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a b s t r a c t 

Hub location problems (HLPs) constitute an important class of problems in logistics with numerous appli- 

cations in passenger/cargo transportation, postal services, telecommunications, etc. This paper addresses 

the competitive single and multiple allocation HLPs where the market is assumed to be a duopoly. Two 

firms (decision makers) sequentially decide on the configuration of their hub networks trying to maxi- 

mize their own market shares. The customers choose one firm based on the cost of service provided by 

these firms. Mathematical formulations are presented for the problems of the first and second firms (the 

leader and the follower, respectively) and Simulated Annealing (SA) based solution algorithms are pro- 

posed for solving these problems both in single and multiple allocation settings. Extensive computational 

experiments show the capability of the proposed solution algorithms to obtain the optimal solutions in 

short computational times. Some managerial insights are also derived based on the obtained results. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Hubs are special facilities that serve as switching, transship-

ent, and sorting points in many-to-many distribution systems.

nstead of serving each origin-destination (O/D) pair directly, hub

acilities concentrate flows in order to take advantage of economies

f scale. Flows from the same origin with different destinations

re consolidated on their route to the hub and are combined with

ows that have different origins but the same destination. The con-

olidation takes place on the route from the origin to the hub and

rom the hub to the destination as well as between hubs. The hub

ocation problem (HLP) is concerned with locating the hub facili-

ies and allocating the demand nodes to the hubs in order to route

he traffic between O/D pairs ( Alumur and Kara, 2008 ). 

Regarding the way the non-hub nodes are allocated to the hubs,

here are two basic types of hub networks: single allocation and

ultiple allocation. In single allocation networks, all the incom-

ng and outgoing traffic to and from any non-hub node is routed

hrough a single hub, whereas in multiple allocation networks,

ach non-hub node can receive and send flow through more than

ne hub. Fig. 1 illustrates examples of single and multiple alloca-

ion hub networks. In both cases, four out of 14 nodes are selected
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s hub facilities and act as consolidation and dissemination points

or the traffic flows in the network. 

From an applicability point of view, both single and multiple

llocation networks are used in practice. For example, passenger

irline networks typically have multiple allocation because there

re flights from some non-hub cities to several or all of an air-

ine’s hubs, whereas less-than-truckload (LTL) trucking networks

ay have each non-hub node (i.e., end-of-line terminal) assigned

o a single break-bulk terminal (i.e., hub). Similarly, some telecom-

unication networks employ the single allocation setting to re-

uce the cost of constructing the network, and others allow or

equire multiple allocation, as for example to increase reliability

nd/or provide backups ( Campbell and O’Kelly, 2012 ). 

In most of the studies in the literature of the HLP, the mar-

et is assumed to be a monopoly, i.e., one firm (decision maker)

ecides on the configuration of its hub network in order to op-

imize some objective of interest. However, in real world applica-

ions, there may be competitors present in the market whose deci-

ions would definitely affect the level of success of the other firms.

n this study, we consider a duopoly market where there are two

perating firms. The decision maker who makes the initial location

ecisions is called the leader and the other one is named as the

ollower. We first consider a simpler case where the leader has al-

eady configured its network without being aware of the follower’s

pcoming entrance to the market. In this case, the problem is for-

ulated as a single level MIP model from the follower’s perspec-

https://doi.org/10.1016/j.cor.2017.09.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
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Fig. 1. Examples of single and multiple allocation hub networks. 
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tive. Then, we consider a Stackelberg game where competitors are

aware of each other and the leader locates his/her hubs in antici-

pation of the follower’s upcoming action which aims at optimally

locating its hubs, based on the known decisions made by leader.

Therefore, the leader seeks to locate its hubs so that its market

share is maximized after the follower best locates its hubs. The

problems for both single and multiple allocation networks are for-

mulated as bilevel programming models where the upper (leader)

and lower (follower) problems are MIPs. 

The underlying hub networks considered in our work are de-

signed based on the assumption of a complete network between

the installed hubs equipped with efficient means of transport that

allow a flow-independent discount factor to be applied to the

inter-hub transportation costs. It is also assumed that the network

nodes and the connecting links are uncapacitated and direct ship-

ments are not allowed between the non-hub nodes. We remark

here that, especially for single allocation case with large number of

installed hubs, some of the spoke links, which are not discounted,

may also have high volume of flow ( Campbell, 2013 ). However, we

do not address this issue in the current paper as our main mo-

tivation is to develop efficient metaheuristic algorithms for solv-

ing large scale instances of the competitive hub location problems

under classical settings. Here we mainly focus the application to-

wards intermodal transportation where discounts are applicable to

the inter-hub links regardless of the flow volumes and due to the

use of a cheaper mode of transportation (e.g., rail or maritime

transportation). One sholud also note that, in case of passenger

transportation, the issue of larger flows on the spoke links can

partly be alleviated by separating the 0-stop and 1-stop flows from

the 2-stop flows and scheduling them separately ( Campbell, 2013 ).

HLPs constitute a difficult class of NP-hard combinatorial opti-

mization problems ( Contreras et al., 2011 ). Moreover, in case of the

single allocation HLP, given a fixed set of locations for the hubs, the

allocation part of the problem is still NP-hard ( Kara, 1999 ). For this

reason, developing efficient solution algorithms capable of solving

the problem instances of large sizes is of utmost practical impor-

tance. 

The main contribution of this paper can be stated as follows.

We address the competitive hub location problem under both sin-

gle and multiple allocation settings. As mentioned earlier, both

the allocation schemes are frequently used in practice. Therefore,

studying the problem under both allocation settings is of great

importance. We propose single level and bilevel MIP formulations

to model the problems from the follower’s and the leader’s per-

spectives, respectively. In order to solve the proposed models, we
l  
evelop four efficient solution algorithms based on Simulated An-

ealing (SA) that are able to solve large scale instances of the prob-

em within short computational times. Extensive computational

xperiments are conducted to show the effectiveness of the pro-

osed algorithms as well as to study the effect of different input

arameters such as the number of installed hubs and the discount

actor value. Furthermore, we extend the problems to accommo-

ate more general capture mechanisms that allow the compet-

ng firms to partially capture the O/D demands in addition to the

lassical binary (all-or-nothing) capture mechanism. Finally, some

anagerial insights are derived based on the results obtained from

he conducted experiments. 

The remainder of this paper is organized as follows. The next

ection discusses the relevant literature for the problem at hand.

n Section 3 , we will present new bilevel MIP model formulations

or the competitive hub location problem on behalf of the competi-

ors for both single and multiple allocation networks. The proposed

A based solution algorithms are presented in Section 4 . Compu-

ational experiments and corresponding results are presented in

ection 5 . Finally, Section 6 provides conclusions and some out-

ooks for future research. 

. Literature review 

Study of the HLP began with the pioneering work of

’Kelly (1986) . The first quadratic mathematical formulation

f single allocation p -hub median problem is presented in

’Kelly (1987) . Linear integer programming formulations for

ifferent versions of the HLP such as the p -hub median

roblem, the uncapacitated hub location problem, the p -hub

enter problem, and the hub covering problem are pro-

osed by Campbell (1994) . The interested readers may re-

er to Alumur and Kara (2008) , Campbell and O’Kelly (2012) ,

arahani et al. (2013) and Contreras (2015) as recent surveys on

he HLP. 

Although the competitive facility location problem has been

idely studied in the literature (see Drezner et al., 2015; Eiselt

t al., 2015; Fernández et al., 2017; Kress and Pesch, 2012; Ku-

ukaydin et al., 2012 and references therein), there is a limited

umber of works published in the filed of competitive hub loca-

ion problem. The first work on the competitive HLP is done by

arianov et al. (1999) where they formulate the follower’s prob-

em, trying to maximize its own market share, given a set of exist-

ng hubs for the leader. Their model allows partial captures by the

ollower depending on the cost of services. Wagner (2008) tack-

es the same problem with a different capture paradigm where
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he follower gets nothing in case of equal cost. He also pro-

oses a more efficient formulation for the problem. Sasaki and

ukushima (2001) study the competitive HLP on a plane where a

arge leader firm competes with several medium firms to maxi-

ize its own profit. The problem is modeled as a bilevel program

here each firm locates one hub and logit functions are used to

odel the customer preferences that affect the proportional cap-

ures. Based on the same idea, Sasaki (2005) studies the compet-

tive HLP in a discrete environment. The same capture rule as in

asaki and Fukushima (2001) is used where the leader and fol-

ower respectively locate p and r hubs on a network and each route

ontains only one hub. 

Adler and Smilowitz (2007) analyze the hub network alliances

nd mergers in the airline industry under competition. Their re-

earch combines profit-maximizing objectives to cost-based net-

ork design formulations within a game theoretic framework that

nables merging airlines to choose appropriate international hubs

or their integrated network. In another competitive HLP, Eiselt and

arianov (2009) address a conditional p -hub location problem

ith attraction functions where an entrant airline transportation

rm is assumed to enter a competitive market and the customers

re assumed to choose an airline depending on a combination of

actors such as flying time and travel fare based on gravity-like

tility functions. 

Gelareh et al. (2010) propose an MIP model for a competi-

ive hub network design considering competition between a new-

omer liner service provider and an existing dominating operator,

oth operating on hub networks. The authors only address the fol-

ower’s problem and propose a Lagrangian decomposition method

ogether with a primal bound generation procedure for solving it.

in and Lee (2010) study a competition game on hub network de-

ign and determine a hub network for each of all carriers in the

ligopolistic market based on the long-term Cournot-Nash equi-

ibrium steady state. Lüer-Villagra and Marianov (2013) address a

ompetitive HLP in which location and pricing decisions are made

y an entrant firm entering to a market where some other firm has

lready been operating. Customer preferences are modeled using

ogit function resulting in a nonlinear model maximizing the profit

f the entrant firm. Sasaki et al. (2014) consider a competitive hub

rc location problem under Stackelberg competition. Rather than

ocating hub facilities, they locate hub arcs in the network. They

odel the problem as a bilevel program in which the leader and

he follower respectively locate p and r hub arcs to maximize their

wn revenues. 

Mahmutogullari and Kara (2016) consider a competitive HLP

ased on Stackelberg competition where the market is assumed

o be a duopoly. Two firms decide on locations of their hubs and

hen customers choose one firm with respect to cost of provided

ervice. They term the follower’s problem as ( r | X p ) hub-medianoid

nd the leader’s problem as ( r | p ) hub-centroid problem. They only

onsider the problems under the multiple allocation assumption

nd propose MIP models for them. Furthermore, they assume a

inary capture mechanism where each O/D demand can be cap-

ured by either the leader or the follower. In order to solve the

ilevel ( r | p ) hub-centroid problem, they propose an exact solution

lgorithm based on enumeration and solve the problem for a net-

ork of 81 nodes with up to 5 installed hubs by the leader and the

ollower. 

Although integer programming optimization approaches are

sed to solve various types of HLP in small sizes, larger instances

re usually solved by heuristic or metaheuristic procedures. In fact,

evelopment of metaheuristic algorithms has helped many real

orld applications, in which optimal or near-optimal solutions can

e obtained in less computational time. Some authors have tack-

ed the multiple allocation HLPs using heuristic and metaheuris-

ic algorithms (see Boland et al., 2004; Campbell, 1996; Chahar-
ooghi et al., 2017; Ernst and Krishnamoorthy, 1998; Lüer-Villagra

nd Marianov, 2013; Marianov et al., 1999 as some examples). 

In case of the single allocation HLP, the number of proposed

etaheuristic algorithms are much larger. O’Kelly (1987) pro-

oses two heuristic allocation procedures for solving the unca-

acitated single allocation p -hub median problem (USA p HMP). A

abu search (TS) heuristic is proposed for the USA p HMP in Skorin-

apov and Skorin-Kapov (1994) . Abdinnour-Helm and Venkatara-

anan (1998) present a branch and bound procedure and a

enetic algorithm (GA) to solve the uncapacitated single allo-

ation hub location problem (USAHLP). Ernst and Krishnamoor-

hy (1996) develop a simulated annealing (SA) heuristic for the

ame problem and show that it is comparable, in both solution

uality and computational time, to the TS heuristic in Skorin-

apov and Skorin-Kapov (1994) . In another work, Ernst and Kr-

shnamoorthy (1999) propose heuristic algorithms for solving the

apacitated single allocation HLP based on SA and random de-

cent heuristic. Abdinnour-Helm presents an SA heuristic for the

SA p HMP ( Abdinnour-Helm, 2001 ). Topcuoglu et al. (2005) de-

elop a GA for the USAHLP. Chen (2007) proposes another heuristic

or this problem based on an SA embedded with a tabu list and

ome improvement procedures. Silva and Cunha (2009) present

hree variants of a simple and efficient multi-start TS heuris-

ic as well as a two-stage integrated TS heuristic to solve US-

HLP. Calik et al. (2009) propose a TS heuristic for the single

llocation hub covering problem over incomplete hub networks.

abalameli et al. (2012) develop an SA heuristic for solving the

ncapacitated single allocation p -hub maximal covering problem.

byazi-Sani and Ghanbari (2016) present a TS based heuristic for

he USAHLP. More recently, Silva and Cunha (2017) propose an ef-

cient TS algorithm for solving the uncapacitated single allocation

 -hub maximal covering problem. 

. Mathematical formulation 

Let G = (N, E) be a network, where N is the set of nodes and E

s the set of edges such that E ⊆N × N . Assume H ⊆N be a subset of

odes that is available for locating hubs. For all i, j ∈ N , let w ij and

 ij denote respectively the amount of flow originated at node i and

estined to node j , and the transportation cost of a unit flow from

ode i to node j . Transportation costs on the inter-hub connections

re discounted by a constant factor α (0 ≤α ≤ 1) and the number

f hubs to be located by the leader and follower are denoted by p

nd r , respectively. It is assumed that both the leader and follower

ave complete information about the game and will act rationally.

ach O/D flow in the network is captured by either the leader or

he follower based on the unit transportation cost from its origin

o its destination. A customer prefers the follower if the cost of

ervice provided by the follower is strictly better than that of the

eader. Otherwise, the demand is captured by the leader. In case of

qual costs, ties are broken in favor of the leader as the customer

as no incentive to change the current position. 

In the remainder of this section, mathematical formulations for

he leader’s and the follower’s problems are proposed under both

he multiple and single allocation settings. The notations and def-

nitions for the multiple allocation case are mostly borrowed from

ahmutogullari and Kara (2016) as we address similar problems

nd we want the terminology to be consistent in the competitive

LP literature. 

.1. Multiple allocation models 

Let us assume that the leader has already opened its hubs at

 subset of nodes X p = { x 1 , x 2 , . . . , x p } , X p ⊆ H , and is serving the

arket with these hubs. For every node pair i and j , the cost of

ervice provided by the leader, denoted by β ij , can be calculated
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as: 

βi j = min 

k,m ∈ X p 
{ c ik + αc km 

+ c m j } ∀ i, j ∈ N. (1)

Assume now that the follower enters the market and estab-

lishes its own hubs on a subset of nodes Y r = { y 1 , y 2 , . . . , y r } , Y r ⊆H .

In a similar manner, the follower’s cost, denoted by γ ij , for all node

pairs i and j can be calculated as: 

γi j = min 

k,m ∈ Y r 
{ c ik + αc km 

+ c m j } ∀ i, j ∈ N. (2)

For all i, j ∈ N , the follower captures the flow w ij if γ ij < β ij .

Therefore, total flow captured by the follower can be expressed by

a mapping f : P p (H) × P r (H) → [0 , W ] such that: 

f (X p , Y r ) = 

∑ 

i, j∈ N: γi j <βi j 

w i j (3)

where P p (H) is the set of all subsets of cardinality p from H and

W is the sum of flows over the network, i.e., W = 

∑ 

i, j∈ N w i j . 

Given the leader’s hubs located on X p , the multiple allocation

( r | X p ) hub-medianoid problem aims at locating a set of r hubs

that maximizes the captured demand by the follower. To model

the ( r | X p ) hub-medianoid problem for the multiple allocation net-

work, assume that a km 

i j 
is a binary covering parameter that takes

the value of 1 if the flow between nodes i and j is captured by

the follower and 0, otherwise. In other words, with β ij defined by

(1) for a given X p , we have: 

a km 

i j = 

{
1 , if c ik + αc km 

+ c m j < βi j 

0 , otherwise 
∀ i, j ∈ N, ∀ k, m ∈ H (4)

Let the variable x ijkm 

denote the fraction of flow w ij that is sent

from node i to node j using the link between the hubs k and m

by the follower. Let also the binary variable y k ∈ {0, 1} be 1 if node

k is selected by the follower as a hub and 0, otherwise. The prob-

lem consists of selecting r nodes which will act as the follower’s

hubs and determining how the non-hub nodes will be allocated to

the hubs and the flows will be routed in the network so that to-

tal captured flow by the follower is maximized. The MIP model for

the multiple allocation ( r | X p ) hub-medianoid problem can be writ-

ten as: 

F C ∗MA = max 
∑ 

i ∈ N 

∑ 

j∈ N 

∑ 

k ∈ H 

∑ 

m ∈ H 
w i j a 

km 

i j x i jkm 

(5)

s.t.: 
∑ 

k ∈ H 
y k = r (6)

∑ 

k ∈ H 

∑ 

m ∈ H 
x i jkm 

= 1 ∀ i, j ∈ N (7)

∑ 

m ∈ H 
x i jkm 

+ 

∑ 

m ∈ H| m � = k 
x i jmk ≤ y k ∀ i, j ∈ N, k ∈ H (8)

x i jkm 

≥ 0 ∀ i, j ∈ N, k, m ∈ H (9)

y k ∈ { 0 , 1 } ∀ k ∈ H (10)

The objective function (5) maximizes the total flow captured by

the follower. Constraint (6) determines the number of hubs to be

located by the follower. Constraints (7) assure that the whole flow

associated with each O/D pair is routed via some hub pair. Con-

straints (8) state that the flows can only be routed via nodes that

have been designated as hubs. (9) and (10) are positive and binary

constraints, respectively. 
Looking at the problem from the leader’s perspective, one needs

o minimize the flows captured by the follower (or equivalently

aximize the flows captured by the leader) via selecting an appro-

riate set of hubs. In other words, the multiple allocation ( r | p ) hub-

entroid problem aims at selecting a set of r hubs for the leader

o that in the remaining scenario the follower can capture the

east possible flow. To formulate the multiple allocation ( r | p ) hub-

entroid problem as a bilevel mathematical model, let the variables

 ijkm 

and Y k respectively show the routing and location decisions

ade by the leader (corresponding to x ijkm 

and y k decision vari-

bles for the follower). The bilevel model for the multiple alloca-

ion ( r | p ) hub-centroid problem can be written as: 

in F C ∗MA (11)

.t.: 
∑ 

k ∈ H 
Y k = p (12)

∑ 

k ∈ H 

∑ 

m ∈ H 
X i jkm 

= 1 ∀ i, j ∈ N (13)

∑ 

m ∈ H 
X i jkm 

+ 

∑ 

m ∈ H| m � = k 
X i jmk ≤ Y k ∀ i, j ∈ N, k ∈ H (14)

 i jkm 

≥ 0 ∀ i, j ∈ N, k, m ∈ H (15)

 k ∈ { 0 , 1 } ∀ i, j ∈ N, k ∈ H (16)

he objective function (11) minimizes the maximum total flow

aptured by the follower ( F C ∗
MA 

) which is obtained as the optimal

bjective function value of the lower level problem (5) –(10) . Con-

traint (12) forces the number of hubs opened by the leader to be

qual to p . Constraints (13) –(16) have the same meaning for the

eader as do the constraints (7) –(10) for the follower. 

.2. Single allocation models 

We now discuss the ( r | X p ) hub-medianoid and ( r | p ) hub-

entroid problems for the single allocation case. With X p =
 x 1 , x 2 , . . . , x p } , X p ⊆H , denoting the set of hubs opened by the

eader, define the mapping A 

l 
X p 

: N → X p as the leader’s assignment

unction consisting of ordered pairs showing the way every node

n N is assigned to a hub in X p . For each node pair i, j ∈ N , let o ( i )

nd o ( j ) denote respectively the hubs to which i and j are assigned

ccording to A 

l 
X p 

. In this case, the parameter β ij can be calculated

s follows: 

i j = c io(i ) + αc o(i ) o( j) + c o( j) j ∀ i, j ∈ N (17)

ow, suppose that the follower enters the market by opening its

ubs on subset of nodes Y r = { y 1 , y 2 , . . . , y r } , Y r ⊆H . Also, define

 

f 
Y r 

: N → Y r as the follower’s assignment function showing the way

very node in N is assigned to a hub in Y r . If the nodes i and j are

espectively assigned to hubs o ′ ( i ) and o ′ ( j ) by the follower, the pa-

ameter γ ij can be calculated as follows: 

i j = c io ′ (i ) + αc o ′ (i ) o ′ ( j) + c o ′ ( j) j ∀ i, j ∈ N (18)

s noted before, w ij is captured by the follower if γ ij < β ij for

ll i, j ∈ N . Given the leader’s and the follower’s assignment func-

ions, A 

l 
X p 

and A 

f 
Y r 

, the total flow captured by the follower can be

xpressed by a mapping f : R p (N × H) × R r (N × H) → [0 , W ] such

hat 

f (A 

l 
X p 

, A 

f 
Y r 
) = 

∑ 

i, j∈ N: γi j <βi j 

w i j (19)
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here R p (N × H) is the collection of all assignment functions with

ubs chosen from a subset of cardinality p from H . 

The objective of the single allocation ( r | X p ) hub-medianoid

roblem is to choose a set of r hubs for the follower and deter-

ine the associated assignment function that maximizes captured

emand given the assignment function of the leader ( A 

l 
X p 

). We for-

ulate this problem based on the model proposed by Peker and

ara (2015) for the single allocation p -hub maximal covering prob-

em. The p -hub maximal covering problem can be considered as a

pecial case of ( r | X p ) hub-medianoid problem in which the cover-

ng radius for every O/D pair is a given fixed value, whereas in the

 r | X p ) hub-medianoid problem, the covering radius for each O/D

air is different from those of other pairs and is calculated based

n the network configuration of the leader using Eq. (17) . To model

he problem, let the binary variable y ik ∈ {0, 1} be 1 if node i is al-

ocated by the follower to hub k and 0, otherwise. Moreover, de-

ne the variable z ij as the fraction of flow originated from node i

nd destined to node j that is captured by the follower. Using these

ewly defined variables along with the a km 

i j 
as defined before (with

ij defined as (17) ), the MIP model for the single allocation ( r | X p )

ub-medianoid problem can be written as: 

 C ∗SA = max 
∑ 

i ∈ N 

∑ 

j∈ N 
w i j z i j (20) 

.t.: 
∑ 

k ∈ H 
y kk = r (21) 

∑ 

k ∈ H 
y ik = 1 ∀ i ∈ N (22) 

 ik ≤ y kk ∀ i ∈ N, k ∈ H (23) 

 i j ≤
∑ 

k ∈ H 
a km 

i j y ik + λi j (1 − y jm 

) ∀ i, j ∈ N, m ∈ H (24) 

 i j ≥ 0 ∀ i, j ∈ N (25) 

 i,k ∈ { 0 , 1 } ∀ i ∈ N, k ∈ H (26) 

he objective function (20) maximizes the total captured flow by

he follower. Constraint (21) determines the number of hubs to be

ocated by the follower. Constraints (22) imply that each node i

ust be assigned to exactly one hub. Constraints (23) state that

on-hub nodes can only be allocated to the nodes that have al-

eady established as hub nodes. Constraints (24) calculate the frac-

ion of flow between any O/D pair i − j that is captured by the fol-

ower based on the way these nodes are assigned to the installed

ubs. Peker and Kara (2015) suggest to set the value of parame-

er λij to max k,m ∈ H { a km 

i j 
} in order to tighten the formulation. Note

hat based on constraints (22) every node is assigned to exactly

ne hub. Assuming that o ′ ( i ) and o ′ ( j ) denote respectively the hubs

o which nodes i and j are assigned by the follower, the constraint

24) reduces either to z i j ≤ a 
o ′ (i ) o ′ ( j) 
i j 

if m = o ′ ( j) or to the redun-

ant constraint z i j ≤ a o 
′ (i ) m 

i j 
+ λi j if m � = o ′ ( j ). Constraints (25) and

26) are standard domain constraints for the variables. 

We now consider the leader’s problem where he/she wants to

inimize the demand captured by the follower while deciding on

heir hub set as well as their assignment function. To formulate a

ilevel model for the single allocation ( r | p ) hub-centroid problem,

e define the variables Y as the assignment decisions made by
ik 
he leader (corresponding to y ik variables for the follower). The sin-

le allocation ( r | p ) hub-centroid problem can now be formulated

s: 

in F C ∗SA (27) 

.t.: 
∑ 

k ∈ H 
Y kk = p (28) 

∑ 

k ∈ H 
Y ik = 1 ∀ i ∈ N (29) 

 ik ≤ Y kk ∀ i ∈ N, k ∈ H (30) 

 ik ∈ { 0 , 1 } ∀ i ∈ N, k ∈ H (31) 

he objective function (27) minimizes the maximum total amount

f flow captured by the follower ( F C ∗
SA 

) calculated as the optimal

bjective function value of the lower level problem (20) –(26) . Con-

traint (28) ensures that the number of hubs located by the leader

s equal to p . Constraints (29) –(31) have the same meaning as

22),(23),(26) , respectively. 

The proposed bilevel models for the multiple and single alloca-

ion ( r | p ) hub-centroid problems are linearized using a minimax

pproach and the resulting linear MIP models are presented in

ppendix A . 

It is known that the bilevel models are very hard to solve

ven for a small number of decision variables ( Bard, 1998; Dempe,

002 ). Therefore, we use metaheuristic solution algorithms to solve

he above stated problems in reasonable time. The proposed algo-

ithms are described in detail in the next section. 

. Metaheuristic solution algorithm 

In this section, we describe in detail the proposed simulated an-

ealing (SA) based metaheuristic algorithms for solving the ( r | X p )

ub-medianoid and ( r | p ) hub-centroid problems for both the single

nd multiple allocation cases. SA is a metaheuristic optimization

lgorithm which is effective in solving combinational optimization

roblems. It was developed in 1953 by Metropolis et al. (1953) and

as independently described by Kirkpatrick et al. (1983) and Čern ̀y

1985) . To solve an optimization problem, the SA algorithm starts

rom an initial solution and consecutively moves to the new neigh-

oring solutions via algorithm loops. If the new solution is bet-

er than the current solution in terms of the value of objective

unction, the current solution is replaced by the new one. Other-

ise, the algorithm accepts the new solution with a probability

xp −�E/T if the problem has a minimization objective (or exp �E / T 

f the problem has a maximization objective), where �E is the dif-

erence of objective function values between the current solution

nd the new solution and T is the current temperature. At each

emperature, several replications run and then the temperature is

educed slowly. In the early stages where the temperature is too

igh, there is a high probability to accept poor solutions. In the fi-

al stages, with a gradual decrease in temperature, there will be

ess probability to accept a bad solution. At the end, the algorithm

onverges to a good solution. 

.1. Solution representation 

We use a one-dimensional array to represent the solutions in

ultiple allocation problem. This array of size p includes the num-

ers associated with the nodes that are selected as hubs. The

orting of numbers within the arrays is not important. Fig. 2

emonstrates the representation array of the solution exhibited in
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Fig. 2. Solution representation for multiple allocation problem. 

Fig. 3. Solution representation for single allocation problem. 
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Fig. 1 (a) which is a generic hub network with 14 nodes where

p = 4 . 

