
Progressive Refinement Radiosity on Ring-Connected Multicomputers *

Tolga K. Capin, Cevdet Aykanat, Biilent Ozgiic
Depar tment of Computer Engineering and Information Science

Bilkent University
06533 Bilkent, Ankara, Turkey

Abstract
The progressive refinement method is investigated for paral-
lelization on ring-connected multicomputers. A synchronous
scheme, based on static task assignment, is proposed, in
order to achieve better coherence during the parallel light
distribution computations. An efficient global circulation
scheme is proposed for the parallel light distribution compu-
tations, which reduces the total volume of concurrent com-
munication by an asymptotical factor. The proposed par-
allel algorithm is implemented on a ring-embedded Intel's
iPSC/2 hypercube multicomputer. Load balance quality of
the proposed static assignment schemes are evaluated ex-
perimentally. The effect of coherence in the parallel light
distribution computations on the shooting patch selection
sequence is also investigated.

Keywords : Progressive refinement radiosity, parallel com-
puting, multicomputers, ring interconnection topology.

1 Introduction
Radiosity [7] is an increasingly popular method for gener-
ating realistic images of nonexisting environments. The re-
cently proposed progressive refinement vadiosity [4] allows
to view the approximated partial radiosity solutions initially
and approaches to the correct solution iteratively. However,
the operations still require excessive computational power
and limit the usage of the method for complex scenes with
a large number of patches. Therefore, one can exploit par-
allelism in progressive refinement radiosity to achieve near-
interactive image generation speeds.

In this work, we investigate the parallelization of the pro-
gressive refinement method for ring-connected multicomput-
ers. In a multicomputer, processors have only local mem-
ories and there is no shared memory. In these architec-
tures, synchronization and coordination among processors
are achieved through explicit message passing. Multicom-
puters have been popular due to their nice scalability fea-
ture. Various interconnection topologies have been proposed
and implemented for connecting the processors of multicom-
puters. Among them, ring topology is the simplest topology
which requires only two links per processor. Ring topology
can easily be embedded onto almost all other interconnec-
tion topologies (e.g. hypercube, 2D mesh, 3D mesh, etc).
Hence, parallel algorithms developed for ring topologies can
easily be adapted to other topologies.

The parallel progressive refinement implementations
proposed in the literature [I, 2, 6 , 8, 91 utilize asynchronous

*This work is partially supported by Intel Supercomputer Systems
Division grant no. SSD100791-2 and Turkish Scientific and Technical
Research Council (TUBITAK) grant no. EEEAG-5

0-81 86-4920-8/93 $3.00 ' 1993 IEEE

schemes based on demand-driven task assignment. The par-
allel progressive refinement algorithm proposed in this work
utilizes a synchronous scheme based on static task assign-
ment. The synchronous scheme is proposed in order to
achieve better coherence during parallel light distribution
computations. The proposed algorithm is implemented on a
ring-embedded Intel iPSC/2 hypercube multicomputer. The
organization of the paper is as follows. Section 2 summa-
rizes the progressive refinement radiosity. Section 3 dicusses
the parallelization of progressive refinement method. Fi-
nally, experimental results are presented and discussed in
Section 4.

2 Progressive Refinement Radiosity
The progressive refinement radiosity gives an initial approx-
imation to the illumination of the environment and a p
proaches to the correct light distribution iteratively. Each
iteration can be considered as a four phase process:

1. Shooting patch selection,

2. Production of hemicube item-buffers,

3. Conversion of item-buffers to a form-factor vector,

4. Light distribution using the form-factor vector.

In the first phase, the patch with maximum energy is
selected for faster convergence. In the second phase, a
hemicube [3] is placed onto this patch and all other patches
are projected onto the item-buffers of the hemicube using the
z-buffer for hidden patch removal. The patches are passed
through a projection pipeline consisting of: visibility test,
clipping, perspective projection and scan-conversion. In the
third phase, the form-factor vector corresponding to the
selected shooting patch is constructed from the hemicube
item-buffers by scanning the hemicube and adding the delta
form-factors of the pixels that belong to the same patch.

