
BOOSTED ADAPTIVE FILTERS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

electrical and electronics engineering

By

Dariush Kari

July 2017

BOOSTED ADAPTIVE FILTERS

By Dariush Kari

July 2017

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Süleyman Serdar Kozat(Advisor)

Sinan Gezici

Sevinç Figen Öktem

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

ABSTRACT

BOOSTED ADAPTIVE FILTERS

Dariush Kari

M.S. in Electrical and Electronics Engineering

Advisor: Süleyman Serdar Kozat

July 2017

We investigate boosted online regression and propose a novel family of regression

algorithms with strong theoretical bounds. In addition, we implement several

variants of the proposed generic algorithm. We specifically provide theoretical

bounds for the performance of our proposed algorithms that hold in a strong

mathematical sense. We achieve guaranteed performance improvement over the

conventional online regression methods without any statistical assumptions on

the desired data or feature vectors. We demonstrate an intrinsic relationship,

in terms of boosting, between the adaptive mixture-of-experts and data reuse

algorithms. Furthermore, we introduce a boosting algorithm based on random

updates that is significantly faster than the conventional boosting methods and

other variants of our proposed algorithms while achieving an enhanced perfor-

mance gain. Hence, the random updates method is specifically applicable to the

fast and high dimensional streaming data. Specifically, we investigate Recursive

Least Squares (RLS)-based and Least Mean Squares (LMS)-based linear regres-

sion algorithms in a mixture-of-experts setting, and provide several variants of

these well known adaptation methods. Moreover, we extend the proposed al-

gorithms to other filters. Specifically, we investigate the effect of the proposed

algorithms on piecewise linear filters. Furthermore, we provide theoretical bounds

for the computational complexity of our proposed algorithms. We demonstrate

substantial performance gains in terms of mean square error over the constituent

filters through an extensive set of benchmark real data sets and simulated exam-

ples.

Keywords: Online boosting, online regression, boosted regression, ensemble learn-

ing, smooth boost, mixture methods.

iii

ÖZET

İYİLEŞTİRİLMİŞ UYARLANIR SÜZGEÇLER

Dariush Kari

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Süleyman Serdar Kozat

Temmuz 2017

İyileştirilmiş çevrimiçi regresyonu araştırıyoruz ve güçlü teorik sınırları olan yeni

bir regresyon algoritma ailesi önermekteyiz. Buna ek olarak, önerilen genel algo-

ritmanın çeşitli türlerini uyguluyoruz. Özellikle, önerilen algoritmalarımızın per-

formansı için matematiksel anlamda sağlanan güçlü teorik sınırlar sağlarız. Veri

veya öznitelik vektörleri üzerinde herhangi bir istatistiksel varsayım yapmadan

geleneksel çevrimiçi geri regresyon yöntemlerine göre performans iyileşmesini

garanti ediyoruz. Uzmanların uyarlamalı karışımı ile veriyi yeniden kullanma

algoritmaları arasında, iyileştirme açısından içsel bir ilişki olduğunu gösteriyoruz.

Ayrıca, geliştirilmiş bir performans kazancı elde ederken, geleneksel iyileştirme

yöntemleri ve önerilen algoritmalarımızın diğer türlerinden daha hızlı olan rast-

gele güncellemelere dayanan bir iyileştirme algoritması sunuyoruz. Dolayısıyla,

rastgele güncelleme yöntemi, özellikle hızlı ve yüksek boyutlu sürekli akan veriye

uygulanabilir. Özellikle, uzman karışımı bağlamında Özyinelemeli En Küçük

Kareler (RLS) tabanlı ve En Az Ortalama Kareler (LMS) tabanlı doğrusal re-

gresyon algoritmalarını araştırıyor ve bu iyi bilinen uyarlama yöntemlerinin çeşitli

türlerini sunuyoruz. Ayrıca, önerilen algoritmaları diğer süzgeçlere de genişletiriz.

