BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jouzizadeh, M."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The impact of frying aerosol on human brain activity
    (Elsevier, 2019) Naseri, M.; Jouzizadeh, M.; Tabesh, M.; Malekipirbazari, Milad; Gabdrashova, R.; Nurzhan, S.; Farrokhi, H.; Khanbabaie, R.; Mehri-Dehnavi, H.; Bekezhankyzy, Z.; Gimnkhan, A.; Dareini, M.; Kurmangaliyeva, A.; Islam, N.; Crape, B.; Buonanno, G.; Cassee, F.; Torkmahalleh, M.
    Knowledge on the impact of the exposure to indoor ultrafine particles (UFPs) on the human brain is restricted. Twelve non-atopic, non-smoking, and healthy adults (10 female and 7 male, in average 22 years old) were monitored for brain physiological responses via electroencephalographs (EEGs) during cooking. Frying ground beef meat in sunflower oil using electric stove without ventilation was conducted. UFPs, particulate matter (PM) (PM1, PM2.5, PM4, PM10), CO2, indoor temperature, RH, oil and meat temperatures were monitored continuously throughout the experiments. The UFP peak concentration was recorded to be approximately 2.0 × 105 particles/cm3. EEGs were recorded before exposure, at end of cooking when PM peak concentrations were observed, and 30 min after the end of the cooking session (post-exposure). Brain electrical activity statistically significantly changed during post-exposure compared to the before exposure, suggesting the translocation of UFPs to the brain, occurring solely in the frontal and temporal lobes of the brain. Study participants older than 25 were more susceptible to UFPs compared to those younger than 25. Also, the brain abnormality was mainly driven by male rather than female study participants. The brain slow-wave band (delta) decreased while the fast-wave band (Beta3) increased similar to the pattern found in the literature for the exposure to smoking fumes and diesel exhaust.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback