 © U
 ?-ATES

## A. zHacis


Yactronics Enginabimg



For whe Degree cys


# THE EXAMINATION OF NEW EQUIVALENT EDGE CURRENTS IN THE PREDICTION OF HIGH FREQUENCY BACISCATTERING FROM FLAT PLATES 

A THESIS<br>SIBMITTED TO THE DEPARTMENT OF ELECIRICAL AND<br>ELECTRONICS ENGINEERING<br>AND THE INSTITUTE OF ENGINEERING AND SCIENCES<br>OF BILKENTT UNTVERSITY<br>IN PARTIAL FULFILLMENT OF THE REQIIREMENTS<br>FOR THE DEGREE OF<br>MASTER OF SCIENCE

## By

## Taner Oğuzer

September 1991

$$
\frac{\text { Taner Ofuzer }}{\text { tarailidan lus.ing. }}
$$

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.


I certify that I have read this thesis and that in my opinion it is fully adequate. in scope and in quality, ats a thesis for the degree of Master of Science.


I certify that I have read this thesis and that in my opinion it is fully adequate. in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Gülbin Mural

Approved for the Institute of Engineering and Sciences:


Prof. Dr. Mehmet Bray
Director of Institute of Engineering and Sciences

## ABSTRACT

# THE EXAMINATION OF NEW EQUIVALENT EDGE CURRENTS IN THE PREDICTION OF HIGH EREQUENCY BACKSCATTERING FROA FLAT PLATES 

Taner Oğuzer<br>M.S. in Electrical and Electronics Engineering Supervisor: Assoc. Prof. Dr. Ayhan Altmitas; September 1991

Equivalent edge currents based on the geometrical theory of diffraction (GTD) have been utilized for the prediction of electromagnetic scattering from edged bodies. These equivalent currents are use Keller's diffraction coefficient and therefore not valid for arbitrary aspect of observation. More general expessions for equivalent edge currents are later obtained by Michacli. Those expressions become infinite at certain olservation directions. 'These infinities are later chminated by the same author for the fringe component of the equiralent currents by choosing a skew coordinate system on the ball plane to be used for the asymptotic integration.

A similar approach is employed here to eliminate the infinities in the physical optics( PO ) component of the equivalent edge currents. It is also shown that the radiation from the fringe and $P O$ equivalent currents is unique and yields the GTD field.

The fringe and PO equivalent currents are then applied to the backscattering problerns from the perfectly conducting square and triangular plates. The higher order interactions between the edges are also included into the analysis. Some improvements are obtained over the previous solutions.

Keywords: Electromagnetic backscattering, radar cross section, equivalent edge currents.

## ACKN()WLEDGMENT

I would like to express my deep gratitude to Assoc. Prof. Dr. Ayhan Altintas for his suggestions, helps and invaluable guidance during the development of this thesis.

I want to thank to my family for their constant support and to all my friends, especially Atilla Malas, Erkan Savran and Firat Kıloç.

## OZZET

# DÜZLEMSEL PLAKALARDAN GERİ SAÇINIMN HESAPLANMASINDA YENI EŞEĞER IENAR AKIMLARININ FULLANILMASI 

Taner Oğuzer<br>Elektrik ve Elektronik Mühendisligi Bölüniu Yüksek Lisans<br>Tez Yöneticisi: Doç. Dr. Ayhan Altmtas<br>Eylial 1991

Kenarlu cisimlerden yayıan elektromanyetik saçınmm tahmin edilucsi amacyla kmmmm geometrik kuram( $\mathrm{K} G \mathrm{~K}$ ) na dayanan esteger kenar akmant kullamhaktayd. K GK'dan elde edilen bu akmbar bitün gözlem doğruhtularmda gecerli değildi. Daha soma, Michaeli esteger kemar akmlamm daha getel bir roldan elde etti. Fakat bu akmlar pekęok gözlem doğrultusus için sonsuzluklara sahipti. Michacli, eşdeğer kenar akmlarmu artak kism işin bu sonsuzlukları yarı düzlemin üzerinde seçilen eğik bir koordinat sistemi ile yok edebildi.

Bu çalssmada, benzeri bir yaklaşm eşleğer kenar akmlarmm fiziksel optik(FO) kismındaki sonsuzlukları yok edebilmek amacıyla kulianıldı. Ayrica, eşdeğer artık ve FO akımlarmın yaratıı̆̆ı̆ ışımıun K ( K K sonucunu verdiği gözlendi.

Yeni eşdeğer akmlar, mükemmel iletken kare ve üçgen düzlemsel plakalardan geri saçımmm bulunması için kullamldı. Elde edilen sonuşlarn önceki verilerle karşlaş̧ması bazı ilerlemelerin elde edildiğni gösterdi.

Anahtar sözcükler: Elektromanyetik geri saçmm, radar yüzey kesiti, eşdeğer kenar akimları.

## Contents

1 INTRODUCTION ..... 1
2 THE GEOMETRICAL THEORY OF DIFFRACTION ..... 4
2.1 Introduction ..... 4
2.2 Geometrical Theory of Diffraction ..... (
2.3 Uniform (Geometrical Theory of Diftraction ..... 8
3 EQUIVALENT CURRENT METHOD ..... 10
3.1 Introduction ..... 10
3.2 Equivalent Edge Currents For Arbitrary Aspects of Observation ..... 13
3.2.1 Half Plane ..... 16
3.2.2 Fringe Component of Equivalent Edge Currents ..... 17
3.3 Derivation of PO Equivalent Edge Current.s For a Hall Plane ..... 20
3.4 Higher Order Equivalent Currents ..... 24
4 BACK SCATTERING FROM FLAT PLATES ..... 27
4.1 Square Plate ..... 28
4.1.1 E-Polarization ..... 31
4.1.2 H-polarization ..... 32
4.2 Triangular Plate ..... 34
CONTENTS ..... vii
4.2.1 E-Polarization ..... 37
4.2.2 H-Polarization. ..... 41
5 COMPARISON OF THE RESULTS ..... 42
6 CONCLUSIONS ..... 52
A Radiation From The Infinite Line Sources ..... 53

## List of Figures

2.1 An astigmatic ray tube ..... $j$
2.2 Perfectly conducting wodge ..... j
2.3 Cone of Diffracted Rays ..... 7
2.4 Transition Function . ..... 9
3.1 Radiation of Equivalent Currents ..... 11
3.2 Diffraction by an infinite werge ..... 12
3.3 A Perfectly Conducting Flat Surface ..... 14
3.4 Two dimensinal vew at the diffraction point $Q$ ..... 14
3.5 Perfectly conducting half plane ..... 16
3.6 Singularity Coiles ..... 18
3.7 Skew Coordinate System ..... 21
3.8 Edge interactions in a flat plate ..... 25
4.1 Perfectly Conducting Square Plate ..... 29
4.2 Edge Interactions in the Square Plate ..... 33
4.3 Perfectly Conducting Triangular Plate ..... 35
4.4 Edge interactions in the triangular plate ..... 39
5.1 Backscattering from the square plate: H-pol ( $\mathrm{a}=3.12 .5 \lambda$ ) ..... 44
5.2 Backscattering from the square plate: E-pol (a=3.125 ) ..... 45
5.3 Backscattering from triangular plate: E-pol(a=4 $\lambda$, alfa=(j0deg) . ..... 46
5.4 Backscattering from triangular phate: E-pol(a=t $\lambda$, alfa=4sdeg). ..... 47
5.5 Backscatlering from triangular plate: E-pol(a=4 , alfa $=90 \mathrm{deg})$. ..... 48
5.6 Backscattering from triangular plate: E-pol(a=3 3 , alfa=30deg). ..... 49
5.7 Backscattering from triangular plate: H-pol(a=th, alfa=4odeg) ..... 50
5.8 Backscattering from trianguar pate: H-pol(a=9 $=$, alfa=30deg) ..... 51
A. 1 Infinite line sources ..... 53

## Chapter 1

## INTRODUCTION

The electromagnetic scattering is the result of the obstruction of the electromagnetic field by an object. The scattered field is defined as the difference between the field in the presence of the object and the fied that would exist if the object were alosent.

An important parameter in scattering that is widely used in the radar applications is the radar cross section. Raclar cross section of a target is the area intercepting that amount of power which, when scatuered equally in all directions, produces an echo at the radar equal to that from the target. In other words,

$$
\begin{equation*}
\sigma=\lim _{R \rightarrow \infty} 4 \pi R^{2}\left|\frac{E^{s}}{E^{i}}\right|^{2} \tag{1.1}
\end{equation*}
$$

where $R$ is the distance between radar and target. $E^{s}$ and $E^{i}$ are the scattered and the incident field strengths at the observation point. If the scattered field is observed in the incident direction; i.e. the backscattering case, then $\sigma$ is called the monostatic radar cross section.

In theory, the scattered field can be determined by solving Maxwell's equations subject to appropriate boundary conditions. Unfortunately, analytical solutions of Maxwell's equations is limited to only simple shapes. 'Therefore, construction of the integral equations and their numerical solutions became considerably popular. These numerical solutions are generally quite accurate when the objects are not too large with respect to the wavelength.

When the size of the object is large, high frequency ray optical techniques are used for the approximate solution of the scattering problems. The simplest ray optical approach is the geometrical optics (GO), in which the high
frequency electromagnetic field is assumed to propagate along ray paths which satisfy Fermat's principle and the next wavefront of the field can be determined from the preceeding one by tracing rays.

To obtain more accurate high frequency results, an asymptotic high frequency technique which is an extension of GO were developed in 1902 by Keller[1]. It is called the Geometrical Theory of Diffraction (GTD). In Cill), the known exact analytical solution for the problem of scattering from simple shapes, called canonical problems, are analyzed asymptotically for high frequencies. The GO and diffraction ray contributions are then identified from the asymptotic expressions.

On the other hand, it is seen that the ray theory fails around the catistic directions. To correct the scattered field, an Equivalent (urrent Method ( ECM$)[3]$ was developed and applied to the scattering problems in caustic directions. But these equivalent currents use Keller's diffraction coefficient and therefore not valid for arbitray aspect of observation.

More general expressions for equivalent edge currents are later obtaned by Michaeli[5]. Unfortumately, those expressions become infinite at certain observation directions. In a subsequent paper[7]. Michaeli considered these currents as arising separately from physical optics $(\mathrm{P}())$ and fringe components and showed that for the fringe component the infinities can be eliminated by choosing a proper skew coordinate system for the asymptotic integration. However, it was asserted by the same author[8] that the infinities in the PO component cannot be eliminated in a similar way. On the other hand. the PO equivalent edge currents which are free from infinities are obtained by an application of the Stokes' theorem for a finite size flat plate in [6].

In the present study, similar to the approach in [7], the PO equivalent currents are derived for a half plane by using a different selection of the skew coordinate over the surface. Then it is shown that the total radiation from the fringe and PO equivalent currents yields the GTI field. In addition, it is observed that the obtained PO equivalent currents are the same with the ones obtained in [6]. The new fringe and PO equivalent currents are then applied to the backscattering problem from the square and triangular plates. The equivalent currents are also combined with UTD to involve the multiple diffraction mechanisms between the edges into the analysis. Finally, the results are compared with the previous works of Sitka[9], Ross[10] and the measured data[9].

The outline of the thesis is as follows. The GT1) is introduced in chapter 2. In chapter 3, Equivalent Current Method is desrribed. The fringe and PO equivalent current components are derived for a half plase and the computation of higher order diffractions using equivalent currents is explained. In chapter A, the derived equivalent currents with the higher order diffractions are applied to the backscattering from the square and triangular plates. E and H polarization cases are analyzed separately. In chapter 5: the results obtained in chaptor 4 are compared with the previous worli and measured data. Finally, conclusions are given in chapter 6 .

In the analysis, a sinusoidally-varying time dependence $e^{j w t}$ is assumed and suppressed.