Özellikle, önerilen algoritmaların parçalı doğrusal süzgeçler üzerindeki etkisini

araştırıyoruz. Ayrıca, önerilen algoritmalarımızın hesaplama karmaşıklığı için

teorik sınırlar sağlarız. Oluşturulan süzgeçler üzerinde ortalama karesel hata

açısından önemli performans artışını kapsamlı gerçek veri setleri ve temsili

örnekler vasıtasıyla gösteriyoruz.

Anahtar sözcükler : Online güçlendirme algoritmaları, online bağlanım,

güçlendirilmiş bağlanım, toplu öğrenim, düzgün güçlendirme, karışm metodları.

iv

Acknowledgement

I would like to express my sincere appreciation to Assoc. Prof. Suleyman

Serdar Kozat for his wise supervision, endless support, encouragement and being

a role model for success. I could not have imagined a better advisor for my M.S.

studies. I learned to be professional and productive thanks to the work ethics in

Assoc. Prof. Kozat’s team.

I would like to state my deep gratitude to Assoc. Prof. Sinan Gezici and

Assist. Prof. Sevinç Figen Öktem for allocating their time to investigate my

work and providing me with invaluable comments to make this thesis stronger.

Also, I would like to thank all of my mentors in Bilkent University, especially,

Prof. Tolga Mete Duman, Assoc. Prof. Sinan Gezici, and Prof. Orhan Arikan,

for their invaluable guidance and support during my master studies.

Last but not least, I would like to dedicate this thesis to the unconditional

love and support of my family, my mother, father, brother, sisters, and brother

in law, who had to bear with my rare visits. I could not have imagined a better

upbringing if they were not always there for me.

