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ABSTRACT

SEGMENTATION OF SATELLITE SAR IMAGES
USING SQUEEZE AND ATTENTION BASED DEEP

NETWORKS

Elmira Khajei
M.S. in Computer Engineering
Advisor: Ibrahim Körpeoğlu

Co-Advisor: Sedat Ozer
September 2021

Automatic extraction of objects of interests from high-resolution satellite images
has been an active research area. Numerous recent papers have investigated on
various deep learning-based semantic segmentation techniques for improved seg-
mentation accuracy. Despite the fact that existing literature provides a wealth of
information on land cover and land use (e.g., segmentation of structures, roads,
and water area), the majority of them have been focused on segmentation on
electro-optical-based (EO) images. A recent focus has been segmenting such ob-
jects of interest in Synthetic-Aperture-Radar-based (SAR) images to overcome
the limitations of using the visible spectrum. While the optical data taken at the
visible spectrum is still widely preferred and used in many aerial applications,
such applications typically need a clear sky and minimal cloud cover in order to
function with high accuracy. SAR imaging is particularly useful as an alterna-
tive imaging technique to alleviate such visibility-related problems such as when
weather and cloud may obscure conventional optical sensors (as in during severe
weather conditions and cloud cover). Recent segmentation techniques use multi-
ple deep solutions based on U-Net. Recent attention based developments in deep
learning when combined with the SAR image features, segmentation of objects of
interests can be increased especially under low visibility conditions. In this thesis,
a squeeze and attention based network is proposed for semantic segmentation in
satellite SAR images. In particular, we show how squeeze and attention concept
can be used within a U-Net based architecture for segmenting objects of interests
in remote sensing images and study its performance on multiple public datasets.
Our experiments demonstrate our proposed method yields superior results when
compared to multiple baseline networks on all the used datasets.
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ÖZET

UYDU-BAZLI SAR IMGELERINDE KISIK DIKKAT
ODAKLI DERIN OGRENME KULLANAN

SEGMENTASYON ALGORITMASI

Elmira Khajei
Bilgisayar Mühendisliği, Yüksek Lisans
Tez Danışmanı: Ibrahim Körpeouğlu

İkinci Tez Danışmanı: Sedat Ozer
Eylul 2021

Yüksek çözünürlüklü uydu görüntülerinden ilgili nesnelerin otomatik olarak
çıkarılması aktif bir araştırma alanı olmuştur. Pek çok güncel makale,
gelişmiş bölümlendirime doğruluğu için derin öğrenmeye dayalı çeşitli an-
lamsal bölümlendirme teknikleri hakkında araştırmalar yapmaktadır. Mev-
cut literatür arazi örtüsü ve arazi kullanımı (örn. yapıların, yolların ve su
alanının bölümlendirilmesi) ile ilgili zengin bilgiler sağlasa da, bunların çoğu
elektro-optik tabanlı (EO) görüntüler üzerinde bölümlendirmeye odaklanmıştır.
Güncel çalışmaların bir diğer odağı, görünür tayf kullanma sınırlamalarının
üstesinden gelmek için bu tür ilgi nesnelerini Sentetik-Açıklık-Radarı tabanlı
(SAR) görüntülerde bölümlere ayırmak olmuştur. Görünür tayfda alınan op-
tik veriler hala birçok hava uygulamasında yaygın olarak tercih edilir ve kul-
lanılırken, bu tür uygulamalar yüksek doğrulukla çalışmak için tipik olarak açık
bir gökyüzüne ve minimum bulut örtüsüne ihtiyaç duyar. SAR görüntüleme,
hava ve bulutun geleneksel optik sensörleri engellemesi (şiddetli hava koşulları
ve bulut örtüsü sırasında olduğu gibi) gibi görünürlükle ilgili sorunları hafiflet-
mek için alternatif bir görüntüleme tekniği olarak yararlı olmaktaktadır. Güncel
segmentasyon teknikleri, U-Net’e dayalı pek çok derin öğrenme çözümleri kul-
lanır. İlgi ağı temelli derin öğrenmedeki son gelişmeler, SAR görüntü özellikleri
ile birleştirildiğinde, özellikle düşük görüş koşullarında ilgi duyulan nesnelerin
bölümlendirilmesini artırılabilir. Bu tezde, uydu SAR görüntülerinde anlamsal
bölümlendirme için sıkıştırma ve ilgi tabanlı bir ağ önerilmiştir. Özellikle, uzaktan
algılama görüntülerindeki ilgi nesnelerini bölümlere ayırmak için U-Net tabanlı
bir mimaride sıkıştırma ve ilgi kavramının nasıl kullanılabileceğini gösteriyoruz
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ve çok sayıda halka açık veri kümesi üzerindeki performansını inceliyoruz. Deney-
lerimiz, önerilen yöntemimizin kullanılan tüm veri kümelerinde çok sayıda temel
ağla karşılaştırıldığında üstün sonuçlar verdiğini göstermektedir.

Anahtar sözcükler : Semantik bölütleme, SAR görüntüleri, Dikkat ve sıkıştırma,
UNet,EO görüntüleri..
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Chapter 1

Introduction

1.1 Motivation

We have a sense that allows us to preserve the environment’s variation modifi-
cations. This sense enables us to make suitable or desired adjustments to the
environment. When we take a step back and extrapolate this basic process to a
global scale, we see a pressing need to comprehend complicated phenomena such
as urbanization, climate change, biodiversity research, and socioeconomic trends.
This technique is called Earth observation and has various uses, including disas-
ter assistance and resource management [3]. Earth observation data is gathered
in several ways; generally classified as remote and proximal sensing. The former
is used when “the distance between the item and the sensor is much greater than
the sensor’s linear dimensions”, while the latter is used when this distance is sim-
ilar to the sensor’s linear dimensions [4].

Synthetic Aperture Radar (SAR) is a unique kind of radar that can penetrate
clouds, gather data in all weather situations, and collect data day and night.
Overhead data collected by SAR satellites may assist disaster response efforts
when weather and cloud cover impede traditional electro-optical sensors. Despite
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these benefits, researchers have limited access to data on the efficacy of SAR for
such applications, especially at ultra-high resolutions[5].
Machine learning research is predicated on the notion that a machine may be
taught to learn the same way a person does; without being explicitly programmed.
Deep learning is a branch of machine learning that uses a family of algorithms
known as neural networks and their variations. These techniques supply the net-
work (or model) with a collection of labeled instances from which it may learn or
train. There are numerous examples of deep learning models on computer vision
like [6]. These samples may be labeled in a variety of ways. Collaborative sys-
tems like OpenStreetMap and Crowdsourcing markets are perfect for annotating
pictures, and this current volume may be used immediately [7].
Segmentation of images semantically is essential for image understanding and
computer vision. Semantic segmentation is interested in predicting pixel-level
labels in pictures, and therefore may be seen as a density prediction problem.
Significant advances in obtaining reliable results have been made possible by the
advent of the Convolutional Neural Network (CNN).

