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ABSTRACT

THE EXAMINATION OF NEW EQUIVALENT EDGE
CURRENTS IN THE PREDICTION OF HIGH
FREQUENCY BACKSCATTERING FROA FLAT PLATES

Taner Oguzer
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Avhan Altintas
September 1991

Equivalent edge currents based on the geometrical theory of diflraction (GTD)
have been utilized for the prediction of electromagnetic scattering from edged
bodies. These equivalent currents are use Keller’s diffraction coefficient and
therelore not valid for arbitrary aspect of observation. More general expres-
sions Jor equivalent edge currents are later obtained by Michaeli. Those ex-
pressions become infinite at certain observation directions. These infinities are
later eliminated by the same author for the fringe component of the equivalent
currents by choosing a skew coordinate system on the half plane to be used for

the asymptotic integration.

A similar approach is employed here to eliminate the infinities in the phys-
ical optics(PO) component of the equivalent edge currents. It is also shown
that the radiation from the {ringe and PO equivalent currents is unique and
yields the GTD field.

The [ringe and PO equivalent currents are then applied to the backscatter-
ing problems from the perfectly conducting square and triangular plates. The

higher order interactions between the edges are also included into the analysis.

Some improvements are obtained over the previous solutious.

Keywords: Electromagnetic backscattering, radar cross section, equivalent

edge currents.
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OZET

DUZLEMSEL PLAKALARDAN GERI SACINIMIN
HESAPLANMASINDA YENI ESDEGER KENAR
ARIMEARININ KULLANILMASI

Taner Oguzer
Elektrik ve Elektronik Mihendisligi Boltunit Yiksek Lisans
Tez Youneticisi: Doc¢. Dr. Avhan Altintas
Evii 1991

Kenarl cisimlerden yayilan elektromanyetik sacinumn talimin edilmesi amaciyla
kimmmm geometrik kuram(KGE)'na dayanan esdeger kenar akimlari kul-
Jamlimaktaydi. KGK’dan elde edilen bu akinlar bittin gozlem dogrultularmda
gecerh degildi. Daha sonra, Michaeli esdeger kenar akimlarim daha geiel bir
voldan elde etti. Fakat bu akimlar pekeok gozlem dogrultusu i¢in sonsuzluklara
sahipti. Michacli, egdeger kenar akimlarmm artik kism i¢in bu sonsuzluklar

vart diizlemin iizerinde secilen egik bir koordinat sistemi ile vok edebildi.

Bu calismada, benzeri bir yaklasim esdeger kenar akimlarnmn fiziksel op-
y b 3 ]
tik(FO) kismindaki sonsuzluklan yok edebibnek amaciyla kuliamldi. Ayrica,

egdeger artik ve FO akimlarnm yarattigngmaun KGR sonucunu verdigi gézlendi.

Yeni egdeger akimnlar, mitkemmel iletken kare ve iggen diizlemsel plakalar-
dan geri sagimmin bulunmas: igin kullamldi. Elde edilen sonuglarin énceki

verilerle kargilagtiriimas: bazi ilerlemelerin elde edildigini gosterdi.

Anahtar sozcikler: Elektromanyetik geri saginum, radar ylzey kesiti, esdeger

kenar akimlar:.
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Chapter 1

INTRODUCTION

The electromagnetic scattering is the result of the obstruction of the electro-
magnetic field Ly an object. The scattered field is defined as the difference
between the field in the presence of the object and the field that would exist if

the object were absent.

An important parameter in scattering that is widely used in the radar
applications is the radar cross section. Radar cross scction of a target is the
area intercepting that amount of power which, when scattered equally in all
directions, produces an echo at the radar equal to that {rom the target. In

other words,

azgggozlw]f?{%lz (1.1)

where R is the distance between radar and target. £° and I are the scattered

1s observed in the incident direction; i.e. the backscattering case, then o is

called the monostatic radar cross section.

In theory, the scattered field can be determined by solving Maxwell’s equa-
tions subject to appropriate boundary conditions. Unfortunately, analytical
solutions of Maxwell’s equations is limited to only simple shapes. Therefore,
construction of the integral equations and their numerical solutions became
considerably popular. These numerical solutions are generally quite accurate

when the objects are not too large with respect to the wavelength.

When the size of the object is large, high frequency ray optical techniques
are used for the approximate solution of the scattering problems. The sim-
plest ray optical approach is the geometrical optics (GO), in which the high
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frequency electromagnetic field is assumed to propagate along ray paths which
satisfy Fermat’s principle and the next wavefront of the field can be determined

from the preceeding one by tracing rays.

To obtain more accurate high frequency results, an asymptotic high fre-
quency technique which is an extension of GO were developed in 1962 by
Keller[1]. It is called the Geometrical Theory of Diffraction (GTD). In GT'D,
the known exact analytical solution for the problem of scattering {from simple
shapes, called canonical problems, are analyzed asymptotically for high fre-
quencies. The GO and diffraction ray contributions are then identified [rom

the asymptotic expressions.

On the other hand, it is seen that the ray theory fails around the caus-
tic directions. To correct the scattered field, an Equivalent Current Method
(ECM)[3] was developed and applied to the scattering problems in caustic di-
rections. But these equivalent currents use Keller’s diffraction coefficient and

therefore not valid for arbitrary aspect of observation.

More general expressions {or equivalent edge currents are later obtained
by Michaeli[5]. Unfortunately, those expressions become infinite at certain
observation directions. In a subsequent paper[7]. Michaeli considered these
currents as arising separately from physical optics(PO) and fringe components
and showed that for the fringe component the infinities can be eliminated
by choosing a proper skew coordinate system for the asymptotic integration.
However, it was asserted by the same author[8] that the infinities in the PO
component cannot be eliminated in a similar way. On the other hand. the
PO equivalent edge currents which are free from infinities are obtained by an

application of the Stokes’ theorem for a finite size flat plate in [6].

In the present study, similar to the approach in [7], the PO equivalent
currents are derived for a half plane by using a diflerent selection of the skew
coordinate over the surface. Then it is shown that the total radiation from
the fringe and PO equivalent currents yields the GTD field. In addition, it
is observed that the obtained PO equivalent currents are the same with the
ones obtained in [6]. The new fringe and PO equivalent currents are then
applied to the backscattering problem from the square and triangular plates.
The equivalent currents are also combined with UTD to involve the multiple
diffraction mechanisms between the edges into the analysis. Finally, the results
are compared with the previous works of Sitka[9] , Ross[10] and the mecasured

datal[9].
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The outline of the thesis is as [ollows. The GTD is introduced in chapter
2. In chapter 3, Equivalent Current Method is deseribed. The {ringe and PO
equivalent current components are derived for a half plane and the computation
of higher order diffractions using equivalent currents is explained. In chapter 1,
the derived equivalent currents with the higher ovder diffractions are applied to
the backscattering from the square and triangular plates. 12 and H polarization
cases are analyzed separatelv. In chapter 5, the results obtained in chapter 4
are compared with the previous work and measured data. Finally, couclusions

are given in cliapter 6.

In the analysis, a sinusoidally-varying time dependence ¢t is assumed and

suppressed.



Chapter 2

THE GEOMETRICAL THEORY OF
DIFFRACTION

2.1 Introduction

In GO. propagation of field [rom one poiut to another. i an isotropic lossless

medium, is determined by using the conservation of energy Hux in a tube of
ray as shown in Figure 2.1. The phase of the field ix determined by optical
length from a reference point and the phase constant of the medium. Then the

(xO field.

—ihu(e P2 - jks ;
E(s) = E(s = 0)e™/*¥) il e/ (2.1
(s) = E( ) T (2.1)

where p; and p, are the principal radii of curvature of the wavelront at the

reference point. s is the distance along the ray path.

A wedge consists of two perfectly conducting half planes intersecting at a
straight edge as shown in Figure 2.2, At high {requencies, the total electric

field is given by

|8
o
SN

E=FEu 4+Eu +E (2.

In this represention, the source and the field poiuts are sufficiently removed
from the wedge surface. E¢ is the electric field of the source in the absence of
the surface, E” is the electric field reflected from the illuminated surface with
the edge ignored and E* is the edge diflracted electric field. E‘ and E" are
the GO fields and u' and u” are the illumination regions determined by GO as

follows:
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. I O<ép<atg ,
u' = A (2.3)
0 740 << ng
‘ I 0<o<r—¢
u’ = (2.4)
0 7—¢ <d<nd

! . . e . . .
where ¢ and ¢ are the incidence and diffraction angles respectively as defined

in I'igure 2.2.

2.2 Geometrical Theory of Diffraction

GTD is based on the following tliree postulates;
a) Diffraction like reflection is a local phenomenon at high frequen-
cies.

b) The diffracted ray and the corresponding incident ray make
equal angles with the edge at the point of diffraction {Sce Iig 2.3). Hence the
diffracted rays propagate on a cone that is called the Keller Cone. This is the

result of the generalized Fermat’s principle.

c) Away from the pomnt of diffraction, the diffracted rays behave

like GO rays.

Therefore the edge diffracted field away [rom the edge is given by

N
St

d(s) = B0 pp’ ¢ —iks 9 ;
o) = B )\/(p+s)(p’+s) (25)

1 . . . . . v
where p and p* are the principle radii of curvature of the diffracted field wave-
front at the reference point O. When the reference point becomes at the edge

point Qg, then the diffracted field is proportional to the field incident at Q.

lim EY0) /o' = E(Qgp).D (2.6)

p'—o0
where D is the dyadic edge dilfraction coefficient. Then the edge diffracted

electric field
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Plane of Diffraction

/ \ .
A7 S f
a \> Plane of Incidence
7

Figure 2.3: Cone of Diffracted Rays

Ed(s) = E‘(Qs)i) .S(S*p_:p:_).e—jks (27)

in which p. is the distance between the caustic at the edge and the caustic
of the diffracted ray. For straight edges and plane wave incidence, it becomes
that

In a ray fixed coordinate system, D is a 2 x 2 matrix. In this case, the unit
vectors ¢ and ¢ are prependicular to the plane of incidence and the unit vectors
3 and 3 are parallel to the plane of incidence and the plane of diffraction
respectively. § and & are the unit vectors in the directions of incidence and
diffraction respectively as shown in Figure 2.3. Then, for plane wave incidence,

the diffracted field can be written as
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nt) -
o Ds O ks |
B O Dy '

where Dy and [, are the diffraction coeificieuts for the soft and hard boundary

conditions. They are first oblained by Keller for a wedge as

e—Im/H

Ds = [Gio— &)+ Qo+ )] (2.10)

h 2xlksin 3

where

_I/n sinzm/n
"~ cosT/n —cos F/n

and n is the measure of the wedge angle as in Figure 2.2,

2.3 Uniform Geometrical Theory of Diffraction

GO fields show a sharp discontinuity at the incident and reflection hound-
aries. Unfortunately, Keller’s diffraction coelficients predict infinite values at
the shadow boundaries(See Figure 2.2). Therefore the diffracted field must be
modified to make the total field smooth and continuous. In UTD. uniform

diffraction coeflicients are obtained as [2]

—_
o
—
| O

Dy, = D(L, B~ ,n) + D(L, 3%, n)

where

D(L,p,n) = ~—*'——_—— [Cot(7r + ﬂ)F[AﬁL(‘L+(/3)] + cot( il ﬂ)F[/cLa'(ﬂ)]

2n 2n
(2.13)

4 <

and [(x) is the transition function which has a Fresnel integral as follows

o0

F(z) = 2]\/&“/ e~ dr (2.14)

T
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Figure 2.4: Transition Function

The magnitude and phase variations of the transition function are shown

+
in Figure 2.4. The parameters a™(3) are determined as follow:

+
+ L, 2naN~ = 3

a(3) = 200 )

<

(2.15)

+
where N~ are the integers which most nearly satisty the following equations:

2N - f=n (2.16)
2taNT -3 = -7 (2.17)

M + . .
with 8~ = ¢ — ¢ and L = ssin® 3 for plane wave incidence.

More details of UTD and diffraction coefficients are explained in [2].

Phase of F(X){degrees)



Chapter 3

EQUIVALENT CURRENT METHOD

3.1 Introduction

In contrast to diffraction by straight edges, edge diliracted liclds from three
dimensional objects may have caustics. It 1s known that GC'T'D or its modifica-
tions fail around the divections of ray caustics. To overcome this {ailure of ray
theory, an Equivalent Current Method(LCM ) incorporated with the G'TD was
proposed by Ryan and Peters in 1969(3].

The idea of equivalent current concept consists of determining the equiv-
alent electric and magnetic type currents flowing aloug the edge of a wedge
which produce the actual diffracted field of the wedge when radiate in the ab-
sence of the wedge. Then, the edge diffracted field for an arbitrary scatterer

can be found by the following radiation integral.(See Iigure 3.1)

—» ijc’j“{
.= ir R

where I and M are the equivalent electric and magnetic type currents in the

/ (B x Rx T+ YR % MR g (3.1)
o

place of the diffracting edge of the scatterer. Z and Y are the impedance and
admittance of free space. C, as in Figure 3.1, represents the contour along the

edge of the scatterer. R is the unit vector in the direction of observation.

Away from the caustic regions, the above integral is evaluated using station-
ary phase arguments. The stationary phase points are the diffraction points
and the value of the expression in(3.1) should give the diffracted fields as cal-
culated by the GTD.

By comparing the stationary value of the integral with the GTD fields, one

10



CHAPTER 3. FEQUIVALENT C'URKENT METHOD il

Figure 3.1: Radiation of Equivalent Currents

obtaius the eguivalent currents as

ST E .
- _} il —J47/~1D‘ tan t )
I k ®sin B, (3:2)
M=-2 ?f—c'”/“Dh—lgt—“f—f (3.3)
V & sin 3, :

where Ei  and H}, are the incident electric and magnetic fields tangential to
the edge at the diffraction point and { is the unit vector along the edge. Ds
and Dy, are the soft and hard diffraction coefficients. B, is the oblique incident

angle as shown in Figure 3.2.

Since these equivalent currents are derived from the GTD fields, they are
only valid on the Keller Cone(# = 3,). As a consequence of this restric-
tion, equivalent currents cannot be used for arbitrary direction of observation.
Therefore to extend applicability of equivalent currents to include the direc-
tions which are not on the Keller Cone, an arbitrary diffraction angle £ is
needed as well as the incident angle 3, in the expressions of the equivalent

currents.(Sece Figure 3.2)

For this purpose, Knott and Senior[4], on the basis of reciprocity cousider-

ations, proposed the following replacement

sin 3, = /sin gsin 3, (3.4)
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Keller Cone —

A
S [ M

Figure 3.2: Diffraction by an infinite wedge

and accordingly, they modified the equivalent edge currents as follows:

y 8w  e~IT/4 B
1= Y/ DL Ei, 35
k \/sin 3sin 3, ‘ (3:5)

Me_z T b 3.6
- Tm hilgnn ( . )

Although these expressions are consistent with the reciprocity principle,

their derivation is not based on mathematical grounds.

To obtain the equivalent edge currents for arbitrary direction of observation,
a new approach is suggested by Michaeli[5]. He proposed that the equivalent
current expressions can be derived from the asymptotic integration of surface

currents. This new asymptotic method is explained in the next section.
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3.2 Equivalent Edge Currents For Arbitrary Aspects

of Observation

Consider a perfectly conducting flat surface S on the xy-plane with an edge C
as shown in Figure 3.3. At any point on the edge, the unit vector ¢ is tangent
to the edge, 7 is normal to the surface, and the binormal unit vector is given

by

b=rnxI (3.7)
. A / . .. . o .
The angles ¢, ¢,  and B are measured as shown in Figures 3.3 and 3.4.
R s the distance to the observation point measured from the origin at the
. A ~ . . . . .
coordinate system. § and & are the unit vectors for mcident and observation
directions. The far scattered field from this strucinre is given with the following

radiation integral.

=
L)

,—JjkR
_ ”/‘ 5 x 8 x // e, y)citreshon g (3.8)

i
where 7 is the intrinsic impedance, k is the wavenumber and Jp(a.y) is the
total induced current on the conducting surface . In addition, k. and k&, are

given by

ky =k &2 (3.9)
ky =k 574 (3.10)

Il the field point is not on a caustic ol reflected field, then in the limit
k — 00, the surface radiation integral can be reduced asymptotically to a sum
of field contributions from an interior stationary point on S and a Loundary
contribution expressed by a line integral C. The former gives the reflected field
and the latter should represent the edge diffracted field.

Then, the edge diffracted field in (t,b) coordinate system is given by

. Y VA —jkR
B = JM  §x&x //]p(t b b5+E9) g it (3.11)

where ”0” denotes the asymptotic end-point contribution at h=0.

Let
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Figure 3.3: A Perfectly Conducting Flat Surface

rr7T1ru7i I 7 T 717
14 Tr'7rr1rr7rri /,,,7’AQ

t

v
Figure 3.4: Two dimensinal view at the diffraction point Q
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F() = /j,,.u, ) (3.12)
Then

fd JhZ eikR
od /2

ey TR X/ K ()5t (3.13)
47 N e

The edge diflracted field can also be expressed as due to the equivalent edge

currents along the edge

7 ekt
47 R

131 d __

/[3 & x T4 Y5 x TM]e?* 13y (3.14)
o

Equating the two integrands, we have

ZiAEX N =218 % 5> i+Méxi (3.15)

Dot multiplying both sides of the equations with & x { and § x § x {,

= S [(1 % 8) x K] (3.16)

7 . -
[ (&% K) (3.17)

are obtained.

Finally, by using

§=1{cosfB +bsinfBcosd + nsin Bsin ¢ (3.18)

expressions change to

I=K,— Kycotfcos¢ (3.19)

sing _,
= — 4 12 .2
M 7sinﬂ[‘b (3.20)

where K, and K, are the tangential and binormal components of the vector K.
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3.2.1 Half Plane

Let a perfectly conducting half plane is illuminated by a plane wave as shown

in Figure 3.4.

Figure 3.5: Perfectly conducting half plane

The local edge unit vectors are given by 7 = g, b=2andt =% ¢.4', 8

[ . . o .
and ' are the same as shown in Figures 3.3 and 3.4.

If the incident field is given by

E‘i — (3' + 7’)€jk(rsinﬁ'c05¢'>'+ysinﬁlSinqbl—zCOSﬁ,) (3.21)
H=Y§ x £ (3.22)
Using UTD, the total magnetic field is given by
Then the total surface current density is found from
Jr =i x [Hr(¢ = 0) - Ap(é = 2r)] (3.24)

which can be decomposed as
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T GO 5 GO N o =
Jp = (JEC + JD)e £ (JEC + J!)3 (3.25)
where

. L. BT N L A ,/_(_./
JEO = 2Y sin gk e gmabindcose (3.26)

JC?O — _:)Y’ COS (f)’ Cos /,r-jwcjk;r sin/'f’ «:osqzl

z ~ T el
GV L  jhrsin coséd  —jkzcosd g iy
+ 23 sin ¢ c_]ll inf cose  —ji cos 3 (5._)()
and

/ . R Lt (‘:“iﬁ/d k2 e <,3’ hea sin l3l cos 5! e P -
JI ==Y Isinj3 7= JRECORT QI BESIE cos ¢ dr (3.28)
VT  2krsind’

L , PR N . A o
JI = 4y cos 3 cos ¢ IRrsintcosd -k cosp / T
i i \/Zl sin 3
oy .y
4+ ' sin é’ C'/ﬂ/ : cjk:c sin/ﬂl cos ¢l (_,—jlcz cos /3/ / ¢ ) r dr
\/;T_ I/ 2krsin g’

N 2 el - . g . 1
+ 2y (—‘/77/4 r— /3, cog ”'j COS (’71)/2(’—]/‘.1, sin ;3 (.j—‘/l. T Cos
d

4

deeen 4 il coe .
: , Jhasin g e Jkzcos 3 (;2())
kam sm,(i

+ 2y I sin ¢/2¢

JCO is the geometrical optics approximation to the current density and
JJ is the {ringe or "non-uniform” compouent as vamed by Ufimusev. We will

examine the radiation of each component scparately.