v

Contents

1 Introduction 1

1.1 Related Works . 5

2 Problem Description and Background 7

3 New Boosted Online Regression Algorithms 10

3.1 The Combination Algorithm . 17

3.2 Choice of Parameter Values . 18

4 Boosted Linear Adaptive Filters 19

4.1 Boosted RLS Algorithms . 19

4.1.1 Directly Using λ’s as Sample Weights 19

4.1.2 Data Reuse Approaches Based on The Weights 20

4.1.3 Random Updates Approach Based on The Weights 21

4.2 Boosted LMS Algorithms . 21

vi

CONTENTS vii

4.2.1 Directly Using λ’s to Scale The Learning Rates 21

4.2.2 A Data Reuse Approach Based on The Weights 22

4.2.3 Random Updates Based on The Weights 22

5 Boosted Piecewise Linear Adaptive Filters 24

5.1 Boosted RLS-based Piecewise Linear Algorithms 25

5.2 Boosted LMS-based Piecewise Linear Algorithms 27

6 Analysis Of The Proposed Algorithms 30

6.1 Complexity Analysis . 30

7 Experiments and Conclusion 35

7.1 Experiments . 35

7.1.1 Stationary and Non-Stationary Data 36

7.1.2 Chaotic Data . 37

7.1.3 The Effect of Parameters 39

7.1.4 Benchmark Real and Synthetic Data Sets 41

7.2 Conclusion . 50

A Proofs 58

A.1 Proof of Lemma 1. 58

A.2 Proof of Lemma 2. 59

List of Figures

3.1 The block diagram of a boosted online regression system that uses

the input vector xt to produce the final estimate d̂t. There are m

constituent CFs f
(1)
t , . . . , f

(m)
t , each of which is an adaptive filter

that generates its own estimate d̂
(k)
t . The final estimate d̂t is a

linear combination of the estimates generated by all these CFs,

with the combination weights z
(k)
t ’s corresponding to d̂

(k)
t ’s. The

combination weights are stored in a vector which is updated after

each iteration t. At time t the kth CF is updated based on the

values of λ
(k)
t and e

(k)
t , and provides the (k + 1)th filter with l

(k+1)
t

that is used to compute λ
(k+1)
t . The parameter δ

(k)
t indicates the

WMSE of the kth CF over the first t estimations, and is used in

computing λ
(k)
t . 14

3.2 Parameters update block of the kth constituent filter, which is

embedded in the kth filter block as depicted in Fig. 3.1. This

block receives the parameter l
(k)
t provided by the (k − 1)th filter,

and uses that in computing λ
(k)
t . It also computes l

(k+1)
t and passes

it to the (k+1)th filter. The parameter [e
(k)
t]+ represents the error

of the thresholded estimate as explained in (3.7), and Λ
(k)
t shows

the sum of the weights λ
(k)
1 , . . . , λ

(k)
t . The WMSE parameter δ

(k)
t−1

represents the time averaged weighted square error made by the

kth filter up to time t− 1. 15

viii

LIST OF FIGURES ix

5.1 A sample 2-region partition of the input vector (i.e., xt) space,

which is 2-dimensional in this example. st determines whether xt

is in Region 1 or not, hence, can be used as the indicator function

for this region. Similarly, 1− st serves as the indicator function of

Region 2. 25

5.2 A sample piecewise linear adaptive filter, used as the kth con-

stituent filter in the system depicted in Fig. 3.1. This fliter con-

sists of N linear filters, one of which produces the estimate at each

iteration t. Based on where the input vector at time t, xt, lies in

the input vector space, one of the s
(k)
i,t ’s is 1 and all others are 0.

Hence, at each iteration only one of the linear filters is used for

estimation and upadated correspondingly. 26

7.1 The MSE performnce of the proposed algorithms in the stationary

data experiment. 37

7.2 The MSE performnce of the piecewise linear filters in the non-

stationary data experiment. 38

7.3 MSE performance of the proposed linear methods on a Duffing

data set. 39

7.4 MSE performance of the proposed piecewise linear methods on a

Duffing data set. 40

7.5 The changing of the weights in BLMS-RU algorithm in the Duffing

data experiment. 40

7.6 The effect of the parameters σ2
m, c, and m, on the MSE perfor-

mance of the BRLS-RU and BLMS-RU algorithms in the Duffing

data experiment. 42

7.7 The effect of the dependency parameter on the performance of

BPLMS-RU in kinematiks experiments. 43

LIST OF FIGURES x

7.8 The effect of the dependency parameter on the performance of

BPRLS-RU in kinematiks experiments. 43

7.9 The effect of the dependency parameter on the performance of

BPLMS-RU in the Puma8NH experiment. 44

7.10 The effect of the dependency parameter on the performance of

BPRLS-RU in the Puma8NH experiment. 44

7.11 The performance of the linear methods on three real life data sets. 48

7.12 The performance of the piecewise linear methods on three real life

data sets. 49

List of Tables

7.1 The MSE of the LMS-based methods on real data sets. 45

7.2 The MSE of the RLS-based methods on real data sets. 45

xi

Chapter 1

Introduction

Boosting is considered as one of the most important ensemble learning methods

in the machine learning literature and it is extensively used in several different

real life applications from classification to regression [1, 2, 3, 4, 5, 6, 7, 8]. As

an ensemble learning method [9, 10, 11, 12, 13, 14, 15], boosting combines sev-

eral parallel running “weakly” performing algorithms to build a final “strongly”

performing algorithm [16, 17, 18]. This is accomplished by finding a linear com-

bination of weak learning algorithms in order to minimize the total loss over a set

of training data commonly using a functional gradient descent [19, 20]. Boosting

is successfully applied to several different problems in the machine learning lit-

erature including classification [1, 20, 21], regression [19, 21, 22], and prediction

[23, 24]. However, significantly less attention is given to the idea of boosting in

online regression framework. To this end, our goal is (a) to introduce a new boost-

ing approach for online regression, (b) derive several different online regression

algorithms based on the boosting approach, (c) provide mathematical guarantees

for the performance improvements of our algorithms, and (d) demonstrate the

intrinsic connections of boosting with the adaptive mixture-of-experts algorithms

[25, 26] and data reuse algorithms [27].