## Chapter 2

## THE GEOMETRICAL THEORY OF DIFFRACTION

### 2.1 Introduction

In GO, propagation of fied from one point to another. in an isotropic lussless medium, is determined by using the conservation of coergy flux in a tube of ray as shown in Figure 2.1. The phase of the fied is determined by optical length from a reference point and the phase constant of the medium. Then the GO field,

$$
\begin{equation*}
\mathbf{E}(s)=\mathbf{E}(s=o) e^{-j k \psi(o)} \sqrt{\frac{\rho_{1} \rho_{2}}{\left(\rho_{1}+s\right)\left(\rho_{2}+s\right)}} \tag{2.1}
\end{equation*}
$$

where $\rho_{1}$ and $\rho_{2}$ are the principal radii of curvature of the wavefront at the reference point. $s$ is the distance along the ray path.

A wedge consists of two perfectly conducting half planes intersecting at a straight edge as shown in Figure 2.2. At high frequencies, the total electric field is given by

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}^{i} \mathbf{u}^{i}+\mathbf{E}^{r} \mathbf{u}^{r}+\mathbf{E}^{d} \tag{2.2}
\end{equation*}
$$

In this represention, the source and the field points are sufficiently removed from the wedge surface. $\mathrm{E}^{i}$ is the electric field of the source in the absence of the surface, $\mathbf{E}^{r}$ is the electric field reflected from the illuminated surface with the edge ignored and $\mathrm{E}^{d}$ is the edge diffracted electric field. $\mathrm{E}^{i}$ and $\mathrm{E}^{r}$ are the GO fields and $\mathbf{u}^{i}$ and $\mathbf{u}^{r}$ are the illumination regions determined by GO as follows:


Figure 2.1: An astigmatic ray tube


Figure 2.2: Perfectly conducting wedge

$$
\begin{align*}
& \mathrm{u}^{i}= \begin{cases}1 & 0<\phi<\pi+\phi^{\prime} \\
0 & \pi+\phi^{\prime \prime}<\phi<n \varphi\end{cases}  \tag{2.3}\\
& \mathrm{u}^{r}= \begin{cases}1 & 0<\phi<\pi-\phi^{\prime} \\
0 & \pi-\phi^{\prime}<\phi<n \phi\end{cases} \tag{2.4}
\end{align*}
$$

where $\phi^{\prime}$ and $\phi$ are the incidence and diffraction angles respectively as defined in Figure 2.2.

### 2.2 Geometrical Theory of Diffraction

GTD is based on the following three post ulates;
a) Diffraction like reflection is a local phemonemon at high frequencies.
b) The diffracted ray and the corresponding incident ray make equal angles with the edge at the point of diffraction (See Fig 2.3). Hence the diffracted rays propagate on a cone that is called the Keller Cone. This is the result of the generalized Fermat's principle.
c) Away from the point of diffraction, the diffracted ray's behave like GO rays.

Therefore the edge diffracted fiell away from the elge is given by

$$
\begin{equation*}
\mathbf{E}^{d}(s)=\mathbf{E}^{d}(O) \sqrt{\frac{\rho \rho^{\prime}}{(\rho+s)\left(\rho^{\prime}+s\right)}} \epsilon^{-j k s} \tag{2.5}
\end{equation*}
$$

where $\rho$ and $\rho^{\prime}$ are the principle radii of curvature of the diffracted field wavefront at the reference point $O$. When the reference point becomes at the edge point $Q_{E}$, then the diffracted field is proportional to the field incident at $Q_{E}$.

$$
\begin{equation*}
\lim _{\rho^{\prime} \rightarrow \infty} \overrightarrow{\mathbf{E}}^{d}(O) \sqrt{\rho^{\prime}}=\overrightarrow{\mathbf{E}}^{i}\left(Q_{E}\right) \cdot \overline{\bar{D}} \tag{2.6}
\end{equation*}
$$

where $\overline{\bar{D}}$ is the dyadic edge diffraction coefficient. Then the edge diffracted electric field


Figure 2.3: Cone of Diffracted Rays

$$
\begin{equation*}
\overrightarrow{\mathbf{E}}^{d}(s)=\overrightarrow{\mathbf{E}}^{i}\left(Q_{E}\right) \cdot \overline{\bar{D}} \sqrt{\frac{\rho_{c}}{s\left(s+\rho_{c}\right)}} e^{-j k s} \tag{2.7}
\end{equation*}
$$

in which $\rho_{c}$ is the distance between the caustic at the edge and the caustic of the diffracted ray. For straight edges and plane wave incidence, it becomes that

$$
\begin{equation*}
\overrightarrow{\mathbf{E}}^{d}=\overrightarrow{\mathrm{E}}^{\mathrm{i}}\left(Q_{E}\right) \cdot \overline{\bar{D}} \frac{e^{-j k s}}{\sqrt{s}} \tag{2:8}
\end{equation*}
$$

In a ray fixed coordinate system, $\overline{\bar{D}}$ is a $2 \times 2$ matrix. In this case, the unit vectors $\hat{\phi}$ and $\hat{\phi}$ are prependicular to the plane of incidence and the unit vectors $\hat{\beta}$ and $\hat{\beta}^{\prime}$ are parallel to the plane of incidence and the plane of diffraction respectively. $\hat{s}$ and $\hat{s}^{\prime}$ are the unit vectors in the directions of incidence and diffraction respectively as shown in Figure 2.3. Then, for plane wave incidence, the diffracted field can be written as

$$
\left[\begin{array}{c}
\mathbf{E}_{\dot{j}}^{d}  \tag{2.9}\\
\mathbf{E}_{\phi b}^{d}
\end{array}\right]=-\left[\begin{array}{cc}
D_{\mathrm{s}} & \mathrm{O} \\
\mathrm{O} & D_{\mathrm{h}}
\end{array}\right] \frac{e^{-j k s}}{\sqrt{s}}
$$

where $D_{s}$ and $D_{h}$ are the diffaction coeficients for the soft and hard boundary conditions. They are first obtained by keller for a wedge as

$$
\begin{equation*}
D_{\mathrm{s}}=\frac{e^{-j \pi / 4}}{\sqrt{2 \pi k} \cdot \sin 弓^{\prime}}\left[G^{\prime}\left(\phi-\phi^{\prime}\right) \overline{+} C\left(\phi+\sigma^{\prime}\right)\right] \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
G(\beta)=\frac{1 / n \sin \pi / n}{\cos \pi / n-\cos \beta / n} \tag{2.11}
\end{equation*}
$$

and n is the measure of the wedge angle as in Figure 2.2.

### 2.3 Uniform Geometrical Theory of Diffraction

GO fields show a sharp discontinuity at the incident and reftection bound aries. Unfortunately, Keller's diffraction coefficients predict infinite values at the shadow boundaries(See Figure 2.2). Therefore the diffracted fied must Jo modified to make the total field smooth and continuons. In UTl). uniform diffraction coeflicients are obtained ats [2]

$$
\begin{equation*}
D_{\mathrm{h}}=D\left(L, \beta^{-}, n\right) \overline{+} D\left(L, \beta^{+}, n\right) \tag{2.12}
\end{equation*}
$$

where
$D(L, \beta, n)=-\frac{e^{-j \pi / 4}}{2 n \sqrt{2 \pi k} \sin \beta}\left[\cot \left(\frac{\pi+\beta}{2 n}\right) \mathrm{F}\left[k L a^{+}(\beta)\right]+\cot \left(\frac{\pi-\beta}{2 n}\right) \mathrm{F}\left[k L a^{-}(\beta)\right]\right]$
and $\mathrm{F}(\mathrm{x})$ is the transition function which has a Fresnel integral as follows

$$
\begin{equation*}
\mathbf{F}(x)=2 j \sqrt{x} e^{j x} \int_{\sqrt{x}}^{\infty} e^{-j \tau^{2}} d \tau \tag{2.14}
\end{equation*}
$$



Figure 2.4: Transition Function
The magnitude and phase variations of the transition function are shown in Figure 2.4. The parameters $a^{\ddagger}(\beta)$ are determined as follow:

$$
\begin{equation*}
a^{ \pm}(\beta)=2 \cos ^{2}\left(\frac{2 n \pi N^{ \pm}-\beta}{2}\right) \tag{2.15}
\end{equation*}
$$

where $N^{\ddagger}$ are the integers which most nearly satisty the following equations:

$$
\begin{gather*}
2 \pi n N^{+}-\beta=\pi  \tag{2.16}\\
2 \pi n N^{-}-\beta=-\pi \tag{2.17}
\end{gather*}
$$

with $\beta^{ \pm}=\phi \pm \phi^{\prime}$ and $L=s \sin ^{2} \beta$ for plane wave incidence.
More details of UTD and diffraction coefficients are explained in [2].

## Chapter 3

## EQUIVALENT CURRENT METHOD

### 3.1 Introduction

In contrast to diffraction by straight edges, edge dififacted liefds from three dimensional objects may have canstics. It is known that (ild or its modifications fail around the directions of ray caustics. To overcome this failure of ray theory, an Equivalent Current Method(ECMj) incorporated with the (GSD) was proposed by Ryan and Peters in 1969[3].

The idea of equivalent current concept consists of determining the equivalent electric and magnetic type currents flowing aloug the edge: of a wedge which produce the actual diffracted field of the wedge when radiate in the absence of the wedge. Then, the edge diffracted field for an arbitrary satterer can be found by the following radiation integral. (See Figure 3.1)

$$
\begin{equation*}
\overrightarrow{\mathbf{E}}^{s}=\frac{j k Z}{4 \pi} \frac{e^{-j k R}}{R} \int_{C}[\hat{R} \times \hat{R} \times \hat{\mathrm{I}}+Y \hat{R} \times \hat{\mathrm{M}}] \epsilon^{j k \hat{R} \cdot \mathbf{r}^{\prime}} d l \tag{3.1}
\end{equation*}
$$

where I and $M$ are the equivalent electric and magnetic type currents in the place of the diffracting edge of the scatterer. $Z$ and $Y$ are the impedance and admittance of free space. $C$, as in Figure 3.1, represents the contour along the edge of the scatterer. $\hat{R}$ is the unit vector in the direction of observation.

Away from the caustic regions, the above integral is evaluated using stationary phase arguments. The stationary phase points are the diffraction points and the value of the expression in(3.1) should give the diffracted fields as calculated by the GTD.

By comparing the stationary value of the integral with the G'JD fields, one


Figure 3.1: Radiation of Equivalent Currents
obtairis the equivalent currents as

$$
\begin{align*}
& \mathrm{I}=-Y \sqrt{\frac{\beta \pi}{k}} e^{-j \pi / 4} D_{\mathrm{s}} \frac{E_{\tan }^{i} \hat{\sin \beta_{o}} \hat{t}}{\mathrm{M}}=-Z \sqrt{\frac{\beta \pi}{k}} \epsilon^{-j \pi / 4} D_{\mathbf{h}} \frac{H_{\tan }^{i}}{\sin \rho_{o}} \hat{t} \tag{3.2}
\end{align*}
$$

where $E_{t a n}^{i}$ and $H_{\text {an }}^{i}$ are the incident electric and magnetic fields tangential to the edge at the diffraction point and $\hat{t}$ is the unit vector along the edge. $D_{\mathrm{s}}$ and $D_{\mathrm{h}}$ are the soft and hard diffraction coefficients. $\beta_{o}$ is the oblique incident angle as shown in Figure 3.2.

