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ABSTRACT

THE EXAMINATION OF NEW EQUIVALENT EDGE 
CURRENTS IN THE PREDICTION OF HIGH 

FREQUENCY BACKSCATTERING FROM FLAT PLATES

Taiier Oguzer 
M.S. in Electrical and Electronics Eneioneenin»·
Supervisor: Assoc. Prof. Dr. Ayhan Altinta;; 

September 1991

Equivalent edge currents based on tlie geometrical tlieor\' of dilfraction (GTD) 
have been utilized for the prediction of electromagnetic scattering from edged 
bodies. These equivalent currents are use Keller’s diffraction coefficient and 
thereloi'e not valid for arbiti'ciry aspect of observalion. More gicneral expres­
sions for ecjuivalent edge currents are later obtaivK’d Ijy .Michaeli. Those ex­
pressions become infinite at certain observation directions. 'J'hese infinities are 
later eliminated l.iy the same author for the fringe component of the equivalent 
currents l)y choosing a skew coordinate system on the half jilaru' to be used for 
the asymptotic integration.

A similar approach is employed here to eliminate the infinities in the phys­
ical optics(PO) component of the equivalent edge currents. It is also shown 
that the icvdiation from the fringe and PO eipiivalent currents is unique and 
yields the GTD field.

The fringe and PO equivalent currents are then applied to the backscatter- 
ing problems from the perfectly conducting square and triangular plates. The 
higher order interactions between the edges are also included into the analysis. 
Some improvements are obtained over the previous solutions.

Keywords: Electromagnetic backscattering, radar cross section, equivalent 
edge currents.
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AKIMLARININ KULLANILMASI

Taner Oğıızcn·
Elektrik ve Elektronik MüIıeiKİisliği Bölümü Yüksek Lisans 

Tez Yöneticisi; Doç. Dr. Ayhan Altıntaş 
Evlül 1991

Kenarlı cisimlerden ya3'ilan elektromanyet ik sacınıının tahmin edilmesi arnaayla 
kırınımın geometrik kuramı(KCK)’ııa dayanan e.şdeğer kenar akımları kul- 
lanılınaktayclı. KCKVJan elde edilen bn akımlar bütün gözlem doğruluılarmda 
geçerli değildi. Daha sonra., Miclıaeli eşdeğer kenar akımlarını daha genel bir 
3'oldan elde etti. Fakat Iju akımlar pekçok gözh'm doğrultusu için sonsuzluklara 
sahipti. Miclıaeli, eşdeğer kenar akımlarınııı artık kısmı için bu sonsuzlukları 
yarı düzlemin üzerinde seçilen eğik bir koordinat sistemi ile yok edebildi.

Bu çalışmada, benzeri bir yakbuşım eşdeğer kenar akımlarının fiziksel op- 
tik(FO) kısmındaki sonsuzhıklan yok edebilmek amacıyla kullanıldı. Ayrıca, 
eşdeğer artık ve FO akımlarının yarattığı ışınr.uın KOK sonucunu verdiği gözlendi.

Yem eşdeğer akımlar, mükemmel iletken kare ve üçgen düzlenısel jılakalar- 
dan geri saçımmın bulunması için kullanıldı. Elde edilen sonuçların önceki 
verilerle karşılaştırılması bazı ilerlemelerin elde edildiğini gösterdi.

Anahtar sözcükler: Elektromanyetik geri saçınım, radar yüzey kesiti, eşdeğer 
kenar akımları.
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C hapter 1

IN T R O D U C T IO N

The elecLronuignetic scattering is the result of tlie obstructioii of the electro- 
juagnelic field b}· tvn object. Tlie scattered field is dcdined as tin.' dilfeieni’t' 
between the field in the ])resence of the object and tlie lield that would 'exist if 
the object were absent.

.'\n important parameter in scattering that, is widely used in the radar 
applications is the radar ci'oss section. Radar ci'oss s(.'f:tion of a targed i.s the 
area intercepting that amount of power which, wlnm scaiiered eciuall}' in all 
directions, produces an echo at the radar equal to that from the target. In 
other words.

a — lini dtrif· I ^R- ôo ' E' ( 1. 1)

where R is the distance bettveen radar and target. E^ and E' are the scattej ed 
and the incident field strengths at the observation point. If tlie scattered field 
is observed in the incident direction; i.e. the backscattering case, then a is 
called the monostatic radar cross section.

In theory, the scattered held can be determined by .solving Maxw'elfs equa­
tions subject to appropriate boundary conditions. Unfortunately, analytical 
solutions of Maxwell’s equations is limited to only simple shapes. Therefore, 
construction of the integral equations and their numerical solutions became 
considerably popular. These numerical solutions are generally quite accurate 
wdien the objects are not too large with respect to the wavelength.

When the size of the object is large, high frequency ray optical techniques 
are used for the approximate solution of the scattering problems. The sim­
plest ray optical approach is the geometrical optics (GO), in which the high
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frequcncj^ electromagnetic field is assumed to propagate along ray paths wliicli 
satisfy Fermat’s principle and tin' next vvavelront of the held can be determined 
from the preceeding one by tracing rays.

To obtain more accurate high frequenc}' results. a.n asymptotic high fre­
quency technique which is an extension of GO were developed in 1902 ijy 
Keller[l]. It is called the Geometrical Theory of Diffraction (GTD). In G'lT), 
the known exact analytical solution for the problem of scattering from simj)le 
shapes, called canonical problems, are analyzed asymptotically for high fi'c- 
quencies. 'f'he GO and diffraction ray contributions are then identified from 
the asj’inptotic expressions.

On the other hand, it is sc.'cij that the ray theory fails around the caus­
tic directions, do correct the scattered field, an Equivalent Current Method 
(ECM)[3] was developed aiid applied (o the scattering problems in caustic di­
rections. But these ecjui\’alcnl currents use Keller’s diffraction coefficient and 
thei'efore not valid for arbitrary aspect, of olrser'v’ation.

More general expressions for <?quivaleut edge currents are later olrtallied 
by Michaeli[5]. Unfortuncitely, those expressions become infinite at certain 
observation directions. In a subsequent pciper[7], Michaeli considered these 
currents as arising separat<dy from physical optics(PO) and fringe comi.ionents 
and showed that for the fringe component the infiiiiticis can be eliminated 
by choosing a proper skew coordinate system for the asymptotic int.egration. 
However, it was asserted by the same author[8] that the infinities in the PO 
component cannot be eliminated in a similar way. On the other hand, the 
PO equivalent edge currents wdiich are free from infinities are obtained by an 
application of the Stokes’ theorem for a finite size flat plate in [6].