1.2 Objectives and Scope

The primary objective of this thesis is to design, construct, and experimentally
analyze a deep neural network for semantic segmentation on SAR images using
squeeze and attention based networks. Semantic segmentation on SAR images is
one of the difficult problems in computer vision.
The resulting pipeline must include image preparation algorithms capable of deal-
ing with input pictures of variable quality, resolution, and channel count. The
following steps may be established for this purpose:
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1. Provide brief review of the research work on semantic segmentation.

2. Construct a functional deep network pipeline that accepts the different
types of remote sensing images (active and passive) and generates seman-
tically segmented maps on the images.

3. Compare different neural network structures specified in the existing liter-
ature and fine-tune them to the present problem.

4. Evaluate the proposed network using four distinct datasets and compare
them with other networks.

1.3 Structure of Thesis

The project is presented in six consecutive chapters: the first chapter serves as
an introduction and motivation for the work. The second chapter is devoted to
background research on the subject. Topics of SAR images and satellite and earth
observation are in chapter three. The fourth chapter discusses the model that
we have implemented. Chapter 5 discusses evaluation metrics and datasets and
reports our results, both qualitative and quantitative, obtained via the use of the
evaluation metrics discussed earlier. Chapter six concludes this thesis.
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Chapter 2

Related Work

This chapter provides a review of the recent research and studies on seman-
tic segmentation topics. Plenty of algorithms have been proposed for semantic
segmentation tasks during the past ten years. The algorithms can be sorted
into two categories: traditional image processing-based and CNN-based meth-
ods. Traditional-based algorithms had feature extraction parts and incorporated
characteristics features. However, the extracted features depend on illumination
conditions and sensor type. Features differ under various conditions; therefore,
traditional methods could only solve specific issues on specific data[8].
Simonetto et al.[9] discuss the automated extraction of three-dimensional (3-
D) buildings from high-resolution stereoscopic images captured by the French
Aerospace Research Center’s SAR airborne RAMSES sensor (ONERA). The ar-
ticle presents a two-step modified processing method. The first step is to derive
stereoscopic structure from L-shaped echoes. The Hough transform is used to
recognize buildings in each image. Then, based on a criteria optimization, they
are identified during a stereoscopic refining step. The second step is the height
measurement.
By prospering Deep Convolutional Neural Network (DCNN) and because of the
variety in building shape and appearance, handcrafted feature-based algorithms
were replaced by learning feature-based algorithms.
He et al.[10] were able to solve the gradient explosion in the propagation problem
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and make it possible to design deep convolutional networks and leverage richer
semantic features.
Furukawa[11] proposed CNN end-to-end automatic target recognition network,
named Verification Support Network (VersNet). It takes an arbitrary-sized SAR
image with many classes and targets as input and generates a SAR ATR (Au-
tomatic Target Recognition) image, including each identified object’s position,
class, and pose. It consists of encoder-decoder parts. This paper achieved a
mean IOU score of 0.91 in the MASTER Dataset.
The purpose of the article [12] is to solve the complicated issue of automati-
cally identifying man-made objects, particularly buildings, in very high resolution
(VHR) synthetic aperture radar (SAR) images. The article makes two significant
contributions in this context: To begin, it presents a workflow for classifying
spaceborne TomoSAR point clouds generated by processing VHR SAR image
stacks using advanced interferometric techniques known as SAR tomography (To-
moSAR) into buildings and non-building using additional information. Second,
these labeled datasets (i.e., building masks) were used to construct and train
Deep Fully Convolutional Neural Networks with an additional Conditional Ran-
dom Field represented as a Recurrent Neural Network to detect building regions
in a single VHR SAR image. Although this cascaded structure has been effectively
used in computer vision and remote sensing for optical image categorization, it
has not been used in SAR images. The findings of the building identification
algorithm are shown and verified using a TerraSAR-X High-resolution spotlight
SAR picture spanning about 39 km2, with mean pixel accuracies of around 93.84
percent.
Unet [13] was proposed to biomedical image segmentation, and since it was a
milestone in the semantic segmentation task, later, lots of papers modified Unet
to get better results.
Evolving from CNN ”fully convolutional” networks that take input of the arbi-
trary size and produce correspondingly-sized output with efficient inference and
learning. [14] In this work, they clarified FCN’s usage in pixel-level label predic-
tion and showed its connection to prior models like AlexNet, the VGG net, and
GoogLeNet. They adopted these classification networks and transferred them to
the segmentation task. Then, they made a new architecture that achieves (20%
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relative improvement to 62.2% mean IOU on 2012) segmentation of PASCAL
VOC.
Another architecture is the so-called Segnet[15]. Segnet consists of an encoder
and corresponding decoder parts with a pixel-wise classification layer. Although
the encoder part of the segment is almost the same as the VGG16 network (13
convolutional layers), they have novelty in that the decoder upsample its lower
resolution input feature maps. To demonstrate that, the decoder uses pooling
indices computed in the max-pooling steps of the corresponding encoder. They
compared their architecture with Fully Connected Network (FCN) and DeepLab-
LargeFOV architectures. They improve mIOU from 0.53 to 0.60.
Tobias et al.[16] claim that while current networks perform well in recognition
(detecting objects), they fall weak in terms of localization accuracy. Thus, the
authors suggest a novel architecture that combines context at many scales with
pixel-level precision. One stream transmits data at full picture resolution, allow-
ing for exact segment boundary adherence. The other stream is subjected to a
series of pooling operations to acquire robust recognition characteristics. They
assessed their network using the Cityscapes Dataset and arrived at an IOU of
71.8 %.
Feature pyramids are a fundamental component of object recognition algorithms
that recognize things of various sizes. Pyramid representations have been avoided
in some deep learning object detectors because they are computed and memory
expensive. The intrinsic multi-scale, pyramidal structure of deep convolutional
networks is exploited [17] to create feature pyramids for a minimal additional
cost. To create high-level semantic feature maps at various sizes, a top-down
architecture with lateral connections is created. This design, known as a Feature
Pyramid Network (FPN), demonstrates substantial improvement as an available
feature extractor in some applications. The proposed technique delivers state-of-
the-art single model results on the COCO detection benchmark using FPN in a
simple Faster R-CNN system.
To perform semantic segmentation in real life, networks should not have many
floating-point operations. To this aim, Enet (efficient neural network) [18] pro-
poses a network that is up to 18× faster, requires 75× fewer FLOPs, has 79×
fewer parameters, and provides similar or better accuracy to existing models.
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They used Cityscapes, CamVid, and SUN Dataset to evaluate their work.
Linknet[19] uses only 11.5 million parameters and 21.2 GFLOPs for processing
an image of resolution 3 × 640 × 360. Dataset is trained and tested on CamVid
and Cityscapes datasets. It achieves an mIOU of 76.4 in the Cityscapes Dataset.