Since these equivalent currents are derived from the GTD fields, they are only valid on the Keller Cone $\left(\beta=\beta_{0}\right)$. As a consequence of this restriction, equivalent currents cannot be used for arbitrary direction of observation. Therefore to extend applicability of equivalent currents to include the directions which are not on the Keller Cone, an arbitrary diffraction angle $\beta$ is needed as well as the incident angle $\beta_{0}$ in the expressions of the equivalent currents.(Sce Figure 3.2)

For this purpose, Knott and Senior[4], on the basis of reciprocity cousiderations, proposed the following replacement

$$
\begin{equation*}
\sin B_{0}=\sqrt{\sin \beta \sin \beta_{0}} \tag{3.4}
\end{equation*}
$$



Figure 3.2: Diffraction by an infinite wedge
and accordingly, they modified the equivalent edge currents as follows:

$$
\begin{align*}
\mathrm{I} & =-Y \sqrt{\frac{8 \pi}{k}} \frac{e^{-j \pi / 4}}{\sqrt{\sin \beta \sin \beta_{o}}} D_{\mathrm{s}} E_{\tan }^{i} \hat{l}  \tag{3.5}\\
\mathrm{M} & =-Z \sqrt{\frac{8 \pi}{k}} \frac{e^{-j \pi / 4}}{\sqrt{\sin \beta \sin \beta_{o}}} D_{\mathrm{h}} H_{t a n}^{i} \hat{t} \tag{3.6}
\end{align*}
$$

Although these expressions are consistent with the reciprocity principle, their derivation is not based on mathematical grounds.

To obtain the equivalent edge currents for arbitrary direction of observation, a new approach is suggested by Michaeli[5]. He proposed that the equivalent current expressions can be derived from the asymptotic integration of surface currents. This new asymptotic method is explained in the next section.

### 3.2 Equivalent Edge Currents For Arbitrary Aspects of Observation

Consider a perfectly conducting flat surface $S$ on the xy-plane with an odge (: as shown in Figure 3.3. At any point on the edge, the unit vector $\hat{l}$ is tangent. to the edge, $\hat{n}$ is normal to the surface, and the linormal unit vector is given by

$$
\begin{equation*}
\hat{b}=\hat{n} \times \hat{l} \tag{3.7}
\end{equation*}
$$

The angles $\phi, \dot{\phi}^{\prime}, \beta$ and $\beta^{\prime}$ are measured as s!owis in ligures 3.3 and 3.4. $R$ is the distance to the observation point measured from the origin at the coordinate system. $\hat{s}^{\prime}$ and $\hat{s}$ are the unit vectors for incident and observation directions. The far scattered field from this struciure is given with the following radiation integral.

$$
\begin{equation*}
\hat{\mathbf{E}}^{s}=\frac{j k Z}{4 \pi} \frac{e^{-j k R}}{R} \hat{s} \times \hat{s} \times \iint_{S} \hat{j}_{T}(x, y) c^{j\left(k_{r x}+k_{y}, y\right)} d, s \tag{3.5}
\end{equation*}
$$

where $Z$ is the intrinsic impedance, $k$ is (he wavenumber and $\hat{f}_{T}(x . y)$ is the total induced current on the conducting surface. In addition, $k_{x}$ and $k_{y}$ are given by

$$
\begin{align*}
& k_{x}=k \hat{s} \cdot \hat{x}  \tag{3.9}\\
& k_{y}=k \hat{s} \cdot \hat{y} \tag{3.10}
\end{align*}
$$

If the field point is not on a caustic of reflected field, then in the limit, $k \rightarrow \infty$, the surface radiation integral can be reduced asymptotically to a sum of field contributions from an interior stationary point on $S$ and a boundary contribution expressed by a line integral C. The former gives the reffected field and the latter should represent the edge diffracted field.

Then, the edge diffracted field in $(\mathrm{t}, \mathrm{b})$ coordinate system is given by

$$
\begin{equation*}
\hat{E}^{d}=\frac{j k Z}{4 \pi} \frac{e^{-j k R}}{R} \hat{s} \times \hat{s} \times \int_{C} \int_{0} \hat{J}_{T}(t, b) e^{j k(b \hat{b} \cdot \hat{s}+t \hat{t} \cdot \hat{s})} d b d t \tag{3.11}
\end{equation*}
$$

where " 0 " denotes the asymptotic end-point contribution at $b=0$.


Figure 3.3: A Perfectly Conducting Flat Surface


Figure 3.4: Two dimensinal view at the diffraction point $Q$

$$
\begin{equation*}
\vec{K}(t)=\int_{0} \hat{J}_{T}(t, b) e^{j k b \hat{b} \cdot \hat{s}} d b \tag{3.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{E}^{d}=\frac{j k Z}{4 \pi} \frac{e^{-j k R}}{R} \hat{s} \times \hat{s} \times \int_{Q} \vec{F}(t) e^{j k t i \cdot \hat{s}} d t \tag{3.13}
\end{equation*}
$$

The edge diffracted field can also be expressed as due to the equivalent edge currents along the edge

$$
\begin{equation*}
\hat{E}^{h i}=\frac{j k Z}{4 \pi} \frac{e^{-j k R}}{R} \int_{C}[\hat{s} \times \hat{s} \times \hat{i}+\hat{\xi} \hat{s} \times \hat{i} \mathrm{M}] e^{j k t \hat{s} \cdot \hat{s}} d t \tag{3.14}
\end{equation*}
$$

Equating the two integrands, we have

$$
\begin{equation*}
Z \hat{s} \times \hat{s} \times \vec{k}=Z \mathbf{I} \hat{s} \times \hat{s} \times \hat{l}+\mathbf{M} \hat{s} \times \hat{l} \tag{3.15}
\end{equation*}
$$

Dot multiplying both sides of the equations with $\hat{s} \times \hat{t}$ and $\hat{s} \times \hat{s} \times \hat{t}$,

$$
\begin{gather*}
\mathbf{I}=\frac{1}{\sin ^{2} \beta} \hat{s} \cdot[(\hat{l} \times \hat{s}) \times \vec{k}]  \tag{3.16}\\
\mathrm{M}=\frac{Z}{\sin ^{2} \beta} \hat{l} \cdot(\hat{s} \times \vec{k}) \tag{3.17}
\end{gather*}
$$

are obtained.
Finally, by using

$$
\begin{equation*}
\hat{s}=\hat{t} \cos \beta+\hat{b} \sin \beta \cos \phi+\hat{n} \sin \beta \sin \phi \tag{3.18}
\end{equation*}
$$

expressions change to

$$
\begin{gather*}
\mathrm{I}=K_{t}^{\prime}-K_{b} \cot \beta \cos \phi  \tag{3.19}\\
\mathrm{M}=-Z \frac{\sin \phi}{\sin \beta} K_{b} \tag{3.20}
\end{gather*}
$$

where $K_{t}$ and $K_{b}$ are the tangential and binormal components of the vector $\vec{K}$.

### 3.2.1 Half Plane

Let a perfectly conducting half plane is illuminated by a plane wave as shown in Figure 3.4.


Figure 3.5: Perfectly conducting half plane
The local edge unit vectors are given by $\hat{n}=\hat{y}, \hat{b}=\hat{x}$ and $\hat{t}=\hat{z}$. $\phi, \phi^{\prime}, \beta$ and $\beta^{\prime}$ are the same as shown in Figures 3.3 and 3.4.

If the incident field is given by

$$
\begin{gather*}
\vec{E}^{i}=\left(\hat{\beta}^{\prime}+\hat{\phi}^{\prime}\right) e^{j k\left(x \sin \beta^{\prime} \cos \phi^{\prime}+y \sin \beta^{\prime} \sin \phi^{\prime}-z \cos \beta^{\prime}\right)}  \tag{3.21}\\
\vec{H}^{i}=Y^{\prime} \hat{s}^{\prime} \times \vec{E}^{i} \tag{3.22}
\end{gather*}
$$

Using UTD, the total magnetic field is given by

$$
\begin{equation*}
\vec{H}_{T}=\vec{H}_{G O}+\vec{H}_{U T D}^{d} \tag{3.23}
\end{equation*}
$$

Then the total surface current density is found from

$$
\begin{equation*}
\vec{J}_{T}=\hat{n} \times\left[\vec{H}_{T}(\phi=0)-\vec{H}_{T}(\phi=2 \pi)\right] \tag{3.24}
\end{equation*}
$$

which can be decomposed as

$$
\begin{equation*}
\vec{J}_{T}=\left(J_{x}^{C O}+J_{x}^{f}\right) \hat{x}+\left(J_{z}^{G O}+J_{\tilde{F}}^{f}\right) \hat{\tilde{x}} \tag{3.25}
\end{equation*}
$$

where

$$
\begin{align*}
J_{x^{\prime}}^{G O}= & 2 Y \sin \beta^{\prime} e^{-j k z \cos \beta^{\prime}} e^{-j k x \sin \beta^{\prime} \cos \phi^{\prime}}  \tag{3.26}\\
J_{z^{\prime}}^{G O} & =-2 Y^{\prime} \cos \phi^{\prime} \cos \beta^{\prime} \epsilon^{j k x \sin \beta^{\prime} \cos q^{\prime}} \\
& +2 Y \sin \phi^{\prime} e^{j k r \sin \beta^{\prime} \cos \phi^{\prime}} e^{-j k z \cos \beta^{\prime}} \tag{3.27}
\end{align*}
$$

and

$$
\begin{equation*}
J_{s}^{f}=-Y 4 \sin \beta^{\prime} \frac{e^{j \pi / 1}}{\sqrt{\pi}} e^{-j k z \cos \beta^{\prime}} \epsilon^{j k x \sin \beta^{\prime} \cos \phi^{\prime}} \int_{\sqrt{2 k s \sin \beta^{\prime}}}^{\infty} e^{-j \tau^{2}} d \tau \tag{3.28}
\end{equation*}
$$

$$
J_{z}^{j}=4 Y^{\frac{j \pi / 4}{\sqrt{\pi}}} \cos \beta^{\prime} \cos \phi^{\prime} e^{j k v \sin \beta^{\prime} \cos \phi \phi^{\prime}} e^{-j k=\cos \beta^{\prime}} \int_{\sqrt{2 k 2 \sin \xi^{\prime}}}^{\infty} c^{-j \tau^{2}} d \tau
$$

$$
+--4)^{\prime} \sin \phi^{c^{j}} \frac{c^{j \pi / 4}}{\sqrt{\pi}} e^{j k x \sin \beta^{\prime} \cos \phi^{\prime}} e^{-j k z \cos \beta^{\prime}} \int_{\sqrt{2 k x \sin \beta^{\prime}}}^{\infty} e^{--r^{2}} d \tau
$$

$$
+2 Y^{\prime} c^{-j \pi / 4} \sqrt{\frac{2}{k x \pi \sin \beta^{\prime}}} \cos \beta^{\prime} \cos \phi / 2 c^{-j k x \sin j^{\prime}} e^{-j k x \cos 弓^{\prime}}
$$

$$
\begin{equation*}
+2 Y_{c}^{-j \pi / 4} \sqrt{\frac{2}{k x \pi \sin \beta^{\prime}}} \sin \phi / 2 c^{-j k x \cdot \sin g^{\prime}} e^{-j k z \cos , \beta^{\prime}} \tag{3.29}
\end{equation*}
$$

$J^{G O}$ is the geometrical optics approximation to the current density and $J^{f}$ is the fringe or "non-uniform" component as uamed by Ufintsev. We will examine the radiation of each component scparately.