3.2.2 Fringe Component of Equivalent Edge Currents

The derivation of the fringe component of the cquivalent edge currents requires

the asymptotic end-point evaluation of the following integral.

Ki(z) = /ff(x,:)efkwi'-édx (3.30)
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Fringe current J7(r.z) can not be represented near the edge(x=0) in a
simple arnpkitudc-phase form. However, away from the edge, GTD gives a
phase as —kz# - &. This phase describes J7(r,z) as a wave propogating in the
& direction which is the direction of diffracted rays at the intersection of Keller
cone with the half plane.. Thus if it is assumed that the ray behaivour of the
fringe surface field is valid up to very close edge, then the integral in (3.31)

becomes infinite, if the following condition holds

(3.31)

>
>
I

Q>
o

In other words, the singularity condition is satified when the phase of
J/(z,z) cancels the phase of the exponent in the integral. This singularity
condition represents a cone around the x-axis as shown in Figure 3.6. With this
argument, Michaeli[7] stated that these expected singularities can be reduced
to a single direction by choosing a proper skew coordinate system. Therefore
o and z coordinates arc selected instead of the cartesian coordinates x and z

with the following relations.

r=osinj3 (3.32)

=z+osin3 (3.33)

(]

Figure 3.6: Singularity Cones
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Using the new coordinates, the integration becomes

Ki(z)=sind /J-‘f(r; sinfd .,z + o cos 31e7F g (3.3:4)
By substituting the ]:'f(:) into the equations (3.19) and (3.20). this yields

the following fringe current components.

V=Yg d+H  d (3.35)
M/ =z ,d! (3.36)

The variables df ,dd and d£ are defined by

—2/2 sing /2 (VF(3,3.0) - V2sind cos¢'[2)

= 3.37
&= s (A 3.6 0) (3.37)
"o 2 sin 3 (cot 3 cos & + cot 3 cos ¢ + cos ¢ /2 mfﬁ,—'slf(/'ﬁl, 3.¢))
2Tk G5 5.3 .0)
(3.33)
C gt G Al e i 2
i —2 sinff sing (1 —sin3 cosé /2 ——F(/'J’,/i.«,’:)) (3.3
BTGk sin 3 G5, 8,8, ) o
where
F(B,B,¢) = sinf(sinj — sinfBcosq)
~ cos ' (cos B — cos3) (3.40)
G(B,B,¢,¢) = sinp(sinfcos @ +sin 3 cos ')
+ cosfF'(cos B~ cos 3') (3.41)

H(B',B,¢) = cotj'[sinfcosd + cot ' (cos B — cos 3)]
— sin 3 cot Bcos ¢ (3.42)
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The resulting equivalent [ringe current expressions are finite for all aspects
’

of illumination and observation except for the case § = & = 4. In addition,

there is an integrable singularity at § = & direction as expected.

3.3 Derivation of PO Equivalent Edge Currents For a
Half Plane

In the following end-point evaluation
/:’PO(.:) = / ,fG()(;E, :)t:-/l"""i"';'</.z' (3.43)

. R . N . . .o .
I'he phase of Jgo(a, =) is —kri- 3. Hence, the singularity condition of the

integral hecomes

‘/,’ (;l{)

>

V93
Il
&>
.

The replacement of F-direction by the &-direction for the integration as in
the case for fringe currents does not have similar cffect on the PO components.
Because, such a step merely replaces the cone of singular $-directions. by aun-
other cone, defined by .5 = & -6 and only for grazing incidence, & = &', does
the latter collapse into a single direction, § = 4. However, the above argument
assumes a skew coordinate direction fixed by the incidence angle for all obser-
vation directions. In fact, for equivalent currents there is no need for such a
restriction, the skew coordinate direction may be determined by both the inci-
dent and observation directions (& and §). So, for each observation direction,
the skew coordinate direction on the surface of the half plane is determined

separately.

To apply this approach, we will again use the (o, z) skew coordinate system

y

as shown in Figure 3.7 with an arbitrary skewness angle 6 as follows

x =osind (3.43)

z=z+ocosl (3.46)

Then the following end-point contribution
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Figure 3.7: Skew Coordinate System

I\?Po(z) = sirlof-fido(a sinf, z + o cos a)ejka&'gda (3.47)

is evaluated as

' 3] 0
]/PO — 2}/' M 8 _ ~ - bln
‘e S Jki(sin §' cos ¢" + sin Bcos ¢)'sin § + cos 6(cos B — cos 3'))
(3.43)
KPO _ 2Y cos ¢’ cos ' sin 6
* 7 " [(sin 8 cos ¢’ + sin B cos ¢)sin § + cos §(cos B — cos 3')]
2Y sin ¢ sin @ (3.49)
[(sin B cos ¢’ + sin Bcos ¢)sinf + cos B(cos f — cos B')] -
The PO equivalent edge currents are then obtained
PO _ ‘ZYE,- sin'@ sin 4
T gk FsinB'[(sin B cos ¢’ + sin B cos ¢) sin § + cos O(cos B — cos ')]
4 1}1;- Gin 6 cot 5 cos ¢ -+ cot fcos ¢ (2.50)

ik [(sin ' cos ¢’ + sin Bcos ¢)sin§ + cosf(cos f — cos 5]
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sin@sin f

MP() — _[11
*sin B[(sin B cos ¢" + sin Fcos @) sin ¥ - cos O(cos 3 — cos 3')]

27
ik
(3.51)

It is seen that, these expressions are the [unction of the skewness angle 0.

Hence they are nonunique.

Let

I=1/+1 (3.52)

M =M/ +M™ (3.53)

To lind the radiation froni the equivalent line currents I and M. we need to

the expressions for the equivalent currents at 3 = 3 direction(See Appendix
A). For that reason, it is observed that

V(B=8)+1"°8=4)=Ium (3.54)

M/ (= B+ MO (3 = B = Merp (3.55)

This means that, the radiated electric field from the fringe and PO equiva-
lent currents is independent from the arbitrary skewness angle 0 and it exactly

yields the GTD field.

On the other hand, the selection of § represents the singularity map ol the
PO equivalent currents. At 3 = 3’ the PO equivalent currents reduce to the

following ones.