DeepLabv3+ [20] which is an extended form of DeepLabv3, leveraged from
the Spatial pyramid pooling module and encoder-decoder structures together.
These networks are used in DCNN for semantic segmentation tasks. While the
Spatial pyramid pooling networks can encode multi-scale contextual information,
encoder-decoders can capture sharper object boundaries by gradually recovering
the spatial information. So, this article combines these two modules. The authors
further explore the Xception model and apply the depthwise separable convolu-
tion to Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster
and stronger encoder-decoder network. They evaluated their proposed model on
PASCAL VOC 2012 and Cityscape datasets, achieving the test set performance
of 89.0% and 82.1% without any post-processing
Due to the importance of the real-time semantic segmentation challenge, many
papers focus on this task. There are many practical applications, yet there is a
fundamental difficulty in reducing a large portion of computation for pixel-wise la-
bel inference.Deep learning-based approaches are used in today’s state-of-the-art
object tracking, identification, and segmentation algorithms. Techniques usually
need a lot of computation and a lot of memory. as well as energy resources. [21]
Romera et al. [22] To solve this issue, developed an image cascade network (IC-
Net) that integrates multi-resolution branches under proper label direction. The
report introduces the cascade feature fusion unit to enable rapid segmentation of
high-quality features. Moreover, Cityscapes, CamVid, and COCO-Stuff datasets
have been used to demonstrate the success of their work.
Previous research focusing on high-speed inference has struggled to generate high-
accuracy segmentation results. Efficient Dense modules with Asymmetric con-
volution (EDANet) [23] is another convolutional network that claims to be 2.7
times quicker than the previous rapid segmentation network, ICNet while achiev-
ing the same mIoU score. Dilated convolution and dense connectivity are used
in EDANet’s asymmetric convolution structure. They tested their network using
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datasets from Cityscapes and CamVid.

As mentioned above, the importance of semantic segmentation tasks in real
life and even applying its models on mobile devices has been increasing rapidly.
To tackle the problem of heavy complication cost and lots of FLOPS, Yuan Lo et
al.[24] proposed a new network called Context Guided Network (CGNet), which
they claim as a lightweight and efficient network for semantic segmentation. The
Context Guided (CG) block in CGNet learns the standard features of both the
local and surrounding features and improves the common features with the global
context. The number of parameters in CGNet is considerably decreased. Exper-
iments on Cityscapes and CamVid datasets yielded a mean IoU of 64.8 percent
on Cityscapes with less than 0.5 M parameters.
The other network that addresses semantic segmentation problems with a good
trade-off between high quality and computational resources is the RFNet [25]
network. The core of this approach is a layer that uses residual connections
and factorized convolutions to remain efficient while retaining good accuracy. To
show the effectiveness of the model, they evaluate the network on the cityscape
Dataset. Although this network achieves an accuracy that is similar to state of
the art, it is faster than the previous networks.
Even though many papers emphasize high accuracy at a low cost of computa-
tion, state-of-the-art results from networks with a large number of convolutional
layers and feature channels make semantic segmentation a computationally ex-
pensive task, which is a disadvantage in a scenario with limited resources. To
solve this problem, Wang et al. [26] claim to have created an efficient sym-
metric network named (ESNet). ESNet is an encoder-decoder network with a
nearly symmetric design based on factorized convolution units (FCU) and paral-
lel equivalents. In addition, the FCU uses a standard 1D factorized convolution
in residual layers. In addition, in the design of the residual module, the parallel
version uses a transform-split-transform-merge method, where the split branch
uses dilated convolutions with various rates to extend the receptive field. The au-
thors demonstrated that their method archives deliver state-of-the-art outcomes
in terms of speed and accuracy trade-off for real-time semantic segmentation on
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the Cityscapes Dataset.
The recent incorporation of attention mechanisms into segmentation networks
enhances their representational capacities through a strong focus on more infor-
mative characteristics.
For accurately extracting coarse-to-fine building characteristics[27] developed a
lightweight attention mechanism-based model — refined cross attention neural
network (RCA-Net). The RCA-Net captures the long-range multi-scale context
via the use of spatial and channel attention. Then, they propose an efficient at-
tention module, the Global Attention Fuse (GAF), which fuses local and global
cross-channel connections to capture essential characteristics without increasing
computational complexity. Additionally, a loss function called unified loss is given
that combines BCE and dice loss to address unbalanced class distribution. Their
suggested approach beats the most recent method DSNet by 2.06% and 1.47 per-
cent in IoU and 2.11 percent and 1.27 percent in F1-score, respectively, using
two publically accessible datasets: the Massachusetts roads dataset and the Inria
Aerial Image Labeling dataset.
The article [28] proposes a technique for detecting SAR image targets based on a
visual attention model that combines bottom-up and top-down processes. At the
bottom-up stage, the proposed approach modifies the conventional Itti model to
account for the peculiarities of SAR images and target recognition tasks. They
offer a new top-down learning method for determining the optimum weights re-
quired to build a saliency map. Their suggested approach is unique in three
ways. First, the new weighting function facilitates the identification of numer-
ous targets. Second, top-down signals are added to help the user to choose the
appropriate weights for the training session. Finally, the judgment step utilizes
previous information about the target, such as its area and length, as thresh-
olds, ensuring that the final choice is trustworthy. The simulation experiments
demonstrate that the suggested approach is more capable and resilient than ex-
isting state-of-the-art visual models and detection methods, such as CFAR and
YOLOv2.
[29] proposes a novel Attention Graph Convolution Network (AGCN) for per-
forming super pixel-wise segmentation in extensive SAR imagery data. An atten-
tion mechanism layer and Graph Convolution Networks make up AGCN (GCN).
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By generalizing convolutions to the graph domain, GCN can operate on graph-
structure data and has been successfully applied in tasks such as node classifi-
cation. The attention mechanism layer is introduced to guide the graph convo-
lution layers to focus on the most relevant nodes to make decisions by assigning
different coefficients to different nodes in a neighborhood. Because the attention
layer comes before the convolution layers, noisy information from nearby nodes
has a lower impact on the attention coefficients. Experiments on two datasets of
airborne SAR images show that the proposed method outperforms other state-of-
the-art segmentation methods. It also performs significantly faster than current
pixel-level semantic segmentation networks.
[30] presents a region-merging-based technique for synthetic aperture radar image
segmentation, in which the merging cost is a combination of the texture pattern
similarity measure (TPSM), the statistical similarity measure (SSM), and the
relatively common border length penalty, among other things (RCBLP). The
segmentation process is broken down into three phases. The image is first over
segmented using the multi-scale Bhattacharyya distance to produce an initial
partition of significant regions, after which the image is segmented again. Sec-
ond, areas with sizes less than a certain threshold are required to be combined
to produce a middle segmentation. In the third step, a region-merging procedure
is carried out iteratively, utilizing the new merging cost to obtain the final seg-
mentation. Because of the inclusion of the TPSM in the merging cost, the new
technique eliminates the incorrect merging of neighboring areas with different
textures, which would otherwise occur.
Due to the massive size of the original synthetic aperture radar image,[31] di-
vides the input image into small slices, and then the pieces are reassembled. The
picture slices are fed into an attention-based, fully convolutional network, which
produces the segmentation outcomes. Finally, to improve the segmentation per-
formance of the network, the fully connected conditional random field is used
as a final step. The followings are some of the method’s new features: 1) The
multi-scale attention network is embedded within the attention-based fully con-
volutional network, which is capable of enhancing the extraction of image features
through three strategies: multi-scale feature extraction, channel attention extrac-
tion, and spatial attention extraction. 2) The attention-based fully convolutional
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network incorporates the multi-scale attention network, which can enhance the
extraction of image features through two strategies: multi-scale feature extraction
and channel attention extraction. 3) A novel loss function for the attention fully
convolutional network is created by merging Lovasz-Softmax and cross-entropy
losses and is applied to the network. In addition, the novel loss enables simul-
taneous optimization of the intersection over union and the pixel classification
accuracy of the segmentation results obtained using the new method. The trials
are carried out on two aircraft equipped with synthetic aperture radar.
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Chapter 3

Overview

Remote sensing is an important research field, and a tremendous amount of work
has been done in this field. One of the sub-research topics in remote sensing
is segmenting regions of interest in the data collected by the remote sensing
sensors. There are two broad categories of sensors used for remote imaging:
passive and active imaging. Passive imaging techniques, such as electro-optical
(EO) imaging, acts as a passive receiver while active imaging sensors typically
act as a transmitter and a receiver (trans-receiver) at the same time, such as
synthetic aperture radar (SAR) imaging.

While EO-based (RGB) images are commonly used in many remote sensing
applications, they are limited by the visual availability of the scene. Therefore, in
aerial imaging clouds, stormy or rainy atmospheric effects or time of the imaging
time (night vs. day) that limit what can be seen visually may not be the best
sensor types to be used in many applications. Alternative approaches use active
sensor types to deal with this problem. Digital elevation models (DEM) and
SAR are two types of sensors (and modality) for such active sensors operating on
different wavelengths.

AI-based segmentation techniques have been used in many standard computer
vision applications that typically operate on RGB images obtained by EO-based
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sensors. When the goal is remote sensing in active imaging techniques, including
SAR and DEM images, the images show different characteristics since they are
taken at different wavelengths. Consequently, pre-trained models that are trained
on standard (RGB) images would not be effective to be used for SAR and DEM
images. New techniques and models are needed. Consequently, in this thesis, we
study the performance of different and recent deep learning-based techniques on
SAR and DEM images. We introduce a new architecture that would yield better
than several benchmarking segmentation models on both SAR and DEM images
in our preliminary experiments.

3.1 Satellites and Earth Observation

Some satellites have particular missions for placing them in orbit, and one such
mission is Earth observation. The first satellite to take images of the Earth was
Explorer 6, which was launched in 1959 [7]. Since then, the use of satellite images
and the total number of remote sensing satellites have been increased to be used
in various applications.

The earth is heavily packed with Low Earth Orbit (LEO) and Medium Earth
Orbit (MEO) remote sensing satellites. LEO ranges from 160 to 2000km alti-
tude, while MEO ranges from 2000km to below the geostationary orbit. EO
satellites are often positioned in a sun-synchronous orbit that is optimized for
their intended purpose. A sun-synchronous rotation is when the sun’s location in
respect to the satellite and the earth remains constant.

Earth Observation (EO) satellites have applications in a broad range of
fields, including mapping, urban planning, disaster relief, real estate manage-
ment, econometric/social trend research, military intelligence, and climatic stud-
ies [32, 7].
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For example, with the advancement of automated drone delivery systems and
self-driving cars, there is an increased need for satellite images that may be uti-
lized as redundant data for sensor fusion in the vehicles. As a result, it is critical
to comprehend urban architecture via images.

3.2 Synthetic Aperture Radar (SAR) Images

In the general public’s mind, when individuals are asked to think about “satellite
image,” they generally imagine an optical image, although the camera obtains
these images. However, optical images are not the only means for a satellite or
airplane to view the earth’s surface.
Synthetic Aperture Radar, or SAR, is a fundamentally different method of gen-
erating pictures than optical images, unlike EO images which are passive remote
sensing. SAR is an example of active remote sensing which provide their own
artificial radiant energy source for illumination. SAR images have a number
of advantages as well as drawbacks. As for their advantages, we can state the
following [33]:

• Nearly all weather capability

• Day or night capability

• Penetration through the vegetation canopy

• Penetration through the soil

• Minimal atmospheric effects

• Sensitivity to dielectric properties (liquid vs. frozen water)

• Sensitivity to structure

As for the disadvantage, we may state that:
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• Information content is different than optical and sometimes difficult to in-
terpret

• Speckle effects (graininess in the image)

• Effects of topography

Random constructive and destructive interference from numerous scattering
returns inside a pixel cell causes speckle, which looks like an image’s highly grainy
salt-and-pepper texture. Even for a single surface type, a thorough examination
of radar images reveals that there may be many gray level differences across
neighboring resolution cells. These differences cause the graying texture of radar
images. So, it is desirable to reduce speckle before interpretation and analysis.

Speckle reduction can be achieved in two ways: multiple looking and spatial fil-
tering. The technique of multi-looking divides the radar beam into many smaller
sub-beams. Each of these sub-beams have a distinct ”look” and is speckled. How-
ever, all of the ”looks” may be averaged, which reduces the amount of speckle in
the final averaged image [34]. Spatial filtering is another technique for reducing
speckles. It entails re-positioning a small window with a size of a few pixels. It
iterates over each pixel in the image, mathematical calculations using the pixel
values inside or under that window. The center pixel is then substituted with the
new value. Thus, the window is shifted one pixel at a time in both the X and
Y dimensions until the whole image is covered. A smoothing effect is produced
by computing the average of small windows around each pixel, which reduces
the optical impression of the speckle. Both multiple looking and spatial filtering
reduces speckle at the expense of resolution [33].