Note that having known the selected hubs, for each O/D pair

i − j, one can easily determine the paths for routing the associated

flow w ij by solving a shortest path problem. 

For the single allocation problem, we use two one-dimensional

arrays of size | N | to represent each solution. The first array, which

is a zero-one string, is called the hub location array in which the

nodes corresponding to “one” elements are chosen as hubs and the

nodes corresponding to “zero” elements indicate non-hub nodes.

The second array is called the allocation array which shows the

hub nodes to which every node is allocated. Fig. 3 shows the rep-

resentation of the solution exhibited in Fig. 1 (b). As can be seen in

this figure, four nodes (nodes 5, 9, 11, and 13) are established as

hubs and corresponding elements in the first array in Fig. 3 take

the value of 1. In the above hub network, the node 1 (as well as

node 9) is allocated to hub 9. This is illustrated in the second array

where the first and ninth elements of this array take the value of

9. 

4.2. Initial solution generation 

The initial solutions are generated randomly in our algorithms.

To this end, we randomly select p out of | N | nodes as hub nodes

both in multiple and single allocation problems. Furthermore, in

case of single allocation network, the remaining ( | N| − p) non-

hub nodes are randomly allocated to the selected hub nodes. This

procedure for generating initial solutions not only finds a solution

quickly but it also produces diverse starting points which can help

the algorithm produce high quality solutions in different runs by

not getting trapped in local optima. 

4.3. Neighborhood structures 

We define and use two different operators for generating neigh-

boring solutions for the multiple allocation SA algorithms. The first

operator is called “Swap_One_Hub” and the second one is called

“Swap_Two_Hubs”. Both of the operators use a current solution to

generate a random neighboring solution as explained below: 

• Swap_One_Hub : This operator is used to alter one of the hubs

in the solutions. First, we randomly select a hub node and a

non-hub node. Then the selected hub node becomes non-hub

and the selected non-hub node becomes hub. 
• Swap_Two_Hubs : This operator is quite similar to the former

one except for that in this case two hub nodes and two non-

hub nodes are selected randomly and the above procedure is

repeated for each pair of hub and non-hub nodes. When ap-

plied to a solution, this operator generates more diverse neigh-

bors than the previous one. 

Having altered the set of open hubs using either of the two

above mentioned operators, the allocations of flows are then
determined based on the new set of hubs by solving a shortest

path problem for each O/D pair i − j, as mentioned before. 

For single allocation SA algorithm, we use three other operators

for generating neighboring solutions, namely the “Swap_Hub”,

the “Nearest_Allocation”, and the “Reallocate_NonHub” opera-

tors. “Swap_Hub” is used to generate random neighbors from

the current solution. “Nearest_Allocation” is used to allocate

the non-hub nodes to their nearest open hubs immediately

after the “Swap_Hub” operator is applied, whereas “Reallo-

cate_NonHub” is used to perform local search on the newly

generated neighbors to improve their assignment parts. 
• Swap_Hub : In this move, a randomly selected hub node be-

comes non-hub and a randomly selected non-hub node be-

comes hub. The new non-hub node as well as the nodes pre-

viously allocated to it are then allocated to other existing hubs

based on nearest distance policy. 
• Nearest_Allocation : Based on this operator, which is originally

proposed by O’Kelly (1987) , for a given set of hub nodes, each

non-hub node is allocated to its nearest open hub. 
• Reallocate_NonHub : This operator changes the allocation of a

randomly selected non-hub node to a hub node other than its

current hub. 

.4. Parameters used in the SA procedure 

The proposed SA algorithms use six input parameters, namely

 0 , T F , δ1 , δ2 , R , and N e . T 0 and T F represent the initial and fi-

al temperatures, respectively. δ1 is used in the ( r | p ) hub-centroid

roblems as cooling rate that controls the colling process in the al-

orithm, whereas δ2 is used as the cooling rate in the ( r | X p ) hub-

edianoid problems. R (0 < R < 1) denotes the probability with

hich the first operator is used at each temperature of the SA al-

orithm in multiple allocation problems (medianoid and centroid).

he second operator is thus used with probability 1 − R . Finally, N e 

enotes the number of iterations the search proceeds at a partic-

lar temperature which is used only in single allocation problems

medianoid and centroid). 

.5. The overall SA algorithms 

To solve the multiple allocation ( r | X p ) hub-medianoid problem,

e assume that the leader has already located its hubs based on

he solution of the uncapacitated multiple allocation p -hub me-

ian problem (UMA p HMP). We start our algorithm by generating

n initial solution Y r for the follower and setting the initial tem-

erature to T 0 . Y best denotes the best solution found so far and f best 

enotes the corresponding objective function value. At each tem-

erature, we generate a new solution Y ′ r based on the current so-

ution using either of the two operators presented in Section 4.3 .

o generate a neighboring solution, a random number ρ is gen-

rated from the interval [0,1] and if this number is larger than

he threshold value of the R , we use the “Swap_One_Hub” op-

rator and otherwise, we use “Swap_Two_Hubs” operator. Subse-

uently, the objective value of the new solution f (X p , Y 
′ 
r ) is calcu-

ated. We define �E as the difference between the objective values

f the new and current solutions, i.e., �E = f (X p , Y 
′ 
r ) − f (X p , Y r ) . If

E > 0, we update the current solution as Y r ← Y ′ r . If the objective

f (X p , Y 
′ 
r ) of the new solution Y ′ r is even larger than the best ob-

ective f best , we set f best ← f (X p , Y 
′ 
r ) and Y best ← Y ′ r . Otherwise, if

E ≤ 0, we generate another random number ρ from the interval

0,1]. If ρ is larger than exp ( �E / T ), we update the current solu-

ion as Y r ← Y ′ r . In other words, we accept the solutions of worse

uality with probability exp ( �E / T ) to help the algorithm not get

rapped in local optima. Subsequently, we reduce the temperature

t each iteration according to the formula T = δ × T . The algorithm
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Algorithm 2 SA for multiple allocation ( r | p ) hub-centroid ( T 0 , T f , 

δ1 , R, α, p, r ). 

1: Generate a random initial solution X p ;
2: Get Y ∗r and f (X p , Y 

∗
r ) by solving the ( r| X p ) hub-medianoid prob- 

lem using Algorithm 1; 

3: T ← T 0 ; f best ← f (X p , Y 
∗
r ) ; X best ← X p ;

4: while T > T f do 

5: ρ ← rand(0 , 1) ;
6: if ρ > R then 

7: Generate a new solution X ′ p based on X p using 

“Swap_One_Hub” operator; 

8: else 

9: Generate a new solution X ′ p based on X p using 

“Swap_Two_Hubs” operator; 

10: end if 

11: Get Y ∗r and f (X ′ p , Y ∗r ) by solving ( r| X p ) hub-medianoid prob- 

lem using Algorithm 1; 

12: �E ← f (X ′ p , Y ∗r ) − f (X p , Y 
∗
r ) ;

13: if �E < 0 then 

14: X p ← X ′ p ; f (X p , Y 
∗
r ) ← f (X ′ p , Y ∗r ) ;

15: else 

16: ρ ← rand(0 , 1) ;
17: if ρ < exp (−�E/T ) then 

18: X p ← X ′ p ; f (X p , Y 
∗
r ) ← f (X ′ p , Y ∗r ) ;

19: end if 

20: end if 

21: if f (X p , Y 
∗
r ) < f best then 

22: X best ← X p ; f best ← f (X p , Y 
∗
r ) ;

23: end if 

24: T ← δ1 × T ;
25: end while 

26: return X best , f best 

Table 1 

Test instances used for ( r | X p ) hub-medianoid problem. 

Data set CAB TR ( r, p ≤ 5) TR ( r, p ≥ 6) 

p 2,3,4, and 5 2,3,4, and 5 6,8,10,12, and 14 

r 2,3,4, and 5 2,3,4, and 5 6,8,10,12, and 14 

α 0.6 and 0.8 0.6,0.8, and 0.9 0.6,0.8, and 0.9 
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s terminated when the current temperature T drops below the

respecified final temperature T F . 

The SA algorithm for the multiple allocation ( r | p ) hub-centroid

roblem is more complex than that of the ( r | X p ) hub-medianoid

roblem as we aim at optimizing the leader’s objective within a

ilevel solution framework. In this case, we have a main SA for

ptimizing the leader’s decisions and a lower level SA for the fol-

ower’s decisions. At each iteration of the main SA, where a new

olution is generated for the leader, the lower level SA is run on

ehalf of the follower to solve the ( r | X p ) hub-medianoid problem.

n this case, we define �E = f (X ′ p , Y ∗r (X ′ p )) − f (X p , Y 
∗
r (X p )) in the

ain SA. Since the ( r | p ) hub-centroid problem has a minimization

bjective, we accept the new solutions if �E < 0. Furthermore, if

he objective f (X ′ p , Y ∗r (X ′ p )) of the new solution X ′ p is smaller than

est objective f best , we set f best ← f (X ′ p , Y ∗r (X ′ p )) and X best ← X ′ p .
therwise, if �E ≥ 0, we accept this solution of inferior quality

ith probability exp (−�E/T ) . 

The pseudo-codes of the proposed SA algorithms for the mul-

iple allocation ( r | X p ) hub-medianoid and the multiple allocation

 r | p ) hub-centroid problems are illustrated in Algorithms 1 and 2 ,

espectively. 

lgorithm 1 SA for multiple allocation ( r | X p ) hub-medianoid ( T 0 ,

 f , δ2 , R, α, X p , r ). 

1: Generate a random initial solution Y r ;
2: Calculate f (X p , Y r ) ;
3: T ← T 0 ; f best ← f (X p , Y r ) ;Y best ← Y r ;
4: while T > T f do 

5: ρ ← rand(0 , 1) ;
6: if ρ > R then 

7: Generate a new solution Y ′ r based on Y r using

“Swap_One_Hub” operator; 

8: else 

9: Generate a new solution Y ′ r based on Y r using

“Swap_Two_Hubs” operator; 

10: end if 

11: Calculate f (X p , Y 
′ 
r ) ;

12: �E ← f (X p , Y 
′ 
r ) − f (X p , Y r ) ;

13: if �E > 0 then 

14: Y r ← Y ′ r ; f (X p , Y r ) ← f (X p , Y 
′ 
r ) ;

15: else 

16: ρ ← rand(0 , 1) ;
17: if ρ > exp (�E/T ) then 

18: Y r ← Y ′ r ; f (X p , Y r ) ← f (X p , Y 
′ 
r ) ;

19: end if 

0: end if 

21: if f (X p , Y r ) > f best then 

2: Y best ← Y r ; f best ← f (X p , Y r ) ;
3: end if 

4: T ← δ2 × T ;
5: end while 

6: return Y best , f best 

The proposed SA algorithms for the single allocation ( r | X p ) hub-

edianoid and ( r | p ) hub-centroid problems are in general very

imilar to their multiple allocation counterparts. However, the

olution representation scheme and the employed neighborhood

tructures are different that those of the multiple allocation prob-

ems, as discussed earlier. Furthermore, in case of the single al-

ocation problems, number of neighboring solutions generated at

ach temperature is N e after which a local search is performed on

he best found solution based on the “Reallocate_NonHub” opera-

or. The pseudo-codes of the proposed SA algorithms for the single

llocation ( r | X p ) hub-medianoid and the single allocation ( r | p ) hub-

entroid problems are shown in Algorithms 3 and 4 , respectively. 
. Computational experiments 

In order to test the efficiency of the proposed SA algorithms,

e use two data sets from the literature of the HLP: the CAB and

he TR data sets. The CAB data set introduced by O’Kelly (1987) is

ased on the airline passenger interactions between 25 US cities

n 1970 evaluated by the Civil Aeronautics Board (CAB). This data

et has been used by most of the hub location researchers in the

iterature. To solve the problem on the CAB data set, the parame-

er α is considered at two levels as α ∈ {0.6, 0.8}. The second data

et that is used in our computational experiments is the TR data

et ( Tan and Kara, 2007 ) which is based on the cargo flows be-

ween 81 cities of Turkey where only 22 of these cities are can-

idate nodes for location of hubs ( | H| = 22 ). The parameter α is

onsidered at three levels as α ∈ {0.6, 0.8, 0.9} for the TR data set.

he proposed SA algorithms are implemented in Microsoft Visual

# 2013 (version 5.0). Also, the proposed mathematical models for

he single and multiple allocation ( r | X p ) hub-medianoid problems

re solved independently using CPLEX version 12.6. All the exper-

ments have been run on a computer with Intel(R) Core(TM) i3-

220 CPU of 3.30 GHz and 16GB of RAM, using the Microsoft Win-

ows 7 operating system. Table 1 summarizes all test instances

sed in the computational study of the ( r | X p ) hub-medianoid prob-

em for multiple and single allocation networks. 
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Algorithm 3 SA for single allocation ( r | X p ) hub-medianoid 

( T 0 , T f , δ2 , N e , α, A 

l 
X p 

, r). 

1: Generate a random initial solution A 

f 
Y r 

;
2: Calculate f (A 

l 
X p 

, A 

f 
Y r 

) ;
3: T ← T 0 ; I ← 0 ; f best ← f (A 

l 
X p 

, A 

f 
Y r 

) ;Y best ← A 

f 
Y r 

;
4: while T > T f do 

5: I ← I + 1 ;
6: Generate a new solution A 

′ f 
Y r 

based on A 

f 
Y r 

using “Swap_Hub”

operator; 

7: Perform local search using “Reallocate_NonHub” operator on 

A 

′ f 
Y r 

; 

8: Calculate f (A 

l 
X p 

, A 

′ f 
Y r 

) ;
9: �E ← f (A 

l 
X p 

, A 

′ f 
Y r 

) − f (A 

l 
X p 

, A 

f 
Y r 

) ;
10: if �E > 0 then 

11: A 

f 
Y r 

← A 

′ f 
Y r 

; f (A 

l 
X p 

, A 

f 
Y r 

) ← f (A 

l 
X p 

, A 

′ f 
Y r 

) ;
12: else 

13: ρ ← rand(0 , 1) ;
14: if ρ > exp (�E/T ) then 

15: A 

f 
Y r 

← A 

′ f 
Y r 

; f (A 

l 
X p 

, A 

f 
Y r 

) ← f (A 

l 
X p 

, A 

′ f 
Y r 

) ;
16: end if 

17: end if 

18: if f (A 

l 
X p 

, A 

f 
Y r 

) > f best then 

19: Y best ← A 

f 
Y r 

; f best ← f (A 

l 
X p 

, A 

f 
Y r 

) ;
20: end if 

21: if I = N e then 

22: T ← δ2 × T ; I ← 0 ;
23: end if 

24: end while 

25: return Y best , f best 

Table 2 

Parameters of the SA algorithms. 