In the last phase, light energy of the shooting patch is
distributed to the environment, by adding the light contri-
butions from the shooting patch to the other patches. Distri-
bution of light energy necessitates the use of the form-factor
vector computed in Phase 3. The contribution from the
shooting patch i to patch j is given by [4] :

In Eq.(l) , AB,(r,g,b) denotes the delta radiosity of
patch i, T , (T , g, b) is the reflectivity value of the patch j for
3 color-bands, A, denotes the area of the patch j , F,, de-
notes the jth element of the form-factor vector constructed
in Ph;tse 3 for the shooting patch i. During the execution

71

of the algorithm, a patch may be selected as the shooting
patch more than once, therefore a delta radiosity value (AB)
is stored in addition to the radiosity (B) of the patch, which
gives the difference between the current energy and the last
estimate distributed from the patch (i.e. the amount of
light the patch has gathered since the last shooting from the
patch). This iterative process is halted when AB,A, values
for all the patches reduce below a user-specified tolerance
value.

3 Parallelization
The ring topology is selected because of its simplicity requir-
ing only two links per processor and because the ring can be
embeddedonto a wide range of popular topologies such as the
hypercube, 2D mesh, 3D mesh. The processors in the ring
perform the radiosity computations and send the computed
radiosity values of the patches to the host, and the host runs
the rendering program using these values. In this way, the
processors can compute further iterations in parallel with
display of previous iteration results on the host.

As is mentioned earlier, progressive refinement radiosity
is an iterative algorithm. Hence, computations involved in
an individual iteration should be investigated for paralleliza-
tion while considering a proper interface between succes-
sive iterations. In this algorithm, strong computational and
da ta dependencies exist between successive phases such that
each phase requires the computational results of the previ-
ous phase in an iteration. Hence, parallelism a t each phase
should be investigated individually while considering the de-
pendencies between successive phases. Furthermore, strong
computational and da ta dependencies also exist within each
computational phase. These intra-phase dependencies ne-
cessitate global interaction which may result in global in-
terprocessor communication a t each phase on a distributed-
memory architecture. Considering the crucial granularity is-
sue in parallel algorithm development for coarse-grain mul-
ticomputers we have investigated a parallelization scheme
which slightly modifies the original sequential algorithm. In
the modified algorithm, instead of choosing a single patch, P
shooting patches are selected at a time on a multicomputer
with P processors. The modified algorithm is still an itera-
tive algorithm where each iteration involves the following:

1. Selection of P shooting patches,

2. Production of P hemicube item-buffers,

3. Conversion of P hemicubes to P form-factor vectors,

4. Distribution of light energy from P shooting patches
using these P form-factor vectors.

Note that , the structure of the modified algorithin is very
similar to that of the original algorithm. However, the com-
putations involved in P successive it,erations of the original
algorithm are performed simultaneously in a single iteration
of the modified algorithm. This modification increases the
granularity of the computational phases since the amount of
computation involved in each phase is duplicated P times.
Furthermore, it simplifies the parallelization since produc-
tion of P hemicube buffers (Phase 2) and production of
P form-factor vectors (Phase 3) can be performed simul-
taneously and independently. Hence, processors can concur-
rently construct P form-factor vectors corresponding to P
different shooting patches without any communication.

The modified algorithm is an approximation to the orig-
inal progressive refinement method. The coherence of the

shooting patch selection sequence is disturbed in the modi-
fied algorithm. The selection of P shooting patches at a time
ignores the effect of the mutual light distributions between
these patches and the light distributions of these patches
onto other patches during this selection. Thus, the sequence
of shooting patches selected in the modified algorithm may
deviate from the sequence to be selected in the original d-
gorithm. This deviation may result in a greater number of
shooting patch selections for convergence. Hence, the mod-
ification introduced for the sake of parallelization may de-
grade the performance of the original algorithm. This perfor-
mance degradation is likely to increase with the increasing
number of processors. Section 4 presents an experimental
investigation of this issue.

There are various parallel radiosity implementations in
the recent literature [I , 2, 5, 6, 8, 9, lo]. The algorithmic
modification mentioned here is similar to the parallel im-
plementations discussed in [2, 6, 91. However, these paral-
lel implementations utilize an asynchronous scheme. These
asynchronous schemes have the advantage of minimizing the
processors’ idle time since form-factor and light distribution
computations proceed concurrently in an asynchronous man-
ner. However in these schemes a processor, upon complet-
ing a form-factor vector computation for a shooting patch,
selects a new shooting patch for a new form-factor computa-
tion. Hence, this shooting patch selection by an individual
processor does not consider the light contributions of the
form-factor computations concurrently performed by other
processors. In this work, we propose a synchronous scheme
which is expected to achieve better coherence in the dis-
tributed shooting patch selections. The parallelization of the
proposed scheme is discussed in the following subsections.

3.1
There are two alternative schemes for performing this phase:
local shooting patch selection and global shooting patch se-
lection. In the local selection scheme, each processor se-
lects the patch with maximum AB,A, value among its lo-
cal patches. In the global selection scheme, each processor
selects the first P patches with the greatest AB,A, value
among its local patches and puts these patches (together
with their geometry and color data) into a local buffer in de-
creasing order according to their AB,Ai values. Then, these
buffers of sizes P are circulated in P concurrent communica-
tion steps as follows. In each concurrent step, each processor
merges its sorted buffer of size P with the sorted buffer re-
ceived of size P , discarding P patches with smaller AB,A,
values. Then, each processor sends the resulting buffer to
the next processor in the ring. Note that , each processor
keeps its original local buffer intact during the circulation.
At the end of P communication steps, each processor holds
a copy of the same sequence of P patches with maximum
AB,A, values in decreasing order. Then, each processor k
selects the k f h patch in the local sorted patch list.

The number of shooting patch selections required for
convergence of the parallel algorithm to the user-specified
tolerance depends on the shooting patch selection scheme.
Global scheme is expected to converge more quickly be-
cause the patches with globally maximum energy are se-
lected. However, in the local scheme, the shooting patches
that are selected may deviate largely, if maximum energy
holding patches are gathered in some of the processors, while
the other processors hold less energy holding patches. Hence,
the global scheme is expected to achieve better coherence in
distributed shooting patch selection. However, the global
scheme requires circulation and comparison of P buffers,

Phase 1: Shooting Patch Selection

72

hence necessitating global communication overhead.

3.2 Phase 2: Hemicube Production
In this phase, each processor needs to maintain a hemicube
for constructing the form-factor vector corresponding to its
local shooting patch. Furthermore, each processor needs to
access the whole scene description in order to fill its local
hemicube item-buffers corresponding to its local shooting
patch. One approach is to replicate the whole patch geome-
try da ta in all the processors, hence avoiding interprocessor
communication. However, this approach is not suitable for
complex scenes with large numbers of patches because of
the excessive memory requirement per processor. Hence,
a more valid approach is to evenly decompose whole scene
description into P patch da ta subsets and map each data
subset to a distinct processor of the multicomputer. How-
ever, the decomposition of the scene da ta necessitates global
interprocessor communication in this phase since each pro-
cessor owns only a portion of the patch database and needs
to access the whole database. The local patch data of each
processor should visit all other processors a t each iteration.

Patch circulation needed in this phase can be achieved
in P concurrent communication steps as follows. In each
concurrent step, the current subset of the patch da ta in the
local memory of the processor is projected onto the local
hemicube; then this subset is sent to the next processor in
the ring, and the new subset is received in a single communi-
cation phase. Note that , only geometry data of the patches
(the patch vertex coordinates in 3D, patch normals, patch
id’s) are needed for projecting the patches in this phase.
As the messages can only be sent and received from/into
contiguous memory blocks, patch data are divided into ge-
ometry and color parts in different arrays.

At the end of P concurrent communication steps, each
processor completes the projection of all patches onto its
local hemicube. Although P-l communications would be
enough for this operation, one more communication is re-
quired in order to have the geometry data of local patches
in the processors’ local memory for maintaining consistency
of geometry and color da ta for rendering and further itera-
tions. It follows that parallel complexity of Phase 2 is:

Here, t s ~ represents the message start-up overhead or the
message latency, TTR is the time taken for the transmission
of a single patch geometry, TPRO is the average time taken
to project and scan-convert one patch onto a hemicube and
N is the total number of patches in the scene.

There are two crucial factors that affect the efficiency of
the parallelization in this phase: load imbalance and commu-
nication overhead. Note that , the parallel complexity given
in Eq. (5) assumes a perfect load balance among processors.
Mapping equal number of patches to each processor achieves
balanced communication volume between successive proces-
sors in the ring. Furthermore, as will be discussed later, it
achieves perfect load balance among processors in the par-
allel light distribution phase (Phase 4). However, this map-
ping may not achieve computational balance in the parallel
hemicube production phase (Phase 2).

The complexity of the projection of an individual patch
onto a hemicube depends on several geometric factors. Re-
call that , each patch passes through a projection pipeline
consisting of visibility test, clipping, perspective projection
and scan-conversion. A patch which is not visible by the
shooting patch requires much less computation compared

to a visible patch since it leaves the projection pipeline in
a very early stage. The complexity of the scan-conversion
stage for a particular patch depends strongly on the distance
and the orientation of that patch with respect t o the shoot-
ing patch. That is, a patch with larger projection area on a
hemicube requires more scan-conversion computation than
a patch with a smaller projection area. As is mentioned
earlier, each iteration of the proposed algorithm consists of
P concurrent steps. At each step, different processors con-
currently perform the projection of different sets of patches
onto different hemicubes. Hence, the decomposition scheme
should be carefully selected in order to maintain the compu-
tational load balance in this phase of the algorithm.

Two possible decomposition schemes are tiled and scot-
tered decompositions. In tiled decomposition, the neighbour-
ing patches are stored in the local memory of the same pro-
cessor. This type of decomposition can be achieved in the
following way: assuming that the patches that belong to
the same object are supplied consecutively, the first N/P
patches are stored in processor 0, the next N / P patches are
allocated to processor 1, etc. At the end of the decomposi-
tion, each processor stores almost equal number of patches
in its local memory. In scattered decomposition, the neigh-
bouring patches are stored in different processors, therefore
the patches that belong to an object are shared by differ-
ent processors. Scattered decomposition can be achieved in
the following way: again assuming that the neighbouring
patches that belong to the same object are supplied consec-
utively, the incoming patches are allocated to the processors
in a round-robin fashion. That is, the first patch is allocated
to processor 0, the next to processor 1, etc. When P patches
are allocated, the next incoming patch is allocated to proces-
sor 0, and this process continues. When the decomposition
is completed, (N mod P) processors store [N I P] patches,
while the remaining processors store LN/P] patches in their
local memories. Figure 1 illustrates the scattered and tiled
decomposition of a simple scene consisting of four faces of a
room. The numbers shown inside the patches indicate ids of
the processors that store them in their local memory.

Assuming that neighbour patches require almost
equal amount of computation for projection on different
hemicubes, the scattered decomposition is expected to pro-
duce patch partitions requiring almost equal amount of com-
putations in Phase 2. So, it can be expected that the scat-
tered decomposition achieves much better load balance in
Phase 2 than the tiled decomposition.

I Scattered decmposition Tiled &composition

Figure 1: Scattered and tiled decomposition schemes

Communication overhead in this phase consists of two
components: number of communications and volume of com-
munications. Each concurrent communication step adds a
fixed message set-up time overhead tsu to the parallel algo-
rithm. In medium grain multicomputers (e.g. Intel’s iPSC/2
hypercube) tsu is substantially greater than the transmis-

73

sion time t T R where t T R denotes the time taken for the
transmission of a single word. For example, tsu 550psec
whereas ~ T R z 1.44psec per word in iPSC/P. Note that,
communication of an individual patch geometry involves the
transmission of 3 floating point words for the vertices of the
triangular patches, 3 words for their normal and one word
for the patch id, adding to 52 bytes (i.e. TTR = 13 ~ T R in
Eq. (5)). However, as seen in Eq. (5), the total number of
concurrent communications a t each iteration is equal to the
number of processors P , whereas the total volume of com-
munication is equal to the number of patches N . Hence,
the set-up time overhead can be considered as negligible for
complex scenes (N >> P) . Then, assuming a perfect load
balance, efficiency of Phase 2 can be expressed as:

since one iteration of the parallel algorithm is computation-
ally equivalent to P iterations of the sequential algorithm.
Eq. (7) means that projection of an individual patch onto a
hemicube involves the communication of its geometry data
as an overhead. As is seen in Eq. (7), the overall efficiency
of this phase only depends on the ratio T T R / T ~ R O for suffi-
ciently large N I P . For example, efficiency is expected to in-
crease with increasing patch areas and increasing hemicube
resolution, since the granularity of a projection computation
increases with these factors.

3.3 Phase 3: Form-Factor Computation
In this phase, each processor can concurrently compute the
form-factor vector corresponding to its shooting patch us-
ing its local hemicube item-buffers constructed in the pre-
vious phase. This phase requires no interprocessor commu-
nication. Local form-factor vector computations involved in
this phase require scanning all hemicube item-buffer entries.
Hence, perfect load balance is easily achieved since each pro-
cessor maintains a hemicube of equal resolution.

3.4 Phase 4: Contribution Computation
At the end of Phase 3, each processor holds a form-factor
vector corresponding to its shooting patch. In this phase,
each processor should compute the light contributions from
all P shooting patches to its local patches. Hence, each
processor needs all form-factor vectors. Thus, this phase
necessitates global interprocessor communication since each
processor owns only a single form-factor vector.

We introduce a vector notation for the sake of clarity of
the presentation in this section. Let x k denote the k f h slice
of a global vector X assigned to processor k. For example,
each processor k can be considered as storing the k t h slice
of the global array of records representing the whole patch
geometry. Each processor k is responsible for computing
the k t h slice ARk of the global contribution vector P R
for updating the k t h slices Bk and ABk of the global ra-
diosity and delta radiosity vectors B and AB, respectively.
The notation used to label the P distinct form-factor vectors
maintained by P processors is slightly different. In this case,
F’ denotes the form-factor vector computed by processor e
and FL denotes the k t h slice of the local form-factor vector
of processor e.

As is seen in Eq. (l) , red, green and blue reflectiv-
ity values r , (r , g , b) and the patch area A, of each patch
i are needed as three ratios r , (r , g , b) / A , . Hence, each

processor computes three constants T ; (T , g , b) /A; for each
local patch i during the preprocessing. In vector nota-
tion, each processor k can be considered as holding the kth
slice r k (r , g , b) of the global vector r (r , g , b) consisting of
r t (r , g , b) /A, values. Thus, in vector notation, each proces-
sor k, for k = 0 , 1 , ..., P - 1, is responsible for computing

P-I

(9)
f=O

ARk(‘, g , 5) = rk(r, g , b) x Uk(T! 9, b) (10)

where A B h (r , g , b) and A: denote the delta radiosity val-
ues and the area of the shooting patch of processor e. In
Eq. (lo) , ” x denotes the element-by-element multipli-
cation of two column vectors. Each processor k can con-
currently update its local Bk and ABk vectors by simply
performing local vector additions Bk = B + ARk and
ABk = ABk + ARk for each color-band. h e s e concur-
rent update operations do not necessitate any interprocessor
communication. It is the parallel computation of the contri-
bution vector ARk which requires global interaction.

Note that , the notation used to label the U vectors is
similar to that of the F vectors since the P U vectors,
of sizes N I P , are concurrently computed by P processors.
That is, Ui(r , g, b) represents the contribution vector of the
shooting patch of processor e to the local patches of pro-
cessor k omitting the multiplications with the rI(r, g, b) /A,
coefficients. Hence, uk(7, g, b) represents the total contri-
bution vector of all P shooting patches to the local patches
of processor k.

The first approach discussed in this work is very similar
to the implementation proposed by Chalmers and Paddon
[a] . In their implementation, each processor e broadcasts a
packet consisting of the delta radiosities, area and the form-
factor vector of its shooting patch. Each processor k, upon
receiving a packet { AB,‘, A:, Fe }, computes a local contri-
bution vector Uk(r, g, b) by performing a local scalar vector
product for each color (Eq. (8)) and accumulates this vector
to its local Uk(7, g, b) vector by performing a local vector
addition operation (Eq. (9)) . However, multiple broadcast
operations are expensive and may cause excessive congestion
in ring interconnection topologies. In this work, indicated
packets are circulated in a synchronous manner, similar to
the patch circulation discussed for Phase 2 . Between each
successive communication steps of this form-factor vector
circulation scheme, each processor concurrently performs the
contribution vector accumulation computations (Eqs. (8)
and (9)) corresponding to its current packet. At the end of
P-1 concurrent communication steps, each processor k accu-
mulates its total contribution vector uk(r, g , a). Then, each
processor k can concurrently compute its local ARk(r, g, b)
vector by performing local element-by-element vector mul-

It is obvious that perfect load balance in this phase can
easily be achieved by mapping equal number of patches to
each processor. Hence, the parallel complexity of Phase 2
using the form-factor vector circulation scheme, is:

tiplications (Eq. (10)).

T P ~ = (P - 1)tsu + (P - 1) N t t r +
+ N T C O N T R + (N / P) T U P D (11)

Here, t t , is the time taken to transmit a single floating point
word, TCONTR is the time taken to compute and accumulate
a single contribution value, and TUPD is the time taken to

74

update a single radiosity and delta radiosity value using the
corresponding entry of a local u k vector.

Note that, in this scheme, processors accumulate the
contributions for their local patches during the circulation
of form-factor vectors. Hence, as is also seen in Eq. (ll),
this scheme necessitates high volume of communication
((P - l) N words) since whole form-factor vectors of sizes N
are concurrently communicated in each communication step.
However, as is also seen in Eq. (8) , each processor IC needs
only the kth slices (of sizes N I P) of the form-factor vectors
it receives during the circulation. That is, form-factor cir-
culation scheme involves the circulation of redundant infor-
mation. In this work, we propose an efficient scheme which
avoids this redundancy in the interprocessor communication.
In the proposed scheme, partial contribution computation
results (Uk(r, g, b) vectors of sizes N I P) are circulated in-
stead of the form-factor vectors (of sizes N) . Hence, each
processor effectively accumulates the contributions of its lo-
cal shooting patch to all other processors' local patches dur-
ing the circulation of the partial contribution computation
results.

Figure 2 illustrates the pseudocode for the node program
for the proposed contribution vector circulation scheme.
This scheme also preserves the perfect load balance, if ex-
actly equal number of patches is mapped to each processor.
Hence, the proposed circulation scheme reduces the overall
parallel complexity of Phase 4 to

interiors consisting of objects such as chairs, tables, win-
dows, lights in order to represent a realistic 3D environment.

Table 1: Effect of local and global shooting patch selection
(in Phase 1) on convergence.

n II umber of patch I1 T otal Execution #

LOC Glo Dec LOC Glob Dec

Table 1 illustrates the effect of the local and global shoot-
ing patch selection (in Phase 1) on the convergence of the
parallel algorithm. As is seen in Table 1, the global selection
scheme decreases both the total number of shooting patch
selections and the total parallel execution time significantly.

Table 2: Effect of the decomposition scheme on the perfor-
mance of the parallel hemicube production phase (Phase 2) .

T P ~ (P - 1) T . s ~ + 3 (P - 1)(N/P)ttr +
+P(N/P)TcoNTR + (N/P)TupD (12)

The constant 3 appears as a coefficient in "ttr' ' term since
each entry of individual U i vectors consists of 3 contribution
values for 3 color-bands. Hence, the proposed circulation
scheme reduces the total concurrent communication volume
in Phase 4 by an asymptotical factor of P/3 for P > 3.