Deep learning is being utilized in an increasing number of ways using SAR
data, including change detection and land cover categorization. Researchers have
even used a generative adversarial network (GAN) to do image ”translation” —
converting a single-polarization SAR image to a simulated full-color optical image
of the same region [34].
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Figure 3.1: Comparison of SAR image with Electro Optic image
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Chapter 4

Proposed Models

We start this chapter with a brief review of convolutional neural networks and
deep learning. Then we explain our networks.

4.1 Neural Networks

A typical neural network (such as fully connected neural networks) consists of
neurons. A neuron is the most basic structure of a neural network. A neuron
operates on the given input vector xi to perform a linear operation on it and to
yield its output y as shown below:

y = wT ∗ x+ b (4.1)

A neural network is essentially composed of a set of neurons connecting. Where
y is the scalar output of the neuron, wT is the transpose of the weight vector for
the input, and the bi is the scalar value (bias) for the neuron. In a typical neural
network, once the linear output y is obtained, it also goes through one more step
known as the activation function to add nonlinearity to the network. If we include
the activation function g(.), we can give each neuron an index i as shown below
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to obtain the final nonlinear output of any given neuron in a network as follows:

yi = g(wT
i ∗ xi + bi) (4.2)

We can also write the input and output relations for a stack of neurons in a
matrix form.

For an image classification task, this function effectively transforms the input
xi from image space into an image-specific score yi where yi can be interpreted as
the classifier’s confidence on the input belonging to a specific label. The problem
of the image segmentation task is formulated as a pixel-based classification. Thus,
the final output yi would represent the class score assigned to a specific pixel of
the given input image. To improve the performance of a neural network, multiple
layers of neurons are typically stacked in order. A layer defines a set of neurons in
a classical neural network. While a single-layer neural network may still produce
approximate predictions, more hidden layers along with the use of activation
functions can aid in optimizing and refining the network for better accuracy, [35].

There are many resources available on generic neural networks and deep learn-
ing, providing a comprehensive exposure as in [36, 37]. Therefore, rather than
providing a generic background on deep learning concepts here, we will focus on
our proposed deep learning-based architectures in the rest of this thesis.

4.2 Proposed Models

4.2.1 Preliminary Work

First, to segment objects of interest in SAR images accurately, we studied various
recent deep architectures. Our earlier models were built on VersNet [11] for SAR
images (in particular for SpaceNet6 dataset [5]), and the architecture of VersNet
is given in the figure 4.1. Our additions on that model are listed below:
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1. Adding drop out after each convolutional layer.

2. Applying batch normalization in the last layer.

3. Changing optimizer from SGD to Adam.

4. Modifying architecture to identify and segment only objects of interest.

5. Using binary cross-entropy as a loss since we have only one foreground class
to detect in this case.

VersNet contains four convolutional blocks and two convolutional layers in the
encoder section. There is a transpose convolution layer in the decoder section that
increases the sampling rate 16 times more. Like VGGNet, each convolution block
consists of two convolution layers of kernel size (3x3) and a max-pooling layer.
Dropout occurs just in the last layer of the encoder component of the VersNet
network. We used dropout as a regularizer after each convolution block and layer
to deal with overfitting problems. Additionally, we used Batch Normalization
(BN) after each convolution block and two final convolution layers. All layers
except for the last one have rectified linear unit activation functions (ReLu). We
used binary cross-entropy as the loss function. For the optimization of the loss
function, we used Adam. The output dimension of this model was (832 x 832).
Figure 4.2 shows the architecture of the modified network in detail. Although
this network performance has a high IOU of around 0.60 during training, the
results of validation IOU were about 0.30.

Then, by adjusting the final kernel size to (5 x 5), the output size was increased
(900,900). Following that, both batch normalization and dropout were evaluated.
Validation IOU of 0.30 did not increase with this architecture.
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Figure 4.1: Architecture of VersNet

Figure 4.2: Architecture of VersNet with BN and dropouts
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U-Net comprises three components: a contracting module, an encoder module,
and a decoder module. First, we designed an encoder in the network based on
VersNet and a decoder based on U-Net. U-Net architecture is a successfully used
model for semantic segmentation in many applications; therefore, we re-designed
the decoder part of VersNet based on U-Net. We name our architecture Bilnet.
Our skip connection was inserted in the Bilnet design to concatenate activation
between layer i in the encoder and n − i in the decoder, where n is the layer
number. Additionally, we evaluate the network in a number of configurations,
including the following changes or additions:

1. Adding activation function after each convolutional layer,

2. using different configurations with and without batch normalization and
dropout after each layer in the encoder part,

3. replacing concatenation operation with adding,

4. reducing the number of skip connections.

Additionally, we also tested Bilnet with dice core loss that surprisingly did not
work well.
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Figure 4.3: Original U-Net
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Figure 4.3 demonstrates the baseline U-Net architecture. In the encoder sec-
tion, there are 16 convolutional layers with (3x3) kernels. As with the decoder
portion, five upsampling stages are followed by two convolutional layers using the
ReLu activation function. For Bilnet1 shown in Figure 4.4 we reduced the number
of convolutional layers to 10 in the encoder part. The encoder part of the net-
work is the same as VersNet. Throughout the network, each convolution employs
a 3x3 kernel, and a ReLu function follows each convolution. As upsampling, we
used transposed convolution rather than bilinear upsampling. Max-pooling uses
a 2x2 kernel with a stride size of 2. We chose a pooling kernel size of 2x2 since
a larger number increases the danger of data loss. Dropout was not a feature of
the original U-Net Architecture. In our implementation, a dropout follows each
convolution block. This additional step also aims to mitigate the overfitting issue.

Figure 4.5 shows Bilnet2, in which we have used residual blocks in both encoder
and decoder parts. There is a skip connection before each max pooling until the
next one. Since the performance of the network was not good, we came up with
Bilnet3.

In Figure 4.6, we have shown Bilnet3, which includes another interpretation of
residual block. Here we have skip connection after the first max polling and add
it before the max-pooling of the next block. We also have the ReLu activation
function after adding skip connections.