### 3.2.2 Fringe Component of Equivalent Edge Currents

The derivation of the fringe component of the cquivalent edge currents requires the asymptotic end-point evaluation of the following integral.

$$
\begin{equation*}
\vec{K}^{f}(z)=\int_{0} \vec{J}^{f}(x, z) e^{j k x \dot{x} \cdot s} d x \tag{3.30}
\end{equation*}
$$

Fringe current $\vec{J}^{\prime}(r, z)$ can not be represented near the edge $(x=0)$ in a simple amplitude-phase form. However, away from the edge, GTI gives a phase as $-k x \hat{x} \cdot \hat{\sigma}$. This phase describes, $\vec{J}^{\prime}(x, z)$ as a wave propogating in the $\hat{\sigma}$ direction which is the direction of diffracted rays at the intersection of Keller cone with the half plane. Thus if it is assumed that the ray behavour of the fringe surface field is valid up to very close edge, then the integral in (3.31) becomes infinite, if the following condition holds

$$
\begin{equation*}
\hat{s} \cdot \hat{x}=\hat{\sigma} \cdot \hat{x} \tag{3.31}
\end{equation*}
$$

In other words, the singularity condition is satified when the phase of $\vec{J}^{\prime}(x, z)$ cancels the phase of the exponent in the integral. This singularity condition represents a cone around the $x$-axis as shown in Figure 3.6. With this argument, Michaeli[ $[7]$ stated that these expected singularities can be reduced to a single direction by choosing a proper skew coordinate system. Therefore $\sigma$ and $z$ coordinates arc selected instead of the cartesian coordinates $x$ and $z$ with the following relations.

$$
\begin{gather*}
x=\sigma \sin \beta^{\prime}  \tag{3.32}\\
z=z+\sigma \sin \beta^{\prime} \tag{3.33}
\end{gather*}
$$



Figure 3.6: Singularity Cones

Using the new coordinates, the integration becomes

$$
\begin{equation*}
\vec{K}^{f}(z)=\sin \beta^{\prime} \int_{0} \vec{J}^{\prime}\left(\sigma \sin \beta^{\prime}: z+\sigma \cos \beta^{\prime}\right) e^{j k \sigma \hat{\sigma}^{-x}} d \sigma \tag{3.34}
\end{equation*}
$$

By substituting the $\vec{K}^{f}(z)$ into the equations (3.19) and (3.20). this yields the following fringe current components.

$$
\begin{gather*}
\mathbf{I}^{J}=Y E_{t a n}^{i} d_{s}^{j}+H_{t a n}^{i} d_{2}^{f}  \tag{3.35}\\
\mathbf{M}^{j}=Z H_{t a n}^{i} d_{h}^{f} \tag{3.36}
\end{gather*}
$$

The variables $d_{s}^{f}, d_{2}^{f}$ and $d_{1}^{f}$ are defined by

$$
\begin{gather*}
d_{s}^{f}=\frac{-2 \sqrt{2}}{j k} \frac{\sin \phi^{\prime} / 2\left(\sqrt{F\left(\beta^{\prime}, \beta, \phi^{\prime}\right)}-\sqrt{2} \sin \beta^{\prime} \cos \phi^{\prime} / 2\right)}{\sin \beta^{\prime} C^{\prime}\left(\beta^{\prime}, \beta^{\prime}, \phi^{\prime}, \phi^{\prime}\right)}  \tag{3.37}\\
d_{2}^{f}=\frac{2}{j k} \frac{\sin \beta^{\prime}\left(\cot \beta \cos \phi+\cot \beta^{\prime} \cos \phi^{\prime}+\cos \phi^{\prime} / 2 \sqrt{\frac{2}{F\left(\beta^{\prime}, \beta, \phi\right)}} H\left(\beta^{\prime}, \beta, \phi\right)\right)}{G\left(\beta^{\prime}, \beta^{\prime}, \phi^{\prime}, \phi^{\prime}\right)}  \tag{3.38}\\
d_{h}^{f}=\frac{-2}{j k} \frac{\sin \beta^{\prime} \sin \phi\left(1-\sin \beta^{\prime} \cos \phi^{\prime} / 2 \sqrt{\frac{2}{F\left(\beta^{\prime}, \beta, \beta^{\prime}\right)}}\right)}{\sin \beta C i\left(\beta^{\prime}, \beta, \phi^{\prime}, \phi\right)} \tag{3.39}
\end{gather*}
$$

where

$$
\begin{align*}
F\left(\beta^{\prime}, \beta, \phi\right) & =\sin \beta^{\prime}\left(\sin \beta^{\prime}-\sin \beta \cos \phi\right) \\
& -\cos \beta^{\prime}\left(\cos \beta-\cos \beta^{\prime}\right)  \tag{3.40}\\
G\left(\beta^{\prime}, \beta, \phi^{\prime}, \phi\right) & =\sin \beta^{\prime}\left(\sin \beta \cos \phi+\sin \beta^{\prime} \cos \phi^{\prime}\right) \\
& +\cos \beta^{\prime}\left(\cos \beta-\cos \beta^{\prime}\right)  \tag{3.41}\\
H\left(\beta^{\prime}, \beta, \phi\right) & =\cot \beta^{\prime}\left[\sin \beta \cos \phi+\cot \beta^{\prime}\left(\cos \beta-\cos \beta^{\prime}\right)\right] \\
& -\sin \beta^{\prime} \cot \beta \cos \phi \tag{3.42}
\end{align*}
$$

The resulting equivalent fringe current expressions are finite for all aspects of illumination and observation except for the case $\hat{s}=\hat{s}^{\prime}=\hat{\sigma}$. In addition, there is an integrable singularity at $\hat{s}=\hat{\sigma}$ direction is expected.

### 3.3 Derivation of PO Equivalent Edge Currents For a Half Plane

In the following end-point evaluation

$$
\begin{equation*}
\vec{K}^{P O}(z)=\int_{0} \vec{J}_{G O}(x ; z) e^{j k x \vec{x}} d x \tag{3.43}
\end{equation*}
$$

The phase of $\vec{j}_{c o}(x, z)$ is $-k x \hat{x} \cdot \hat{s}^{\prime}$. Hence, the singularity condition of the integral becomes

$$
\begin{equation*}
\hat{x} \cdot \hat{s}=\hat{x} \cdot \hat{s}^{\prime} \tag{3.44}
\end{equation*}
$$

The replacement of $\hat{x}$-direction by the $\hat{\sigma}$-direction for the integration as in the case for fringe currents does not have similar effect on the P() components. Because, such a step merely replaces the cone of singular $\hat{0}$-directions, by auother cone, defined by $\hat{s} \cdot \hat{\sigma}=\hat{s}^{\prime}$. $\hat{\sigma}$ and only for grazing incidence, $\hat{\sigma}=\hat{s}^{\prime}$, does the latter collapse into a single direction, $\hat{s}=\hat{\sigma}$. However, the above argument. assumes a skew coordinate direction fixed by the incidence angle for all observation directions. In fact, for equivalent currents there is no need for such a restriction, the skew coordinate direction may be determined by both the incident and observation directions ( $\hat{s}^{\prime}$ and $\hat{s}$ ). So, for each observation direction, the skew coordinate direction on the surface of the half plane is determined separately.

To apply this approach, we will again use the $(\sigma, z)$ skew coordinate system as shown in Figure 3.7 with an arbitrary skewness angle $\theta$ as follows

$$
\begin{gather*}
x=\sigma \sin \theta  \tag{3.4:5}\\
z=z+\sigma \cos \theta \tag{3.46}
\end{gather*}
$$

Then the following end-point contribution


Figure 3.7: Skew Coordinate System

$$
\begin{equation*}
\vec{K}^{P O}(z)=\sin \theta \int_{0} \vec{J}_{G O}(\sigma \sin \theta, z+\sigma \cos \theta) e^{j k \sigma \hat{\sigma} \cdot \hat{s}} d \sigma \tag{3.47}
\end{equation*}
$$

is evaluated as

$$
\begin{gather*}
K_{x}^{P O}=2 Y \sin \beta^{\prime}-\frac{\sin \theta}{j k\left[\left(\sin \beta^{\prime} \cos \phi^{\prime}+\sin \beta \cos \phi\right) \sin \theta+\cos \theta\left(\cos \beta-\cos \beta^{\prime}\right)\right]}  \tag{3.48}\\
K_{z}^{P O}=-\frac{2 Y \cos \phi^{\prime} \cos \beta^{\prime} \sin \theta}{\left[\left(\sin \beta^{\prime} \cos \phi^{\prime}+\sin \beta \cos \phi\right) \sin \theta+\cos \theta\left(\cos \beta-\cos \beta^{\prime}\right)\right]} \\
\quad+\frac{2 Y \sin \phi^{\prime} \sin \theta}{\left[\left(\sin \beta^{\prime} \cos \phi^{\prime}+\sin \beta \cos \phi\right) \sin \theta+\cos \theta\left(\cos \beta-\cos \beta^{\prime}\right)\right]} \tag{3.49}
\end{gather*}
$$

The PO equivalent edge currents are then obtained

$$
\begin{aligned}
\mathrm{I}^{P O} & =-\frac{2 Y}{j k} E_{z}^{i} \frac{\sin \phi^{\prime} \sin \theta}{\sin \beta^{\prime}\left[\left(\sin \beta^{\prime} \cos \phi^{\prime}+\sin \beta \cos \phi\right) \sin \theta+\cos \theta\left(\cos \beta-\cos \beta^{\prime}\right)\right]} \\
& \left.+\frac{2}{j k} H_{z}^{i} \sin \theta \frac{\cot \beta^{\prime} \cos \phi^{\prime}+\cot \beta \cos \phi}{\left[\left(\sin \beta^{\prime} \cos \phi^{\prime}+\sin \beta \cos \phi\right) \sin \theta+\cos \theta\left(\cos \beta-\cos \beta^{\prime}\right)\right]}{ }^{( } 50\right)
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{M}^{P^{O}}=\frac{2 Z}{j k} I_{z}^{i} \frac{\sin \phi \sin \theta}{\sin \beta\left[\left(\sin \beta^{\prime} \cos \phi^{\prime}+\sin \beta \cos \phi\right) \sin \theta+\cos \theta\left(\cos \beta-\cos \beta^{\prime}\right)\right]} \tag{3.51}
\end{equation*}
$$

It is seen that, these expressions are the function of the skewness angle 0 . Hence they are nonunique.

Let

$$
\begin{gather*}
\mathrm{I}=\mathrm{I}^{f}+\mathrm{I}^{P O}  \tag{3.52}\\
\mathrm{M}=\mathrm{M}^{f}+\mathrm{M}^{P O}
\end{gather*}
$$

To find the radiation from the equivalent line currents I and M , we need to the expressions for the equivalent currents at $\beta=\beta$ direction(See Appendix A). For that reason, it is observed that

$$
\begin{gather*}
\mathbf{I}^{f}\left(\beta=\beta^{\prime}\right)+\mathbf{I}^{P O}\left(\beta=\beta^{\prime}\right)=\mathbf{I}_{(G T l)}  \tag{3.54}\\
\mathbf{M}^{f}\left(\beta=\beta^{\prime}\right)+\mathbf{M}^{P O}\left(\beta=\beta^{\prime}\right)=\mathrm{M}_{(i T l} \tag{3.55}
\end{gather*}
$$

This means that, the radiated electric field from the fringe and P() equivalent currents is independent from the arbitrary skewness angle $\theta$ and it exactly yields the GTD field.

On the other hand, the selection of $\theta$ represents the singularity map of the PO equivalent currents. At $\beta=\beta^{\prime}$, the PO equivalent currents reduce to the following ones.

$$
\begin{gather*}
\mathbf{I}^{P O}\left(\beta=\beta^{\prime}\right)=\frac{2 Y}{j k} E_{z}^{i} \frac{\sin \phi^{\prime}}{\sin ^{2} \beta\left(\cos \phi+\cos \phi^{\prime}\right)}+\frac{2}{j k} H_{z}^{i} \frac{\cot \beta}{\sin \beta}  \tag{3.56}\\
\mathrm{M}^{P O}\left(\beta=\beta^{\prime}\right)=\frac{2}{j k Y} H_{z}^{i} \frac{\sin \phi}{\sin ^{2} \beta\left(\cos \phi+\cos \phi^{\prime}\right)} \tag{3.57}
\end{gather*}
$$

These expressions are only singular at the incideni and reflected transition regions. But the P() equivalent currents may have additional singularities depending on the selection of 0 .