' 2Y - sin ¢’ 2 __.cotp
IPO = 16 = —Ei - g 7 f 56
(ﬁ ) N ~Sll]2/3 (COSé-}- CoS ql)l) ]k zSin,B (3 3())
MFO(B =) = 2 fi__ sin ¢ 557
(5 =4) 7kY " 7sin® B (cos ¢ + cos ¢') (3.57)
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These expressions are only singular at the incident and rellected transition
But the PO equivalent currents may have additional singularities

regions.

depending on the selection of 0.
Accordingly, depending on both the incident and the observation directions

if we choose the skewness angle 0 as follows

(3.58)

1
cos 3 — cos 3
sin 3" cos @' -+ sin 3 cos &

cot 8 =

Then PO equivalent currents become

sin gfb'(sin [cosd +sin 3 cosd')
*sin 3'[(cos B - cos 8)2 -+ (sin A cos ¢ + sin 3’ cos &')?]
(3.59

\

Il’() — Al
Jk
. . J . . , Y it
o2 iy sin @{sin Fcos ¢ + sin /3 cos ¢ )
T A, - : - — N
gk (cos B = cos F)2 + (sin Bcos ¢ + sin I cos ¢')]

sin ¢p(sin Fcos & + sin B cos ¢') (3.60)
3.60)

[(cos 3 —cos 3')2 4 (sin B cos & -+ sin 4’ cos ¢')?]

=
-

el
<
<
~
&

[t is noted that the equivalent current expressions given in (3.59) and (3.60)

are the same as the ones in [6] where they arve determined for a finite size plate

by an application of Stokes’ theorem.
When the singularities are examined, the following conditions are obtained.
(3.61)

(3.62)

and
This represents the incident and reflected shadow boundaries on the Keller
Cone and we see that, the singular directions are not expanded by this selection

N

of 6.

Physically, the direction of skew coordinate & in this case is the direction of
the projeciion of (§ — §) vector onto the half-plane. It is a function of both §'
and § , as described earlier. The natural question to ask at this point is what

happens when (§ — §') vector has zero projection on the half-plane; in other
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words, when (3 — &) has only normal component to the half plane surface.
In this case, the above definition of & fails. However, a close examination
reveals that when (3 — &) vector has only normal component to the half-plane,
the observation direction is either on the incident boundary (§ = &) or on
the shadow boundary of the Keller Cone. Both of these cases correspond to
directions for which the field is non ray-optical and the equivalent current

concept is not valid.

3.4 Higher Order Equivalent Currents

When a perfectly conducting flat plate is iHuminated by a plane wave, the [ringe
and PO equivalent currents due to the first order diffraction will be excited on
the edges. The radiation from these currents vields the single edge diflracted
fields. But to obtain more accurate results, it may he neccesary to include the
multiple dilfractions between the edees. Therefore, equivalent current method
can be modified 1o include the ligher order interactions. Accordingly, the
fields of the multiple diffracted rays between the plate edges are computed
by constructing the corresponding equivalent edge currents and using them
to compute the far scattered field. This procedure provide us to obtain the

contribution of the higher order diffractions to the total far scattered field.

Consider a perfectly conducting {lat plate which is iluminated by a plane

wave as in Figure 3.7.

It is known that the diffracted fields from a point on the edge is given by

UTD as follows

Ej Ds o o
= (3.63)
Eg o D ':;,
e~V FlkLa(¢—¢)] = FlkLa(¢p+ ¢
Dy = " (Elklalp —¢)) 1 FlkLa(¢+9)] (3.64)
h V2rksin cos 2= cos 2£8

where

a(f) = 2cos*(8/2) (3.65)
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VA

Figure 3.8: Edge interactions in a flat plate

and
L =psin®j (3.66)

with the (.3, ¢) coordinate system which is defined at the diffraction point.

On the other hand, it is assumed that the diffracted field from the second
edge is almost a plane wave when it illuminates the filth edge. The diffracted
rays from the edge 2 are incident to the edge 5 with the following tangential

fields.

E!(at edge3) = s - E¢
= O (3.67)

Hi

tan

(at edged) =15 - H*¢ (3.68)

Then the equivalent edge currents at edge 5 due to double diffraction is

given by
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2= T(H,,(al edged), 3,8, 6,8") + Tho(Hi,(al edge5), 8,8, ¢,6') (3.69)

M? = M2(H}, (al edged), 3,53.6,0') 4+ Mbo(H},,(al cdge5). 3,3 0.0

tan
(3.70)
The radiated clectric field from these equivalent currents.
B J Ly L—JkR Lo . . . e
L= J_l - E / [Rx R x 124+ YR x M2 %24l (3.71)
iz R/,

where [t is the observation divection and k, = AR-&, &k, = kR-§. In the notation
of the higher order currents I, m represents the order of the diffraction and

q shows the number ol the edge that equivalent curreuts exist,

In the analysis of higher order diffractions oue has to consider the shadow-
ing effect of the surlace diffracted rays. Since this causes to the iHlumnination
regions. In the radiation integral, a and b represent the limits of the illu-
mination region on edge 5. It is dependent to the incident wave direction.
polarization and the geometry of the plate. If the similar integral is repeated
for each straight part of the edge by defining the appropriate integration limits
on the opposite side of the plate. Then the sumn of the mtegration contributions

will be equivalent to the second order diffraction.



Chapter 4

BACK SCATTERING FROM FLAT
PLATES

In tliis chapter, to examine the accuracy of the {ringe and PO equivalent edge
currents, we applied them to the problem of backscattering from the perfectly

conducting rectangular and triangular plates.

Eventhougl there is no analytical solution to these plate problems. the
calculations of tlie backscaltered field has been investigated by some authors

using high frequency technigues.

IFor the square plate probleny, Ross[10] has applied the GTD and PO meth-
ods to predict the monostatic RCS. Ross also obtained a wide range of measured
data[10] and his results were in agreement with the measurements except for the
regions near edge-on incidence. Later, more accurate results are obtained by
Sitka[9] who employed GTD based equivalent currents and included the higher
order equivalent currents into the analysis. The results for the backscattering

from the triangular plate are also obtained in [9].

In the present analysis, we applied the fringe and PO components of the
equivalent edge currents to the same backscattering problems from the square
and triangular plates. In addition, the currents are combined with UTD to
include the contributions of the higher order diffractions as explained in section
3.5. The analysis is also performed for E and H polarization cases separately.
For each case, the results are compared with the previous analysis of Sitka and

measured data.

It is known that the fringe and PO equivalent edge currents have the in-

finities in the incident and reflection shadow boundaries on the Keller Cone.

SN
-1
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Therefore, the backscatiering results from the flat plates at the hroadside di-
rections become singular. On the other hand, UTD plane wave diflraction
cocflicients are used to consider the edge interactions. But in the transition

regions. the diffracted fields from the edges are not ray optical.