In the present study, similar to the approach in [7], the PO equivalent 
currents are derived for a half plane by using a different selection of the skew 
coordinate over the surface. Then it is shown that the total radiation from 
the fringe and PO equivalent currents yields the GTD field. In addition, it 
is observed that the obtained PO equivalent currents are the same with the 
ones obtained in [6]. The new fringe and PO equivalent currents are then 
applied to the backscattering problem from the square and triiingular plates. 
The equivalent currents are also combined wdth UTD to involve the multiple 
diffraction mechanisms between the edges into the analysis. Fincdly, the results 
are compared with the previous works of Sitka[9] , Ross[10] and the measured 
data[9].
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The outline of the thesis is as follows. The GTD is introduced in chapter 
2. Ill chapter 3, Equivalent Cujnnit, Method is described. The fringe and PO 
equivalent current components ai’e derived for a hall plane and the computation 
of higher order diffractions using ecjuivaient currents is explained. In chapter T 
the derived equivalent currents with the higlier order diffVactions are applied to 
the backscattering from the scpiai'e and triangular plates. E and H polarization 
cases are anah '̂zed separately. In chapter 5. the results obtained in chapter 
are compared with the previous work and measured data. Finally, conclusions 
are given in chapter 6.

In the analysis, n sinusoidally-\’arying time dependence' is assumed and 
suppressed.
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THE GEOMETRICAL THEORY OE 
DIFFRACTION

2.1 Introduction

In (.¡0, propagation of field iroin one point to anotlio]·. iii ¿m inotropic lossk'ss 
niediunp is det(M'inined using (die conservation of <'nergy liiix in a tube of 
ray as shown in Figure 2.1. The pliase of tlie held is detennined l ŷ optical 
length from a reference point and the phase constant of the medium. Then t he 
GO field.

E(s) = E{i> = Pip2
( 2 - 1 )(/>1 + +  ·'')

where pi and p2 are the principal radii of curt'aluro of the wavefront at tlie 
refcrence point, s is the distance along the ray patlı.

A wedge consists of two perfectly conducting hall plain's intersecting at a 
straight edge as shown in Figure 2.2. At high frequencies, the total electric 
field is given by

E = E 'u ' + E’u ’· + E “" (2,2)

In this represention, the source and the field points are suilicieiitly removed 
from the wedge surface. E‘ is the electric field of the source in the absence of 
the surface, E'' is the electric field reflected from the illuminated surface with 
the edge ignored and Ê  ̂ is the edge diffracted electric field. E' and E”' are 
the GO fields and u' and u’’ are the illumination regions determined by GO as 
follows:
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Boundary
Figure 2.2: Perfectly conducting wedge
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u
1 Q < (̂  < 7T + (p'
0 7T 0 IKp

(2.3)

u'· = J 0 < e> < 7T — ©
(2.4)

0 IT — (p < (h < n<p

where 4> and are the incidence and diffraction angle.s respectiveh·' a.s defined 
in Figure 2.2.

2.2 G eom etrical Theory of Diffraction

GTD is based on the following three postulates;

a) Difixaction like reflection is a local plnnionienon at high frequen­
cies.

b) Ihe diffracted ra\- and the corresponding incident ray make 
equal angles with the edge at the point of diffraction (See Fig 2.3). Hence tlie 
diffracted rays propagate on a cone tliat is called tlu' Keller Cone. This is the 
result of the generalized Fermat’s principle.

c) .Awaj'· from the point of diffraction, the diffracted rays beha\e 
like CO rays.

Therefore the edge diffracted fiehl away from the edge is given by

= E<̂ (0), PP (.2.5)ip + s){p' + s)

where p and p are the principle radii of curvature of the diffracted field wave- 
front at the refeience point 0. When the reference point becomes at the edge 
point Qe , then the diffracted field is proportional to the field incident at Qe -

lim £■'(0 ) 2 7  = (2,(i)
p  — ^ O O

where D is the dyadic edge diffraction coefficient. Then the edge diffracted 
electric field
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Figure 2.3: Cone of Diffracted Rays

E'"(^) = E'{Qe ).D Pc -  jks (2.7)s(s + Pc)

in which pc is the distance between the caustic at the edge and the caustic 
of the diffracted riiy. For straight edges and plane wave incidence, it becomes 
that

E" = E'{Qe ).D
- e

(2.8)

In a ray fixed coordinate system, £> is a 2 x 2 matrix. In this case, the unit 
vectors ^ and cp’ are prependicular to the plane of incidence and the unit vectors 
¡3 and p are parallel to the plane of incidence and the plane of diffi'action 
respectively, s and s' are the unit vectors in the directions of incidence and 
diffraction respectively as shown in Figure 2.3. Then, for plane wave incidence, 
the diffracted field can be written as
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ip</ Hs о

О Нь _

(2.9)

where and Du are the diiri^iction coeificieiits for tlic soft ¿uul haid l)oun(lary 
conditions. The}· are iirsi obtained l)y Kell(?r for a wedge as

h \/2ттк sin в '{ф -  Ф̂) + 0{Ф +

where

( 2. 10)

Ijrt siiiTr/??. 
co.s tt/«  — cos fi/n 

and n is the measure of the wedge angle a.s in Figure 2.2.

(2.11)

2.3 Uniform  G eom etrical Theory of Diffraction

GO fields show a sharp discontinuitj’ at the incident and reflect ion l.iound· 
aries. Unfortuiiatel}·’, Keller’s diffraction coefficients predict infinite values at 
the shadow boundaries(See Figure 2.2). Therefore tlie diffracted fi<dd must be 
modified to make the total field smooth and continuous, in Ud'l). unifonn 
diffraction coefficients are obtained as [2]

l \  = D{L,f^Cn) + /;(L,/?+,n)

where

D(U^,n) = - ' ^ ^ мт'Гr / ДМ I Ф\t.'(

(2.13)

and F(x) is the transition function which has a Fresnel integral as follows

1*00

F(.r) = 2 ; e~^^"dT (2.14)
JCE
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The magnitude and phase variations of the transition function are shown
·+

in Figure 2.4. The parameters a“ (/5) are determined as follow;

+
a-(/?) = 2cos^(:^ ^  A  (2.15)

where N~ are the integers which most nearly satisty the following equations:

27r?r.'V+- /:i = 7T (2.16)

2TniN~ — P = —7T (2-17)

with /3~ = (f> — (f> and L = s sin" /? for plane wave incidence.

More details of UTD and diffraction coefficients are explained in [2].
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EQUIVALENT CURRENT METHOD

3.1 Introduction

In contrast to dilfVaction by straight edges, edge dilΓr¿tcl(.'d li(‘lds from tlirecî 
diinensional objects may have caustics. It is kjiowii that (hri.) oi* its modifica­
tions fail around tlu  ̂ directions of ray caustic's. To overcome tJiis failure of ra\' 
theory, an Equivalent Current Met]iod(E(h\J) incorporai(‘d witli th.e Cd'D was 
pro]:)o.sed by Ryan ¿ind Peters in 19<

The idea of equivalent current concept consisis of deiermining the equiv­
alent electric and magnetic type currents [lowing along the. edge* of a wedge 
which produce the actual diffracted field ol the wedge when radiate in the ab­
sence of the wedge. Then, the edge diffracted li(dd for an arbitrary scatterer 
can be found b}̂  the following radiation integral.(See Eigure 3.1)

jkZ j  [ k x  R x l +  YR X (3.1)47t R jc

where I and M are the equivalent electric and magnetic t\q;e currents in the 
place of the diffracting edge of the scatterer. Z and Y are the impedance and 
admittance of Iree space. C , as in Figure 3.1, represents the contour along the 
edge of the scatterer. R  is the unit vector in the direciion of observation.