4.2.2 Squeeze and Attention Based Segmentation

Due to their improving performance feature in many applications, residual net-
works (ResNets) are frequently used as the backbone in many segmentation appli-
cations. Residual networks include residual blocks, which contain small networks
and skip connections. As shown in Figure 4.7a, conventional residual blocks can
be formulated as:

Xout = Xin +Xres = Xin + F (Xin; θ,Ω)

Xres = F (Xin; θ,Ω)
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Figure 4.4: Bilnet1
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Figure 4.5: Bilnet2
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Figure 4.6: Bilnet3
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where F (.) represents the residual function, which contains two consecutive blocks
where each block contains one convolution layer followed by a batch normalization
and ReLu, and parameterized by θ. Ω denotes the architecture of two consecutive
blocks. The squeeze and excitation [38] module improves the residual block by
re-calibrating feature map channels [38].As shown in Figure 4.7b, squeeze and
excitation (SE) blocks can be formulated as:

Xout = W ∗Xin + F (Xin; θ,Ω) (4.3)

where the learned weights w for re-calibrating the channels of input feature map
Xin is calculated as:

W = Φ(W2 ∗ σ(W1 ∗ APool(Xin))) (4.4)

where Φ indicates the sigmoid function and σ the ReLU activation function, re-
spectively. First, an average pooling which is shown by APool(.), layer is used to
’squeeze’ the input feature map Xin. Then, two fully connected layers parame-
terized by W1 and W2 are used to get the “excitation” weights. The SE module
effectively improves the representational capacity of residual blocks by including
this simple re-weighting technique [1].

The recent incorporation of attention mechanisms into segmentation networks
enhances their representational capacities through a strong focus on more infor-
mative characteristics. In this work, we incorporated the squeeze-and-attention
(SA) [1] module on row U-Net, which is shown in Figure 4.8 to account for
two distinctive characteristics of segmentation: i) pixel-group attention and ii)
pixel-wise prediction. Specifically, the SA modules impose pixel-group attention
on conventional convolution by introducing an ’attention’ convolutional channel,
thus, efficiently considering spatial-channel inter-dependencies [1].

At both the global and local levels of an image, useful representations for
semantic segmentation emerge. Convolution layers produce feature maps con-
ditional on local information at the pixel level since convolution is performed
locally around each pixel. Convolution at the pixel level serves as the basis for all
semantic segmentation modules, and increasing the receptive field of convolution
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layers in a variety of ways improves segmentation performance, demonstrating
that a wider context is beneficial for semantic segmentation [1, 39, 40].

Context may be used to determine which portions of feature maps are active
at the global image-level since contextual features suggest which classes are likely
to appear together in the image [1]. Additionally, [40] demonstrates that the
global context offers a more expansive field of vision, which is advantageous for
semantic segmentation. Global context features encode these regions holistically,
rather than learning a re-weighting for each image segment separately. However,
little research has been conducted on encoding context at a finer granularity,
which is necessary since various parts of the same image may include completely
different surroundings.

To do this, the squeeze-and-attention (SA) module is implemented, and we
utiliezed it to acquire more representative features for the task of semantic seg-
mentation through a re-weighting method that considers both local and global
factors. As shown in Figure 4.7c a simple squeeze-attention module can be for-
mulated as:

Xout = Xattn ∗Xres +Xattn (4.5)

where Xattn = Up(σ(X̂attn)) and Up(.) is a up-sampled function to expand the
output of the attention channel:

X̂attn = Fattn(APool(Xin); θattn,Ωattn) (4.6)

where X̂attn represents the output of the attention convolution channel Fattn(.),
which is parameterized by θattn and the structure of attention convolution layers
Ωattn. An average pooling layer APool(.) is used to perform the not fully-squeezed
operation, and then the output of the attention channel Xattn is up-sampled to
match the output of the main convolution channel Xunet

Figure 4.8 illustrate the network’s structure in more depth.
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(a) Residual Block

(b) Squeeze-and-excitation(SE)

(c) Squeeze-and-attention(SA)

Figure 4.7: The SA block has a similar structure as the SE block that contains
an additional path to learn weights for re-calibrating channels of output feature
maps Xout. The difference lies in that the attention channel of SA modules uses
average pooling to down sample feature maps but not fully squeeze as in the SE
block [1].
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(a) Architecture of our model

(b) This figure illustrates in more detail each Squeeze-and-attention block
of our network.

Figure 4.8: Our Network‘s Structure
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4.3 Implementation

We implement our model and perform ablation experiments using TensorFlow.
All convolutions have a kernel size of (3x3), and the number of filters in the
decoder part of the first convolution is 64, increasing by a power of two. We have
ten SA blocks in total, and after each of them, we have a convolutional layer.
We have used a poly learning schedule that decreases the rate of learning. For
the Spacenet6 dataset, the initial learning rate is 0.001. We utilized Adaptive
Moment Estimator (Adam) as the optimizer. We used the Binary Cross-Entropy
loss function for SpaceNet6 and Massachusetts datasets, which we may define as
[41]:

L(y, ŷ) = −(y ∗ log(ŷi) + (1 − y) ∗ log(1 − ŷi)) (4.7)

Where y is true value and ŷ is the predicted outcome.
The loss function for the challenge7 dataset is a combination of BCE and dice
loss to address unbalanced class distribution.

The definition of Dice Loss is [41]:

L(y, ŷ) = 1 − 2 ∗ y ∗ ŷ + 1
y + ŷ + 1 (4.8)

Here, 1 is added in numerator and denominator to ensure that the function is not
undefined in edge case scenarios such as when y = p̂ = 0.
For GeoNRW, since we had ten targets, we could not use BCE, so we used the
Cross-Entropy loss function.

For the Spacenet6 dataset, we train our model for 100 epochs. As for
Spacenet7, Massachuset, and GeoNRW datasets, we train the model for 80
epochs.

31



Chapter 5

Experiments

5.1 Evaluation Metrics

A binary classifier predicts one of two outcomes given any input: positive or
negative. For the sake of this pixel classification issue, we consider building pixels
to be positive and background pixels to be negative. The classifier’s output may
be summarized as follows:

• True Positives (TP): samples correctly classified as positive.

• True Negatives (TN): samples correctly classified as negative.

• False Positives (FP): samples incorrectly classified as positive.

• False Negatives (FN): samples incorrectly classified as negative.

These numbers are often represented in a confusion matrix, as seen below, and the
standard metrics for classifier evaluation are generated as different ratios from it.
These metrics are then used to assess the performance of models on the initially
isolated test data. Metrics provide a proxy for the model’s generalizability.

Two metrics relevant here are Precision and Recall, which are defined as:

32



Figure 5.1: Confusion matrix

Precision = ( TP

TP + FP
)

Recall = ( TP

TP + FN
)

These were selected as the primary measures due to the data’s extreme class
imbalance: buildings are often scarce compared to the backdrop, which occupies
a far larger geographical area in each picture. True Positive Rate (TPR) and
False Positive Rate (FPR) metrics are often deceptive in such situations and,
therefore, omitted. Precision (correctness) may be thought of as the percentage
of predicted building pixels that are actual buildings, while recall (sensitivity) is
the fraction of predicted building pixels. Finally, the F1-score and Intersection
Over Union determine the top-performing models for each dataset (IOU). These
are defined in the following manner:

F1 = (2 ∗ Precision ∗ recall
Precision+ recall

)

IOU = (Intersection
union

)

F1 score is the harmonic mean of Precision and Recall [42], while IOU is the
intersection of actual and predicted values divided by the union of this set for a
particular class. IOU is an extremely useful statistic for evaluating segmentation
performance since it compares the overlap between prediction and labels (inter-
section) to the entire area. If forecasts are accurate, the IOU score will be high
[7].
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5.2 Datasets

The SpaceNet datasets are available as a public dataset on Amazon Web Services
(AWS). It includes 67,000 square kilometers of very high-resolution images, more
than 11 million building footprints, and 20,000 kilometers of road markings [43].