The total equivalent currents are given by

I=YE Ds(o,0,8,3)+ H, Dy, 6.5, 8) (4.1)
M = ZH, Du(s, 6.3, 5] (4.2)

wlere

oot A af RN F120) I e

1)5,11,2(0 » Py ﬁ 7/(:]) - ds,h'z(Q » @, /3 7/3) + (/.\_;‘1),2(0) ) s 3 »i) (15)

where df_h_,_, and dP9 expressions are due to the fringe and PO parts of the
equivalent current components. It is assumed that the equivalent currents exist

on the edges m the direction of the edge’s tangent vector,

Two types of polarization for the incident plane wave is examined sepa-
rately. E-planc polarization occurs when the direction of the incident electric
field 1s in the observaiion plane. I the observation plane is the xz-plane. then

the Ii-polarized plane wave becomes;

F?,’ — ej/\'(.z::,iuﬂcosr,’)-i-:cos(l) &g (4[)
A =YRxE (4.5)

Similarly, H-plane polarization occurs when the direction of the incident I

field is in the observation plane.

H-polarized plane wave;

i = ¢ik(asindcos ¢tz cos(/)&é (4.6)
H = YR % E‘i (47)

4.1 Square Plate

Let a perfectly conducting square plate is illuminated by a plane wave with

the propagating vector 3; as shown in Figure 4.1. It is seen that xz-plane is
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Figure 4.1: Perfectly Conducting Square Plate

the observation plane and the first order equivalent currents are excited on the

7”

edges of the square plate. The length of the plate is shown by

Then the single diffracted fields from each of the edges of the square plate
are evaluated by using the total equivalent edge currents as follows

From edge 1:

e—jkr

7k / . .
[ h(¢ a¢7ﬁ 7.6)Ht‘an]a

E91=4"

—3kr

B}y = 22 (Dy(¢,6,8' 9)Bien + Dal#, 6,8, O)Hila™— (4.9

where
B=p ==/2 (4.10)
and
b=¢ =7/2-0 (4.11)
From edge 2:
v
C —gkr

'k ’ . ’ N
El, = _i_w [cosO(Ds(¢', 6,8, ) Ein + Do, ¢, B, BYHLL)]W (6, a) -
(4.12)
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— 1k

L3, = 1 [Du(g' 6 4, B) 1y, con O]V (D, ) — (4.13)

where
Bo=wf2 40 (4.14)
B=n/2-10 (4.15)

and
G == wf2 (4.16)
From edge 3:

. .7]‘ ; ¢ TIkr -
Eg = [1)11(0 0.3 B}, la - (4.17)
1 _)/\“ PR o g 1 . —Jkr .
'[’}’l“fi = —F [Db(¢>q)7/j,/j)l fun + l)j(’r) ~(1I)3 [/Im](l (‘llb)

where
p=i =x/2 (1.19)

and
¢ =o=7/2+0 (4.20)
From edge 4:
4k . o
14’0-1 = ;1_7_‘__ [(050( S(¢ 7¢716 5/3)Eta,L+U‘2(¢ ,9’5:ﬂ 7/3 ]{l.m]” 0 a r (4‘21)
 k —~jkr

By = =1 [Du(¢', 6,4, 8)Hi,,, cos )W (0, a) (4.22)

where
g =n/2-0 (4.23)

B=m/2+0 (4.24)
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and
4 1 3 -
¢ =¢=r/2 (4.25)
with
a .
W(l,a) = / ¢Fikeosbz g,
)
Lo sin(hasin 0) .
— (.L(_:jl\.u.xm(/ : ; (120)
kasim(
In the rvepresentation E% - represents the edge number, n shows the

electric field component and q is the single edge diffraction. Then the total

single diffracted ficld becomes

EY = Eyd; + B, (1.27)
where
0 component:
1 1 01 - o :
Ly = Eg + Epy + Epy + 1, (4.28)
o component:
ol L 1 29)
]«,'4’) = Ligy + Lgo + L3, + L5, (4.29)

The higher order diffraction mechanisms are analysized for 15 and H plane

cases 11 the next sections.

4.1.1 E-Polarization

When the higher order interactions between the edges of the square plate are
considered according to UTD, then it is observed that the edges 2 and 4 don’t
cause diffracted rays on the surface. However, the opposite edges 1 and 3
interact correspondingly. Therefore, due to the double diffraction, the following

second order edge currents exist on edge 3.

2= H, Dy(¢ =0, =1/2+40,=5 =r/2) (130)

M:=ZH! Dy(d =0,¢=7/2+0,=8 =n/2) (4.31)

tan
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where
i Lo SUPY 5 : , . ¢ 9
]_‘[tan = '—'E‘ /] ((L[ (z([{jC'l) L)h(O = 7,'/_, — (),Q) = C)v,‘j =i _)’(1) -——\ - (l%_f)

where D} is the UT'D hard diffraction coeflicient on edge 1 and the factor 1/2
is due to grazing incidence. The second order currents /3 and A7} on edge |
can be found similarly. Then the total second order diffracted field is given by

the following integral.

_}]\Z C-jI:R

e TEL / (R % Box [P Y R o< MEcibsvdy
an t 0
+ / (R x R x T2 4 VI < Aj2]eVestho) ) (4.33)
@]

The third order diffractions are also computed by using the similar ap-

proach.

4.1.2 H-polarization

In H-polarization case, only the edges 2 and 4 cause diffracted rays on the sur-
face. In the analysis of the higher order diffraction mechanisms, it is observed
that the diffracted rays fromn the edge 2 illuminate the whole of the edge 1 and
a part of the edge 4 for 0 < w/4. On the other hand, for 8 > 7 /4 only edge 1 is
partially illuminated by the diffracted rays from the edge 2 as shown in Figure

4.2

Then the second order equivalent currents on the edges 1 and 4, due to the

double diffraction, are given by

On Edge 1:

If = }[tiunDz(qs’ = O’ (,73 = 7:-/2 - 97/3’ =7 - 01 13 = 7!'/2) ('151)
1\42 = Z‘HtianDh(d)l = Oa (r!) = 7T/'2 - 0)/31 =7n — 07/3 = 7‘./2) (435)

where
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N

;
N
Q

N

a a
3
i 0 >45° { B <45°
X X
Figure 4.2: Edge Interactions in the Square Plate
. 1 / , eIk
H;,, = 3H‘(at edge2)sindDi(¢ =7/2,6 = 0. =7[2+6,5) 7 (4.36)
2 s
with
_ Y .
* 7 Cos0 (4:37)
On Edge 4:
= B Dy¢ =0,6=r/28 =x/2-0,8=7/2+0)  (433)
M2 = ZH:, Dy(¢ =0,6=7/2,8 =n/2—0,8=7/2+18) (4.39)
where
. 1 . . 10 o e~ks
Hi = - H'(at edge2)cosODy(¢ =w/2,¢ = 0,8 ==[2 +46,s) (4.40)
2 Vs
with
s = — (+.41)

cos
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Then the contribution of the second edge to the total second order diffrac-

tion 1s given by

- A kR Ymar . - . . .
}:j — J (—'—)—(/ [1{ x» o> ]1' + )2 R x JJ,"](;:”‘"J”(Z//
A 1 O )
+ / (R X R 24 Y R x AT?edteatkay) 4oy (4.42)
@]
where
a §<afl ‘
Ymuar = (115)
acotf 0> 7/4
and
1 —tanf) 0 < =/4
Cmax = a( " ) / (]11)
O 0>/

The contribution of the edge 4 to the second order diffraction is computed

in a similar way. Then the total second order diffracted field is evaluated as

E? = E? 4 2 (<1.45)

4.2 Triangular Plate

The perfectly conducting triangular plate , as shown in Figure 4.3, is iHumi-
nated by a plane wave which is lie in the xz-plane. The xz-plane is again the

observation plane.

The single diffracted fields from the edges of the triangular plate are ob-

tained as follows

From edge 1:

, 7k ' / . .
E}y = = Da(#',6, 8, ) i N (0) (4.46)

k L ’ : ', / :
E;l = —%[DS(Qﬁ y Py ,B 7ﬂ)Et1a.n + Dg(é , P, /B ’ﬁ)f[tan]zv(b) (']47)
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Figure 4.3: Perfecily Conducting Triangular Plate
where
p=¢ =0 (4.48)
B=5=7/2 (4.49;
From edge 2:
k ' ' . 1 ’ .
El, = .i._{(sin a/2Du(8'. 6,8, B) + cosa/2sin 6D:(¢', 6, 8', B)) Hi
7r
+ cosa/2sin0D(¢, ¢, B, B)EL, JM(8,a) (4.50)

‘k 13 ! / 1 s
E;, = ‘—i;[(— cosa/2sin 0Dy (¢, ¢,5,0) +sine/2D:(¢, 0,5 ,5))H,,,
+ sina/2Ds(¢, ¢, B, B)EL JM(8,a) (4.51)

where

1

B = cos™!(—cosa/2cos b) (4.52)

)
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B, = 3 = cos"Hcos af2cos ) (1.53)

—sina/2 cosd

\F— cos? § cos? <:\/;’J

qﬁ( == cos"'[

I'rom edge 3:

Eyy = sk [(— cosa/2sin 0D, 0., 8. 8) +sina/2Dy( .8 ),
47
— cosa/2sin ODs(0 . 0,3 . 3)EL 1M (0, a) (1.59)

A v, . o Y
Loy = JJ_ [(sina/2D(@ 0.3, 3) Fcosa/2sind Dy (o, 0.8, 8},

+ sina/2Ds(¢, 6,5, B M0, a) (1.56)
where
,'.'3/ = cos M (cosa/2cos ) (-1.57)
and
3 = cos™!(—cosa /2 cos 0) (4.58)

! ! . )
&, ¢ arce the same as the second edge.

In addition,
2h
N(b) = / dy =20 (1.59)
0

M(0,a) = /Gijcosé’zdz
0]

snllcos0) (150)
k cos Oa

The total single diffracted field becomes

E' = Elay+ Eld, (4.61)
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where

0 component;

Ly = ) + )y, + Ej, (4.62)
¢ component;
Ly =L} + L, + £, (4.63)

The higher order diffraction mnechanisms are analysized for I and H polar-

ization cases separately in the next sections.

4.2.1 E-Polarization

In this polarization, it is scen that all edges cause diffracted rays on the sur-
face and the higher order diffraction mechanisms can be mamly split into the
following two parts.

i) The diilracted rays caused by the first edge of the triangular plate il-
luminate the second and third edges. Then thie corresponding second order

equivalent edge currents on the edges 2 and 3 are given by

On edge 2:

= Hi, Dal¢ = 0,6,8 = a/f2.3) (1.61)
Mj = ZH}, Du(o = 0.9, = a/2,5) (4.63)
where
. 1 . . ) . ) C-—jk:
]"[ZM = Sltl’(at cdgc:l) sin Cl‘/?l)lll((l =0,¢=0.5= 7:/2, z) \/T (4.66)

=

On edge 3:

=H,,Dy¢ =0,6,8 =7 —a/2,8) (4.67)

tun

M; = ZH,,Dyp(¢ = 0,¢,8 =7 — a/2,p) (4.68)

tan
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where
; 1 ; . . , ) . —Jk=
i, = =H'(at edgel)sin (.1'/2[)111(@ =0 0=0,38=n/2,z) - (4.69)
2 ' NG

¢ 1s determined by equation (1.51) for cach edge and 3 is evaluated by

equations (4.53) and (4.58) for second and third edges respectively.

Then the radiation of these cquivalent currents is given by

- Lt A
L = b (/ (1R R 124+ Y R % MEedt 0
4T ]{ 19
+ [R % R I3 YR o« N 2)ettse0s8 (4.70)
@]

ii) On the other hand, we see that the diffracted rays from the edge 3

illuminate the edges 1 and 2 depending on 3, as shown in Figure 4.4.

The sccond order equivalent edge currents on the edges 1 and 2 duce to the

diffracted rays from edge 3 are given as follows

On l2dge 1:

=M, D¢ =0,6=0,3 =7/2—-p3,+a/2.70=7/2) (4.71)

tan

M:=ZH D¢ =0,6=03 =x/2—5,+a/2,8=7/2) (4.72)

tun

where
. l N . - ] .. i~jks .
Hiyy = —g (et cdoed)cos(s, —a /2 D}(¢ 6= 0.8, = (473)

On Edge 2:

I =H,,Dy(¢ =0,6,f =7~ B +a,p) (4.74)

tan
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Figure +.4: Edge interactions in the triangular plate

M3} = ZH},,Du(¢' = 0,6,8 =7 — 3, +a,1)

where

(_‘—jr':.s

: . . g, i
H, = ~§f1;(at edge3)sin(B, — «)Di(6, 0 = 0, 3,,5) =

tan
AV =

and
H;,(at edgel) = Y g k= cosd

39

(4.77)

A3 and & lor second edge are given in terms of ¢ with the equations (4.33
. ( S | .

and (4.54).

In addition, s and z are the integration parameters which have the following

relationships.