Away from the caustic regions, the above integral is evaluated using station­
ary phase arguments. The stationary phase points are the dilfraction points 
and the value of the expression in(3.1) should give the diffracted fields as cal­
culated by the CTD.

By comparing the stationary value of the integral with the Gd'D fields, one

10
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Figure 3.1: Radialion of Eiquivalent Currents 

obtains tlie equivalent currents as

fc sin Po
t (3.V)

M = - Z \ l ~ t (3.3)
k ^smpo

where and //¡C„ are the incident electric and magnetic fields tangential to 
the edge at the diffraction point and i is the unit vector along the edge. Ds 
and Dh are the .soft and hard diffraction coefficients. 00 is the oblicpie incident 
angle as showm in Figure 3.2.

Since these equivalent currents are derived from the GTD fields, they are 
only valid on the Keller Cone(/? = 0^). As a consequence of this restric­
tion, equivalent currents cannot be used for arbitrary direction of observation. 
Therefore to extend applicability of equivalent currents to include the direc­
tions which are not on the Keller Cone, an arbitrary diffraction angle 0 is 
needed as well as the incident angle 0„ in the expressions of the equivalent 
currents. (See Figure 3.2)

For this purpo.se, Knott and Senior[-l], on the basis of reciprocity consider­
ations, proposed the following replacement

sin 00 — V^ii' 0 sin 0o (3.4)
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Keller Cone

Figure 3.2: Diffraction by an infinite wedge 

and accordingly, they modified the equivalent edge currents as follows:

-V

M  = - Z

. /8
k v'sin Q sin

k \/sin ,0 sin

Ds-Elani (3.5)

■■D̂h U (3.6)

Although these expressions are consistent with the reciprocity principle, 
their derivation is not based on mathematical grounds.

To obtain the equivalent edge currents for arbitrary direction of observation, 
a new approach is suggested by Michaeli[5]. He proposed that the equivalent 
current expressions can be derived from the asymptotic integration of surface 
currents. This new asymptotic method is explained in the next section.
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3.2 Equivalent Edge Currents For Arbitrary A spects  
of Observation

Consider a perfectly conducting flat surface' S on ihc xy-])lane with an edge (J 
as shown in Figure 3.3. At arw point on the <.'dge, the unit ve'ctor / is tangent 
to the edge, n  is normal to the surface, and I lie binorrnal unit vector is gi\'en 
bv

b = h X I (3.7)

'The angles (j). (p . /i and ¡3 are measured as shown in Figures 3.3 and .3.-1. 
R is the distance to the observation point measured from the origin at the 
coordinate system, s and .s ¿ire the unit \-ectors for incident and observation 
directions. The far scattered field from tliis structure is given with the following 
radiation integral.

~, jkZ e-Efi ,
E  =  '------------ r --- ä X S X

- l/T  R  J Js

where Z is the inti’insic impedance, k is the wa\’enumber and .]'i[x.y) is the 
total induced current on the conducting surface . In addition. Ay. and A·,, are 
given by

A·., — A- s *

ky = k .C y

(3.9)

If the field point is not on a caustic of reflected held, then in the limit 
k oo , the surface radiation integral can be reduced asymptotically to a sum 
ol field contributions from an interior stationary point on S and a. boundaiw 
contribution expressed b}' a line integral C. The former gives the reflected field 
and the latter should represent the edge diffracted field.

Then, the edge diffracted field in (t,b) coordinate system is given Ir}·

.-jkR
-s X S X Jr(A, dt (3.11)47T R J c J o

where ”o” denotes the asymptotic end-point contribution at b=0. 

Let
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Figure 3.3: A Perfectly Conducting Fdat Surface

Figure 3.4: Two dimensinal view at the diffraction point Q
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/?(/) =  /

Then

'¡hZ i
E‘‘ = s X ,5 X /

4/1 h  ./r (3.13)

The edge diifracted field can also bo e.xpre.ssed as due to the equivalent edge 
currents along the edge

ik7  e~NK- f
------ /  [s X .§ X il  -I- YS X47t h Jc

Equating the two integrands, we liave

Zs X .5 X K ~ ZIs X ,s X i -1- Ms X t (3.15)

Dot multiplying both sides of the equations with s x I and .s x .5 x /,

1 =
= ¡ iw 5 ‘· ■ I" " " ''■<

are obtained. 

Finally, by using

M = -4 - ; / - ( '5 x y ^ )sirr o (3.17)

s - t cos ¡3 A b sin [3 cos (j) + h sin ¡3 sin 6 

expressions change to

I = Kt — Kb cot (3 cos 0 (3.19)

,  ̂ ^sill 6
M = —Z-.—-Af,sinp (3.20)

where Kt and Kh ¿̂ re the tangential and binormal components of the vector K.
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Let a perfectly conducting half plane is illuminated by a plane wave as shown

CHAPTER 3. EQUP ALENT CURRENT METHOD

3.2.1 H alf Plane

in Figure 3.4.

Figure 3.5: Perfectly conducting half plane

Ih e  local edge unit vectors are given by h = y, l  -  x and i -  z. <p\ p 
and i5' are the same as shown in Figures 3.3 and 3.4.

If the incident field is given

— ^Q' cos<p'+ysmy ьіпф -гсоз/З ')

H' =  Ys  X Ё' (3.22)

Using UTD, the total magnetic field is given by

Ht = Йоо + Ht-TD

Then the total surface current density is found from

(3.23)

JT = h x  [Нт{ф = 0) -  Йт{ф = 2тг)] 

which can be decomposed as

(3.24)
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■h = + Jl-Ŷ ·· -f ( + J{)z (3.25)

4 '^ =-- 2Vsin/3'e--''^"':os J ^ o (3.26)

J f "  = - 2 Y  cos <Y cos
+ 2Y sin

M f ., M 
sin o co s O  ̂ —Jf '̂z cos ;3 (3.27)

an(]

-ik.J {  =: -  V'-l ^jkxsm fj COSO

\/ '2h j' s in  ij'

(3.28)

^.'.7 '·  /  ^ . I · I '  ̂ - I" r n Q  /A .̂-.//.--cospj /  == 4V''— —  cos /5 COS </i> e
7̂T

r>.7 7r/-l
+ -4  Y sin (f>' —J=̂ fc ·^ ·* ·* ^  0·

^ J \ f ‘IkX· f̂ \i\ fl'

^y '̂x >in 3'̂

c -^^ \lr

c -‘>^\lr

+ 2V'f i ----- -:—37 y' (-'OS <7!»/2t•̂a'TT sin ¡3
- j k x  s ill ¡j -  j k r C( »s . /

+ 2V■e->/^ kxTt sin (3
- sin

is the geometrical optics approximation to the current density and 
is the fringe or ”non-unitorm” component as named by lifinnscv. VVe will 

examine the radiation of each component separately.

