Browsing by Author "Hernandez-Martinez, P. L."
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer(Wiley-VCH Verlag, 2015) Yang, X.; Hernandez-Martinez, P. L.; Dang C.; Mutlugün, E.; Zhang, K.; Demir, Hilmi Volkan; Sun X. W.A colloidal quantum dot light-emitting diode (QLED) is reported with substantially enhanced electroluminescence by embedding a thin layer of Ag nanoislands into hole transport layer. The maximum external quantum efficiency (EQE) of 7.1% achieved in the present work is the highest efficiency value reported for green-emitting QLEDs with a similar structure, which corresponds to 46% enhancement compared with the reference device. The relevant mechanisms enabling the EQE enhancement are associated with the near-field enhancement via an effective coupling between excitons of the quantum dot emitters and localized surface plasmons around Ag nano-islands, which are found to lead to good agreement between the simulation results and the experimental data, providing us with a useful insight important for plasmonic QLEDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Excitonic enhancement of nonradiative energy transfer from a quantum well in the optical near field of energy gradient quantum dots(American Institute of Physics, 2012-06-13) Nizamoglu, S.; Hernandez-Martinez, P. L.; Mutlugun, E.; Karatay, D. U.; Demir, Hilmi VolkanWe report strong exciton migration with an efficiency of 83.3% from a violet-emitting epitaxial quantum well (QW) to an energy gradient colloidal construct of layered green-and red-emitting nanocrystal quantum dots (NQDs) at room temperature, enabled by the interplay between the exciton population and the depopulation of states in the optical near field. Based on the density matrix formalization of near-field interactions, we theoretically model and demonstrate that the energy gradient significantly boosts the QW-NQDs exciton transfer rate compared to using mono-dispersed NQDs, which is in agreement with the observed experimental results.Item Open Access Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots(AIP, 2013) Yeltik A.; Guzelturk, B.; Hernandez-Martinez, P. L.; Akhavan S.; Demir, Hilmi VolkanWe report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs. © 2013 AIP Publishing LLC.Item Open Access Förster-type nonradiative energy transfer for assemblies of arrayed nanostructures: confinement dimension vs stacking dimension(American Chemical Society, 2014-02-11) Hernandez-Martinez, P. L.; Govorov, A. O.; Demir, Hilmi VolkanForster-type nonradiative energy transfer (NRET) provides us with the ability to transfer excitation energy between proximal nanostructures with high efficiency under certain conditions. Nevertheless, the well-known Forster theory was developed for the case of a single donor (e.g., a molecule, a dye) together with single acceptor. There is no complete understanding for the cases when the donors and the acceptors are assembled in nanostructure arrays, though there are special cases previously studied. Thus, a comprehensive theory that models Forster-type NRET for assembled nanostructure arrays is required. Here, we report a theoretical framework of generalized theory for the Forster-type NRET with mixed dimensionality in arrays. These include combinations of arrayed nanostructures made of nanoparticles (NPs) and nanowires (NWs) assemblies in one-dimension (1D), two-dimension (2D), and three-dimension (3D) completing the framework for the transfer rates in all possible combinations of different confinement geometries and assembly architectures, we obtain a unified picture of NRET in assembled nanostructures arrays. We find that the generic NRET distance dependence is modified by arraying the nanostructures. For an acceptor NP the rate distance dependence changes from gamma alpha d(-6) to gamma alpha d(-5) when they are arranged in a ID stack, and to gamma alpha d(-4) when in a 2D array, and to gamma alpha d(-3) when in a 3D array. Likewise, an acceptor NW changes its distance dependence from gamma alpha d(-5) to gamma alpha d(-4) when they are arranged in a 1D array and to gamma alpha d(-3) when in a 2D array. These finding shows that the numbers of dimensions across which nanostructures are stacked is equally critical as the confinement dimension of the nanostructure in determining the NRET kinetics.Item Open Access Generalized theory of förster-type nonradiative energy transfer in nanostructures with mixed dimensionality(American Chemical Society, 2013-04-16) Hernandez-Martinez, P. L.; Govorov, A. O.; Demir, Hilmi VolkanForster-type nonradiative energy transfer (NRET) is widely used, especially utilizing nanostructures in different combinations and configurations. However, the existing well-accepted Forster theory is only for the case of a single particle serving as a donor together with another particle serving as an acceptor. There are also other special cases previously studied; however, there is no complete picture and unified understanding. Therefore, there is a strong need for a complete theory that models Forster-type NRET for the cases of mixed dimensionality including all combinations and configurations. We report a generalized theory for the Forster-type, NRET, which includes the derivation of the effective dielectric