Accordingly, depending on both the incident and the observation directions if we choose the skewness angle 0 as follows

$$
\begin{equation*}
\cot \theta=\frac{\cos \beta-\cos \beta^{\prime}}{\sin \beta^{\prime} \cos \phi^{\prime}+\sin \beta \cos \phi} \tag{3.58}
\end{equation*}
$$

Then $P()$ equivalent currents become

$$
\begin{align*}
\mathrm{I}^{P O}= & -\frac{2\}}{j k} E_{z}^{i} \frac{\sin \phi^{\prime}\left(\sin \beta \cos \phi+\sin \beta^{\prime} \cos \phi^{\prime}\right)}{\sin \beta^{\prime}\left[\left(\cos \beta--\cos \beta^{\prime}\right)^{2}+\left(\sin \beta \cos \phi^{\prime}+\sin \beta^{\prime} \cos \phi^{\prime}\right)^{2}\right]} \\
& +\frac{2}{j k} H^{i} \frac{\sin \phi\left(\sin \beta \cos \phi+\sin \beta^{\prime} \cos \phi^{\prime}\right)}{\left[\left(\cos \beta-\cos \beta^{\prime}\right)^{2}+\left(\sin \beta \cos \phi^{\prime}+\sin \beta^{\prime} \cos \phi^{\prime}\right)^{2}\right]}  \tag{3.59}\\
\mathrm{M}^{P O} & =\frac{2 Z}{j k} H_{=}^{i} \frac{\sin \phi\left(\sin \beta \cos \phi+\sin \beta^{\prime} \cos \phi^{\prime}\right)}{\left[\left(\cos \beta-\cos \beta^{\prime}\right)^{2}+\left(\sin \beta \cos \phi+\sin \beta^{\prime} \cos \phi^{\prime}\right)^{2}\right]} \tag{3.60}
\end{align*}
$$

It is noted that the equivalent current expressions given in (3.99) and (3.60) are the same as the ones in [6] where they are detemined for a finite size plate by an application of Stokes' theorem.

When the singularities are examined, the following conditions are obtainel.

$$
\begin{equation*}
\phi \overline{+} \phi^{\prime}=\pi \tag{3.61}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\beta^{\prime} \tag{3.62}
\end{equation*}
$$

This represents the incident and reflected shadow boundaries on the Keller Cone and we see that, the singular directions are not expanded by this selection of $\theta$.

Physically, the direction of skew coordinate $\hat{\sigma}$ in this case is the direction of the projeciion of $\left(\hat{s}-\hat{s}^{\prime}\right)$ vector onto the half-plane. It is a function of both $\hat{s}^{\prime}$ and $\hat{s}$, as described earlier. The natural question to ask at this point is what happens when $\left(\hat{s}-\hat{s}^{\prime}\right)$ vector has zero projection on the half-plane; in other
words, when $\left(\hat{s}-\hat{s}^{\prime}\right)$ has only nomal component to the half plane surface. In this case, the above definition of $\hat{\sigma}$ fails. However, a close examination reveals that when $\left(\hat{s}-\hat{s}^{\prime}\right)$ vector bas only normal component to the haff-plane, the observation direction is either on the incident boundary ( $\hat{s}=\hat{s}^{\prime}$ ) or on the shadow boundary of the Keller (bone. Both of these cases correspond to directions for which the fiedd is non ray-optical and the equivalent current concept is not valid.

### 3.4 Higher Order Equivalent Currents

When a perfectly conducting flat plate is illuminated by a plane wave, the fringe and PO equivalent currents due to the first order diffraction will be excited on the edges. The radiation from these currents yields the single edge diffracted fields. But to obtain more accurate results, it may be neccesary to include the multiple diffractions between the edges. Therefore, equivalent curreut method can be modified to include the higher order interactions. Accordingly, the fields of the multiple diffracted rays between the plate edges are computed by constructing the corresponding equivalent edge currents and using them to compute the far scattered field. This procedure provide us to obtain the contribution of the higher order diffractions to the total far scatered field.

Consider a perfectly conducting flat plate which is illuminated by a plane wave as in Figure 3.7.

It is known that the diffracted fields from a point on the edge is given by UTD as follows

$$
\begin{gather*}
{\left[\begin{array}{c}
E_{\beta}^{d} \\
E_{\phi}^{d}
\end{array}\right]=-\left[\begin{array}{ll}
D_{s} & 0 \\
0 & D_{\mathrm{h}}
\end{array}\right]\left[\begin{array}{c}
E_{\beta}^{i} \\
E_{\phi}^{i}
\end{array}\right]}  \tag{3.6:3}\\
D_{\mathrm{S}}=-\frac{e^{-j \pi / 4}}{\sqrt{2 \pi k} \sin \beta}\left[\frac{\mathrm{~F}\left[k L a\left(\phi-\phi^{\prime}\right)\right]}{\cos \frac{\phi^{\prime}-\phi^{\prime}}{2}}+\frac{\mathrm{F}\left[k L a\left(\phi+\phi^{\prime}\right)\right]}{\cos \frac{\phi+\phi^{\prime}}{2}}\right] \tag{3.64}
\end{gather*}
$$

where

$$
\begin{equation*}
a(\beta)=2 \cos ^{2}(\beta / 2) \tag{3.65}
\end{equation*}
$$



Figure 3.8: Edge interactions in a flat plate
and

$$
\begin{equation*}
L=\rho \sin ^{2} \beta \tag{3.66}
\end{equation*}
$$

with the $(3, \phi)$ coordinate system which is defined at the diffraction point.
On the other hand, it is assumed that the diffracted field from the second edge is almost a plane wave when it illuminates the fifth edge. The diffracted rays from the edge 2 are incident to the edge 5 with the following tangential fields.

$$
\begin{align*}
E_{t a n}^{i}(\text { at edge: }) & =\hat{l}_{5} \cdot \vec{E}^{d} \\
& =\mathrm{O} \tag{3.67}
\end{align*}
$$

$$
\begin{equation*}
H_{t a n}^{i}(\text { at edgc } 5)=\hat{l}_{5} \cdot \vec{H}^{d} \tag{3.68}
\end{equation*}
$$

Then the equivalent edge currents at edge 5 due to double diffraction is given by

$$
\begin{align*}
& \mathbf{I}_{5}^{2}=\mathbf{I}_{f}^{2}\left(H_{t a n}^{i}(\text { al edge } 5), \beta^{\prime}, \beta^{\prime}, \phi, \phi^{\prime}\right)+\mathbf{I}_{P \mathcal{O}}^{2}\left(H_{t a n}^{i}(\text { at vdgé5 }), \beta^{\prime}, \beta^{\prime}, \phi, \phi^{\prime}\right)  \tag{3.69}\\
& \mathrm{M}_{5}^{2}=\mathrm{M}_{f}^{2}\left(H_{t a n}^{i}(\text { at cdyc } 5), \beta, \beta^{\prime}, \dot{o}^{\prime}, \phi^{\prime}\right)+\mathrm{M}_{P O}^{2}\left(H_{t a n}^{i}(\text { ut cdyct }), \beta^{\prime}, 3^{i}, o, \sigma^{\prime}\right) \tag{3.70}
\end{align*}
$$

The radiated electric field from these equivalent currents.

$$
\begin{equation*}
\vec{E}=\frac{j k Z}{4 \pi} \frac{\epsilon^{-j k R}}{R} \int_{a}^{l}\left[\hat{R} \times \hat{R} \times \vec{I}_{5}^{2}+Y \hat{R} \times \vec{M}_{\overline{5}}^{2}\right] \epsilon^{j k_{x} \cdot \omega} \epsilon^{j k_{z}=} d l \tag{3.71}
\end{equation*}
$$

where $\hat{l}$ is the observation direction and $k_{x}=k \hat{R} \cdot \hat{x}, k_{y}=k \hat{R} \cdot \hat{y}$. In thenotation of the higher order currents $I_{q}^{n}, 11$ represents the order of the diffraction and af shows the number of the edge that equivalent currents exist.

In the analysis of higher order diffractions one has to consider the shadowing effect of the surface diffracted rays. Since this canses to the illumination regions. In the radiation integral, a and $b$ represent the limits of the illumination region on edge 5. It is dependent to the incident wave direction. polarization and the geometry of the plate. If the similar integral is repeated for each straight part of the edge by defining the appropriate integration limits on the opposite side of the plate. Then the sum of the integration contributions will be equivalent to the second order diffaction.

## Chapter 4

## BACK SCATTERING FROM FLAT

## PLATES

In this chapter, to examine the accuracy of the fringe and PO equivalent edge currents: we applied them to the problem of backscattering from the perfectly conducting rectangular and triangular plates.

Eventhough there is no andytical solution to these plate problens. the calculations of the backscattered field has been investigated by some aullors using high frequency techniques.

For the square plate problem, Ross[10] has applied the G'ID and PO methods to predict the monostatic RCS. Ross also obtained a wide range of measured data[10] and his results were in agreement with the moasurements except for the regions near edge-on incidence. Later, more accurate results are obtained by Sitka[9] who employed GTD based equivalent currents and included the higher order equivalent currents into the analysis. The results for the backscattering from the triangular plate are also obtained in [9].

In the present analysis, we applied the fringe and PO components of the equivalent edge currents to the same backscattering problems from the square and triangular plates. In addition, the currents are combined with CTD to include the contributions of the higher order diffractions as explained in section 3.5. The analysis is also performed for E and H polarization cases separately. For each case, the results are compared with the previous analysis of Sitka and measured data.

It is known that the fringe and PO equivalent edge currents have the infinities in the incident and reflection shadow boundaries on the Keller Cone.

Therefore, the backscatering results from the flat plakes at the broadside directions become singular. On the other hand, Ull) plane wave diffraction coefficients are used to consider the edge interactions. But in the transition regions, the diffracted fields from the edges are not ray optical.

The total equivalent currents are given by

$$
\begin{gather*}
\mathrm{I}=Y E_{t a n}^{i} D_{\mathrm{s}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right)+H_{t a n}^{i} D_{2}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right)  \tag{.1.1.}\\
\mathrm{M}=Z H_{t a n}^{i} D_{\mathrm{l}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) \tag{4.2}
\end{gather*}
$$

where

$$
\begin{equation*}
D_{\mathrm{s}, 1,2}\left(\dot{\circ}^{\prime}, \phi, \beta^{\prime}, \beta\right)=d_{\mathrm{s}, \mathrm{~h}, 2}^{f}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right)+d_{s, 1,2}^{P O}\left(\dot{\phi}^{\prime}, \varphi^{\prime}, \beta^{\prime}, \beta\right) \tag{4.3}
\end{equation*}
$$

where $d_{s, h, 2}^{j}$ and $d_{s, h, 2}^{P O}$ expressions are due to the fringe and PO parts of the equivalent current components. It is assumed that the equivalent currents exist on the edges in the direction of the edge's tangent rector.

Two types of polarization for the incident plane wave is examined separately. E-plane polarization occurs when the direction of the incident electric field is in the observation plane. If the observation plane is the x -plance, then the B-polarized plane wave becomes;

$$
\begin{gather*}
\vec{E}^{i}=e^{j k(x \cdot \sin \theta \cos \phi+z \cos \theta)} \hat{a}_{\hat{U}}  \tag{4.4}\\
\vec{H}^{i}=Y \hat{R} \times \vec{E}^{i} \tag{4.5}
\end{gather*}
$$

Similarly, H-plane polarization occurs when the direction of the incident H field is in the observation plane.

H -polarized plane wave;

$$
\begin{gather*}
\vec{E}^{i}=\epsilon^{j k(x \sin \theta \cos \phi+z \cos \theta)} \hat{a}_{\phi}  \tag{4.6}\\
\vec{H}^{i}=Y \hat{R} \times \vec{E}^{i} \tag{4.7}
\end{gather*}
$$

### 4.1 Square Plate

Let a perfectly conducting square plate is illuminated by a plane wave with the propagating vector $\hat{s}_{i}$ as shown in Figure 4.1. It is seen that xz-plane is


Figure 4.1: Perfectly Conducting Square Plate
the observation plane and the first order equivalent currents are excited on the edges of the square plate. The length of the plate is shown by "a".