3.2.2 Fringe Com ponent of Equivalent Edge Currents

le Ini'lP’e  r.oivmnni'inf nl t hp r‘mn\7s.̂  lr»nf C lirrcilts  reCJllll'CS

K^[z)=x  / (3.30)
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Fringe curreni JCx.z )  can not be represeiiloid near the e<Jge(x=0) in a 
simple arnp^itiide-phase form. However, away from the edge, GTD gives a 
phase as —kxx ■ a. This phase describes J' [x·, x) as a wave propogating in the 
a direction which is the direction of dilfracted rays at the intersection of Keller 
cone with the half plane. Thus if it is iissumed that the ray behaivonr of the 
fringe surface field is valid up to very close edge, then the integral in (3..31) 
becomes infinite, if the following condition holds

X =  a  - X (3.31)

In other words, the singularity condition is satified when the phase of 
J^{x,z)  cancels the phase of the exponent in the integral. This singularity 
condition represents a cone around the x-axis as shown in Figure 3.6. With this 
argument, Michaeli[7] stated that these expected singularities can be reduced 
to a single direction by choosing a proper skew coordinate system. Therefore 
a and z coordinates are selected instead of the cartesian coordinates x and z 
with the following relations.

x = cr sin ,5' 

z = z + asm ,e'

(3.32)

(3.33)

Figure 3.6: Singularity Cones
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Using tlie new coordinates, tlie integration Irecoines

K^{z) = sin 5 /  J^{asmf3 .z + a ca>s 3

J3y substituting the K^[z) into the equations (3.19) and (3.'i 
the following fringe current components.

. this yields

= y  ̂ 4  + H L4

M' = zn;„„,il

The variables d{^di and dl are defined by

// -  sin f72  { \ /F { l̂ \ í3,o) - ¡3' COSÇ I2)
 ̂ j k  sin /3'G{f3'. ij, G . o) 3.37)

2 sill,S'{cot ¡3 cos (!) + cot ,6i' cos (p -t- cos Ç ¡2 , J j ^ ^ j^ H { i3 '  ,S. ç) )

where

d{ = G
" j k

sin i;3'sm<j>{\ -  sin S' cos o ¡2

siii/3 G[(3'U3,(p ,(p)

F{S ■,Si4') =  sin ,/?'(sin ¡3' — sin p cos <t> 

— cos /61'(cos d — cos s') (3.40)

G{S ■,/S, 9 ■, <!>) = sin/3'(sin/3cos (̂  + sin/S'cos 9 ) 

+  cos s'{cos S — cos s') (3.41)

H { S ' =  C O t/? ' [s in /5 cO S ?!>  +  C O t /5 '(c O S /0  -  COS/3')]

— sin s' cot S cos (j)
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TI103 resulting equivalent fringe current expressions are finite for all as]:)ects 
of illuniincition cuid observation except for the case .s — s' — a. In addition, 
there is an integrable singularity at s — cr direciion as ex]>ected.

3.3 Derivation of PO Equivalent Edge Currents For a 

H alf Plane

In the following end-point evaluation

The phase of -) —kxx ■ s . Hence, the singularity condition of the
intesi'al becomes

X · s — X (3.41)

'I'he replacement of .f-directicjii by the a-direction for the integi'ation a.s in 
the case foi· fringe currents doe.s not have similar elTect on t he PO components. 
Because, such a step merely replaces the cone of singrdar ,s-directions. b\· a.n- 
other cone, defined by ii · d = ■§ · d" and only for grazing incidence, a — s . does 
the latter collapse into a single dinjction. s = a . However, tire abo\ e argument· 
assumes a skew coordinate direction fixed by the incidence angle for all olrser- 
vation directions, in fact, for equivalent currents there is no need for such a 
restriction, the skew coordinate direction may be determined by both the inci­
dent and observation directions (J and s). So, for each observation direction, 
the skew coordinate direction on the surface of the half frlane is detennined 
separately.

To apply this ap25roach, we will again use the (cr, z) skew coordinate system 
as shown in Figure 3.7 with an arbitrary skewness angle 9 as follows

X — a sin 0  

z := z + a cos 0

(3.4.5)

Then the following end-point contribution
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Figure 3.7; Skew Coordinate System

K^^{z) — sin 0 / Jao{<̂  sin 0,z A cr cos
J  o

is evaluated as

(3.47)

= 2rsin /3 '
sin 0

jibi(sin 0' cos 0' + sin 0 cos <̂) sin 0 + cos t (̂cos 0 — cos 0')]
(3,48)

K f °  = -
2Y cos f  cos 0' sin 6

+

[(sin 0' COS (?' + sin 0 cos 0) sin 6 + cos i?(cos 0 — cos 0')\ 
2Y sin 0> sin 9

[(sin 0' cos 0' + sin 0 cos 0) sin 9 + cos 9{cos 0 — cos 0')] 

The PO equivalent edge currents are then obtained

7TT (3.49)

9Y .
1^0 = sin (p’ sin 9

j k  ^sin /3'[(sin/?' cos 0' + sin 0 cos 0) sin 9 + cos ^(cos 0 — cos 0')]
. Q________  cot 0' cos 0' -1- cot 0 cos 0___________

j k  [(sin 0' cos 0' + sin 0 cos 0) sin 9 + cos ̂ (cos 0  — cos 0^^
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2 7. sin·çişin 0
jk  ~ sin/?[(sin f3' cos (/;' +  sin /5 cos (¡>) sin 0 f  cx>s i^(cos ,3 — cos/3')J

(3.51)

It is seeij that, these expressions are the function of ilie skewness angle 0. 
Hence the\  ̂ are noniinique.

Let

I = c  + 1}̂ o (3.32)

M = NC + (3.53)

'I'o lincl tlie radiation iVoiu the equi\^alent line curnnits I and M, vve need to 
the e.xpressioiis for the equivalent currents at 3 — 3 dire(:tion(.See Ap]>endi.x 
A). For that reason, it is observed that

77) (3..51)

M^{3 = 3') + =  /3') = Mr;TO (3.5.5)

Tins means that, the radiated electric field from the fringe and PO equiva­
lent currents is independent from the a.rbitrar3' skewness angle 0 and it exacth- 
3'ields the GTD field.

On the other hand, the selection of 0 represents the singularity map of the 
PO equivalent currents. At ¡3 = /3\ the PO equivalent currents reduce to the 
following ones.

_  + l ,/ .ÎÇ İ4  (3.56)
j k  ~ sin^ 3 (cos ^ -h cos 0 ) j k  ' sin Ş

M^^{3 = 3') =
sin j)

j k Y  “ siiP 3 (cos (j) -h cos ç!ı')
(3.57)
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3’hcse expi’esi;ions are only singuliri' at the incident and reilccted transition 
regions. But the PC) equivalent current.s may have additional singularities 
depending on the selection oi 0.