5.2.1 SpaceNet 6: Multi-Sensor All Weather Mapping

Synthetic Aperture Radar (SAR) is a novel kind of radar that can penetrate
clouds, collect data in all weather situations, and record data day and night. SAR
satellite overhead data gathering may be especially beneficial in assisting disaster
relief operations when weather and cloud cover obstructs conventional electro-
optical sensors. Despite these benefits, researchers have little accessible data on
the efficacy of SAR for such applications, particularly at ultra-high resolutions.

This open-source dataset combines half-meter Synthetic Aperture Radar
(SAR) images from Capella Space with half-meter electro-optical (EO) imagery
from Maxar’s WorldView 2 satellite. This dataset’s objective is to extract build-
ing footprints automatically utilizing computer vision and artificial intelligence
(AI) techniques in conjunction with SAR and electro-optical image data. The
dataset’s geographic emphasis was on Europe’s biggest port, Rotterdam, the
Netherlands. Thousands of buildings, cars, and boats of all sizes are located in
this region, providing an excellent testing ground for SAR and integrating these
two kinds of data.

The training dataset contained both SAR and EO images in this work, but
the test and evaluation datasets contained only SAR data. The dataset was struc-
tured to mimic real-world scenarios where historical EO data are available, but
simultaneous EO acquisition with SAR is often not possible due to mismatched
sensor orbits or cloud cover, rendering EO data unusable [5].

The data set consists of 3401 SAR images and 3041 EO images in total. We

34



shuffle the images and pick ten percentage of SAR images for test ten percent
of that for validation, and the rest of them for training as shown in Table 5.1.
All images in this data set are 900 x 900 pixels with resolutions of 1.2m/pixel.
Moreover, quad-pol SAR imagery contains four polarization channels.

Their intended usage differentiates the testing set and validation set. A model
is trained on a training set and assessed on the test set in a typical machine
learning assignment. To guarantee that the best model is produced, a validation
set is utilized. This is accomplished by regularly assessing the validation set
to adjust the model’s parameters during training. For example, examining the
trends in the training set and validation set accuracy combined may indicate
if the model is overfitting or underfitting to the training set. This enables the
regularization strength and other hyperparameters to be tuned intelligently.

Training Validation Test
5442 340 340

Table 5.1: – Table presenting randomly split sets of the Spacenet6 dataset

5.2.1.1 Pre-processing

Due to computational constraints, the 900 × 900 images from Table 5.1 were
cropped into segments of size 256 × 256. During training, the images were fed
into the models in a minibatch of size 16. The training set size is unfortunately
not large enough to guarantee good production-level performance. Representative
samples from the Spacenet6 dataset can be seen in Figure5.2

We take advantage of the optical imagery through transfer learning. Training
the model on the optical imagery first and the SAR imagery second leads to
higher performance than training the model on the SAR imagery alone. The
pan-sharpened RGB optical images are transformed to four-channel pictures and
used instead of the SAR images to facilitate transfer learning. (Red is used for
HH polarization, green is used for VV polarization, and blue is used for HV
and VH polarization.) Thus, the model may be trained on optical pictures and
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Figure 5.2: Dataset examples: Top row shows SAR images. The bottom left
shows optical images of the same tile, and the bottom right shows ground truth.

subsequently on SAR data without requiring the layers to be replaced [5].

5.2.2 SpaceNet 7:Multi Temporal Urban Development

The dataset is based on a newly released open-source dataset of Planet satellite
imagery mosaics, which for each area of intention (AOI) has 24 pictures (one each
month) covering a total of 100 distinct geographies. The dataset will include im-
ages covering over 40,000 square kilometers and comprehensive polygon labeling
for building footprints in the picture, totaling over 10 million unique annotations.

The SpaceNet7 problem has far-reaching consequences for disaster prepara-
tion, environmental protection, infrastructure development, and disease control.
Apart from the humanitarian implications, SpaceNet7 presents a unique com-
puter vision problem because of the tiny pixel area of each item and the high
object density in pictures [44]. Table 5.2 gives more detail about dataset.
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Category Value

Num AOIs 101
Num Observations 2389

Num Buildings 11,080,000
Total Observed Area (km 2) 41,000

Mean Buildings per Observation 4,700
Mean Building Area (km 2) 190

Mean GSD (m) 4.0

Table 5.2: The Data ∼ 100 locations, spread out across the globe

RGBA images of SpaceNet7 datasets have a resolution of 1024 × 1024 pixels
and four channels (RGBA). There were 1260 pictures divided into three groups:
ten percent for validation, ten percent for the test, and the remaining for the
training dataset. Before beginning, we translated GeoJSON labels from a random
coordinate reference system (CRS) into pixel coordinates or picture masks, after
which we divided each image into 128 x 128 pixels to serve as pre-processing
information. Examples of the dataset can be seen in Figure 5.8
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5.2.3 Massachusetts Roads Dataset

This dataset included 1500x1500 pixel images of the city of Massachusetts released
by the state at a resolution of 1 meter per pixel. Target maps used on these images
were also readily available in the rasterized format. Each image in the original
dataset comes at a 1500x1500 resolution, and the dataset is split randomly into
training, validation, and test datasets as in the table below.