function due to the donor in different confinement geometries and the derivation of transfer rates distance dependencies due to the acceptor in different confinement geometries, resulting in a complete picture and understanding of the mixed dimensionality.Item Open Access High external quantum efficiency light-emitting diodes enabled by advanced heterostructures of Type-II nanoplatelets(American Chemical Society, 2023-04-25) Durmuşoğlu, E. G.; Hu, S.; Hernandez-Martinez, P. L.; İzmir, M.; Shabani, Farzan; Guo, M.; Gao, H.; Işık, Furkan; Delikanlı, Savaş; Sharma, V. K.; Liu, B.; Demir, Hilmi VolkanColloidal quantum wells (CQWs), also known as nanoplatelets (NPLs), are exciting material systems for numerous photonic applications, including lasers and light-emitting diodes (LEDs). Although many successful type-I NPL-LEDs with high device performance have been demonstrated, type-II NPLs are not fully exploited for LED applications, even with alloyed type-II NPLs with enhanced optical properties. Here, we present the development of CdSe/CdTe/CdSe core/crown/crown (multi-crowned) type-II NPLs and systematic investigation of their optical properties, including their comparison with the traditional core/crown counterparts. Unlike traditional type-II NPLs such as CdSe/CdTe, CdTe/CdSe, and CdSe/CdSexTe1–x core/crown heterostructures, here the proposed advanced heterostructure reaps the benefits of having two type-II transition channels, resulting in a high quantum yield (QY) of 83% and a long fluorescence lifetime of 73.3 ns. These type-II transitions were confirmed experimentally by optical measurements and theoretically using electron and hole wave function modeling. Computational study shows that the multi-crowned NPLs provide a better-distributed hole wave function along the CdTe crown, while the electron wave function is delocalized in the CdSe core and CdSe crown layers. As a proof-of-concept demonstration, NPL-LEDs based on these multi-crowned NPLs were designed and fabricated with a record high external quantum efficiency (EQE) of 7.83% among type-II NPL-LEDs. These findings are expected to induce advanced designs of NPL heterostructures to reach a fascinating level of performance, especially in LEDs and lasers.Item Open Access Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes(American Institute of Physics Inc., 2017) Zhang, Y.; Zhang Z.-H.; Tan S.T.; Hernandez-Martinez, P. L.; Zhu B.; Lu S.; Kang, X. J.; Sun, X. W.; Demir, Hilmi VolkanDue to the limitation of the hole injection, p-type doping is essential to improve the performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs). In this work, we propose and show a depletion-region Mg-doping method. Here we systematically analyze the effectiveness of different Mg-doping profiles ranging from the electron blocking layer to the active region. Numerical computations show that the Mg-doping decreases the valence band barrier for holes and thus enhances the hole transportation. The proposed depletion-region Mg-doping approach also increases the barrier height for electrons, which leads to a reduced electron overflow, while increasing the hole concentration in the p-GaN layer. Experimentally measured external quantum efficiency indicates that Mg-doping position is vitally important. The doping in or adjacent to the quantum well degrades the LED performance due to Mg diffusion, increasing the corresponding nonradiative recombination, which is well supported by the measured carrier lifetimes. The experimental results are well numerically reproduced by modifying the nonradiative recombination lifetimes, which further validate the effectiveness of our approach.Item Open Access Macrocrystals of colloidal quantum dots in anthrancene: exciton trannsfer and polarized emission(American Chemical Society, 2015) Soran-Erdem, Z.; Erdem, T.; Hernandez-Martinez, P. L.; Akgül, M. Z.; Gaponik N.; Demir, Hilmi VolkanIn this work, centimeter-scale macrocrystals of nonpolar colloidal quantum dots (QDs) incorporated into anthracene were grown for the first time. The exciton transfer from the anthracene host to acceptor QDs was systematically investigated, and anisotropic emission from the isotropic QDs in the anthracene macrocrystals was discovered. Results showed a decreasing photoluminescence lifetime of the donor anthracene, indicating a strengthening energy transfer with increasing QD concentration in the macrocrystals. With the anisotropy study, QDs inside the anthracene host acquired a polarization ratio of similar to 1.5 at 0 degrees collection angle, and this increases to similar to 2.5 at the collection angle of 60 degrees. A proof-of-concept application of these excitonic macrocrystals as tunable color converters on light-emitting diodes was also demonstrated.Item Open Access Near-unity emitting, widely tailorable, and stable exciton concentrators built from doubly gradient 2D semiconductor nanoplatelets(American Chemical Society, 2023-10-24) Liang, X.; Durmuşoğlu, E. G.; Lunina, M.; Hernandez-Martinez, P. L.; Valuckas, V.; Yan, F.; Lekina, Y.; Sharma, V. K.; Yin, T.; Ha, S. T.; Shen, Z. X.; Sun, H.; Kuznetsov, A.; Demir, Hilmi VolkanThe strength of electrostatic interactions (EIs) between electrons and holes within semiconductor nanocrystals profoundly affects