Accordingly, depending on both the incident and the (jbservation diiections 
if we choose the skewness angle 0 as follows

cot 9 = — cos [3 — cos ¡3'
sin ¡3' cos (p' + sin ¡3 cos (jj

(3.0S)

'Phen PC) equivalent cui'rents become

rPO =
sin (p'(sin ¡3 cos 0 + sin ;3' cos o)

jh ' sin ¡3'[(cos [3 — cos (3')- ~\- (sin (3 cos A + sin ¡3' cos ©' )'·̂]
sin ©(sin ¡3 cos (¡) -f sin i3' cos g ) 

j k  ' [(cos ¡3 — cos f3'y + (sin 3 cos 6 + sin ¡3' cos g )-\-b — //! (3.59)

sin ©(sin ¡3 cos 6 + sin l3' cos g )  
j k  """ [(cos/Cf — cos f3'y + {sm/3 cos 6 + sin ¡3' cos g')-]

(3.60)

It is noted that the equivalent current e.xpressions gi\-en in (3.59) and (3.60) 
are the same as the ones in [6] where they are determined for a finite size phate 
by an a]rplication of Stokes’ theorem.

When the singularities are e.xarnined, the following conditions are obtained.

and

( b p s  — -K

P - 0 '

[3.61

(3.62)

This represents the incident and reflected shadow boundaries on the Keller 
Cone and we see that, the singular directions are not expanded by this selectioji 
of 9.

Physiccilly, the direction of skew coordinate a in this case is the direction of 
the projection of (i — 5 ) vector onto the half-plane. It is a function of both s 
and s , as described earlier. The natural question to ask at this point is what 
happens when (s — s ) vector has zero projection on the half-plane; in other
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words, wlien (s — s )  licis only iiornial coinpoiient to the half plane surface. 
In this case, the above deiinition of a fails. However, a close examination 
reveals that when (s — .s ) vector has only uormal component to the half-plane, 
the observation dii'ection is either on the incident boundary (s = s )  or on 
the shadow boundary of the Keller (.'one. Both of these cases correspond to 
directions for which the field is non ray-optical and the equivalent current 
concept is not valid.

3-4 Higher Order Equivalent Currents

When a perfectly conducting flat plate is illuminated by a plane wa\'(\ the fringe 
cind PO equivalent currents due to tli(· first order diffraction will be excited on 
the edges. The radiation from these curixnits yields the single edge diffracted 
fields. But to obtain more accuraie results, it iruiy be iieccesary to include the 
multiple diffractions between the (xlgcvs. 1 liei'efore, equivalent current method 
can be modified to include tfie higher order interactions. Accordingly, the 
fields of the multiple diffracted I'ays l)ettveeii the plate edges are comi)uted 
b}̂  constructing the corresponding eciuivalent edge currents ¿md using them 
to compute the far scattered field, rihs [n'oeedure provide us to obtain the 
contribution of the higher order dilfraclioiis to llie total far scxittered field.

Consider a perfectly conducting flat ¡date which is illuminated by a plane 
wave as in Figure 3.7.

It is known that the diffracted (iidds from a point on the edge is given by 
UTI3 as follows

' 4 ¡'.h o

. ^7. o l \ T V

^-j7r/4
Z3s = - - 7 = —

h v ‘27r -̂smp
F[kLa{(p -  (p')] ^ F[A;Ca(̂  + ?i')]

Q — 0COS
O-Fd)

COS

where

a(fi) = 2cos"(i9/2) (3.65)
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aud

Figure 3.8; Edge interactions in a flat plate

L = psm \3  (3.66)

with the {T,<r>) coordinate systenn which is defined at the diilraction point.

On the other hand, it is assumed that the diffracted field from the second 
edge is almost a plane wave when it illuminates the fifth edge. The diffracted 
rays from the edge 2 are incident to the <idge -5 with the following tangential 
fields.

E[^,Xat edgeo) = /5 · Ê ^

-  O (3.67)

edgeb) = /5 · /7'·' (3.68)

Then the equivalent edge currents at edge .5 due to double diffraction is 
given by
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= l}{TIUJai ,dgeo),;Cl^\<pJ) + l-poUnaniM. tdgeo),/3,/3', 9 ) (3.69)

edgeo),l3,3',dK6) T cdgco). ¡3, 3'. <?. o )
(3.70)

The radicited el(v“ctric field from these equivalent currents.

E =
-jkR p

4ir
[R X R x  y| + Y l i  X (3.71)

where R is the observation direction and k̂ : = kR-x, ky — kJi-y. In the notation 
of the higher order current.s in represomts the ordei· of the diifraction and 
q sliows the riurnljer of the edge (hat equivalent currents exist.

In the anal3’sis of higher order dilfractions one has to consider the shadow­
ing effect of the surface dilfracted rays. Since this causes to the illumination 
regions. In the radiation integrah a and b rejiresent the limits of th.c illu­
mination region on edge O- It is dependent to the incident wave' din'clion. 
]>ola.rization and the geometry of the plate. If tlie similar integral is i-'peated 
for each straight part of the edge by defining the a]>propriate integration limits 
on the opposite side of the plate. Then the sum of the integration contributions 
will be equivalent to the second order diffraction.



Chapter 4

BACK SCATTERING FROM FLAT
4

PLATES

In iJiis chapter, (o exaniiiic tlie accura.cy of the fringe and PO eciiiivalenl edge 
currents, we applied them to the problem of backscatteiing from the perfectIv 
conducting rectangular and triangular plates.

Eventfiough there i.s no analytical solution to these plate problems, tlie 
calculations of the Irackscattered field has been investigated by sorm? antliors 
using high frec|uency techniques.

For the square plate problem, Ross[]0] has ap])lied the GTD and PO meth­
ods to predict the monostatic RCS. Ross also obtained a wide range of measured 
data[lO] and his results were in agreement with the measurenieiits except for the 
regions near edge-on incidence. Later, more accurate results are obtaiiu'd by 
Sitka[9] who employed GTD based equivalent currents and included the higher 
order ecjuivalent currents into the analysis. The results for the backscattering 
from the triangular plate are also obtained in [9].

In the present analysis, we applied the fringe and PO components of I lie 
ecjuivalent edge currents to the same backscatteriiig problems from the square 
and triangular plates. In addition, the currents are combined with UTD to 
include the contributions of the higher order diffractions as explained in section 
3.5. The analysis is also performed for E and H polarization cases separately. 
For each case, the results are compared with the previous anabasis of Sitka and 
measured data.

It is known that the fringe and PO equivalent edge currents have the in­
finities in the incident and reflection shadow boundaries on the Keller Cone.

27
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Therefore, tlie biickscaUering results from the flat platc's at the broadside di­
rections become singular. On the other hand, U'i'D plane wave diffraction 
coefficients are used to consider the edge interactions. But in the (rausilion 
regions, the diffracted fields from the edges are not ray optical.