Then the single diffracted fields from each of the edges of the square plate. are evaluated by using the total equivalent edge currents as follows

From edge 1:

$$
\begin{gather*}
E_{\theta 1}^{1}=\frac{j k}{4 \pi}\left[D_{\mathbf{l}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) H_{t a n}^{i}\right] a \frac{e^{-j k r}}{r}  \tag{4.8}\\
E_{\phi 1}^{1}=\frac{j k}{4 \pi}\left[D_{\mathbf{s}}\left(\phi^{\prime}, \phi, \beta^{\prime} ; \beta\right) E_{t a n}^{i}+D_{2}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) H_{t a n}^{i}\right] a \frac{e^{-j k r}}{r} \tag{4.9}
\end{gather*}
$$

where

$$
\begin{equation*}
\beta=\beta^{\prime}=\pi / 2 \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\phi^{\prime}=\pi / 2-\theta \tag{4.11}
\end{equation*}
$$

From edge 2:

$$
\begin{equation*}
E_{\theta 2}^{1}=-\frac{j k}{4 \pi}\left[\cos \theta\left(D_{\mathbf{s}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) E_{t a n}^{i}+D_{2}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) H_{t a n}^{i}\right)\right] W^{\prime}(\theta, a) \frac{\epsilon^{-j k r}}{r} \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
E_{c / 2}^{1}=\frac{j k}{4 \pi}\left[D_{\mathrm{l}}\left(\dot{\phi}^{\prime}, \phi, \beta^{\prime}, B\right) H_{t a n}^{i} \cos 0\right] W(0,, c) \frac{c^{-j k r}}{r} \tag{4.13}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta^{\prime}=\pi / 2+\theta  \tag{4.14}\\
& \beta=\pi / 2-\theta \tag{4.15}
\end{align*}
$$

and

$$
\begin{equation*}
\dot{o}^{\prime}=\dot{\phi}=\pi / 2 \tag{4.16}
\end{equation*}
$$

From edge 3:

$$
\begin{gather*}
E_{03}^{1}=-\frac{j k}{4 \pi}\left[D_{1}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) H_{t a n}^{i}\right] a \frac{c^{-j k r}}{r}  \tag{4.17}\\
\left.E_{\phi, 3}^{1}=-\frac{j k}{4 \pi}\left[D_{s}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) E_{t n n}^{i}+D\right)_{2}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta^{\prime}\right) H_{t, n}^{i}\right] \frac{t^{-j k r}}{r} \tag{4.18}
\end{gather*}
$$

where

$$
\begin{equation*}
\beta=\beta^{\prime}=\pi / 2 \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi^{\prime}=\phi=\pi / 2+\theta \tag{4.20}
\end{equation*}
$$

From edge 4:

$$
\begin{gather*}
E_{04}^{1}=\frac{j k}{4 \pi}\left[\cos 0\left(D_{\mathbf{s}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) E_{t a n}^{i}+D_{2}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) H_{t a n}^{i}\right] W(\theta, a) \frac{\epsilon^{-j k r}}{r}\right.  \tag{4.21}\\
E_{\phi 4}^{1}=-\frac{j k}{4 \pi}\left[D_{\mathbf{h}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) H_{t a n}^{i} \cos \theta\right] W(\theta, a) \frac{\epsilon^{-j k r}}{r} \tag{4.22}
\end{gather*}
$$

where

$$
\begin{align*}
& \beta^{\prime}=\pi / 2-\theta  \tag{4.23}\\
& \beta=\pi / 2+\theta \tag{4.24}
\end{align*}
$$

and

$$
\begin{equation*}
\zeta^{\prime}=\phi=\pi / 2 \tag{4.25}
\end{equation*}
$$

with

$$
\begin{align*}
W(\theta, a) & =\int_{0}^{a} e^{2 j k \cos \theta z} d z \\
& =a e^{j k a \sin \theta} \frac{\sin (k a \sin \theta)}{k a \sin \theta} \tag{4.26}
\end{align*}
$$

In the representation $E_{m m}^{q}$, in represents the edge number, a shows the electric field component and $q$ is the single edge diffraction. Then the total single diffracted field becomes

$$
\begin{equation*}
\vec{E}^{1}=E_{\theta}^{1} \vec{a}_{\vec{\theta}}+E_{\phi}^{1} \vec{a}_{\varphi} \tag{1.27}
\end{equation*}
$$

where
$\theta$ component:

$$
\begin{equation*}
E_{\theta}^{1}=E_{\theta_{1}}^{1}+E_{\theta_{2}}^{1}+E_{\theta 3}^{1}+E_{\theta_{4}}^{1} \tag{4.28}
\end{equation*}
$$

ó component:

$$
\begin{equation*}
E_{\phi}^{1}=E_{\phi 1}^{1}+E_{\phi 2}^{1}+E_{\phi 3}^{1}+E_{\phi, 1}^{1} \tag{4.29}
\end{equation*}
$$

The higher order diffraction mechanisms are analysized for L: and H plane cases in the next sections.

### 4.1.1 E-Polarization

When the higher order interactions between the edges of the square plate are considered according to UTD, then it is olserved that the edges 2 and 4 don't cause diffracted rays on the surface. However, the opposite edges 1 and 3 interact correspondingly. Therefore, due to the double diffraction, the following second order edge currents exist on edge 3.

$$
\begin{gather*}
\mathbf{I}_{3}^{2}=H_{t a n}^{i} D_{2}\left(\phi^{\prime}=0, \phi=\pi / 2+0, \beta=\beta^{\prime}=\pi / 2\right)  \tag{4.30}\\
\mathbf{M}_{3}^{2}=Z H_{t a n}^{i} D_{\mathrm{h}}\left(\phi^{\prime}=0, \phi=\pi / 2+\theta, \beta=\beta^{\prime}=\pi / 2\right) \tag{4.31}
\end{gather*}
$$

where

$$
\begin{equation*}
H_{t a i i}^{i}=-\frac{1}{2} H^{i}\left(a t \text { calgel) } D_{\mathrm{l}}^{1}\left(\phi^{\prime}=\pi / 2-0, \phi=0, \beta=\pi / 2, a\right) \frac{\varepsilon^{-j} \cdot,}{\sqrt{1}}\right. \tag{1.32}
\end{equation*}
$$

where $D_{\mathrm{h}}^{1}$ is the UTD hard diffraction cocficient on odge 1 and the factor $1 / 2$ is due to grazing incidence. The second order currents $\vec{I}_{1}^{2}$ and $\vec{M}_{1}^{2}$ on odge 1 can be found similarly. Then the total second order diffracted field is given by the following integral.

$$
\begin{align*}
\vec{E}^{2} & =\frac{j k Z}{4 \pi} \frac{\epsilon^{-j k R}}{R}\left(\int_{0}^{n}\left[\hat{R} \times \hat{R} \times \vec{I}_{1}^{2}+Y \hat{R} \times \vec{M}_{1}^{2}\right] c^{j k_{y} y} d y\right. \\
& \left.+\int_{0}^{a}\left[\hat{R} \times \hat{R} \times \vec{I}_{3}^{2}+Y \hat{R} \times \vec{M}_{3}^{2}\right] e^{j\left(k_{x}: 2+k_{y} y\right)} d y\right) \tag{4.33}
\end{align*}
$$

The third order diffractions are also computed by using the similar ap. proach.

### 4.1.2 H-polarization

In II-polarization case, only the edges 2 and I canse diffracted rays on the surface. In the analysis of the higher order diffraction mechanisms, it is observed that the diffracted rays from the edge 2 illuminate the whole of the edge 1 and a part of the edge 4 for $\theta<\pi / 4$. On the other hand, for $\theta>\pi / 4$ only edge $l$ is partially illuminated by the diffracted rays from the edge 2 as shown in Figure 4.2 .

Then the second order equivalent currents on the edges 1 and 4 , clue to the double diffraction, are given by

On Edge 1:

$$
\begin{gather*}
\mathrm{I}_{1}^{2}=H_{t a n}^{i} D_{2}\left(\phi^{\prime}=O, \phi=\pi / 2-\theta, \beta^{\prime}=\pi-\theta, \beta=\pi / 2\right)  \tag{4.34}\\
\mathbf{M}_{1}^{2}=Z H_{t a n}^{i} D_{\mathrm{h}}\left(\phi^{\prime}=O, \phi=\pi / 2 \cdots \theta, \beta^{\prime}=\pi-\theta, \beta=\pi / 2\right) \tag{4.35}
\end{gather*}
$$

where


Figure 4.2: Edge Interactions in the Square Plate

$$
\begin{equation*}
H_{t a n}^{i}=\frac{1}{2} H^{i}(a t \epsilon d g c 2) \sin \theta D_{h}^{2}\left(\phi^{\prime}=\pi / 2, \dot{ }=0, \beta=\pi / 2+\theta, s\right) \frac{e^{-j k s}}{\sqrt{s}} \tag{4.36}
\end{equation*}
$$

with

$$
\begin{equation*}
s=\frac{y}{\cos \theta} \tag{4.37}
\end{equation*}
$$

On Edge 4:

$$
\begin{equation*}
\mathbf{I}_{4}^{2}=H_{t a n}^{i} D_{2}\left(\phi^{\prime}=O, \phi=\pi / 2, \beta^{\prime}=\pi / 2-\theta, \beta=\pi / 2+\theta\right) \tag{4.38}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{M}_{4}^{2}=Z H_{t a n}^{i} D_{\mathbf{h}}\left(\phi^{\prime}=0, \phi=\pi / 2, \beta^{\prime}=\pi / 2-\theta, \beta=\pi / 2+\theta\right) \tag{4.39}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{t a n}^{i}=\frac{1}{2} H^{i}(a t \varepsilon d g e 2) \cos \theta D_{\mathrm{h}}^{4}\left(\phi^{\prime}=\pi / 2, \phi=O, \beta=\pi / 2+\theta, s\right) \frac{e^{-j k s}}{\sqrt{s}} \tag{4.40}
\end{equation*}
$$

with

$$
\begin{equation*}
s=\frac{a}{\cos \theta} \tag{4.41}
\end{equation*}
$$

'lhen the contribution of the second edge to the total second order diffraction is given by

$$
\begin{align*}
\vec{E}_{2}^{2} & =\frac{j k Z}{1 \pi} \frac{e^{-j k l}}{R}\left(\int_{0}^{y_{m a x}}\left[\hat{R} \times \hat{R} \times \vec{I}_{1}^{2}+Y \hat{R} \times \vec{M}_{1}^{2}\right] c^{j k_{y} y} d y\right. \\
& \left.+\int_{0}^{r_{n, u x}}\left[\hat{R} \times \hat{R} \times \vec{I}_{4}^{2}+Y \hat{R} \times \vec{M}_{4}^{2}\right] c^{j\left(k_{x} a+k_{y} y\right)} d x\right) \tag{4.+2}
\end{align*}
$$

where

$$
y_{\text {mux }}=\left\{\begin{align*}
a & \theta<\pi / 4  \tag{1.13}\\
a \cot \theta & \theta>\pi / 4
\end{align*}\right.
$$

and

$$
x_{\text {max }}=\left\{\begin{array}{rl}
a(1-\tan \theta) & 0<\pi / 4  \tag{4.4}\\
0 & 0>\pi / 4
\end{array}\right.
$$

The contribution of the edge 4 to the second order diffraction is computed in a similar way. Then the total second order diffracted field is evaluated as

$$
\begin{equation*}
\vec{E}^{2}=\vec{E}_{2}^{2}+\vec{E}_{4}^{2} \tag{4,45}
\end{equation*}
$$

### 4.2 Triangular Plate

The perfectly conducting triangular plate, as shown in Figure 4.3, is illuminated by a plane wave which is lie in the xz-plane. The xz-plane is again the observation plane.