the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range and fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi two-dimensional core–shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a doubly gradient (DG) core–shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy. Moreover, these exciton-concentration-engineered DG NPLs also exhibit a near-unity quantum yield, high photo- and thermal stability, and considerably suppressed self-absorption. As proof-of-concept demonstrations, highly efficient color converters and high-performance light-emitting diodes (external quantum efficiency: 16.9%, maximum luminance: 43,000 cd/m2) have been achieved based on the DG NPLs. This work thus provides insights into the development of high-performance colloidal optoelectronic device applications.Item Open Access Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons(American Chemical Society, 2013-06) Ozel, T.; Hernandez-Martinez, P. L.; Mutlugun, E.; Akin, O.; Nizamoglu, S.; Ozel, I. O.; Zhang, Q.; Xiong, Q.; Demir, Hilmi VolkanWe report selectively plasmon-mediated nonradiative energy transfer between quantum dot (QD) emitters interacting with each other via Forster-type resonance energy transfer (FRET) under controlled plasmon coupling either to only the donor QDs (i.e., donor-selective) or to only the acceptor QDs (i.e., acceptor-selective). Using layer-by-layer assembled colloidal QD nanocrystal solids with metal nanoparticles integrated at carefully designed spacing, we demonstrate the ability to enable/disable the coupled plasmon-exciton (plexciton) formation distinctly at the donor (exciton departing) site or at the acceptor (exciton feeding) site of our choice, while not hindering the donor exciton-acceptor exciton interaction but refraining from simultaneous coupling to both sites of the donor and the acceptor in the FRET process.. In the case of donor-selective plexciton, we observed a substantial shortening in the donor QD lifetime from 1.33 to 0.29 ns as a result of plasmon-coupling to the donors and the FRET-assisted exciton transfer from the donors to the acceptors, both of which shorten the donor lifetime. This consequently enhanced the acceptor emission by a factor of 1.93. On the other hand, in the complimentary case of acceptor-selective plexciton, we observed a 2.70-fold emission enhancement in the acceptor QDs, larger than the acceptor emission enhancement of the donor-selective plexciton, as a result of the combined effects of the acceptor plasmon coupling and the FRET-assisted exciton feeding. Here we present the comparative results of theoretical modeling of the donor- and acceptor-selective plexcitons of nonradiative energy transfer developed here for the first time, which are in excellent agreement with the systematic experimental characterization. Such an ability to modify and control energy transfer through mastering plexcitons is of fundamental importance, opening up new applications for quantum dot embedded plexciton devices along with the development of new techniques in FRET-based fluorescence microscopy.Item Open Access Persuasive evidence for electron–nuclear coupling in diluted magnetic colloidal nanoplatelets using optically detected magnetic resonance spectroscopy(American Chemical Society, 2019) Strassberg, R.; Delikanlı, Savaş; Barak, Y.; Dehnel, J.; Kostadinov, A.; Maikov, G.; Hernandez-Martinez, P. L.; Sharma, Manoj; Demir, Hilmi Volkan; Lifshitz, E.The incorporation of magnetic impurities into semiconductor nanocrystals with size confinement promotes enhanced spin exchange interaction between photogenerated carriers and the guest spins. This interaction stimulates new magneto-optical properties with significant advantages for emerging spin-based technologies. Here we observe and elaborate on carrier–guest interactions in magnetically doped colloidal nanoplatelets with the chemical formula CdSe/Cd1–xMnxS, explored by optically detected magnetic resonance and magneto-photoluminescence spectroscopy. The host matrix, with a quasi-type II electronic configuration, introduces a dominant interaction between a photogenerated electron and a magnetic dopant. Furthermore, the data convincingly presents the interaction between an electron and nuclear spins of the doped ions located at neighboring surroundings, with consequent influence on the carrier’s spin relaxation time. The nuclear spin contribution by the magnetic dopants in colloidal nanoplatelets is considered here for the first time.Item Open Access Phonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in förster resonance energy transfer(American Chemical Society, 2013) Yeltik A.; Guzelturk, B.; Hernandez-Martinez, P. L.; Govorov, A. O.; Demir, Hilmi VolkanWe study phonon-assisted Forster resonance energy transfer (FRET) into an indirect band-gap semiconductor using nanoemitters. The unusual temperature dependence of this energy transfer, which is measured using the donor nanoemitters of quantum dot (QD) layers integrated on the acceptor monocrystalline bulk silicon as a model system, is predicted by a phonon-assisted exciton transfer model proposed here. The model includes the phonon-mediated optical properties of silicon, while considering the contribution from the multimonolayer-equivalent QD film to the