Th<i total eciuivalent currents are given by

I = YEUMo\<P,l3\3) + (-1. 1)

M  = Z /T  D h(0 \çS ,//,T )

vvliere

Os,h,2i^\ 9, ¡̂ ' 9- J ' (̂ 1-3)

where and e.x'pressions are due to the iVinge and PO ¡tarts of tlie
equi\alent curi'ent components. It is assum<.“d that the e(|ui\'alent currents exist 
on the edges in the direction of the edge's tajigent vector.

Two types of polarization for the incident plane wave is examined sepa- 
ratel}'. E-plane polarization occurs when the directicui of tlu' incident electric 
field is in the observation plane. If the observation jtlanc' is the xz-plane. then 
iJie ITpctlarized plane wa.ve becomes;

r ’ i   (T. bill 0 cos (j)+ r cos (/)L· — (i‘0 (4.4)

IP = YR X E‘

Sirnilarl}·', H-plane polarization occurs when the direction of the incident II 
field is in the observation plane.

Il-polarized plane wave;

ğ i  _  ^j k [ x  sill 0 cos (p +  z cos 0) ^ ^

IP = Y R  X E ‘

(4.6)

(4.7)

4.1 Square P late

Let a. perfectly conducting square plate is illuminated by a plane wave with 
the propagating vector 5,· as showui in Figure 4.1. It is seen that xz-plane is
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Figure 4.1; Perfectly Conducting Square Plate

the observation plane and the first order equivalent currents are excited on the 
edges of the square plate. The length of the plate is shown by ”a’b

Then the single diffracted fields from each of the edges of the square plate 
are evaluated by using the total equivalent edge currents as follows

From edge 1:

(4.8)

, - j k r

where

(4.9)

and

/3 = 0' = t /2 

</> = (/)= 7t/2 — 9

(4.10)

(4.11)

From edge 2:

pi _  ^62 — - A  [cos0(D,(4’' ,' t>,l)'j)El, +
47T

- j k r

(4.12)
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47T

-jKr

where

and

/3 == r/2  + 0 

(4 ~ -K ¡2 — 0

o — S — /2

From edge 3;

j k r~jk-r

ril - A  r i )U l„ \a A A

where

and

(j =-_ ji' = Tr/'i 

(j) — S =. 7t /2 + (4.20)

From edge 4:

E'„ = A  \cos0(D,(4;,^J\?)E\„^D,(,p\<!,Ji\l))HlJW(0,a)
47T

^-jkr

j k r . ~ j k r

T  = (4.22)

where

/4' = -kI'I -  0

^ = 7r/2 + 6/

(4.23)

(4.24)
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arul

vviUi

Ф' = ф-= - /2

W{0,a) = I
Jo

jka.ino FmikasmO) 
' ' kaCmO (4.26)

In the r('preseiilati(ni , in re])rescuts the edge nuinlxM·, n shows the
electric field (.•(nnpoiient and q is the single edge diilVacticni. d'hen the total 
siiiLde diffracted field becomes

whei*e

0 component:

^  E]ao + E]^a

El = E l  + E l  + E l  + E l

(4.27)

(4.28)

О component:

-̂ 4 ~ “*■ ^'ч-i + (4.29)

T'lie liiglun· Older diilVaction rnedianisnis are anal\'.si/ed for 14 and H plane 
Ccuse.s in the ne.xt .sections.

4.1.1 E-Polarization

When tlie higher order intercictions between the edges of tlie square plate are 
considered according to UTD, then it is observed that the edges 2 and 4 don’t 
cause diffracted rays on the surface. However, the opposite edges 1 and 3 
interact correspondingly. Therefore, due to the double diffraction, the following 
second order edge currents exist on edge 3.

= Щ М Ф '  = 0, = тг/2 +  ^  = ¡3' = ТГ/2)

= 0.  ̂= .r/2 + 0,/? = /?' = »/2) (4.31)
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where

-  ^/2 -  0̂<P -  0.13 = n/2.a)
■j/:a

(4.32)

where Dl  ̂ is tlie UTD hard diil'raction coeilicient on edge J and t he factor 1/2 
is due to grazing incidence. Tlie s('Cond order currents ,/j- and 3 // on edge J 
can be found .similarly. Then the total st'cond order diffracted field is gix’en by 
the following integral.

E'^ —— ( / \R X R X J'f + YR  X 
Itt h  Jo '

 ̂ [It X f ix  f j  + YR X (4.33)
lo

The third order diffractions are als<; computed by using the similar ap­
proach.

4.1.2 H -polarization

In lI-])olarization ca.se, onh' the edges 2 and 1 cause difIVacted rays on the sur­
face. In the analysis of the higher ordei' diflVaction mechanisms, it is obser\'ed 
that the diffracted rays from the edg(; 2 illuminate the whole of the edge I and 
a part of the edge 4 for 0 < 7t/ 4. On the ol.her hand, for 0 > Tr/4 only edge 1 is 
partially illuminated by the diffracted rays frcnn the edge 2 as shown in Figure 
4.2.

Then the second order ecjuivalent currents on the edges 1 and 4, due to the 
double diffraction, are given by

On Edge 1:

l i  =  ^̂ an02{(l>' = 0,(p = 7t/ 2  -  9,0  = V -  0,,3 ~ 7t/ 2 )

M l = =  0 , <;6 = 7t/ 2  -- 0, /4' 7T -  0, /3 = 7t/ 2 )

where
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•y

Figure 4.2: Edge Interactions in the Square Plate

Hian = edge2)s\ndDl{<?' =-- 7t/ 2, d = 0 J  = tt/2 + 0,s) ^

with

cos 6

On Edge 4:

= 0,c> = ^/2, /3' = 7t/2 - e j  = It/2 + 6) (4.38)

M l  = ZHl^Di,{<f>' = 0 ,9  = z/2,j3' = 7t/ 2  - 0 J  = it ¡2 + 6) (4.39)

where

= \  cdge2)cosODl{9 = it¡2,9 = 0,j3 = it¡2 + 0,3) (4.40)

with

s =
cos 0

(4.41)
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'J'hezi the coiitrilzutioii of the second edge to tlu‘ total second order diil'rac 
tion is given by

, 'y I'yinojc

where

£.2 =  / [/¿ X f i  X f 2 +  Y f i  X
•'Itt Ji Jo
/'4’nm X

+ / [Rx H x  I¡ + YR  X
Jo

(1.42)

U m a x  ~

a 0 < tt/  J 
a cotí? 6 > 7t/4

(1.13)

and

J m a x  —
i(l — tan Í?) 0 < Tr/4 

O 0 > 7t/4

The contribution of tlie edge 4 to the second order diiiVaction i.s coinpnled 
in a similar way. Then the total second order diilVacted field is evaluati.'d as

Ê  = E  ̂+ E  ̂ (4.43)

4.2 Triangular P late

The perfectly conducting triangular plate , as shown in Figure 4.3, is illumi­
nated by a plane wave which is lie in the xz-plane. The xz-plane i.s again the 
observation plane.