The single diffracted fields from the edges of the triangular plate are obtained as follows

From edge 1:

$$
\begin{gather*}
E_{\theta 1}^{1}=-\frac{j k}{4 \pi} D_{\mathbf{h}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) H_{t a n}^{i} N(b)  \tag{4.46}\\
E_{\phi 1}^{1}=-\frac{j k}{4 \pi}\left[D_{\mathbf{s}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) E_{t a n}^{i}+D_{2}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) H_{t a n}^{i}\right] N(b) \tag{4.47}
\end{gather*}
$$



Figure 4.3: Perfeculy Conducting Triangular Plate
where

$$
\begin{gather*}
\phi=\phi^{\prime}=\theta  \tag{4.48}\\
\beta=\beta^{\prime}=\pi / 2 \tag{4.49}
\end{gather*}
$$

From edge 2:

$$
\begin{align*}
E_{\theta 2}^{1} & =\frac{j k}{4 \pi}\left[\left(\sin \alpha / 2 D_{\mathrm{h}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right)+\cos \alpha / 2 \sin \theta D_{2}\left(\phi^{\prime}, \dot{\phi}, \beta^{\prime}, \beta\right)\right) H_{\tan }^{i}\right. \\
& \left.+\cos \alpha / 2 \sin \theta D_{s}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) E_{t a n}^{i}\right] M(\theta, a) \tag{4.50}
\end{align*}
$$

$$
\begin{align*}
E_{\phi 2}^{\mathrm{i}} & =\frac{j k}{4 \pi}\left[\left(-\cos \alpha / 2 \sin \theta D_{\mathrm{h}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right)+\sin \alpha / 2 D_{2}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right)\right) H_{t a n}^{i}\right. \\
& \left.+\sin \alpha / 2 D_{\mathbf{s}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) E_{t a n}^{i}\right] M(\theta, a) \tag{4.51}
\end{align*}
$$

where

$$
\begin{equation*}
\beta^{\prime}=\cos ^{-1}(-\cos \alpha / 2 \cos \theta) \tag{4.52}
\end{equation*}
$$

$$
\begin{gather*}
\beta_{0}=\beta=\cos ^{-1}(\cos \alpha / 2 \cos \theta)  \tag{1.53}\\
\phi^{\prime}=\phi=\cos ^{-1}\left(\frac{-\sin \alpha / 2 \cos \theta}{\sqrt{1-\cos ^{2} \theta \cos ^{2} \alpha / 2}}\right] \tag{1.54}
\end{gather*}
$$

From elge 3:

$$
\begin{align*}
E_{\partial 3}^{1} & \left.=\frac{j k}{4 \pi}\left[(-\cos \alpha / 2 \sin \theta D)_{2}\left(\sigma^{\prime}, \phi, \beta^{\prime}, \beta\right)+\sin \alpha / 2\right)_{11}\left(\sigma^{\prime}, \sigma^{\prime}, \beta^{\prime}, \beta\right)\right) M_{t a n}^{i} \\
& \left.-\cos \alpha / 2 \sin \theta)_{s}\left(\sigma^{\prime}, \phi, \beta^{\prime}, \beta\right) E_{t a n}^{i}\right] M(\theta, \alpha)  \tag{1.55}\\
E_{a, 3}^{1} & =\frac{j k}{4 \pi}\left[(\sin \alpha / 2 D)_{2}\left(\phi^{\prime}, \alpha, \beta^{\prime}, \beta\right)+\cos \alpha / 2 \sin \theta D_{11}\left(\sigma^{\prime}, o, \beta^{\prime}, \beta^{\prime}\right) H_{t a n}^{i}\right. \\
& \left.+\sin \alpha / 2 D_{\mathrm{s}}\left(\phi^{\prime}, \phi, \beta^{\prime}, \beta\right) E_{t a r}^{i}\right] M(0, a) \tag{1.56}
\end{align*}
$$

where

$$
\begin{equation*}
\beta^{\prime}=\cos ^{-1}(\cos \alpha / 2 \cos \theta) \tag{+1.57}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\cos ^{-1}(-\cos \alpha / 2 \cos \theta) \tag{4.58}
\end{equation*}
$$

$\phi, \phi^{\prime}$ are the same as the second edge.
In addition,

$$
\begin{gather*}
N(b)=\int_{0}^{2 b} d y=2 b  \tag{1.59}\\
M(\theta, a)=\int_{0}^{a} e^{2 j k \cos \theta z} d z \\
=a \frac{\sin (k \cos \theta a)}{k \cos \theta a} \epsilon^{j k \cos \theta a} \tag{4.60}
\end{gather*}
$$

The total single diffracted field becomes

$$
\begin{equation*}
\vec{E}^{1}=E_{\theta}^{1} \vec{a}_{\theta}+E_{\phi}^{1} \vec{a}_{\phi} \tag{4.61}
\end{equation*}
$$

where
0 component;

$$
\begin{equation*}
E_{\theta}^{1}=E_{\theta_{1}}^{1}+F_{\theta_{2}}^{1}+E_{\theta 3}^{1} \tag{4.62}
\end{equation*}
$$

$\phi$ component;

$$
\begin{equation*}
E_{\phi}^{1}=E_{b, 1}^{1}+E_{b 2}^{1}+E_{\phi, 3}^{1} \tag{4.63}
\end{equation*}
$$

The higher order diffraction mechanisms are analysized for li and H polarization cases separately in the next sections.

### 4.2.1 E-Polarization

In this polarization, it is seen that all edges cause diffracted rass on the surface and the higher order diffraction mechanisms can be mamy split into the following two parts.
i) The diffracted rays caused by the first edge of the triangular plate it luminate the second and third edges. Then the corresponding scoond order equivalent edge currents on the edges 2 and 3 are given 1 y

On edge 2:

$$
\begin{gather*}
\mathbf{I}_{2}^{2}=H_{t a n}^{i} D_{2}\left(\phi^{\prime}=0, \phi^{\prime}, \beta^{\prime}=\alpha / 2, \beta\right)  \tag{1.6.1}\\
\mathrm{M}_{2}^{2}=Z H_{t o n}^{i} D_{\mathbf{h}}\left(\sigma^{\prime}=O, \phi, \beta^{\prime}=\alpha / 2, \beta\right) \tag{4.65}
\end{gather*}
$$

where

$$
\begin{equation*}
H_{t a n}^{i}=\frac{1}{2} H^{i}(\text { at edge1 }) \sin \alpha / 2 D_{\mathrm{h}}^{1}\left(\phi^{\prime}=\theta, \phi=O, \beta=\pi / 2, z\right) \frac{e^{-j k z}}{\sqrt{z}} \tag{4.66}
\end{equation*}
$$

On edge 3:

$$
\begin{gather*}
\mathbf{I}_{3}^{2}=H_{t a n}^{i} D_{2}\left(\phi^{\prime}=O, \phi, \beta^{\prime}=\pi-\alpha / 2, \beta\right)  \tag{4.67}\\
\mathbf{M}_{3}^{2}=Z H_{t a n}^{i} D_{\mathbf{h}}\left(\phi^{\prime}=O, \phi, \beta^{\prime}=\pi-\alpha / 2, \beta\right) \tag{4.68}
\end{gather*}
$$

where

$$
\begin{equation*}
H_{t a n}^{i}=\frac{1}{2} H^{i}(a t \epsilon d g c 1) \sin \alpha / 2 D_{12}^{1}\left(\varphi^{\prime}=\theta, 0=0, B=\pi / 2, z\right) \frac{c^{-j k z}}{\sqrt{z}} \tag{4.69}
\end{equation*}
$$

$\phi$ is determined by equation ( 4.51 ) for cach edge and 3 is evaluated by equations (4.53) and (4.58) for second and third edges respectively:

Then the radiation of these equivalent currents is given by

$$
\begin{align*}
\vec{E}_{1}^{2} & =\frac{j k Z}{4 \pi} \frac{e^{-j k R}}{R}\left(\int_{0}^{2}\left[\hat{R} \times \hat{R} \times{\overrightarrow{I_{2}^{2}}}_{2}+Y \hat{R} \times \vec{M}_{2}^{2}\right] e^{j k=\cos \theta} d=\right. \\
& +\int_{0}^{a}\left[\hat{R} \times \hat{R} \times \vec{I}_{3}^{2}+Y \hat{R} \times \vec{M}_{3}^{2}\right] \epsilon^{j / z \cos \theta} d \tag{4.70}
\end{align*}
$$

ii) On the other hand we see that the diffracted rays from the edge 3 illuminate the edges 1 and 2 depending on 3 as shown in Figure 4.4.

The second order equivalent ofge currents on the edges 1 and 2 duc to the diffracted rays from edge 3 are given as follows

On Edge 1:

$$
\begin{equation*}
\mathrm{I}_{1}^{2}=H_{t a n}^{i} D_{2}\left(\phi^{\prime}=0, \phi=0, \beta^{\prime}=\pi / 2-\beta_{0}+\alpha / 2, \beta=\pi / 2\right) \tag{4.71}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M}_{1}^{2}=Z H_{t a n}^{i} D_{\mathrm{h}}\left(\phi^{\prime}=O, \phi=0, \beta^{\prime}=\pi / 2-\beta_{0}+\alpha / 2, \beta=\pi / 2\right) \tag{4.72}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{t a n}^{i}=-\frac{1}{2} H_{\phi}^{i}(a t \epsilon d g \epsilon 3) \cos \left(\beta_{0}-\alpha / 2\right) D_{\mathrm{l}}^{3}\left(\phi^{\prime}, \phi=O, \beta, s\right) \frac{e^{-j k s}}{\sqrt{s}} \tag{4.73}
\end{equation*}
$$

On Edge 2:

$$
\begin{equation*}
\mathbf{I}_{2}^{2}=H_{i a n}^{i} D_{2}\left(\phi^{\prime}=O, \phi, \beta^{\prime}=\pi-\beta_{o}+\alpha, \beta\right) \tag{4.74}
\end{equation*}
$$



Figure 4.4: Edge interactions in the triangular plate

$$
\begin{equation*}
\mathrm{M}_{2}^{2}=Z H_{t a n}^{i} D_{\mathrm{L}}\left(\phi^{\prime}=O, \phi, \beta^{\prime}=\pi-\beta_{0}+\alpha, \beta^{\prime}\right) \tag{4.75}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{t a n}^{i}=-\frac{1}{2} H_{\rho}^{i}(a t e d g \epsilon 3) \sin \left(\beta_{c}-\alpha\right) D_{11}^{3}\left(\phi^{\prime}, \phi=O, \beta_{v}, s\right) \frac{e^{-j \kappa s}}{\sqrt{s}} \tag{4.76}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\dot{\phi}}^{i}(a t \epsilon d g \epsilon 3)=Y \epsilon^{j k=\cos \dot{\theta}} \tag{4.77}
\end{equation*}
$$

$\beta$ and $\dot{\phi}$ for second edge are given in terms of $\theta$ with the equations (4.53) and (4.54).

In addition, $s$ and $z$ are the integration parameters which have the following relationships.