T 0 T f δ1 δ2 N e R 

Multiple allocation 100 1 0.98 0.99 – 0.67 

Single allocation 20,0 0 0 20 0 0 0.99 0.90 25 –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4 SA for single allocation ( r | p ) hub-centroid ( T 0 , T f , δ1 , 

N e , α, p, r ). 

1: Generate a random initial solution A 

l 
X p 

;
2: Get A 

∗ f 
Y r 

and f (A 

l 
X p 

, A 

∗ f 
Y r 

) by solving the ( r| X p ) hub-medianoid 

problem using Algorithm 3; 

3: T ← T 0 ; I ← 0 ; f best ← f (A 

l 
X p 

, A 

∗ f 
Y r 

) ; X best ← A 

l 
X p 

;
4: while T > T f do 

5: I ← I + 1 ;
6: Generate a new solution A 

′ l 
X p 

based on A 

l 
X p 

using 

“Swap_Hub” operator; 

7: Allocate non-hub nodes using “Nearest_Allocation” operator; 

8: Perform local search using “Reallocate_NonHub” operator on 

A 

′ l 
X p 

; 

9: Get A 

∗ f 
Y r 

and f (A 

′ l 
X p 

, A 

∗ f 
Y r 

) by solving ( r| X p ) hub-medianoid 

problem using Algorithm 3; 

10: �E ← f (A 

′ l 
X p 

, A 

∗ f 
Y r 

) − f (A 

l 
X p 

, A 

∗ f 
Y r 

) ;
11: if �E < 0 then 

12: A 

l 
X p 

← A 

′ l 
X p 

; f (A 

l 
X p 

, A 

∗ f 
Y r 

) ← f (A 

′ l 
X p 

, A 

∗ f 
Y r 

) ;
13: else 

14: ρ ← rand(0 , 1) ;
15: if ρ < exp (−�E/T ) then 

16: A 

l 
X p 

← A 

′ l 
X p 

; f (A 

l 
X p 

, A 

∗ f 
Y r 

) ← f (A 

′ l 
X p 

, A 

∗ f 
Y r 

) ;
17: end if 

18: end if 

19: if f (A 

l 
X p 

, A 

∗ f 
Y r 

) < f best then 

20: X best ← A 

l 
X p 

; f best ← f (A 

l 
X p 

, A 

∗ f 
Y r 

) ;
21: end if 

22: if I = N e then 

23: T ← δ1 × T ; I ← 0 ;
24: end if 

25: end while 

26: return X best , f best 
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For the multiple allocation ( r | p ) hub-centroid problem, all the

test instances shown in Table 1 are solved. However, for the sin-

gle allocation case, only the instances with r, p ≤ 5 for the TR data

set are solved. Furthermore, for the latter case, some small in-

stances from the CAB data set with | N | ∈ {10, 15} and p, r ∈ {2, 3}

are solved using the proposed SA algorithm to compare its per-

formance with that of an enumeration algorithm adapted from

Mahmutogullari and Kara (2016) . 

The parameters of the proposed SA algorithms are tuned by set-

ting a good trade-off between time and quality of the solutions. In

an initial set of experiments, different combinations of parameters

were tested on a large number of test instances and the values re-

ported in Table 2 have been selected as the best values which lead

to high-quality solutions in short CPU times for multiple and single

allocation versions of the problem. 

A comprehensive set of computational experiments are con-

ducted using the above mentioned test problems to show the effi-

ciency of the proposed SA algorithms and the results are reported

in the following sub-sections. For each problem instance, we have

run the SA algorithm for five times and the best solutions obtained

are reported. 
.1. Results for the multiple allocation case 

Table 3 shows the results obtained by solving the multiple allo-

ation ( r | X p ) hub-medianoid problem using the proposed SA algo-

ithm as well as CPLEX based on the proposed mathematical mod-

ls with the CAB data set. Since the distance matrix in the CAB

ata set (also in the TR data set) is symmetric, it is clear that if

he flow w ij from node i ∈ N to node j ∈ N is captured by the fol-

ower, the flow from node j to node i is also captured by the fol-

ower. Therefore, to reduce the size of our model, the constraints

7) –(9) are imposed for only i < j and the objective (5) is modified

s 
∑ 

i 

∑ 

j | j >i 

∑ 

k 

∑ 

m 

(w i j + w ji ) a 
km 

i j 
x i jkm 

in our computational stud-

es. 

It is assumed that the leader has already located its hubs based

n the uncapacitated multiple allocation p -hub median problem

UMA p HMP). Different discount factor ( α) values are shown in the

rst row of the table. The columns entitled p and r denote the

umber of hubs which are opened by the leader and the follower,

espectively. The next two columns show the follower’s capture

s the optimal objective function value that has been obtained by

PLEX and the CPU time, in seconds, needed to reach that solution.

inally, the columns under the label “SA” give the best objective

unction obtained through solving the instances with the SA algo-

ithm and the average CPU time for the five runs of the algorithm.

Observe that the proposed SA algorithm solves all instances to

ptimality within a fraction of a second which can be counted

s an indication of the efficiency of the proposed SA algorithm.
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Table 3 

Results for multiple allocation ( r | X p ) hub-medianoid problem with the CAB data set. 

α = 0 . 6 α = 0 . 8 

p r CPLEX SA p r CPLEX SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 

2 2 65.62% 14.74 65.62% 0.03 2 2 65.84% 8.82 65.84% 0.03 

3 78.25% 17.56 78.25% 0.10 3 74.19% 22.03 74.19% 0.11 

4 87.08% 17.83 87.08% 0.20 4 80.69% 25.10 80.69% 0.19 

5 92.38% 16.05 92.38% 0.22 5 87.14% 18.35 87.14% 0.21 

3 2 30.49% 26.60 30.49% 0.04 3 2 29.18% 24.99 29.18% 0.05 

3 45.13% 24.56 45.13% 0.14 3 42.92% 22.58 42.92% 0.13 

4 53.69% 22.13 53.69% 0.23 4 52.83% 20.57 52.83% 0.25 

5 62.02% 23.93 62.02% 0.27 5 60.14% 22.47 60.14% 0.27 

4 2 18.89% 27.72 18.89% 0.07 4 2 21.06% 24.48 21.06% 0.07 

3 28.39% 30.68 28.39% 0.17 3 32.69% 21.92 32.69% 0.18 

4 37.73% 33.16 37.73% 0.30 4 42.10% 23.47 42.10% 0.34 

5 46.18% 25.76 46.18% 0.30 5 48.60% 25.25 48.60% 0.39 

5 2 18.64% 27.97 18.64% 0.09 5 2 18.19% 23.49 18.19% 0.10 

3 28.14% 23.62 28.14% 0.23 3 29.12% 20.11 29.12% 0.22 

4 35.04% 19.22 35.04% 0.32 4 36.93% 24.00 36.93% 0.34 

5 42.32% 22.77 42.32% 0.36 5 44.32% 25.48 44.32% 0.43 

Average 48.12% 23.39 48.12% 0.19 Average 47.87% 22.07 47.87% 0.20 

Table 4 

Results for multiple allocation ( r | X p ) hub-medianoid problem with the TR data set ( r, p ≤ 5). 

α = 0 . 6 α = 0 . 8 α = 0 . 9 

p r CPLEX SA p r CPLEX SA p r CPLEX SA 

Follower’s 

capture CPU (s) 

Follower’s 

capture 

CPU 

(s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture 

CPU 

(s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture 

CPU 

(s) 

2 2 50.60% 456.21 50.60% 0.32 2 2 49.95% 538.33 49.95% 0.30 2 2 50.66% 476.94 50.66% 0.41 

3 68.73% 673.52 68.73% 0.51 3 62.48% 878.01 62.48% 0.46 3 67.09% 558.60 67.09% 0.53 

4 80.13% 344.27 80.13% 0.70 4 72.47% 568.05 72.47% 0.71 4 77.52% 323.88 77.52% 0.86 

5 89.97% 115.03 89.97% 0.95 5 84.88% 132.67 84.88% 1.19 5 85.27% 191.20 85.27% 0.99 

3 2 30.49% 1873.32 30.49% 0.45 3 2 30.68% 1435.06 30.68% 0.45 3 2 40.58% 233.93 40.58% 0.50 

3 40.82% 1245.46 40.82% 0.66 3 40.80% 1667.72 40.80% 0.64 3 52.71% 494.27 52.71% 0.61 

4 56.40% 577.22 56.40% 0.80 4 51.43% 959.99 51.43% 0.91 4 63.24% 360.14 63.24% 0.95 

5 66.43% 487.51 66.43% 1.07 5 60.66% 560.07 60.66% 1.12 5 72.38% 130.33 72.38% 1.21 

4 2 22.14% 1389.16 22.14% 0.70 4 2 20.33% 2223.10 20.33% 0.73 4 2 20.38% 1465.93 20.38% 0.72 

3 33.69% 739.71 33.69% 0.93 3 30.18% 1897.41 30.18% 0.91 3 30.55% 1777.43 30.55% 0.88 

4 44.79% 949.52 44.79% 1.12 4 39.40% 1604.90 39.40% 1.17 4 38.46% 1316.08 38.46% 1.11 

5 55.69% 517.45 55.69% 1.49 5 48.57% 786.07 48.57% 1.41 5 47.40% 565.69 47.40% 1.41 

5 2 15.01% 2076.17 15.01% 0.89 5 2 15.72% 1638.12 15.72% 1.00 5 2 16.47% 1387.98 16.47% 1.06 

3 23.88% 1457.35 23.88% 1.09 3 24.24% 1618.06 24.24% 1.12 3 23.94% 1258.68 23.94% 1.13 

4 33.97% 528.04 33.97% 1.48 4 32.69% 665.54 32.69% 1.35 4 33.03% 670.19 33.03% 1.37 

5 42.20% 397.08 42.20% 1.69 5 40.21% 381.95 40.21% 1.59 5 41.01% 400.56 41.01% 1.55 

Average 47.18% 864.19 47.18% 0.89 Average 44.04% 1097.19 44.04% 0.94 Average 47.54% 725.74 47.54% 0.95 
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lso, the solution times for CPLEX using the proposed mathemati-

al models are also acceptable for the CAB data set. 

Note that since the leader decides on the location of its hubs

o that the total cost is minimized (based on UMA p HMP) and does

ot take into account the upcoming competition, the follower can

apture a considerable share of market upon entrance to market.

or instance, when the follower locates the same number of hubs

s the leader’s, i.e., p = r, its captured market share is larger than

hat of the leader. For the cases where p ≤ r , the lost market share

y the leader gets even larger. However, as p increases ( p = 4 or

), the follower’s capture is not as much as that of the leader. 

Tables 4 and 5 show the results obtained by solving the multi-

le allocation ( r | X p ) hub-medianoid problem with the TR data set

or r, p ≤ 5 and r, p ≥ 6, respectively. Here also it is assumed that

he leader has already selected its p hubs based on UMA p HMP. To

valuate the performance of the proposed SA algorithm on the TR

ata set, we have solved the instances with r, p ≤ 5 using the pro-

osed mathematical models using CPLEX and compared its results

ith those obtained by the SA algorithm. However, as the instances

or r, p ≥ 6 have been solved to optimality by Mahmutogullari and

ara (2016) , for these instances the results obtained by the SA
re compared to their corresponding optimal values which are re-

orted under the column labeled as “M&K” in Table 5 . 

The results reported in Tables 4 and 5 reveal that the proposed

A algorithm is able to obtain the optimal solutions for all the in-

tances of the TR data set. From a solution time perspective, it is

hown that the SA solves the problem instances for the TR data set

n quite short CPU times. Another important observation from the

hese tables is that as the number of hubs opened by the leader ( p )

ncreases, the follower fails to capture much of the market share

ven if r > p . One possible reason for this observation can be the

act that as p increases, the leader selects more of the critical loca-

ions for opening hubs and reduces its cost. In addition, since the

ustomers choose the leader’s service for an equal cost offered by

he leader and the follower, the leader’s market share stays higher

han that of the follower. 

Table 6 shows the results for solving the multiple allocation

 r | p ) hub-centroid problem for the CAB data set. To evaluate the

erformance of the proposed SA algorithm, the best solutions ob-

ained by SA are compared to those of enumeration based algo-

ithm presented in Mahmutogullari and Kara (2016) as it is not

ractical to solve the proposed bilevel model using CPLEX. 
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Table 5 

Results for multiple allocation ( r | X p ) hub-medianoid problem with the TR data set ( r, p ≥ 6). 