The single diffracted fields from the edges of the triangular plate are ob­
tained as follows

From edge 1:

E'n = -  A , l3 \ l3)Hl ,N(b)
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Figure 4.3: Perf(x;i,]y Conducting Tricmgular Plate

where

ф = ф = 0

fj ^ ß ‘ =. тг/2

(4.4S)

(4.49)

From edge 2:

E], = ^-^[{Ехпа120ъ(ф ..φ,ß\ß) + co sa |2 A n βD 2 {φ \φ J \ß ) )H l
47Г

+ cos a/2 sin Ф, ß', ß)E\^,]M{в, a)

tan

(4.50)

j k
EI2 = '̂/2 sin 9Е1^{ф\ Ф, ß', ß) + sin q'/2Z)2(<̂ ', ф., ß \

+ sin a!2Ds{ß\ Ф, ß \ß ) E iJ M { e ,  a) (4.51)

where

ß = cos ’(—cosa/2cos ¿1)
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iK = S —■ cos * (cos a /2  cos Ö) (.1.53)

(P =z (■) =  COS -1 I — sina'/2 cos (7 
y/1 — cos- 0 cos'- Cl /2 '

(4.54)

'Voni edge 3:

[A.ĵ  ~  —  [ ( - CO.S a/2sin  6'./j'v(c/, d , /.7 . /7) + siii o/2/7ij(c'/. d , /7’, /3))//),^„
4

— cos a/2 sin 0Da{& ■<?,S N^)K[ai]^l{C_a) (4.55)

— ~  [(sin a/2D-2{(,’> ■, <C S\,3) + cos o/2sin 0J\lo, o, 3', 3)141,4 A
+ sin c\/2I)^irp, d: 3)Klr]M (0. a)

where

and

fi' — cos ’ (co.s a /2 cos 0)

0 — cos ‘ (—COSO¡2 cos 0)

(4.57)

(4.58)

d, <? same as the second edge.

In addition,

/■26
(̂6) = / dy = 2b

Jo
(4.59)

M(0, a)
= /

— a
s\Yi{k cos 6a) 

k cos Oa
 ̂j  I: cos Oa (4.60)

The total single diffracted field becomes

— EgUg -f E^u^ (4.61)
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where

0 component; 

(p coni])oncnl;

Eo —' -t- N(>2 + E'os {■'UT

El = El, + El,  + £■’„

The higlK;r older dilfraction medicanisms are aiialysized for I] and H polar­
ization cases separately in the next sections.

4.2.1 E-Polarization

In thi.s ])olarization, it is seen that all edges cause diffracted ixiys on t he sur­
face and the liiglier order diffraction mechanisms can he mainly sjilit into tlu' 
following two parts.

i) The dijfracted rays caused b\· tlie first edge of tlie triangular plate il­
luminate tlie second and third edges. Thr-n the corre.si.)onding second order 
ecp.iivalent edge currents on the edges 2 and -3 are gix’on hy

On edge 2:

I2 = = 0 ,0 ,8 '  = a/2.;?j

M;̂  =  Z H l M o  = 0 ,8 ,8 '  = 0 / 2, ,h)

vvdiere

Hln = e¿í7e l) s in a /2i;¿(V/ ---- 0,8 = 0,,8 = t: /2 ,z) ^

On edge 3:

í̂ , = irtunD2Í8'=--0,8,8'= ^ - 0 / 2 ,,8)

U l  = ZHl^D^[8' = 0,8,18'= 7r- a/2,f8) (4.68)
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where

H L  = edgel)s\na/2Dl(o ... 0,o -  0 , 8  = Tr/2,c)
, - jk .

(p is determined by eciuation (-1.5 J) fur each edge and 3 is evaluated by 
equaticjiis (4.53) and (4.58) lor second and third edges respective!}'.

Then the radiation of these equivalent currents is given by

ULt = ------ — [ [h -K fi x
4Tr li Jq

+  f [R X R. X /j -i- Y R  X /l7|]e 
Jo

(4.70)

ii) On tlic otJier hand, we sec tliat iUc diffracted raws fi*oin the edge 3 
illuminate the edges 1 and 2 dei.Kuidiiig on 3̂  as shown in Figure 4.4.

The second order equivalent edge curi*eiits on I lie edges 1 and 2 due to the 
diifrcicted rays from edge 3 are given as follows

On Edge 1:

I? = = 0 ,6  = 0,n‘ = ,r/-2 -  1% + a/2.;J = it/2) (2.71)

MJ =  Zlfi J U p  = 0 ,6  = 0, 3‘ = w/2 -  fi, + 0/2,0 = -/2) (4.72)

where

H L  =  - W M  ««(A -  < ^ n ) O i ( 6 , 6  = 0, /?, n W  (4.») ̂ Va

On Edge 2;

li  = H L D i (6' = 0 , 6 , 0  = - ^ - P o 6  a,/J)
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Figure 4.4; Edge interactions in the tria.ngnlar plate

Mo = ZHl^^D\y((p = 0, Ó, d' =z IT -  Bo + o, ;4)

where

HE
V'̂

and

edge3)sin{6o -  a)Di^{ó = 0 ,3 ^ ,s )— =:r 

H\{ai tdgei) VeJ----cosi

(4.7.3)

(4.76)

(4.77)

B and 6 for second edge are given in terms of 0 with the equations (4.5-3) 
and (4.54).

In addition, s and z are the integration parameters which have the following 
relationships.

For Edge 1:

cos{Bo — tv/2) tan q/2 + sin(/i ,̂ — o/2) 

2 =  s{y) cos(/i,, -  a/2) (4.79)

For Edge 2:
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7 = 7t/ 2 + a/2  -  IL,

— 2 tail ( a /2)
cos 7 -f t ail a/2  sin 7

/cos 7 — tan a /2 sin 7 ) + 2« tan o /2 sin 7· 
cos 7 -1- tan a /2 .sin 7

(4.82)

These integration \'arilrles as .shown in' Figure 4.4 are snhstii uteO into the 
following radiation inti'gral with the defined equivalent run cuts.

rym u

■Itt R
- (  /  [k  X  R  X  1/ +  Y R  X

[ii X R x l l A  Y R  X '-'"^^/.v') .84j

where

y 11:'l.v
j  a [ t a 11 Q /  2 + t a n (R, a / 2)] ¡ij < a 

a !l > (X
(1.84)

and

a do <
0  7t/2 + a /2  > ,3o >

----2a¿.rna/2.uг̂  ^
cos^l — t a n a / 2 s in R  ‘ ^ '

a (4.85)

This procedure i.s repeated for the diffracted rays from edge 2. Then the 
following sum of all integral contributions gives the total second order dilfracted 
field.