Training Testing validation

640 80 80

Table 5.3: Table presenting randomly split sets of the Massachusetts Roads
dataset

Due to computational constraints, the 1500 × 1500 images from Table 5.3
were cropped into non-overlapping segments of size 256 × 256. This training
included a wide range of urban, suburban, and coastal regions. During training,
the images were fed into the models in a minibatch of size 16. Representative
samples from the Massachusetts Roads dataset can be seen in Figure 5.4

5.2.4 GeoNRW

This dataset comprises orthorectified aerial photos, LiDAR-derived digital eleva-
tion models, and ten-class segmentation maps obtained via the German state
of North Rhine-open Westphalia’s data initiative and enhanced using Open-
StreetMap [45]. Pre-processing includes resampling the 0.1m resolution photos
to 1m, averaging the initial LiDAR return inside a 1m2 to arrive at the exact
resolution as the photographs, and rasterizing vector files of the land cover data.
PEG2000 files are used for aerial photos, whereas GeoTIFF files are used for land
cover maps and digital elevation models [45]. The dataset contains 1029 unique
DEM pictures and RGB image versions of the same DEM images with 1000x1000
pixels. The training dataset contained both DEM and RGB images in this work,
but the test and evaluation datasets contained only DEM data.
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Training Testing validation

1650 204 204

Table 5.4: Table presenting randomly split sets of the GeoNRW dataset

Due to computational constraints, the 1000 × 1000 images from Table 5.9
first had resized to 1024 x 1024 then cropped into non-overlapping segments of
size 256 × 256. Representative samples from the GeoNRW can be seen in Figure
5.5
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5.3 Results

5.3.1 Results on SpaceNet6

Building footprint extraction results of the proposed method are shown in Table
5.5. They are evaluated on the test dataset based on IOU, precision, recall, and
the F1-score. Our approach achieves these results without additional processing
steps and pre-training. The proposed method achieves a total F1-score of 0.84,
which is an improvement of 0.16% compared with the standard U-Net–based
method and also improved IOU from 0.96 to 0.98.

Test IOU Test recall Test precision Test F1-score

U-Net [13] 0.96 0.68 0.79 0.73
FPN [17] 0.95 0.65 0.75 0.69

linknet [19] 0.97 0.60 0.74 0.64
Our SA model 0.98 0.80 0.87 0.84

Table 5.5: Comparison of different networks [2] with SpaceNet6 dataset

The findings of Bilnets, are summarized in the Table 5.6.

Test IOU Test recall Test precision Test F1 score

Bilnet1 0.95 0.36 0.66 0.45
Bilnet2 0.95 0.35 0.65 0.43
Bilnet3 0.95 0.50 0.67 0.56

Table 5.6: Results of Bilnets on SpaceNet6 dataset

Our SA model’s predictions are depicted in Figure 5.6. We have compared
them to the predictions of row U-Net, FPN, and Linknet and achieved better
results in comparison to them. As mentioned earlier, we trained the network
with both EO and SAR images but tested them just with SAR images. However,
to show our model’s result with EO images as well, we have shown in Figure 5.7
sample results of predicted EO images and compared them with U-Net.
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5.3.2 Results on SpaceNet7

The results of SpaceNet7’s area of interest segmentation are presented in Table
5.7. They are assessed in terms of IOU by the test dataset. Our proposed network
earned an IOU score of 0.83, outperforming comparable state-of-the-art networks.
In Figure 5.8, we have also included samples of our networks’ predictions from
the test dataset. Although the buildings were too tiny, our network was able to
locate and segment them effectively.

Model Backbone Loss IOU

DeepLabv3+ MobileNet Dice Loss 0.520
DeepLabv3+ ResNet50 Dice Loss 0.525
DeepLabv3+ ResNet101 BCE 0.521
DeepLabv3+ ResNet101 Dice Loss 0.534

SegNet - Dice Loss 0.463
Full resolution residual network (A) - Dice Loss 0.418
Full resolution residual network (B) - Dice Loss 0.423

FCN32 - Dice Loss 0.426
ICNet - Multi scale cross entropy 0.450
ENet - Dice Loss 0.600

Ede Net - Dice Loss 0.566
ERFNet - Dice Loss 0.602
ESNet - Dice Loss 0.610
CGNet - Dice Loss 0.573

EF u-Net - Dice Loss 0.590
Our SA Model - BCE + Dice Loss 0.83

Table 5.7: Comparison of different networks with SpaceNet7 dataset
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5.3.3 Results on Massachusetts Dataset

In order to check the performance of our network on non-SAR images, we eval-
uated our network with the Massachusetts dataset which has EO images. We
compare it with U-Net, FPN, and Linknet. The results are shown in Table5.8
and their prediction samples are shown in Figure 5.9

Test IOU Test recall Test precision Test F1-score

U-Net 0.98 0.67 0.76 0.71
FPN 0.98 0.58 0.80 0.67

Linknet 0.98 0.61 0.78 0.68
Our SA model 0.98 0.67 0.80 0.72

Table 5.8: Comparison of different networks with Massachusetts dataset
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5.3.4 Results on GeoNRW

We also have checked our network‘s performance on DEM images, and have
compared it with other networks. The results of GeoNRW’s area of interest
segmentation are presented in the Table 5.9, and their prediction samples are
shown in Figure 5.10. We have trained the model with both DEM and RGB
images, however, we have tested it with just DEM images.

Test IOU Test recall Test precision Test F1 score

U-Net 0.66 0.61 0.81 0.69
FPN 0.71 0.66 0.78 0.71

Linknet 0.74 0.71 0.82 0.76
Our SA model 0.76 0.72 0.82 0.77

Table 5.9: Comparison of different networks with GeoNRW dataset

43



Figure 5.3: Examples of SpaceNet7 dataset. First column shows images and
second one shows labels
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Figure 5.4: Examples of Massachusetts dataset. First column shows images and
second one shows labels
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Figure 5.5: Examples of GeoNRW dataset. First column shows DEM images,
second one shows labels, and third column shown RGB images
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SAR Images

Ground Truth

Our SA model

U-Net

Linknet

FPN

Figure 5.6: Comparative analysis of predicted samples from various networks.
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EO Images

Ground Truth

Our SA model

U-Net

FPN

Figure 5.7: Prediction of proposed model vs U-Net model with EO images
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Figure 5.8: Prediction of proposed model On SpaceNet7
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U-Net
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Figure 5.9: Comparison qualitative results in Massachusetts dataset50



DEM images

RGB images

Ground Truth

Our SA model

U-Net

FPN

Linknet

Figure 5.10: Comparison qualitative results in GeoNRW dataset51



Chapter 6

Conclusion

An ongoing study topic has been the automatic extraction of objects of inter-
est from high-resolution satellite images. An essential field in remote sensing
is segmentation in Synthetic-Aperture-Radar-based (SAR) images to circumvent
visible images’ constraints. While working on data obtained from the visible
spectrum is still commonly desired and used in many aerial applications, such
applications generally require a clear sky and little cloud cover to work with high
precision. When rain and clouds block traditional optical sensors, SAR imaging
is particularly beneficial as an alternative approach to address visibility-related
difficulties.

Due to its superior performance in object segmentation applications in com-
puter vision, we focus on the performance of recent deep learning-based solutions
in this thesis for remote sensing. We introduce an architecture based on squeeze
and attention blocks to segment objects of interest in remote sensing images and
compare its performance to various baseline networks on different datasets. Our
experiments run on SAR images and non-SAR images, including electro-optic
(EO) and digital elevation model (DEM) images. Our preliminary experiments
show that our suggested architecture yields superior results than multiple baseline
networks on all of those datasets.
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