α = 0 . 6 α = 0 . 8 α = 0 . 9 

p r M&K SA p r M&K SA p r M&K SA 

Follower’s 

capture 

Follower’s 

capture CPU (s) 

Follower’s 

capture 

Follower’s 

capture CPU (s) 

Follower’s 

capture 

Follower’s 

capture CPU (s) 

6 6 39.31% 39.31% 2.25 6 6 37.97% 37.97% 2.88 6 6 40.86% 40.86% 4.83 

8 49.19% 49.19% 4.31 8 48.24% 48.24% 4.19 8 49.44% 49.44% 7.39 

10 56.94% 56.94% 5.55 10 55.70% 55.70% 5.47 10 56.06% 56.04% 9.80 

12 64.02% 64.02% 6.98 12 61.84% 61.84% 7.22 12 61.54% 61.54% 13.38 

14 68.91% 68.91% 8.27 14 66.97% 66.97% 9.18 14 66.45% 66.45% 16.92 

8 6 28.58% 28.58% 4.25 8 6 29.37% 29.37% 4.23 8 6 31.11% 31.10% 7.34 

8 37.09% 37.09% 5.30 8 37.08% 37.08% 5.27 8 38.69% 38.69% 9.17 

10 44.37% 44.37% 9.22 10 44.35% 44.35% 9.91 10 44.83% 44.83% 12.57 

12 51.77% 51.77% 12.29 12 50.71% 50.71% 12.15 12 50.49% 50.49% 15.69 

14 57.97% 57.97% 15.40 14 56.33% 56.33% 13.98 14 55.77% 55.77% 19.14 

10 6 19.91% 19.91% 8.53 10 6 20.12% 20.12% 8.25 10 6 20.74% 20.74% 10.01 

8 27.13% 27.13% 9.87 8 27.03% 27.03% 9.71 8 27.77% 27.77% 11.12 

10 34.10% 34.10% 12.20 10 33.84% 33.84% 12.80 10 33.86% 33.86% 14.82 

12 40.48% 40.48% 13.98 12 40.74% 40.74% 17.69 12 39.89% 39.89% 17.50 

14 45.73% 45.73% 19.92 14 46.84% 46.84% 21.19 14 44.90% 44.90% 21.35 

12 6 15.83% 15.83% 11.08 12 6 16.93% 16.93% 12.03 12 6 18.45% 18.45% 11.90 

8 21.79% 21.79% 13.15 8 23.41% 23.41% 13.54 8 24.59% 24.59% 13.58 

10 27.06% 27.06% 17.43 10 28.62% 28.62% 17.40 10 29.08% 29.08% 17.79 

12 31.37% 31.37% 20.77 12 32.81% 32.81% 20.56 12 32.98% 32.98% 20.74 

14 35.48% 35.48% 23.85 14 35.85% 35.93% 23.75 14 36.18% 36.18% 24.15 

14 6 13.04% 13.04% 14.70 14 6 13.02% 13.02% 14.68 14 6 13.66% 13.66% 15.01 

8 17.87% 17.87% 16.58 8 18.57% 18.57% 16.91 8 18.81% 18.81% 16.43 

10 22.25% 22.25% 20.95 10 22.52% 22.52% 23.02 10 22.50% 22.50% 21.59 

12 26.00% 26.00% 25.26 12 25.20% 25.20% 25.09 12 25.60% 25.60% 24.68 

14 28.42% 28.42% 27.31 14 27.40% 27.46% 27.60 14 28.18% 28.18% 27.24 

Average 36.18% 36.18% 13.17 Average 36.06% 36.06% 13.54 Average 36.50% 36.50% 15.36 

Table 6 

Results for multiple allocation ( r | p ) hub-centroid problem with the CAB data set. 

α = 0 . 6 α = 0 . 8 

p r M&K SA p r M&K SA 

Follower’s capture Follower’s capture CPU (s) Follower’s capture Follower’s capture CPU (s) 

2 2 46.14% 46.14% 9.50 2 2 43.68% 43.68% 10.06 

3 64.37% 64.37% 17.87 3 59.59% 59.59% 17.41 

4 74.75% 74.75% 38.37 4 70.75% 70.75% 38.61 

5 83.52% 83.52% 83.61 5 78.74% 78.74% 83.37 

3 2 30.39% 30.39% 14.40 3 2 29.18% 29.18% 14.35 

3 45.13% 45.13% 23.93 3 42.87% 42.87% 23.23 

4 53.69% 53.69% 48.84 4 52.83% 52.83% 47.18 

5 62.02% 62.02% 98.52 5 60.14% 60.14% 97.81 

4 2 17.91% 17.91% 22.62 4 2 21.06% 21.06% 26.71 

3 28.39% 28.39% 37.76 3 30.70% 30.70% 36.96 

4 37.73% 37.73% 59.73 4 38.39% 38.39% 56.94 

5 46.18% 46.18% 121.16 5 45.24% 45.24% 146.78 

5 2 14.30% 14.30% 53.77 5 2 15.30% 15.30% 58.7 

3 23.73% 23.73% 132.68 3 23.24% 23.24% 150.11 

4 31.91% 31.91% 177.56 4 31.78% 31.78% 180.95 

5 39.58% 39.58% 226.55 5 38.57% 38.57% 232.93 

Average 43.73% 43.73% 72.92 Average 42.63% 42.63% 76.38 
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The results for solving the multiple allocation ( r | p ) hub-centroid

problem for the TR data set with r, p ≤ 5 are presented in Table 7 . 

As can be seen from Tables 6 and 7 , the proposed SA algorithm

for the multiple allocation ( r | p ) hub-centroid problem has found

the optimal solution in all of the test instances. Note that the solu-

tion times for the ( r | p ) hub-centroid problem are higher than the

corresponding solution times for the ( r | X p ) hub-medianoid prob-

lem. This is due to the bilevel nature of the former problem which

requires our proposed SA to solve the follower’s problem from

scratch whenever a new solution for the leader is found. However,

the solution times for the bilevel problem are still quite short for a

strategic planning problem such as locating facilities in a competi-

tive environment. 

It should be mentioned that the leader’s market share has in-

creased as he/she has decided based on ( r | p ) hub-centroid prob-
em. In other words, taking into account the competition, the

eader locates its hubs in such a way that the follower can cap-

ure as low flow as possible when he/she enters the market. For

xample, in the CAB data set with α = 0 . 8 , in case the leader and

ollower both open 2 hubs, i.e. p = r = 2 , the value of captured

arket share by the follower when the leader ignores the com-

etition and decides on the location of its hubs solely based on

ost factors is around 66%, whereas the corresponding capture by

he follower drops to 44% as the leader acts in anticipation of an

pcoming competition. 

Table 8 shows the results obtained by solving the multiple

llocation ( r | p ) hub-centroid problem with the TR data set for

arge values of r and p ( r, p ≥ 6). The problem for large values

f r and p has not been solved by the enumeration algorithm in

ahmutogullari and Kara (2016) due to memory requirements and
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Table 7 

Results for multiple allocation ( r | p ) hub-centroid problem with the TR data set ( r, p ≤ 5). 

α = 0 . 6 α = 0 . 8 α = 0 . 9 

p r M&K SA p r M&K SA p r M&K SA 

Follower’s 

capture 

Follower’s 

capture CPU (s) 

Follower’s 

capture 

Follower’s 

capture CPU (s) 

Follower’s 

capture 

Follower’s 

capture CPU (s) 

2 2 49.44% 49.44% 74.59 2 2 46.84% 46.84% 75.43 2 2 44.12% 44.12% 72.63 

3 64.65% 64.65% 112.09 3 60.05% 60.05% 108.23 3 58.74% 58.74% 108.91 

4 74.97% 74.97% 148.93 4 70.03% 70.03% 155.33 4 67.98% 67.98% 155.19 

5 84.72% 84.72% 210.54 5 77.97% 77.97% 218.44 5 75.45% 75.45% 210.10 

3 2 30.49% 30.49% 108.30 3 2 30.68% 30.68% 108.52 3 2 30.35% 30.35% 107.52 

3 40.82% 40.82% 145.17 3 40.81% 40.81% 146.58 3 39.90% 39.90% 140.42 

4 56.18% 56.18% 185.27 4 51.43% 51.43% 184.20 4 50.03% 50.03% 191.55 

5 65.58% 65.58% 251.48 5 60.66% 60.66% 250.41 5 58.18% 58.18% 250.18 

4 2 20.07% 20.07% 149.82 4 2 20.33% 20.33% 160.12 4 2 20.38% 20.38% 154.09 

3 30.57% 30.57% 194.42 3 30.19% 30.19% 198.59 3 29.55% 29.55% 198.44 

4 42.15% 42.15% 242.14 4 39.41% 39.41% 233.58 4 38.11% 38.11% 231.55 

5 51.89% 51.89% 322.75 5 48.57% 48.57% 302.39 5 46.83% 46.83% 300.12 

5 2 14.32% 14.32% 210.27 5 2 14.82% 14.82% 220.39 5 2 14.27% 14.27% 212.61 

3 23.61% 23.61% 275.00 3 22.12% 22.12% 294.22 3 22.87% 22.87% 317.82 

4 32.34% 32.34% 306.76 4 29.28% 29.28% 314.83 4 31.76% 31.76% 401.35 

5 40.05% 40.05% 358.91 5 37.44% 37.44% 471.31 5 38.91% 38.91% 485.00 

Average 45.11% 45.11% 206.02 Average 42.53% 42.53% 215.16 Average 41.71% 41.71% 221.09 

Table 8 

Results for multiple allocation ( r | p ) hub-centroid problem with the TR data set ( r, p ≥ 6). 

α = 0 . 6 α = 0 . 8 α = 0 . 9 

p r SA p r SA p r SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 

6 6 39.29% 2115.64 6 6 37.15% 2111.09 6 6 36.77% 2134.08 

8 49.12% 2359.87 8 47.70% 2287.74 8 47.27% 2490.12 

10 56.94% 2871.65 10 55.70% 2901.14 10 54.96% 2752.40 

12 64.02% 3094.27 12 61.84% 2931.95 12 60.96% 3093.01 

14 68.85% 3300.69 14 66.97% 2219.11 14 65.67% 3318.89 

8 6 28.45% 2495.08 8 6 27.65% 2339.75 8 6 27.62% 2499.02 

8 36.34% 2950.11 8 35.62% 3008.21 8 36.11% 2876.44 

10 43.44% 3221.27 10 42.72% 3225.41 10 42.52% 3339.01 

12 50.15% 3950.67 12 49.63% 3718.72 12 48.37% 3718.72 

14 54.98% 4391.55 14 53.74% 4182.51 14 53.91% 4391.65 

10 6 19.91% 2683.80 10 6 20.12% 2699.10 10 6 20.74% 2591.03 

8 27.13% 2974.01 8 27.03% 2940.69 8 27.77% 3004.10 

10 34.10% 3409.31 10 33.75% 3519.09 10 33.86% 3581.93 

12 39.14% 3954.94 12 40.58% 4021.39 12 39.80% 4056.88 

14 43.56% 4487.39 14 43.43% 4527.71 14 44.07% 4681.53 

12 6 14.83% 2720.55 12 6 15.75% 2751.48 12 6 16.18% 2719.97 

8 21.21% 3363.98 8 21.86% 3495.30 8 22.36% 3387.13 

10 27.00% 3890.27 10 28.10% 3786.59 10 27.68% 3810.60 

12 31.22% 4319.92 12 32.35% 4385.35 12 31.99% 4250.71 

14 35.16% 4974.31 14 35.28% 5009.50 14 35.05% 4 971.4 8 

14 6 12.34% 3511.90 14 6 11.95% 3419.82 14 6 12.31% 3445.77 

8 17.40% 3901.25 8 17.36% 3975.01 8 17.13% 3959.24 

10 21.79% 4458.14 10 22.28% 4590.25 10 21.57% 4611.38 

12 25.13% 4 975.6 8 12 25.15% 5001.81 12 24.47% 4988.17 

14 27.15% 5721.24 14 27.24% 5789.61 14 26.89% 5608.55 

Average 35.55% 3603.90 Average 35.24% 3553.53 Average 35.04% 3611.27 
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ong CPU times. For this reason, we present only the results ob-

ained by the proposed SA algorithm in this table. 

Note from Table 8 that for larger values of the installed hubs

 r, p ≥ 6), the follower’s capture is, in general, less than the corre-

ponding value when the number of installed hubs are smaller ( r,

 ≤ 5). It can also be seen that all the instances of the problem with

arge values of r, p are solved in less than an hour on average. Since

hese instances have not already been solved using exact solution

lgorithms or CPLEX, the obtained results can be considered as an

ndication of the usefulness and high efficiency of the proposed SA

lgorithm. 

.2. Results for the single allocation case 

Results obtained by solving the single allocation ( r | X p ) hub-

edianoid problem using the proposed SA algorithm as well as
PLEX based on the proposed mathematical models with the CAB

ata set are presented in Table 9 . It is assumed that the leader

as already located its hubs based on the uncapacitated single al-

ocation p -hub median problem (USA p HMP). Similar to the case of

ultiple allocation, to reduce the size of our model, the constraints

24) –(25) are imposed for only i < j and the objective (20) is mod-

fied as 
∑ 

i 

∑ 

j | j >i (w i j + w ji ) z i j in our computational studies. 

It can be seen from Table 9 that the proposed SA algo-

ithm solves all the instances of the single allocation ( r | X p ) hub-

edianoid problem to optimality in less than a second. It should

lso be noted that CPLEX solves the single allocation medianoid

nstances within shorter times than the corresponding multiple al-

ocation instances. This shows the model proposed for the single

llocation problem which is based on the efficient formulation pre-

ented by Peker and Kara (2015) is more efficient than the multiple
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Table 9 

Results for single allocation ( r | X p ) hub-medianoid problem with the CAB data set. 