Although boosting is initially introduced in the batch setting [20], where algo-

rithms boost themselves over a fixed set of training data, it is later extended to the

1

online setting [28, 29]. In the online setting, however, we neither need nor have

access to a fixed set of training data, since the data samples arrive one by one as a

stream [30, 14]. Each newly arriving data sample is processed and then discarded

without any storing. The online setting is naturally motivated by many real life

applications especially for the ones involving big data, where there may not be

enough storage space available or the constraints of the problem require instant

processing [31]. Therefore, we concentrate on the online boosting framework and

propose several algorithms for online regression tasks. In addition, since our al-

gorithms are online, they can be directly used in adaptive filtering applications

to improve the performance of conventional mixture-of-experts methods [25]. For

adaptive filtering purposes, the online setting is especially important, where the

sequentially arriving data is used to adjust the internal parameters of the filter,

either to dynamically learn the underlying model or to track the nonstationary

data statistics [25, 32].

Specifically, we have m parallel running constituent filters (CF) [17] that re-

ceive the input vectors sequentially. Each CF uses an update method, such as

the Recursive Least Squares (RLS) or Least Mean Squares (LMS), depending on

the target of the applications or problem constraints [32]. After receiving the

input vector, each algorithm produces its output and then calculates its instan-

taneous error after the observation is revealed. In the most generic setting, this

estimation/prediction error and the corresponding input vector are then used to

update the internal parameters of the algorithm to minimize a priori defined loss

function, e.g., instantaneous error for the LMS algorithm. These updates are

performed for all of the m CFs in the mixture. However, in the online boosting

approaches, these adaptations at each time proceed in rounds from top to bot-

tom, starting from the first CF to the last one to achieve the “boosting” effect

[33]. Furthermore, unlike the usual mixture approaches [25, 26], the update of

each CF depends on the previous CFs in the mixture. In particular, at each time

t, after the kth CF calculates its error over (xt, dt) pair, it passes a certain weight

to the next CF, the (k + 1)th CF, quantifying how much error the constituent

CFs from 1st to kth made on the current (xt, dt) pair. Based on the performance

of the CFs from 1 to k on the current (xt, dt) pair, the (k + 1)th CF may give a

2

different emphasis (importance weight) to (xt, dt) pair in its adaptation in order

to rectify the mistake of the previous CFs.

The proposed idea for online boosting is clearly related to the adaptive

mixture-of-experts algorithms widely used in the machine learning literature,

where several parallel running adaptive algorithms are combined to improve

the performance [34]. In the mixture methods, the performance improvement

is achieved due to the diversity provided by using several different adaptive algo-

rithms each having a different view or advantage [26]. This diversity is exploited

to yield a final combined algorithm, which achieves a performance better than

any of the algorithms in the mixture. Although the online boosting approach is

similar to mixture approaches [26], there are significant differences. In the online

boosting notion, the parallel running algorithms are not independent, i.e., one

deliberately introduces the diversity by updating the CFs one by one from the

first CF to the mth CF for each new sample based on the performance of all

the previous CFs on this sample. In this sense, each adaptive algorithm, say the

(k+1)th CF, receives feedback from the previous CFs, i.e., 1st to kth, and updates

its inner parameters accordingly. As an example, if the current (xt, dt) is well

modeled by the previous CFs, then the (k+1)th CF performs minor update using

(xt, dt) and may give more emphasis (importance weight) to the later arriving

samples that may be worse modeled by the previous CFs. Thus, by boosting,

each adaptive algorithm in the mixture can concentrate on different parts of the

input and output pairs achieving diversity and significantly improving the gain.