nonradiative energy transfer, which is derived with a d(-3) distance dependence. The FRET efficiencies are experimentally observed to decrease at cryogenic temperatures, which are well explained by the model considering the phonon depopulation in the indirect band-gap acceptor together with the changes in the quantum yield of the donor. These understandings will be crucial for designing FRET-enabled sensitization of silicon based high-efficiency excitonic systems using nanoemitters.Item Open Access Plasmon-enhanced energy transfer in photosensitive nanocrystal device(American Chemical Society, 2017) Akhavan S.; Akgul, M. Z.; Hernandez-Martinez, P. L.; Demir, Hilmi VolkanFörster resonance energy transfer (FRET) interacted with localized surface plasmon (LSP) gives us the ability to overcome inadequate transfer of energy between donor and acceptor nanocrystals (NCs). In this paper, we show LSP-enhanced FRET in colloidal photosensors of NCs in operation, resulting in substantially enhanced photosensitivity. The proposed photosensitive device is a layered self-assembled colloidal platform consisting of separated monolayers of the donor and the acceptor colloidal NCs with an intermediate metal nanoparticle (MNP) layer made of gold interspaced by polyelectrolyte layers. Using LBL assembly, we fabricated and comparatively studied seven types of such NC-monolayer devices (containing only donor, only acceptor, Au MNP-donor, Au MNP-acceptor, donor-acceptor bilayer, donor-Au MNP-acceptor trilayer, and acceptor-Au MNP-donor reverse trilayer). In these structures, we revealed the effect of LSP-enhanced FRET and exciton interactions from the donor NCs layer to the acceptor NCs layer. Compared to a single acceptor NC device, we observed a significant extension in operating wavelength range and a substantial photosensitivity enhancement (2.91-fold) around the LSP resonance peak of Au MNPs in the LSP-enhanced FRET trilayer structure. Moreover, we present a theoretical model for the intercoupled donor-Au MNP-acceptor structure subject to the plasmon-mediated nonradiative energy transfer. The obtained numerical results are in excellent agreement with the systematic experimental studies done in our work. The potential to modify the energy transfer through mastering the exciton-plasmon interactions and its implication in devices make them attractive for applications in nanophotonic devices and sensors.Item Open Access Study of exciton transfer in dense quantum dot nanocomposites(Royal Society of Chemistry, 2014) Guzelturk, B.; Hernandez-Martinez, P. L.; Sharma, V. K.; Coskun, Y.; Ibrahimova, V.; Tuncel, D.; Govorov, A. O.; Sun, X. W.; Xiong, Q.; Demir, Hilmi VolkanNanocomposites of colloidal quantum dots (QDs) integrated into conjugated polymers (CPs) are key to hybrid optoelectronics, where engineering the excitonic interactions at the nanoscale is crucial. For such excitonic operation, it was believed that exciton diffusion is essential to realize nonradiative energy transfer from CPs to QDs. In this study, contrary to the previous literature, efficient exciton transfer is demonstrated in the nanocomposites of dense QDs, where exciton transfer can be as efficient as 80% without requiring the assistance of exciton diffusion. This is enabled by uniform dispersion of QDs at high density (up to ∼70 wt%) in the nanocomposite while avoiding phase segregation. Theoretical modeling supports the experimental observation of weakly temperature dependent nonradiative energy transfer dynamics. This new finding provides the ability to design hybrid light-emitting diodes that show an order of magnitude enhanced external quantum efficiencies.Item Open Access Ultraefficient förster-type nonradiative energy transfer enabled by the complex dielectric medium with tuned permittivity(American Chemical Society, 2021-06-10) Hernandez-Martinez, P. L.; Yücel, A. C.; Demir, Hilmi VolkanFörster-type nonradiative energy transfer (FRET) is one of the primary near-field phenomena and is a useful, fundamental mechanism allowing us to control the excitation energy flow. Using carefully chosen pairs of quantum emitters/absorbers (donors/acceptors), FRET has proved to be essential in a variety of light-generating and -harvesting systems. However, FRET takes place only in a limited spatial range, and its efficiency suffers from an adversely rapidly decreasing profile over the increasing distance between the donor and acceptor. To foster FRET, reaching ultimate levels of efficiency and extending its range, we systematically studied the FRET mechanism by tuning the background medium’s permittivity. The FRET rates of donor–acceptor pairs consisting of a point-like, quasi-0-dimensional quantum dot and quasi-2-dimensional quantum well nanostructures are analytically derived to characterize the change of FRET rates with respect to the medium’s permittivity. The analysis reveals that the FRET rate becomes singular when the permittivity approaches zero and there is a fixed value for the point-like and all other nanostructures, respectively. By setting the medium’s relative permittivity to realistic values near the singular point, which can be realized by a digital metamaterial approach, ultrahigh FRET rates and thereby ultraefficient FRET-based systems are achievable.