/* AB,(r,g,b) : d e l t a r a d i o s i t y o f l o c a l s h o o t i n g p a t c h ;
A , : a r e a o f l o c a l s h o o t i n g p a t c h ;
F : l o c a l form-factor v e c t o r (of s ize N);
U, AR, B, AB are local v e c t o r s (o f size N / P) ; */
netlnode = (mynode + 1) mod P;
prevnode = (mynode - 1) mod P;
k = mynode; U(T,g,b) = ABa(~,g,b)ApFpreVnode;

for i=l to P-1 do
send U(r,g, 6) to processor nectnode;
receive i n t o U(r,g, b) from p r o c e s s o r prevnode;
U(T,g,b) E U(TrS,b) + ABs(r,g,b)As F(k- i -1)modP;

endfor
AR(r,g,b) = r(r,g,b) * U(v,g,b);
B(T,g, b) = B(T,g, b) + AR(rI gr 6) ;
AB(r,g,b) = AB(r,s,b) + AR(r,g,b);

Figure 2: The contribution vector circulation scheme

4 Experimental Results
The proposed schemes are implemented on a ring-embedded
Intel's iPSC/2 hypercube multicomputer. The form fac-
tors are computed using hemicubes of constant resolution
50 x 100 x 100. The proposed parallel algorithms are exper-
imented for six different scenes with 522, 856, 1412, 3424,
5648 and 8352 patches. The test scenes are selected as house

Tiled Dec. 11 Scattered Dec.
emicube prod Hemicube 1 1 H

seq

N time P Prod. I II Prod. I
U (secs

4 11 6.646 1 0.652 11 4.896 I 0.885
5648 17.335 8 1 1 3.680 I 0.589 I] 2.496 I 0.868

i f i II 3 nfin I n 534 11 1 377 I n 848

Table 2 shows the effect of the decomposition scheme on
the performance of the hemicube production phase. Paral-
lel timings (TPAR) in Table 2 denote the parallel hemicube
production time per shooting patch. These timings are
computed as the execution time of P concurrent hemicube
productions divided by P since P hemicubes are concur-
rently produced for P shooting patches in a single itera-
tion of Phase 2. Sequential timings (TSEQ) in Table 2 de-
note the sequential execution time of a single hemicube pro-
duction. Efficiency values in Table 2 are computed using
Ef f = TsEQ/ (PTPAR) . Efficiency values are considered as
qualitative measures for comparison of the decomposition
schemes. As is seen in Table 2, scattered decomposition al-
ways achieves better load balance than tiled decomposition.

Table 3 illustrates the execution times of the distributed
contribution vector computation during a single iteration of
the parallel algorithm. The last column of Table 3 illus-
trates the percent decrease in the execution times obtained
by using the contr ibut ion vector circulation i n s t e a d of form-
factor vector circulation. Note that, the advantage of the
contribution vector circulation over the form-factor circula-
tion increases with increasing P as is expected.

75

Table 3: Effect of the circulation scheme on the perfor-
mance of the parallel light contribution computation phase
(Phase 4).

Contribution Computation Time (secs)
form factor Contribution percent

N P vector vector decrease
circulation circulation

522 8 0 047 0 041 1 2 7 7 . 4 0 032 0 032 0 00

16 0 067 U 651 23 88
4 0 097 0 092 5 15

1412 8 U 12U 0 108 10 00
16 0 162 0 117 2 7 7 8 .
4 0 405 0 370 8 64

5648 8 0 4 6 6 I 0 414 I ! 1 ? 6
16 0 6 1 4 I 0 428

Figure 3 illustrates the overall efficiency curves of the
parallel progressive radiosity algorithm. Note that , global
shooting patch selection, scattered decomposition and con-
tribution vector circulation schemes are used in Phases 1, 2
and 4, respectively, in order to obtain utmost parallel per-
formance. As is seen in Fig. 3, efficiency decreases with
increasing P for a fixed N . There are two main reasons for
this decrease in the efficiency. The first one is the slight
increase in the load imbalance of the parallel hemicnbe pro-
duction phase with increasing P. The second, and the more
crucial reason is the modification introduced to the original
sequential algorithm for the sake of parallelization. As is
discussed in Section 3, this modification increases the total
number of shooting patch selections required for convergence
in comparison with the sequential algorithm.