For Edge 1:

— Y
"~ cos(d, — af2) tan a/2 + sin(J, — a/2)

= S(l/) COS(/fjo - CY//:Z)

For Edge 2:

—
e
~1
v

(4.79)
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Y=r/24 /2~ ], (-1.50)

’

a4 — =

s = 2tan(a/2) — (1.81)
cosy - lana/Zsm g
Z(cosy — tana/2sin 7) 4+ 2a tan a /2 sin 5
- = (1.82)

cos 9 4 tan o /2siny

These integration varibles as shown in Figure 4.4 are substituted iato the

following radiation integral with the defined equivalent currents.

. A’/ L IR R “Ymar . ~ A -
/;':'; e !——’(:——“(/ {/{ “ ]{ X /12 + ¥ _['? X Ajl-]([{/

= R 0
+ / (12 < R 24 Y R ox AI2]e?™ <05 (1.%3)
where

f aftan af2 + tan(3, — af2)] H, <a
yu:'l.l' — f\l,\\'l)

\l a B,>a

and
a [, <«

Zinin = O 7T/2 + Cl/._)« > ,30 > o (‘18'—))

_2utano/2siny /30 > 7_‘_/2 1 (}/2

cosy—tana/2sinn

This procedure is repeated for the diffracted rays from edge 2. Then the
following sum of all integral contributions gives the total second order diflracted
field.

—
1

E? = B} + B3 + L} (4.86)
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4.2.2 H-Polarization

In contrast to the E-polarization case, in I1-polarization the first edge doesn’t
cause to the swrface diffraction. However, sccond and third edges create the
diffracted rays and the corresponding equivalent crirents on the opposite edges.
Therefore, the sccond diflraction can he computed by using the second riech-

anism mentioned in the previous section.
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COMPARISON OF THE RESULTS

Here, the results of the present analysis of the square and triangular plates will
be presented and compared with the previous results of Sitka[9]. Ross{10] and

the measured dataf9].

In both flat plates, for each polarization case. the total far scattered field
is obtained by the summation of all integral contributions including computed
higher order diffractions. The integrals are evaluated numerically using pulse
functions with 0.01 wavelength steps. Then the total far scattered field is found

oas

E=FE '+ E*4 (5.1)

In the analysis, except the E-polarization for square plate, only the first
and second order difflractions are used. The scattered field is observed in the

hackscattered direction and monostatic RCS is obtained as a function of 4.

In the backscattering from the square plate, I-plane pattern results are
shown in Figure 5.1. The first, second and third order diffractions are used in
the aunalysis. It is observed that there is no difference between our result and

Sitka’s solution and both of them are close to the experimental data for ¢ < 80.

In H polarization illumination for the square plate problem, the agreement
between our result and the result in [9] is good and they coincide with the
experimental result away from the grazing incidence region (See Figure 5.2).
Furthermore, we were able to predict the small oscillations near edge-on region

by including the second order currents into the analysis.
In the determination of the backscattering from the triangular plate, for

42
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I5-polarization case, only the first and second order diffractions are used in the
analysis. However, in [9], Sitka has used the first, second and third order diffrac-
tions including the all edge interactions. On the other hand, in H-polarization
case, although the first and third order diffractious. corner diffraction and cdece
wave mechanisim are included (o the analysis, sccond order difftactions are
omitted by claiming that the double diffracted rays between the edges 1 and
2 of the triangle are cancelled by the diffracted rays between edges 2 and 3
in [9]. This cancellation does not occur for the new fringe and PO eqguivalent

currents. Therefore, we nsed the first and second order diffractions for that

polarization.

I-polarization results for the different sized triangular plates are shown in
Figures 5.3-5.6. It is observed from the figures that the present solutions are
closer than the ones in [9] to the measured data for ¢ < 20. In addition. in
Figure 5.5, Sitka predicts a uonzero scattered field at 0 = 180. However. i

this analysis a zero field is obtained as expected.

The H-plane calculations for the triangular plates are shown in Figures
5.7 and 5.8. Both present and Sitka’s results are fairly accurate around the
broadside direction (45 < 0 < 120), and our results have a slightly better
prediction of the variation of the pattern for 0 > 90. Both results deviate from

the experiments for 0 < 5.
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Figure 3.2: Backscattering from the square plate: H-pol (a=3.1251)
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CONCLUSIONS

In the present study, we derived the PO components of the equivalent edge
currents for a hall plane similiar to the NMichaeli’s approach for the elimination
of the infinities of the fringe current component. By using a different sclection
of the skew coordinate over the half plane, we obtained the PO cquivalent
current expressions. It is seen that these expressions are the same with the

ones obtained in [G].

I'urthermore, by obtaining the PO equivalent currents depeading on an
arbitrary skewness angle, it is shown that the radiation [rom the fringe and
these arbitrary PO equivalent currents are unique and yields the G'T'D field.
Therefore, this proves the expectations that the nonunique equivalent currents

must give the unique radiation.

Later, the [ringe and PO equivalent currents, that is more general than the
GTD based ones, are applied 1o the problems of the backscattering {rom the
perfectly conducting square and triangular plates. The higher order diffractions
are considered in the analysis in order to evaluate the interactions between the
edges of the plates by using the UTD. Then, in the comparison of the present

results with the previous results of Sitka some improvements are obtained.

[
oo



Appendix A

Radiation From The Infinite Line Sources

Let an infinite line source, carrying electric and magnetic type currents I and

M.
The radiated clectric field from the line sources is given by

L kZ [ . k(=2 42
, ~dz (A.1)

‘ - ‘ (G
E=2= [ExéxI(z)+Yix M(z)]— '
a7 [ Ve =2+ p?

where z and p are the observation point coordinates as shown 1y the following

Figure.

O (Observation Point )

I, M

Figure A.1: Infinite line sources

If equivalent currents are in the form

r

hH3
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N ! 1

](5 ) — [(,:'I)(.'-]I‘.: cas (\))

M(z') = Mz )emii oo (A3)
Then integral becomes
I AN O LRV EEED LUV B
I = .1"17r / [6 % & x [(z)+ Y5 < M(z)] d= (Ad)

This integral can be evaluated by the method of stationary phase. Assiming

that /(z') and A(z") are slowly varying and k is large.

Then the phase of the integrand

i) = [ cos 3+ V(= 2 P (A

ot
~

/

“ . ' ’ . . . . . -
Solving ¢ (z,) = O, the stationary point is found as 3 = 3

That 1s

ot
cos i =

(A.6)

Radiated field

(;.—j,-*./zl

- - -

/

Eo=ghZixsx(B=3)+YSxM(p=15)

Varhksin g Vs

N
. ' N L]
L —rkz, cos 3 E

(A7)

At high frequencies, the radiation from the line sources, as derived here,

yield the field in the direction of the diffracted cones(i.e Keller Conef = 4 ).
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