The linear online learning algorithms, such as LMS or RLS, are among the

simplest as well as the most widely used regression algorithms in the real-life

applications [32]. Therefore, we use such algorithms as base CFs in our boosting

algorithms. To this end, we first apply the boosting notion to several parallel

running linear RLS-based CFs and introduce three different approaches to use the

importance weights [33], namely “weighted updates”,“data reuse”, and “random

updates”. In the first approach, we use the importance weights directly to produce

certain weighted RLS algorithms. In the second approach, we use the importance

weights to construct data reuse adaptive algorithms ([29]). However, data reuse

in boosting, such as [29], is significantly different from the usual data reusing

3

approaches in adaptive filtering [27]. As an example, in boosting, the importance

weight coming from the kth CF determines the data reuse amount in the (k+1)th

CF, i.e., it is not used for the kth filter, hence, achieving the diversity. The third

approach uses the importance weights to decide whether to update the constituent

CFs or not, based on a random number generated from a Bernoulli distribution

with the parameter equal to the weight. The latter method can be effectively used

for big data processing [35] due to the reduced complexity. The output of the

constituent CFs is also combined using a linear mixture algorithm to construct

the final output. We then update the final combination algorithm using the LMS

algorithm [26]. Furthermore, we extend the boosting idea to parallel running

linear LMS-based algorithm similar to the RLS case.

Note that although linear filters have a low complexity, piecewise linear filters

deliver a significantly superior performance in real life applications [36, 37], with

a comparable complexity. These filters mitigate the overfitting, stability and con-

vergence issues tied to nonlinear models [38, 39, 40], while effectively improving

the modeling power relative to linear filters [36]. Nevertheless, in order to justify

the boosting effect of our algorithm, we use linear base learners with exactly the

same parameters and demonstrate that even in this case we can get performance

improvement by our algorithm since any gain obtained in this way reflects the sole

effect of the boosting mechanism. We then extend our algorithms to piecewise

linear filters.

We start our discussions by investigating the related works in Section 1.1.

We then introduce the problem setup and background in Chapter 2, where we

provide individual sequence as well as MSE convergence results for the RLS and

LMS algorithms. We introduce our generic boosted online regression algorithm in

Chapter 3 and provide the mathematical justifications for its performance. Then,

in Sections 4.1 and 4.2 of the Chapter 4, three different variants of the proposed

boosting algorithm are derived, using the RLS and LMS, respectively. Also,

we proceed to investigate the proposed boosting approach for piecewise linear

adaptive filters in Chapter 5. Then, in Chapter 6 we provide the mathematical

analysis for the computational complexity of the proposed algorithms. The thesis

concludes with extensive sets of experiments over the well-known benchmark data

4

sets and simulation models widely used in the machine learning literature to

demonstrate the significant gains achieved by the boosting notion.

1.1 Related Works

AdaBoost is one of the earliest and most popular boosting methods, which has

been used for binary and multiclass classifications as well as regression [20]. This

algorithm has been well studied and has clear theoretical guarantees, and its

excellent performance is explained rigorously [41]. However, AdaBoost cannot

perform well on the noisy data sets [42], therefore, other boosting methods have

been suggested that are more robust against noise.

In order to reduce the effect of noise, SmoothBoost was introduced in [42]

in a batch setting. Moreover, in [42], the author proves the termination time of

the SmoothBoost algorithm by simultaneously obtaining upper and lower bounds

on the weighted advantage of all samples over all of the constituent filters. We

note that the SmoothBoost algorithm avoids overemphasizing the noisy samples,

hence, provides robustness against noise. In [29], the authors extend bagging

and boosting methods to an online setting, where they use a Poisson sampling

process to approximate the reweighting algorithm. However, the online boosting

method in [29] corresponds to AdaBoost, which is susceptible to noise. In [43],

the authors use a greedy optimization approach to develop the boosting notion to

the online setting and introduce stochastic boosting. Nevertheless, while most of

the online boosting algorithms in the literature seek to approximate AdaBoost,

[33] investigates the inherent difference between batch and online learning, extend

the SmoothBoost algorithm to an online setting, and provide the mathematical

guarantees for their algorithm. [33] points out that the online constituent filters

do not need to perform well on all possible distributions of data, instead, they

have to perform well only with respect to smoother distributions. Recently, in

[44], the authors have developed two online boosting algorithms for classification,

an optimal algorithm in terms of the number of constituent filters, and also an

adaptive algorithm using the potential functions and boost-by-majority [45].

