, respectively, at 4μm and 77K. The quantum efficiency was determined to be 37% for a cutoff wavelength of 5.1μm.Item Open Access Synthesis of graphene on gold(A I P Publishing, 2011) Oznuluer, T.; Pince, E.; Polat, E. O.; Balci, O.; Salihoglu, O.; Kocabas, C.Here we report chemical vapor deposition of graphene on gold surface at ambient pressure. We studied effects of the growth temperature, pressure, and cooling process on the grown graphene layers. The Raman spectroscopy of the samples reveals the essential properties of the graphene grown on gold surface. In order to characterize the electrical properties of the grown graphene layers, we have transferred them on insulating substrates and fabricated field effect transistors. Owing to distinctive properties of gold, the ability to grow graphene layers on gold surface could open new applications of graphene in electrochemistry and spectroscopy. © 2011 American Institute of Physics.Item Open Access Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping(American Physical Society, 2012) Balci, S.; Kocabas, C.; Ates, S.; Karademir, E.; Salihoglu, O.; Aydınlı, AtillaIn this paper, we report experimental and theoretical investigations on tuning of the surface plasmon-exciton coupling by controlling the plasmonic mode damping, which is defined by the plasmonic layer thickness. The results reveal the formation of plasmon-exciton hybrid state characterized by a tunable Rabi splitting with energies ranging from 0 to 150 meV. Polarization-dependent spectroscopic reflection measurements were employed to probe the dispersion of the coupled system. The transfer matrix method and analytical calculations were used to model the self-assembled J-aggregate/metal multilayer structures in excellent agreement with experimental observations. © 2012 American Physical Society.Item Open Access Weighing graphene with QCM to monitor interfacial mass changes(American Institute of Physics Inc., 2016) Kakenov, N.; Balci, O.; Salihoglu, O.; Hur, S. H.; Balci, S.; Kocabas, C.In this Letter, we experimentally determined the mass density of graphene using quartz crystal microbalance (QCM) as a mechanical resonator. We developed a transfer printing technique to integrate large area single-layer graphene on QCM. By monitoring the resonant frequency of an oscillating quartz crystal loaded with graphene, we were able to measure the mass density of graphene as ∼118 ng/cm2, which is significantly larger than the ideal graphene (∼76 ng/cm2) mainly due to the presence of wrinkles and organic/inorganic residues on graphene sheets. High sensitivity of the quartz crystal resonator allowed us to determine the number of graphene layers in a particular sample. Additionally, we extended our technique to probe interfacial mass variation during adsorption of biomolecules on graphene surface and plasma-assisted oxidation of graphene.