α = 0 . 6 α = 0 . 8 

p r CPLEX SA p r CPLEX SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 

2 2 62.11% 6.33 62.11% 0.33 2 2 61.25% 2.10 61.25% 0.37 

3 78.46% 3.35 78.46% 0.44 3 70.41% 3.13 70.41% 0.48 

4 88.90% 1.63 88.90% 0.53 4 80.85% 2.59 80.85% 0.54 

5 93.49% 1.49 93.49% 0.61 5 89.24% 1.49 89.24% 0.62 

3 2 42.56% 3.27 42.56% 0.38 3 2 46.27% 2.65 46.27% 0.34 

3 59.00% 6.62 59.00% 0.45 3 60.86% 4.70 60.86% 0.43 

4 71.32% 2.46 71.32% 0.52 4 73.04% 1.15 73.04% 0.55 

5 83.41% 0.74 83.41% 0.61 5 82.99% 0.65 82.99% 0.62 

4 2 28.53% 3.84 28.53% 0.46 4 2 41.42% 1.51 41.42% 0.35 

3 36.98% 10.51 36.98% 0.47 3 49.04% 2.79 49.04% 0.40 

4 44.39% 9.20 44.39% 0.49 4 57.23% 2.52 57.23% 0.51 

5 51.73% 8.07 51.73% 0.63 5 64.70% 2.23 64.70% 0.62 

5 2 26.16% 3.82 26.16% 0.36 5 2 39.12% 1.17 39.12% 0.41 

3 33.62% 6.04 33.62% 0.47 3 46.92% 1.71 46.92% 0.42 

4 39.43% 6.08 39.43% 0.51 4 53.35% 2.15 53.35% 0.58 

5 45.01% 6.94 45.01% 0.65 5 59.52% 2.21 59.52% 0.67 

Average 55.32% 5.02 55.32% 0.49 Average 61.01% 2.17 61.01% 0.49 

Table 10 

Results for single allocation ( r | X p ) hub-medianoid problem with the TR data set ( r, p ≤ 5). 

α = 0 . 6 α = 0 . 8 α = 0 . 9 

p r CPLEX SA p r CPLEX SA p r CPLEX SA 

Follower’s 

capture CPU (s) 

Follower’s 

capture 

CPU 

(s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture CPU (s) 

2 2 51.07% 216.02 51.07% 7.15 2 2 50.52% 145.68 50.52% 8.45 2 2 49.27% 104.16 49.27% 8.66 

3 63.56% 647.37 63.56% 11.98 3 62.67% 228.64 62.67% 13.58 3 63.14% 135.11 63.14% 13.32 

4 73.89% 628.58 73.89% 14.34 4 75.74% 118.99 75.74% 15.44 4 73.41% 153.20 73.41% 16.01 

5 81.23% 683.59 81.23% 16.85 5 83.42% 35.17 83.42% 17.05 5 79.91% 49.15 79.91% 17.23 

3 2 39.37% 296.05 39.37% 8.47 3 2 54.38% 96.18 54.38% 9.00 3 2 59.09% 42.28 59.09% 8.54 

3 48.81% 568.05 48.81% 13.01 3 62.41% 186.37 62.41% 13.51 3 63.48% 62.51 63.48% 13.51 

4 58.63% 888.42 58.63% 14.64 4 68.43% 141.08 68.43% 15.90 4 68.88% 80.31 68.88% 15.09 

5 67.55% 757.60 67.55% 17.08 5 74.73% 129.01 74.73% 17.66 5 74.01% 73.23 74.01% 17.98 

4 2 31.57% 174.93 31.57% 9.00 4 2 34.20% 122.62 34.20% 8.49 4 2 35.33% 129.61 35.33% 8.94 

3 39.81% 530.30 39.81% 13.82 3 38.63% 385.19 38.63% 13.98 3 42.59% 147.03 42.59% 13.88 

4 46.78% 642.57 46.78% 15.02 4 46.61% 312.51 46.61% 16.15 4 49.21% 358.67 49.21% 15.67 

5 55.73% 374.78 55.73% 17.37 5 53.83% 197.53 53.83% 18.42 5 55.18% 298.61 55.18% 17.96 

5 2 25.03% 102.02 25.03% 7.18 5 2 29.90% 95.22 29.90% 8.07 5 2 32.15% 109.18 32.15% 8.00 

3 30.63% 319.49 30.63% 13.46 3 34.46% 24 8.4 9 34.46% 14.22 3 37.51% 128.94 37.51% 14.11 

4 37.91% 554.96 37.91% 15.39 4 38.87% 407.86 38.87% 15.94 4 41.95% 235.30 41.95% 15.91 

5 45.04% 357.46 45.04% 17.63 5 45.14% 416.34 45.14% 18.12 5 45.99% 381.36 45.99% 18.26 

Average 49.78% 483.89 49.78% 13.27 Average 53.37% 204.18 53.37% 13.99 Average 54.44% 155.54 54.44% 13.94 
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allocation model although the single allocation problem is more

difficult in nature. Furthermore, it is observed that when the leader

locates its hubs based on the p -hub median problem, the captured

flow by the follower is higher in case of the single allocation net-

work than that of the corresponding multiple allocation network. 

Corresponding results for the TR data set with p, r ≤ 5 and p,

r ≥ 6 are presented in Tables 10 and 11 , respectively. 

Observe from the Tables 10 and 11 that the proposed SA al-

gorithm for the single allocation ( r | X p ) hub-medianoid problem is

also able to obtain the optimal solutions for all the instances in

the TR data set. Note that the proposed SA solves the problem in-

stances for the TR data set in quite short CPU times. Furthermore,

it can be seen that the CPU time taken by CPLEX to solve the in-

stances with small values of p and r ( r, p ≤ 5) is, on average, longer

that the solution times for instances with larger p and r values

( r, p ≥ 6). Another interesting observation from these results is in

connection to the ability of the follower in capturing the market

share under the two allocation settings. Comparing the results for

the single allocation medianoid problem with those of the mul-

tiple allocation problem, one can observe that the follower’s cap-

tured flows in single allocation networks are generally higher than

the corresponding multiple allocation networks. In other words, for
he same values of the parameters p, r , and α, the follower is able

o gain a larger portion of the market in a single allocation net-

ork compared to a multiple allocation network when the leader

ocates its hubs based on the p -hub median problem for both the

AB and TR data sets. 

Before testing the proposed SA algorithm for solving the sin-

le allocation ( r | p ) hub-centroid problem on the main instances

rom the CAB and TR data sets, we evaluate its performance by

omparing to an adapted version of the enumeration algorithm

rom Mahmutogullari and Kara (2016) . We coded the “smart-

0%” version of the algorithm presented in Mahmutogullari and

ara (2016) and solved a number of small instances from the CAB

ata set. The experiments are conducted for first n nodes of the

AB data set with n ∈ {10, 15}, and p, r ∈ {2, 3}. Table 12 summa-

izes the results of the computational study for these instances

ithin a time limit of 10,800 s (3 h). 

Note from Table 12 that the enumeration algorithm solves the

nstances with n = 10 to optimality in short computational times.

owever, the algorithm solves the instances with n = 15 for only

p = r = 2 . The solution times for these instances are substantially

onger compared to the case of n = 10 . It can be seen that the

numeration algorithm cannot solve the problem for n = 15 with
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Table 11 

Results for single allocation ( r | X p ) hub-medianoid problem with the TR data set ( r, p ≥ 6). 

α = 0 . 6 α = 0 . 8 α = 0 . 9 

p r CPLEX SA p r CPLEX SA p r CPLEX SA 

Follower’s 

capture CPU (s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture CPU (s) 

Follower’s 

capture CPU (s) 

6 6 45.41% 260.13 45.41% 20.15 6 6 46.13% 471.67 46.13% 24.29 6 6 47.30% 301.83 47.30% 23.29 

8 56.52% 134.02 56.52% 28.41 8 57.67% 91.55 57.67% 28.02 8 57.18% 88.56 57.18% 28.35 

10 65.70% 50.68 65.70% 35.00 10 64.64% 57.96 64.64% 36.59 10 64.49% 66.17 64.49% 35.08 

12 72.32% 10.21 72.32% 38.56 12 70.65% 9.02 70.65% 44.01 12 69.90% 14.02 69.90% 46.31 

14 76.10% 7.19 76.10% 44.89 14 74.08% 8.24 74.08% 46.25 14 74.37% 7.05 74.37% 47.18 

8 6 35.61% 162.22 35.61% 21.03 8 6 37.51% 237.56 37.51% 26.04 8 6 42.38% 196.42 42.38% 22.15 

8 43.86% 121.89 43.86% 28.82 8 45.32% 144.19 45.32% 37.75 8 48.93% 123.28 48.93% 34.53 

10 51.07% 84.03 51.07% 34.96 10 52.15% 79.13 52.15% 39.98 10 55.64% 94.55 55.64% 36.95 

12 57.28% 37.09 57.28% 40.03 12 57.94% 29.04 57.94% 45.33 12 61.40% 30.73 61.40% 46.17 

14 63.24% 7.81 63.24% 45.31 14 62.08% 12.87 62.08% 54.20 14 66.04% 7.95 66.04% 49.83 

10 6 27.57% 155.79 27.57% 21.26 10 6 32.85% 88.97 32.85% 20.09 10 6 37.74% 86.03 37.74% 26.05 

8 33.84% 158.76 33.84% 30.11 8 40.38% 98.69 40.38% 31.00 8 43.36% 111.82 43.36% 32.55 

10 39.64% 64.13 39.64% 39.53 10 46.82% 45.58 46.82% 32.49 10 48.41% 75.64 48.41% 40.13 

12 45.03% 39.82 45.03% 42.80 12 51.77% 11.52 51.77% 39.47 12 52.74% 30.73 52.74% 46.89 

14 49.37% 13.77 49.37% 47.00 14 54.87% 9.09 54.87% 44.93 14 56.41% 11.46 56.41% 49.16 

12 6 20.63% 112.27 20.63% 23.49 12 6 25.03% 177.42 25.03% 21.13 12 6 28.74% 231.91 28.74% 25.74 

8 26.75% 64.53 26.75% 31.98 8 30.67% 60.04 30.67% 31.47 8 33.24% 136.65 33.24% 30.12 

10 31.95% 33.96 31.95% 34.81 10 34.67% 43.86 34.67% 40.89 10 37.50% 74.81 37.50% 36.18 

12 36.59% 15.95 36.59% 40.02 12 37.70% 30.75 37.70% 50.16 12 40.92% 46.94 40.92% 42.56 

14 39.73% 8.06 39.73% 42.19 14 40.02% 22.60 40.02% 51.83 14 44.07% 16.86 44.07% 46.98 

14 6 18.16% 39.65 18.16% 24.61 14 6 22.32% 60.74 22.32% 27.02 14 6 24.71% 104.80 24.71% 22.98 

8 22.82% 28.22 22.82% 35.38 8 27.35% 46.29 27.35% 33.17 8 29.13% 53.78 29.13% 29.01 

10 27.07% 12.62 27.07% 34.09 10 30.50% 27.30 30.50% 40.21 10 32.48% 33.16 32.48% 33.29 

12 30.02% 15.14 30.02% 44.14 12 32.93% 24.36 32.93% 48.85 12 35.42% 17.62 35.42% 42.34 

14 31.93% 8.36 31.93% 48.90 14 34.94% 15.24 34.94% 61.97 14 37.19% 12.96 37.19% 46.39 

Average 41.92% 65.82 41.92% 35.09 Average 44.43% 76.14 44.43% 38.28 Average 46.78% 79.03 46.78% 36.80 

Table 12 

Computational analysis results for single allocation ( r | p ) hub-centroid problem with small instances. 

α = 0 . 6 α = 0 . 8 

n p r Enumeration SA n p r Enumeration SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 

10 2 2 42.18% 0.79 42.18% 6.99 10 2 2 42.19% 0.65 42.19% 7.87 

3 60.08% 24.47 60.08% 9.96 3 57.10% 36.32 57.10% 10.08 

3 2 30.59% 6.17 30.59% 6.87 3 2 31.52% 7.37 31.52% 7.18 

3 43.84% 90.65 43.84% 10.15 3 43.33% 94.37 43.33% 9.70 

15 2 2 45.27% 2382.07 45.27% 57.87 15 2 2 42.58% 2491.82 42.58% 55.80 

3 time – 63.25% 75.97 3 time – 60.64% 77.87 

3 2 memory – 35.02% 51.77 3 2 memory – 36.53% 54.43 

3 memory – 52.71% 74.50 3 memory – 51.12% 75.06 

Average – – 46.62% 36.76 Average – – 45.63% 37.25 
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 or r larger than 2. In case p = 2 and r = 3 , the solution times ex-

eed the given time limit of 3 h. Moreover, for the instances with

p = 3 , the problem cannot be solved because of excessive memory

equirements. Therefore, even for very small instances, an optimal

olution of single allocation ( r | p ) hub-centroid problem cannot be

btained by an enumeration algorithm. This is because of the fact

hat the single allocation HLP is a more difficult problem than the

ultiple allocation HLP. In fact, as stated in Section 1 , given a fixed

et of locations for the hubs, the allocation part of the problem is

till NP-hard for a single allocation HLP. However, as can be seen

rom Table 12 , the proposed SA algorithm is able to solve all the

nstances in very short computational times. 

Results for solving the single allocation ( r | p ) hub-centroid prob-

em for the CAB and TR data sets are presented in Tables 13 and

4 , respectively. As it is only possible to solve this problem for very

mall instances using the enumeration algorithm, and also since

he problem has not been studied in the literature prior to this

ork, the results obtained by the proposed SA algorithm are not

ompared to any other results. It should be mentioned that, after

olving the bilevel problem using the proposed SA, the follower’s

single level) problem was solved by CPLEX based on the obtained
olution for the leader and it was observed that the SA has solved t  
he follower’s problem to optimality for all the instances. Never-

heless, the optimality of the leader’s solution obtained by the SA

s not proven. 

It can be seen from Tables 13 and 14 that, for the CAB data

et, the leader’s market share has increased considerably as he/she

ecided based on ( r | p ) hub-centroid problem rather than deciding

ased on the USA p HMP. In case of the TR data set, the increase in

he leader’s capture when he/she decides in anticipation of a com-

etition is also higher than the corresponding capture when this

ompetition is ignored by the leader. We should also note that, as

entioned above, the optimality of the leader’s solutions obtained

y the SA is not proven. Therefore, if the optimal solutions for the

eader are found, the corresponding capture values by the follower

an even be smaller. In other words, the leader’s gain as a result of

olving the bilevel model can even be larger. 