For Edge 1:

$$
\begin{gather*}
s=\frac{y}{\cos \left(\beta_{o}-\alpha / 2\right) \tan \alpha / 2+\sin \left(\beta_{0}-\alpha / 2\right)}  \tag{4.78}\\
z=s(y) \cos \left(\beta_{0}-\alpha / 2\right) \tag{4.79}
\end{gather*}
$$

For Edge 2:

$$
\begin{gather*}
\gamma=\pi / 2+a / 2-\beta_{0}  \tag{4.80}\\
s=2 \tan (\alpha / 2) \frac{a-z^{\prime}}{\cos \gamma+\tan \alpha / 2 \sin \gamma}  \tag{4.81}\\
==\frac{z^{\prime}(\cos \gamma-\tan \alpha / 2 \sin \gamma)+2 \alpha \tan \alpha / 2 \sin \gamma}{\cos \gamma+\tan \alpha / 2 \sin \gamma} \tag{4.52}
\end{gather*}
$$

These integration varibles as show in Figure d.t are substinuted into the following radiation integral with the defined equivalent currents.

$$
\begin{align*}
\vec{E}_{3}^{2} & =\frac{j k Z}{1 \pi} \frac{e^{-j j R}}{R}\left(\int_{0}^{y_{m u x}}\left[\hat{R} \times \hat{R} \times \vec{I}_{1}^{2}+Y \hat{R} \times M_{1}^{2}\right] d y\right. \\
& \left.+\int_{-m, n}^{a}\left[\hat{R} \times \hat{R} \times \vec{I}_{2}^{2}+Y \hat{R} \times \vec{M}_{2}^{2}\right] e^{j k z^{\prime} \cos \theta} d z^{\prime}\right) \tag{4.83}
\end{align*}
$$

where

$$
y_{n, 4, x}=\left\{\begin{align*}
u\left[\tan \alpha / 2+\tan \left(\beta_{0}-\alpha / 2\right)\right] & \beta_{0}<\alpha  \tag{1.84}\\
a & \beta_{0}>a
\end{align*}\right.
$$

and

$$
z_{\text {min }}=\left\{\begin{array}{cl}
a & \beta_{0}<\alpha  \tag{4.85}\\
0 & \pi / 2+\alpha / 2>\beta_{0}>\alpha \\
-\frac{2 u(t a n a / 2 \sin \gamma}{\cos \gamma \tan \alpha / 2 \sin \gamma} & \beta_{0}>\pi / 2+\alpha / 2
\end{array}\right.
$$

This procedure is repeated for the diffracted rays from edge 2. Then the following sum of all integral contributions gives the total second order diffracted field.

$$
\begin{equation*}
\vec{E}^{2}=\vec{E}_{1}^{2}+\vec{E}_{2}^{2}+\vec{E}_{3}^{2} \tag{4.86}
\end{equation*}
$$

### 4.2.2 H-Polarization

In contrast to the E-polarization case, in Il-polarization the first colge doesn't cause to the surface diffraction. However, second and third edges create the diffracted rays and the corresponding equivalent currents on the opposite odges. Therefore, the second diffraction can be computed by using the secomb mechanism mentioned in the previous section.

## Chapter 5

## COMPARISON OF THE RESULTS

Here, the results of the present analysis of the semare and trangular patas will be presented and compared with the prerions results of Sitka[9]. Ross[10] and the measured clata[9].

In both flat plates, for each polarization case. the total far scatuerel fiel.d is obtained by the summation of all integral contributions including computed higher order diffractions. The integrals are evaluated numerically using pulse functions with 0.01 wavelength steps. Then the total far scattered field is found as

$$
\begin{equation*}
\vec{E}=\vec{E}^{1}+\vec{E}^{2}+\vec{E}^{3} \tag{5}
\end{equation*}
$$

In the analysis, except the E-polarization for square plate, only the first and second order diffractions are used. The scattered field is observed in the backscattered direction and monostatic RCS is obtained as a function of $\theta$.

In the backscaltering from the square plate, E-plane pattern results are shown in Pigure 5.1. The first, second and third order diffractions are used in the analysis. It is observed that there is no difference between our result and Sitka's solution and both of them are close to the experimental data for $\theta<80$.

In H polarization illumination for the square plate problem, the agreement between our result and the result in [9] is good and they coincide with the experimental result away from the grazing incidence region (See Figure 5.2). Furthermore, we were able to predict the small oscillations near edge-on region by including the second order currents into the analysis.

In the determination of the backscattering from the triangular plate, for

E-polarization case, only the first and second order diffractions are used in the analysis. However, in [ 9$]$, Sitka has used the first, second and third order diffractions including the all edge interactions. On the other hand, in H-polarization case, althongh the first and third order diffactions, corner diffraction and colge wave mechanism are included to the analysis, second order diffractions are omited by claiming that the double diffracted rays between the elges 1 and 2 of the triangle are cancelled by the diffacted rays between edges 2 and 3 in [9]. This cancellation does not occur for the new fringe and PO equivalent currents. Therefore, we used the first and second order diffractions for that polarization.

E-polarization results for the different sized triangular plates are shown in Figures 5.3-5.6. It is observed from the figures that the present solutions are closer than the ones in [ 9$]$ to the measured data for $\theta<20$. In addition, in Figure 5.5, Sitka predicts a monzero scattered fied at $\theta:=180$. Howerer, in this analysis a zero field is obtained as expected.

The H-plane calculations for the triangular plates are shown in Figures 5.7 and 5.8. Both present and Sitke's results are fairly accurate around the broadside direction ( $45<0<120$ ), and our results have a slightly better prediction of the variation of the pattern for $\theta>90$. Both results deviate from the experiments for $0<45$.


Figure 5.2: Backscattering from the square plate: H-pol (a=3.12.5. $)$


- Calculated
-. Measurement
--- Sitka
$x x$ Ross

Figure 5.2: Backscattering from the square plate: $E-p o l(a=3.125 \lambda)$


Figure 5.3: Backscatering from triangular plate: E-pol(a=1人, alfa=60cleg)


Figure 5.4: Backscattering from triangular plate: E -pol $(\mathrm{a}=4 \lambda$, alfa $=45 \mathrm{deg})$


Figure 5.5: Backscattering from triangular plate: E-pol(a=4 , alfa=90dcg)


Figure 5.6: Backscattering from triangular plate: E-pol(a $=3 \lambda$, alfa $=30 \mathrm{deg})$


Figure 5.7: Backscattering from triangular plate: H-pol(a=4 . alfa=-4.jegeg)


Figure 5.8: Backscattering from triangular plate: $H-p o l(a=9 \lambda$, alfa $=30 \mathrm{deg})$

## Chapter 6

## CONCLUSIONS

In the present study, we derived the PO components of the equivalent edge currents for a half plane similiar to the Nichaeli's approach for the climination of the infinities of the fringe current component. By using a different selection of the skew coordinate over the half plane, we obtainel the PO equivalent current expressions. It is seen that these expressions are the same with the ones oltained in [6].

Furthermore, by obtaining the $\mathrm{P}^{\prime}$ ) equivalem currents depeisding on an arbitrary skewness angle, it is shown that the radiation from the fringe and these arbitrary PO equivalent currents are unique and yields the (GTD field. Therefore, this proves the expectations that the monumigue equivalent currents must give the unique radiation.

Later, the fringe and $P O$ equivalent currents, that is more general than the G'ID based ones, are applied to the problems of the backscattering from the perfectly conducting square and triangular plates. The higher order diffractions are considered in the analysis in order to evaluate the interactions between the edges of the plates by using the (V1). Then, in the comparison of the present results with the previous results of Sitka some improvements are obtained.

## Appendix A

## Radiation From The Infinite Line Sources

Let an infinite line source, carrying electric and magnetic type currents I and M.

The radiated electric field from the line sources is given by

$$
\begin{equation*}
\vec{E}=\frac{j k Z}{4 \pi} \int_{-\infty}^{\infty}\left[\hat{s} \times \hat{s} \times \tilde{I}\left(z^{\prime}\right)+Y \hat{s} \times \vec{M}\left(z^{\prime}\right)\right] \frac{e^{-j k \sqrt{\left(z-z^{\prime}\right)^{2}+\rho^{2}}} \sqrt{\sqrt{\left(z-z^{\prime}\right)^{2}+\rho^{2}}}}{d z^{\prime}} \tag{A.1}
\end{equation*}
$$

where $z$ and $\rho$ are the observation point coordinates as shown in the following Figure.


Figure A.1: Infinite line sources
If equivalent currents are in the form

$$
\begin{align*}
\mathrm{I}\left(z^{\prime}\right) & =I\left(z^{\prime}\right) c^{-j k z^{\prime} \cos \beta^{\prime}}  \tag{A.2}\\
\mathrm{M}\left(z^{\prime}\right) & =M\left(z^{\prime}\right) c c^{-j ; z^{\prime} \cos z^{\prime}} \tag{A.3}
\end{align*}
$$

Then integral becomes

$$
\begin{equation*}
\vec{E}=\frac{j k Z}{4 \pi} \int_{-\infty}^{\infty}\left[\hat{s} \times \hat{s} \times \vec{I}\left(z^{\prime}\right)+Y \hat{s} \times \vec{M}\left(z^{\prime} \eta\right] \frac{\varepsilon^{\left.-j k\left(z^{\prime}\right) \cos , z^{\prime}+\sqrt{\left(z-z^{\prime}\right)^{2}+\rho^{2}}\right)}}{\sqrt{\left(z-z^{\prime}\right)^{2}+\rho^{2}}} d z^{\prime}\right. \tag{A.4}
\end{equation*}
$$

This integral can be cualuated by the mothod of stationary phase. Assming that $I\left(z^{\prime}\right)$ and $M\left(z^{\prime}\right)$ are slowly varying and $k$ is large.

Then the phase of the integrand

$$
\begin{equation*}
y^{\prime}\left(z^{\prime}\right)=-\left[z^{\prime} \cos 3^{\prime}+\sqrt{\left(z--z^{\prime}\right)^{2}+p^{2}}\right] \tag{A,5}
\end{equation*}
$$

Solving $\psi^{\prime}\left(z_{s}^{\prime}\right)=O$, the stationaty point is found as $\beta=\beta^{\prime}$
That is

$$
\begin{equation*}
\cos \beta^{\prime}=\frac{z-z^{\prime}}{\sqrt{\left(z-z^{\prime}\right)^{2}+\rho^{2}}} \tag{A.6}
\end{equation*}
$$

Radiated field

$$
\begin{equation*}
\vec{E}=j^{\prime} Z\left[\hat{s} \times \hat{s} \times \vec{I}\left(\beta=\beta^{\prime}\right)+Y \hat{s} \times \vec{M}\left(\beta=\beta^{\prime}\right)\right] \frac{e^{-j \pi / 4}}{\sqrt{8 \pi k} \sin \beta^{\prime}} e^{-j k z z_{s}^{\prime} \cos \beta^{\prime} \beta^{c^{-j t s}}} \frac{\sqrt{s}}{\sqrt{s}} \tag{A.7}
\end{equation*}
$$

At high frequencies, the radiation from the line sources, as derived here, yield the field in the direction of the diffracted cones(i.e Keller Cone $\beta=\beta^{\prime}$ ).

## References

[1] J.B. Koller, "Geometrical Theory of diffraction," J.Oph. Soc: tm., vol. 52. рр. $11(6-130,1962$.
[2] R.G.houvomjian and P.H.Pathak, "A uniform geonetrical heory of diffaction for an edge in a perfectly conducting surface." Proc. IEEE vol. (j2: pp). 1418-1461, Nov. 1974.
[3] C.E. Ryan and L.Peters, "Ealuation of the edge-difracted fields including equicalent currents for the canstic regions," IERE Trans. AP., vol. AP-T. pp. 292-299, May 1969.
[4] E.F. Finott and 'f.B.A. Scnios, "Comparison of three high-frequency diffaction techmiques," Proc. IEEE, vol. 62, pp. 1468.1.47, Nov, 1971.
[5] A.Michacli, "Equivalent edge currents for arbitrary aspects of olserva tion," WEEE Truns. AP., vol. AP-32, no:3, March 1984.
[6] R.J. Alarhefla O.Merih Buyukdura and W.Ebihara, "Radau Cross Section Sturlies, phase 3," The Ohio Slate University Dlecroscimee Lab. Ropont, no:716621-1, April 1986.
[7] A.Michaeli, "Elimination of infinities in equivalent edge currents. part I:Fringe curent components," IEEE Trans. AP', vol. AP-3t, no:T, Juiy 1986
[8] A.Michaeli, "Elimination of infinities in equivalent edge currents, part II: Physical optics components," IEEE Trans. AP., vol. AP-34, no:8, August 1986
[9] F.A.Sitka, "UTTD analysis of electromagnetic scattering by flat plate structures," Ph.I). dissertation, Ohio State University, Columbus, 1981.
[10] .A.Ross, "Radar cross section of rectangular flat plates as a function of aspect angle," IEEE Trans. AP., vol. AP-14, pp.329-335, May 1960