1-00

0.90

0.60

i 0.70

0.80

0.60

0.40

- P-2 A * p-4
Q- -E IP-S
*r - * P-i 6

0 34m 5400 7400
Numb-r of patehe*

Figure 3: Overall efficiency of the parallel solution

5 Conclusion and Future Work
In this paper, a paral le l progressive radiosity algorithm
is proposed for ring-connected multicomputers and imple-
mented on a ring-embedded Intel’s iPSC/2 hypercube com-
puter. The proposed parallel algorithm utilizes a syn-
chronous scheme based on static task assignment. Exper-
imental results show that scattered decomposition of the
scene geometry yields adequate load balance during paral-
lel hemicube production computations. Circulation of par-
tial contribution results instead of the form-factor vectors is
proved to decrease the total volume of concurrent comniuni-
cation by an asymptotical factor. Experiniental results show
that global shooting patch selection yields much better per-

formance than local shooting patch selection as is expected.
Modification of the original progressive radiosity for the

sake of efficient parallelization is experimentally found to
yield good results. The performance of this modification is
expected to increase with decreasing tolerance values which
necessitate larger number of iterations for convergence.

6 Acknowledgement
We would like to acknowledge Guy Moreillon for his house
interior model. The house da ta is available through anony-
mous ft p a t site gondw ana. ecr. mu. oz. au.

References

[l] Baum, Daniel R., James M. Winget, “Real Time Ra-
diosity Through Parallel Processing and Hardware Ac-
celaration”, Proceedings of the 1990 Symposium on In-
teractive 3D Computer Graphics, In Computer Graph-
ics, vo1.24, No.& 1990, pp 67-75.

[2] Chalmers, Alan G., Derek J. Paddon, “Parallel Pro-
cessing of Progressive Refinement Radiosity Methods”,
Proceedings of the Second Eurographics Workshop on
Rendering, Barcelona, Spain, May 1991.

[3] Cohen, Micheal F., Donald P. Greenberg, “The Hemi-
Cube: A Radiosity Solution for Complex Environ-
m e n t ~ ’ ~ , Proceedings of SIGGRAPH ’85 (San Fransisco,
California, July 1985). In Computer Graphics, Vo1.19,

[4] Cohen, Michael F., Shenchang Eric Chen, John R. Wal-
lace, Donald P. Greenberg, “A Progressive Refinement
Approach to Fast Radiosity Image Generation”, Pro-
ceedings of SIGGRAPH ’88 (Atlanta, Georgia, August
1988). In Computer Graphics, V01.22, No.4, 1988, pp

[5] Drucker, Steven M. and Peter Schroder, “Fast Radios-
ity Using a Data Parallel Architecture”, Proceedings of
the Third Eurographics Workshop on Rendering, Bris-
tol, England, May 1992, pp 247-258.

[6] Feda, Martin, Werner Purgathofer, “Progressive Re-
finement Radiosity on a Transputer Network”, Proceed-
ings of the Second Eurographics Workshop on Render-
ing, Barcelona, Spain, May 1991.

[7] Goral, Cindy M., Kenneth E. Torrance, Donald P.
Greenberg, Bennett Battaile, “Modelling the Interac-
tion of Light Between Diffuse Surfaces”, Proceedings of
SIGGRAPH ’84 (Boston, Massachusetts). In Computer
Graphics, Vo1.18, No.3, July 1984, pp 213-222.

[8] Puech, Claude, Francois Sillion, Cristophe Vedel, “Im-
proving Interaction with Radiosity-based Lighting Sim-
ulation Programs”, Proceedings of the 1990 Symposium
on Interactive 3D Computer Graphics, In Computer
Graphics, vo1.24, No.2, 1990, pp 51-57.

[9] Recker, Rodney J, David W. George, Donald P. Green-
berg, “Acceleration Techniques for Progressive Refine-
ment Radiosity” , Proceedings of the 1990 Symposium
on Interactive 3D Computer Graphics, In Computer
Graphics, vo1.24, No.2, 1990, pp 59-66.

[lo] Varshney, Amitabh and Jan F. Prins, “An Environment
Projection Approach to Radiosity for Mesh-Connected
Computers”, Proceedings of the Third Eurographics
Workshop on Rendering, Bristol, England, May 1992,

NO.3, 1985, pp 31-40.

75-84.

pp 271-281.

76