The results reported in Tables 13 and 14 indicate that solving

he single allocation ( r | p ) hub-centroid problem using the proposed

A takes longer CPU times than the time needed to solve the cor-

esponding problem under the multiple allocation setting. This is

ainly because of the fact that the single allocation HLPs are much

arder to solve than their multiple allocation counterparts as in

he former case the allocation of every node must be explicitly
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Table 13 

Results for single allocation ( r | p ) hub-centroid problem with the CAB data set. 

α = 0 . 6 α = 0 . 8 

p r SA p r SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) 

2 2 52.52% 192.51 2 2 50.31% 172.30 

3 65.77% 272.08 3 63.55% 276.78 

4 74.29% 325.90 4 69.38% 311.99 

5 81.82% 395.31 5 76.13% 379.45 

3 2 38.57% 189.75 3 2 42.24% 180.09 

3 50.03% 281.45 3 50.86% 235.51 

4 57.88% 319.92 4 58.32% 321.49 

5 64.17% 388.84 5 63.84% 367.35 

4 2 28.31% 196.18 4 2 36.40% 193.75 

3 36.98% 280.63 3 43.53% 279.80 

4 44.39% 334.22 4 4 9.4 8% 321.61 

5 51.20% 395.40 5 54.88% 395.97 

5 2 20.74% 201.43 5 2 30.53% 190.41 

3 29.73% 296.55 3 37.82% 294.98 

4 37.32% 328.52 4 43.42% 336.34 

5 44.18% 349.38 5 48.30% 401.05 

Average 48.62% 296.75 Average 51.19% 291.17 

Table 14 

Results for single allocation ( r | p ) hub-centroid problem with the TR data set. 

α = 0 . 6 α = 0 . 8 α = 0 . 9 

p r SA p r SA p r SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 

2 2 50.44% 1653.94 2 2 49.95% 1738.26 2 2 49.14% 1729.31 

3 63.56% 2274.58 3 60.12% 2136.18 3 55.20% 2198.02 

4 72.80% 2810.82 4 72.37% 2503.93 4 67.40% 2725.88 

5 80.26% 3094.02 5 74.09% 2937.15 5 72.92% 3191.11 

3 2 39.37% 1631.07 3 2 44.51% 1623.12 3 2 45.26% 1759.19 

3 48.81% 2254.56 3 53.31% 2258.39 3 53.24% 2199.02 

4 58.63% 2815.18 4 58.14% 2789.45 4 57.05% 2784.51 

5 67.55% 3274.46 5 69.57% 3290.01 5 63.87% 3244.91 

4 2 31.57% 1793.85 4 2 34.20% 1793.85 4 2 35.05% 1805.63 

3 39.81% 2425.31 3 38.63% 2425.31 3 42.59% 2319.55 

4 46.78% 2988.74 4 46.61% 2988.74 4 49.21% 2875.13 

5 55.73% 3701.42 5 53.83% 3701.42 5 53.88% 3701.02 

5 2 25.03% 1783.08 5 2 29.90% 1697.22 5 2 32.15% 1732.10 

3 30.63% 2409.94 3 34.46% 2476.69 3 37.06% 2381.47 

4 37.91% 2941.65 4 38.87% 2852.15 4 41.95% 2910.18 

5 45.04% 3795.74 5 45.14% 3895.00 5 45.99% 4008.07 

Average 49.62% 2603.02 Average 50.23% 2569.17 Average 50.12% 2597.81 
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determined by the SA algorithm while in the latter case the al-

locations are determined by solving simple shortest path problems

once the location of hubs are fixed by the algorithm. However, it

is obvious that even for the single allocation network, the time it

takes to obtain the final solution by the SA algorithm is not very

much as spending an average of less than 2600 s of CPU for solv-

ing a strategic planning problem such as the competitive HLP on a

large sized data set of TR is quite reasonable. 

5.3. Optimal hub locations on map 

In this part of our computational studies we illustrate how the

decisions regarding the location of hubs alter for the leader and

follower as the leader makes his/her decisions with and without

being aware of the follower’s upcoming entrance to the market.

The analysis is conducted for both single and multiple allocation

networks for the TR data set. Fig. 4 depicts the optimal locations

of hubs opened by the leader and the follower in a multiple allo-

cation network with p = 3, r = 3, and α= 0.9 on the map of Turkey.

The 22 candidate cities for locating the hub facilities are shown as

red circles in these maps. In part (a) it is assumed that the leader

ignores the competition and locates its hubs based on UMA p HMP,
hereas part (b) depicts the location of hubs in case the leader lo-

ates its hubs based on the solution of ( r | p ) hub-centroid problem.

bserve that the optimal set of hub locations when the competi-

ion is ignored by the leader are different from the optimal set of

ubs when the competition is incorporated into the location prob-

em by the leader. 

Fig. 5 depicts the corresponding optimal hub locations of the

eader and the follower in a single allocation network. 

It can be seen from Fig. 5 that in case of the single allocation

etwork (as in the multiple allocation network), the hubs opened

y the leader and the follower are affected by either considering

he competition in the decision making or not. Another interesting

oint is that, the two nodes 6 (Ankara) and 34 (Istanbul) are se-

ected as hub facilities by both the leader and the follower in the

olutions depicted in Fig. 5 (a) and (b), respectively. 

It is shown from the above maps that the optimal set of hubs

pened by the leader and the follower are different for single and

ultiple allocation networks. This can be regarded as a reason why

oth the allocation protocols need to be considered in studying the

ompetitive hub networks. Moreover, it can be seen that the hubs

re generally located in the western part of the country as the can-

idate cities in the western part have larger volumes of incom-
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Fig. 4. Optimal hub locations for leader and follower with p = r = 3 and α = 0 . 9 on multiple allocation network. 
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ng/outgoing traffic compared to the eastern cities. Note that the

ode 6 (Ankara) is selected as hub in all of the four maps illus-

rated in Figs. 4 and 5 . This can be explained by central geographic

ocation of this city within the country and also by high volume

f incoming and outgoing flows to and from Ankara as the capital

nd the second largest city in the country. Furthermore, it can be

een that the two nodes 34 (Istanbul) and 38 (Kayseri) are selected

s hubs in three of the four depicted solutions. This is mainly be-

ause Istanbul (as the largest city in the country) is the highest

ontributor to the total traffic volume and Kayseri has an attrac-

ive geographic location at the center of the country acting as a

onnector between the western and the eastern cities. 

.4. Value of competitive solution 

Results presented in previous sub-sections reveal that when

he leader acts in anticipation of follower’s entrance and config-

res its networks based on the solution of the ( r | p ) hub-centroid

roblem, the value of follower’s capture is lower than that of the

ase where the leader ignores the competition and acts based
n UMA p HMP/USA p HMP. In other words, the leader increases its

arket share by locating its hubs based on the solution of the

ilevel (centroid) models. Increased market share creates value for

he leader and we call this value as the value of competitive solu-

ion (VCS). We formally define the VCS as the extra percent mar-

et share gained by the leader when the competition is taken

nto account in his/her decisions compared to the case in which

he leader ignores the competition and makes its decisions solely

ased on the cost criterion. The VCS values for different instances

f the CAB data set with multiple and single allocation networks

re presented in Table 15 . 

Observe from the Table 15 that for the CAB data set, the VCS

alues are positive for most of the instances. It means that for most

f the cases, acting based on the solution of the centroid prob-

em creates strictly positive value for the leader. Note also that the

verage VCS values are significantly larger for single allocation net-

ork compared to the multiple allocation network. In other words,

or the CAB data set, the benefit of using the competitive model

or the leader is higher when the underlying network is a single

llocation network. However, even for multiple allocation case, the
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Fig. 5. Optimal hub locations for leader and follower with p = r = 3 and α = 0 . 9 on single allocation network. 
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VCS is a significant value around 5% as preventing an extra 5% of

market share to be captured by the follower is definitely of great

importance for the leader. The VCS values for different instances of

the TR data set with multiple and single allocation networks are

reported in Table 16 . 

It can be seen that the VCS for the TR data set is in gen-

eral less than that of the CAB data set. One reason for this ob-

servation might be the fact that in the TR data set, the number

of candidate nodes for locating hub facilities is limited (| H | = 22).

This limited set of candidate hub nodes make the action space

of the decision makers limited, which in turn results in less

difference between the set of leader’s hubs when he/she de-

cides based on either of p -hub median problem or ( r | p ) hub-

centroid problem. As a result, the VCS values are rather small

in case of the TR data set as compared to the case of the CAB

data set. However, in both the data sets, it can be seen that

the VCS generally gets larger as the value of the discount factor

increases. 
w  

o  
.5. Considering more general capture mechanisms 

So far, in this paper, we have assumed that the customers be-

ave based on a all-or-nothing (or binary) mechanism towards se-

ecting from among competing firms in the market. In other words,

f a firm (e.g., the follower) offers a service with a slightly lower

ost than that of the other firm (i.e., the leader) for a specific

/D pair, then all the demand for that O/D pair is assumed to

ully patronize the former. This assumption may seem unrealistic

o some extent as deciding on the service providers is normally

ased on other factors such as brand loyalty, reputation, etc. There-

ore, a more realistic assumption is that the follower can capture

nly a percentage of the traffic volume if it’s cost is not signifi-

antly less than that of the leader. This assumption has been used

n some competitive HLP works (see Marianov et al., 1999; Sasaki

t al., 2014; Wagner, 2008 , among others). To this end, we need

o slightly change the definition of the covering parameter, a km 

i j 
,

hich previously was a binary parameter as defined in (4) . Instead

f this binary parameter, we use a five-level covering parameter
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Table 15 

Value of competitive solution with the CAB data set. 

α = 0 . 6 α = 0 . 8 

p r VCS p r VCS 

Mult. Alloc. Sing. Alloc. Mult. Alloc. Sing. Alloc. 

2 2 19.48% 9.59% 2 2 22.16% 10.94% 

3 13.89% 12.69% 3 14.60% 6.86% 

4 12.33% 14.61% 4 9.95% 11.47% 

5 8.86% 11.67% 5 8.41% 13.11% 

3 2 0.10% 3.99% 3 2 0.00% 4.03% 

3 0.00% 8.97% 3 0.05% 10.00% 

4 0.00% 13.44% 4 0.00% 14.72% 

5 0.00% 19.24% 5 0.00% 19.15% 

4 2 0.98% 0.22% 4 2 0.00% 5.02% 

3 0.00% 0.00% 3 1.99% 5.51% 

4 0.00% 0.00% 4 3.71% 7.75% 

5 0.00% 0.53% 5 3.36% 9.82% 

5 2 4.35% 5.42% 5 2 2.90% 8.59% 

3 4.41% 3.89% 3 5.89% 9.10% 

4 3.14% 2.11% 4 5.15% 9.93% 

5 2.75% 0.83% 5 5.77% 11.22% 

Average 4.39% 6.70% Average 5.25% 9.82% 
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s  
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o  
hat allows each firm to capture 0%, 25%, 50%, 75% or 100% of the

emand volume on each O/D route based on the cost of the pro-

ided service. Hence, for all i, j ∈ N and k, m ∈ H , we define the five-

evel covering parameter as: 

 

km 

i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 , if c ik + αc km 

+ c m j ≤ 7 
10 

βi j or (c ik + αc

0 . 75 , if 7 
10 

βi j < c ik + αc km 

+ c m j ≤ 9 
10 

βi j 

0 . 5 , if 9 
10 

βi j < c ik + αc km 

+ c m j < 

10 
9 
βi j or (c ik + αc km 

0 . 25 , if 10 
9 
βi j ≤ c ik + αc km 

+ c m j < 

10 
7 
βi j 

0 , if 10 
7 
βi j ≤ c ik + αc km 

+ c m j or (c ik + αc

The above parameter is defined similar to the definition used

n Marianov et al. (1999) and Wagner (2008) . To show the effect

f using the more general five-level capture mechanism on the so-

utions, we replaced the covering parameter previously defined as

4) by the parameter defined as (32) in our proposed mathematical

ormulations and solution algorithms. Table 17 shows the results

btained by solving the multiple allocation problem under the gen-

ral capture mechanism with the CAB data set. 

Note from Table 17 that the proposed SA algorithm is able to

olve the medianoid problem to optimality in all the instances. Fur-

hermore, the results presented in this table indicate that using the
Table 16 

Value of competitive solution with the TR data set. 

α = 0 . 6 α = 0 . 8 

p r VCS p r VCS 

Mult. Alloc. Sing. Alloc. Mult. Alloc

2 2 1.16% 0.63% 2 2 3.11% 

3 4.08% 0.00% 3 2.43% 

4 5.16% 1.09% 4 2.44% 

5 5.52% 0.97% 5 6.91% 

3 2 0.00% 0.00% 3 2 0.00% 

3 0.00% 0.00% 3 0.00% 

4 0.22% 0.00% 4 0.00% 

5 0.83% 0.00% 5 0.00% 

4 2 2.07% 0.00% 4 2 0.00% 

3 3.12% 0.00% 3 0.00% 

4 2.64% 0.00% 4 0.00% 

5 3.80% 0.00% 5 0.00% 

5 2 0.72% 0.00% 5 2 0.90% 

3 0.27% 0.00% 3 2.12% 

4 1.63% 0.00% 4 3.41% 

5 2.15% 0.00% 5 2.77% 

Average 2.08% 0.17% Average 1.50% 
c m j = 0 and βi j > 0) 

j = βi j = 0) 

c m j > 0 and βi j = 0) 

(32) 

eneral capture mechanism produces solutions for which the mar-

et shares for the leader and the follower are more balanced com-

ared to the case of binary capture mechanism. For example, the

ollower’s capture for the medianoid problem with α = 0.6 has in-

reased by 4.74% after using the general capture mechanism. The

orresponding increase for α = 0.8 is 4.87%. In case of the centroid

roblem, the corresponding increases in the follower’s capture are

.26% and 7.37% for α = 0.6 and 0.8, respectively. Another point

f interest is that when the number of hubs to be located by the

ollower is the same as the number of leader’s hubs ( r = p), the

ollower can capture at least 50% of the market as it can locate its

ubs exactly on the same cities of the leader’s hubs. Based on the

bove discussion, it is expected that in case of the five-level cap-

ure mechanism, the value of competitive solution (VCS) be rela-

ively small compared to the case of the binary capture mechanism

hich can be seen in Table 17 . 