= El  + .E' + El
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4.2.2 H -Polarization

In conirasl to tlio Ivpolarizaliori case, in 11-polarization tlie first edge dovisirt 
Ccuise to tlie sui'ia.ce diili'actiori. Ilo\ve\aM\ second and third edges c'reatc the 
diffracted laiys and the corresponding ecjnivaknit ciirrcnts on the o])])Osiia‘ ('dges. 
Therefore, tlie second diffraction can be coriiputed hy using th(' sec^nul inecli- 
anisiTi mentioned in tlie j^revious section.
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COMPARISON OF THE RESULTS

Here, the results of tlio pj'csent analysis of the stjuaix? and Iriangular |daics will 
be presented and coin])ared with tlie previous results of Sitka[9j, Koss[IO] and 
the measured data,[9].

In both flat plates, for eacdi polarization case, the total far scattered field 
is obtained the summation of all integral contributions including computed 
liiglier order diffractions, riic integrals are e\aluated numerically using pulse 
functions with 0.01 wavelength steps, 'riien the total far scattered held is found 
as

( 0 . 1 )

In the analysis, e.xccpt the E-polarization for square' plate, onl\' the first 
and second order diffi'actions are used. Tlie scattered field is obser\ed in the 
Irackscattered direction and rnonostatic RCS is obtained as a function of 0.

In the hackscattering from the scpiare jrlate, E-plane pattein results ai(.' 
shown in Eigure o.l. The first, second and third order diffractions are used in 
the analysis. It is observed that there is no difference between our result and 
Sitka’s solution and both of them are close to the exjrerimental data for 0 < 80.

In II polarization illumination for the square plate problem, the agreement 
between our result and the result in [9] is good and they coincide with the 
experimental result away from the grazing incidence region (See Eigure 5.2). 
Furthermore, we were able to predict the small oscillations near edge-on region 
by including the second order currents into the analysis.

In the determination of the backscattering from the triangular plate, for

42
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E-polarizatioii case, only the first and second order diffractions are used in tlie 
cinalysis. However, in [9], Sitka Inis used tlie first, second and third order dilfiau - 
lions including the ¿ill edge interactions. On the other hcind, in H-poIarizalion 
case, although the first ¿ind third order diifrcvctions. corner diffrciction and edge 
wave inecluuiisin are included to tlie ¿uialysis, second order diffractions aie 
omitted by claiming that the doulile diffrcicted rays between the edgds 1 anil 
2 of the triangle ¿ire cancelled by the diffiaicled J'¿ıys lietvveen edges 2 and 3 
in [9]. This Ccincellation does not occur for the new fringe and PO ecjui\7ii(Uit 
currents. Therefore, we used the first ¿incl second order diífг¿ıctions for that 
pohirization.

13-polarization results for the different siz(xl tiTingrihir pbites are siiown in 
Figures 5.3-5.6. It is obser\ed IVoni the figures that the present soluiioijs ai'c 
closer than the ones in [9] to the measured data for 0 < 20. In ¿idditiou, in 
Figure 5.5, Sitka pj*edicts a nonzero sc¿ıtleı‘ed field at 0 ~  ISO. Howe\'ia‘. in 
this ¿inalysis a zero field is obtained as expected.

The H-plane calculations for the triangular ]d¿ites are shown in Figures 
5.7 and 5.8. Both present and Sitka’s results are fairly accurate ¿iround tiie 
broadside direction (45 < 0 < 120), ¿md our results Imve a slight 1\' l>etter 
prediction of the vari¿ition of Huí pattern for () > 90. Bot h results deviate from 
the experiments for 0 < 45.
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a = 3.125 I am da

ÏHKTA(IN DEG)

—  Calculated 
0» Measurement

----Sitka
XX Ross

Figure 5.2: Backscattering from the square plate; H-pol (a==.3.125A)
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—  Calculated 
»« Measurement

----Sitka
XX Ross

Figure 5.2: Backscattering from the square plate: E-pol (a=-3.125A)
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,10.0 r
a = 41amda alfa=60deg
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"igurc .5.3: nackscaUering from Iriangular plat.c: lG |)o l(a - lA , alia -60(lcg)
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Figure 5.5: Backscattering ironi triangular plate; E-poI(a=4A, alfa=
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Figure 5.6; Backscattering from triangular plate; E-pol(a=3A, alia=:30deg)
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Figure 5.7: Backscatlering irom triangular plate: l-l-pol(a='lA. alfa--45cleg)
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Figure 5.8: Backscattei'ing from triangular plate: H-pol(a—9A, alfa=30deg
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CONCLUSIONS

In tlie present study, we derived the FO componeiits of the ecpiivalent edge 
currents for a lialf plane similiar to the Midiaeli's a]jproacli for l lie elirniiiation 
of the infinities of tlie fringe current co)nj)onent. By using; a different selection 
of the skew coordinate over the half |dam>, we obtained tlie 1^0 ecjuivalent 
current expi’essions. It is seen tl)at líense e.xpi-essions are tlic' same with the 
ones obtaijied in [6].

Furtliermore, by obtaining the PO etpiivalent currents de|)ending on an 
arbitrary skewness angle, it is shown that tlui radiation fi'oin the fringe and 
these arbitrary PO equivalent currents ai(' unique and yields the G'PD held, 
d herefore, tins proves the expectations that tlie n(;nuni(|ue c(|uivalent currents 
must give the unique radiation.

Later, the fringe and PO ecpiivalent currents, that is more general than the 
OTD based ones, are applied to the prol:>lems of the l^ackscattering from tlie 
perfectly conducting square and triangular plates, d'he higher order diffractions 
a,]'e considered in the analysis in order to evahuite the interactions between the 
edges of the plates by using the IJd'D. Tlnm, in the comparison of tlie present 
results with the previous results of .Sitka some improvements are obtained.
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R ad ia tion  From  T he In fin ite  L ine Sources

Let an infinite line source, carrying electric and magnetic type currents I and
M.

The radiated electric field from the line soui'ces is given by

E = 47r
(.; X i  X Hz ) + Ki X  AHz )] . .rfx (A.l)

-  - ) -z p ’

where z and p are the observation point coordinates as shown in tlie iollowing 
Figure.

Z
I

Figure A.l: Infinite line sources

If equivalent currents are in the form
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i( . ')  = (A.2)

(Λ.3)

Tljen inte^ra.1 l.)econies

Γ[3 X .5 X / ( , : · ')  +  r . i  X :\7(r'l]
 ̂  ̂ - j h N  c o s E + y / ( z - z ' ) ^  +  P )

ν Ί ' - - ' Ρ + ρ ' '
ifc (Λ.4)

Tills integTciI can lie evaluated by tlic incihod of stationary phase. Assuming 
that I(z')  tuid i\i{z ) are slowly varying and k is large.

Tlien the phase of the inti^grand

- -[-^'cos V + + e ] (A.5)

Solving 'E'{z[] O, tlie slationaiy i)oiiit is Ibuiifl as S =

Tliat is

cos β —
\ / ( , r - ^ ') -  +  p-

Racliated field

E  = jkZ[s xs Kl ( i 5  =  i Z ) N Y s x M { e  = (A.7)

At high frequencies, the rcidiation from the line sources, as derived liere, 
yield the field in the direction of the diffracted cones(i.e Keller -- /3' ).
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