The results for the single allocation problem under the general

apture mechanism with the CAB data set are given in Table 18 . 

It can be seen from Table 18 that the results obtained for the

ingle allocation problem are more or less similar to those of the

ultiple allocation problem in that the market is divided in a more

alanced fashion between the two firms compared to the case of

he binary capture mechanism and the VCS values are smaller than

heir counterparts for the all-or-nothing mechanism. For instance,

he follower’s capture for the medianoid problem with α = 0.6 and

.8 has decreased respectively by 2.13% and 7.55% after using the

eneral capture mechanism. In case of the centroid problem, the

ollower’s capture has increased by 1.82% for α = 0.6, whereas it

as decreased by 0.46% for α = 0.8. 

As the optimality of the leader’s solutions obtained by the SA

s not proven in the results reported in Tables 17 and 18 , the real

alues of the VCS can be larger than the reported values for the

ptimal leader’s solutions. In other words, the leader’s gain as a
α = 0 . 9 

p r VCS 

. Sing. Alloc. Mult. Alloc. Sing. Alloc. 

0.57% 2 2 6.54% 0.13% 

2.55% 3 8.35% 7.94% 

3.37% 4 9.54% 6.01% 

9.33% 5 9.82% 6.99% 

9.87% 3 2 10.53% 13.83% 

9.10% 3 12.81% 10.24% 

10.29% 4 13.21% 11.83% 

5.16% 5 14.20% 10.14% 

0.00% 4 2 0.00% 0.28% 

0.00% 3 1.00% 0.00% 

0.00% 4 0.35% 0.00% 

0.00% 5 0.57% 1.30% 

0.00% 5 2 2.20% 0.00% 

0.00% 3 1.07% 0.45% 

0.00% 4 1.27% 0.00% 

0.00% 5 2.13% 0.00% 

3.14% Average 5.84% 4.32% 
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Table 17 

Results for the general capture mechanism with the CAB data set (multiple allocation). 

α = 0 . 6 α = 0 . 8 

p r Medianoid Centroid VCS p r Medianoid Centroid VCS 

CPLEX SA SA CPLEX SA SA 

Follower’s capture Follower’s capture Follower’s capture Follower’s capture Follower’s capture Follower’s capture 

2 2 59.48% 59.48% 50.00% 9.48% 2 2 58.54% 58.54% 50.00% 8.54% 

3 68.82% 68.82% 60.04% 8.78% 3 65.38% 65.38% 57.16% 8.22% 

4 74.65% 74.65% 67.10% 7.55% 4 69.87% 69.87% 62.74% 7.13% 

5 79.36% 79.36% 72.25% 7.11% 5 73.32% 73.32% 66.43% 6.89% 

3 2 40.34% 40.34% 39.95% 0.39% 3 2 43.31% 43.31% 42.94% 0.37% 

3 50.00% 50.00% 50.00% 0.00% 3 50.06% 50.06% 50.00% 0.06% 

4 57.37% 57.37% 57.37% 0.00% 4 55.11% 55.11% 55.11% 0.00% 

5 62.78% 62.78% 62.78% 0.00% 5 59.33% 59.33% 59.33% 0.00% 

4 2 33.84% 33.84% 32.89% 0.95% 4 2 38.31% 38.31% 37.23% 1.08% 

3 43.50% 43.50% 42.62% 0.88% 3 45.06% 45.06% 44.88% 0.18% 

4 50.59% 50.59% 50.00% 0.59% 4 50.12% 50.12% 50.00% 0.12% 

5 56.50% 56.50% 55.82% 0.68% 5 54.41% 54.41% 54.34% 0.07% 

5 2 30.54% 30.54% 27.76% 2.78% 5 2 37.28% 37.28% 33.55% 3.73% 

3 39.23% 39.23% 37.21% 2.02% 3 43.53% 43.53% 40.66% 2.87% 

4 46.52% 46.52% 44.17% 2.35% 4 48.25% 48.25% 45.65% 2.60% 

5 52.33% 52.33% 50.00% 2.33% 5 51.96% 51.96% 50.00% 1.96% 

Average 52.86% 52.86% 49.99% 2.87% Average 52.74% 52.74% 50.00% 2.74% 

Table 18 

Results for the general capture mechanism with the CAB data set (single allocation). 

α = 0 . 6 α = 0 . 8 

p r Medianoid Centroid VCS p r Medianoid Centroid VCS 

CPLEX SA SA CPLEX SA SA 

Follower’s capture Follower’s capture Follower’s capture Follower’s capture Follower’s capture Follower’s capture 

2 2 57.70% 57.70% 50.00% 7.70% 2 2 57.05% 57.05% 50.00% 7.05% 

3 65.76% 65.76% 58.85% 6.91% 3 61.74% 61.74% 56.26% 5.48% 

4 72.44% 72.44% 66.26% 6.18% 4 65.64% 65.64% 61.03% 4.61% 

5 77.91% 77.91% 71.10% 6.81% 5 69.87% 69.87% 64.86% 5.01% 

3 2 44.10% 44.10% 41.14% 2.96% 3 2 46.89% 46.89% 45.18% 1.71% 

3 51.75% 51.75% 50.66% 1.09% 3 52.08% 52.08% 51.12% 0.96% 

4 58.77% 58.77% 57.99% 0.78% 4 56.97% 56.97% 56.49% 0.48% 

5 64.96% 64.96% 63.33% 1.63% 5 61.18% 61.18% 59.53% 1.65% 

4 2 35.80% 35.80% 34.88% 0.92% 4 2 41.64% 41.64% 39.35% 2.29% 

3 43.72% 43.72% 43.48% 0.24% 3 47.95% 47.95% 46.48% 1.47% 

4 50.76% 50.76% 50.75% 0.01% 4 51.92% 51.92% 51.05% 0.87% 

5 56.28% 56.28% 56.28% 0.00% 5 55.88% 55.88% 54.98% 0.90% 

5 2 32.52% 32.52% 29.95% 2.57% 5 2 39.18% 39.18% 36.11% 3.07% 

3 39.89% 39.89% 37.05% 2.84% 3 45.45% 45.45% 41.72% 3.73% 

4 46.43% 46.43% 44.97% 1.46% 4 49.22% 49.22% 46.78% 2.44% 

5 52.26% 52.26% 50.39% 1.87% 5 52.67% 52.67% 50.67% 2.00% 

Average 53.19% 53.19% 50.44% 2.75% Average 53.46% 53.46% 50.73% 2.73% 
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result of solving the bilevel model to optimality can be larger than

the reported values. 

6. Conclusions 

In this research the competitive single and multiple allocation

HLPs in a duopoly market are considered. Two firms sequentially

decide on the location of their hubs aiming at maximizing their

own market shares. It is assumed that the customers choose one

firm which offers a service with lower cost. The follower’s prob-

lem can be viewed as a maximal covering problem after the leader

makes his/her decision. In this case, the follower aims at locating

its hubs in such a way that the total captured flow (market share)

is maximized. Therefore, from the leader’s point of view it is im-

portant to anticipate the follower’s subsequent action and incorpo-

rate it into his/her problem as a bilevel optimization program. To

this end, we considered two problems for the leader and the fol-

lower: ( r | X p ) hub-medianoid and ( r | p ) hub-centroid problems, re-

spectively, both in single and multiple allocation networks. New

bilevel MIP formulations are presented for these problems and ef-
cient simulated annealing (SA) based heuristics are proposed for

olving them. 

Extensive computational experiments based on two data sets

f the CAB and TR are conducted to analyze different properties

f these problems and to evaluate the performance of the pro-

osed SA algorithms as well as the MIP models. For all the in-

tances with known optimal solutions from the two data sets, the

roposed SA algorithms obtained the optimal solutions. However,

or the bilevel single allocation problem and larger instances of

he bilevel multiple allocation problem (where the optimal solu-

ions are not known), the optimality of the solutions obtained by

he SA is not proven. Furthermore, the computational results show

he efficiency of the proposed algorithms in terms of CPU times.

omputational experiments reveal that acting in anticipation of a

ossible competition creates value for the leader which we call it

he value of competitive solution (VCS). Hence, solving ( r | p ) hub-

entroid problem is of great importance for the leader even if it

equires higher amount of CPU times. We also extended the prob-

em to accommodate a more general five-level capture mechanism

n addition to the all-or-nothing (binary) mechanism. 
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Further research may focus on developing exact methods such

s branch-and-price or decomposition algorithms as well as dif-

erent heuristics that can solve larger instances of the problems

o optimality even faster. Moreover, instead of using classical

LP assumptions such as complete hub-level network or flow-

ndependent economies of scale on only inter-hub links, more

ealistic assumptions like incomplete hub-level network or flow-

ependent scale economies on all links can be used to better re-

ect the real world situations. 
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ppendix A 

This appendix provides linear MIP formulations for the bilevel

rogramming problems studied in this paper. The proposed bilevel

odels in Section 3 are linearized using a minimax approach. To

his end, we use the notations introduced in Section 3 , as well as

ome new notations which are introduced here. We first consider

he case of multiple allocation network and denote the cost of ser-

ice provided by the leader for pair i, j ∈ N by β ij as a non-negative

ecision variable. Moreover, let the parameter γ S 
i j 

denote the cost

f service provided by the follower for pair i, j ∈ N if he/she chooses

 ⊆H as the hub set. Furthermore, we define the binary decision

ariable Z S 
i j 

∈ { 0 , 1 } to indicate whether the flow from node i ∈ N to

ode j ∈ N is captured by the follower when he/she chooses S ⊆H as

ts hub set (by taking value of 1), or not (by taking value of 0). 

The following linear MIP model solves the multiple allocation

 r | p ) hub-centroid problem with an exponential number of deci-

ion variables and constraints: 

in θ (A.1) 

.t.: θ ≥
∑ 

i ∈ N 

∑ 

j∈ N 
w i j Z 

S 
i j ∀ S ⊆ H, | S| = r (A.2) 

(12) − (14) (A.3) 

i j ≥
∑ 

k ∈ H 

∑ 

m ∈ H 
(c ik + αc km 

+ c m j ) X i jkm 

∀ i, j ∈ N (A.4) 

i j − γ S 
i j ≤ MZ S i j ∀ i, j ∈ N, S ⊆ H, | S| = r (A.5) 

, X i jkm 

, βi j ≥ 0 ∀ i, j ∈ N, k, m ∈ H (A.6) 

 

S 
i j , Y k ∈ { 0 , 1 } ∀ i, j ∈ N, k ∈ H, S ⊆ H, | S| = r (A.7) 

he objective function (A.1) together with constraints (A.2) min-

mize the highest possible captured flow value by the follower in

he remaining scenario. Constraints (A.4) calculate the service costs

f the leader. Constraints (A.5) , in which M is a sufficiently large

umber, determine whether a flow is captured by the follower us-

ng a hub set S ⊆H of cardinality r or not. More specifically, if the

ervice cost of the follower for the flow w ij is smaller than the cor-

esponding cost of the leader, Z S 
i j 

has to take value of 1. Otherwise,

he constraint becomes redundant. 

As in the case of multiple allocation models, we can convert

he bilevel model for the single allocation problem to a linear MIP
odel using the minimax approach. To this end, let the param-

ter γ
A 

f 
S 

i j 
denote the cost of the service provided by the follower

or pair i, j ∈ N if he/she chooses S ⊆ H, | S| = r as the hub set and

 

f 
S 

∈ R r (N × H) as the corresponding assignment function. Also, let

he binary variable Z 
A 

f 
S 

i j 
∈ { 0 , 1 } indicate whether the flow from

ode i ∈ N to node j ∈ N is captured by the follower for the hub set

 ⊆H and the assignment function A 

f 
S 

. Furthermore, we define the

uxiliary binary variable V ijkm 

∈ {0, 1} to take value of 1 if the nodes

 and j are respectively assigned to the hubs k and m and taking 0,

therwise. The single allocation ( r | p ) hub-centroid problem can be

ormulated as a single level linear MIP model with an exponential

umber of decision variables and constraints as follows: 

in θ (A.8) 

.t.: θ ≥
∑ 

i ∈ N 

∑ 

j∈ N 
w i j Z 

A f 
S 

i j 
∀ A 

f 
S 

∈ R r (N × H) , S ⊆ H, | S| = r (A.9) 

(28) − (30) (A.10) 

i j ≥
∑ 

k ∈ H 

∑ 

m ∈ H 
(c ik + αc km 

+ c m j ) V i jkm 

∀ i, j ∈ N (A.11) 

i j − γ
A f 

S 

i j 
≤ MZ 

A f 
S 

i j 
∀ i, j ∈ N, A 

f 
S 

∈ R r (N × H) , S ⊆ H, | S| = r 

(A.12) 

 i jkm 

≥ Y ik + Y jm 

− 1 ∀ i, j ∈ N, k, m ∈ H (A.13) 

, βi j ≥ 0 ∀ i, j ∈ N, k, m ∈ H (A.14) 

 

A f 
S 

i j 
, Y ik , V i jkm 

∈ { 0 , 1 } 
 i, j ∈ N, k, m ∈ H, A 

f 
S 

∈ R r (N × H) , S ⊆ H, | S| = r (A.15) 

onstraints (A.11) calculate the service costs of the leader. Con-

traints (A.12) determine whether a flow is captured by the fol-

ower (when he/she uses the hub set S ⊆H and the assignment

unction A 

f 
S 

), or not. Constraints (A.13) enforce the variable V ijkm 

o be 1, if both the variables Y ik and Y jm 

take value of 1. 
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