5

In addition to the classification task, the boosting approach has also been

developed for the regression [19]. In [46], a boosting algorithm for regression is

proposed, which is an extension of Adaboost.R [46]. Moreover, in [19], several gra-

dient descent algorithms are presented, and some bounds on their performances

are provided. In [43], the authors present a family of boosting algorithms for

online regression through greedy minimization of a loss function. Also, in [47]

the authors propose an online gradient boosting algorithm for regression.

In this thesis we propose a novel family of boosted online algorithms for the re-

gression task using the “online boosting” notion introduced in [33], and investigate

three different variants of the introduced algorithm. Furthermore, we show that

our algorithm can achieve a desired mean squared error (MSE), given a sufficient

amount of data and a sufficient number of constituent filters. In addition, we use

similar techniques to [42] to prove the correctness of our algorithm. We empha-

size that our algorithm has a guaranteed performance in an individual sequence

manner, i.e., without any statistical assumptions on the data. In establishing our

algorithm and its justifications, we refrain from changing the regression problem

to the classification problem, unlike the AdaBoost.R [20]. Furthermore, unlike

the online SmoothBoost [33], our algorithm can learn the guaranteed MSE of the

constituent filters, which in turn improves its adaptivity.

6

Chapter 2

Problem Description and

Background

All vectors are column vectors and represented by bold lower case letters. Ma-

trices are represented by bold upper case letters. For a vector a (or a matrix

A), aT (or AT) is the transpose and Tr(A) is the trace of the matrix A. Here,

Im and 0m represent the identity matrix of dimension m ×m and the all zeros

vector of length m, respectively. Except Im and 0m, the time index is given in the

subscript, i.e., xt is the sample at time t. We work with real data for notational

simplicity. We denote the mean of a random variable x as E[x]. Also, we show

the cardinality of a set S by |S|.

We sequentially receive r-dimensional input (regressor) vectors {xt}t≥1, xt ∈
R
r, and desired data {dt}t≥1, and estimate dt by d̂t = ft(xt), where ft(.) is

an online regression algorithm. At each time t the estimation error is given by

et = dt − d̂t and is used to update the parameters of the CF. For presentation

purposes, we assume that dt ∈ [−1, 1], however, our derivations hold for any

bounded but arbitrary desired data sequences. In our framework, we do not use

any statistical assumptions on the input feature vectors or on the desired data

such that our results are guaranteed to hold in an individual sequence manner

[48].

7

The linear methods are considered as the simplest online modeling or learning

algorithms, which estimate the desired data dt by a linear model as d̂t = wT
t xt,

where wt is the linear algorithm’s coefficients at time t. Note that the previous

expression also covers the affine model if one includes a constant term in xt,

hence we use the purely linear form for notational simplicity. When the true dt

is revealed, the algorithm updates its coefficients wt based on the error et. As an

example, in the basic implementation of the RLS algorithm, the coefficients are

selected to minimize the accumulated squared regression error up to time t − 1

as

wt = arg min
w

t−1∑
l=1

(dl − xTl w)2,

=

(
t−1∑
l=1

xlx
T
l

)−1(t−1∑
l=1

xldl

)
, (2.1)

where w is a fixed vector of coefficients. The RLS algorithm is shown to enjoy

several optimality properties under different statistical settings [32]. Apart from

these results and more related to the framework of this thesis, the RLS algorithm

is also shown to be rate optimal in an individual sequence manner [49]. As shown

in [49] (Section V), when applied to any sequence {xt}t≥1 and {dt}t≥1, the ac-

cumulated squared error of the RLS algorithm is as small as the accumulated

squared error of the best batch least squares (LS) method that is directly opti-

mized for these realizations of the sequences, i.e., for all T , {xt}t≥1 and {dt}t≥1,

the RLS achieves

T∑
l=1

(dl − xTl wl)
2 −min

w

T∑
l=1

(dl − xTl w)2 ≤ O(lnT). (2.2)

The RLS algorithm is a member of the Follow-the-Leader type algorithms [50]

(Section 3), where one uses the best performing linear model up to time t − 1

to predict dt. Hence, (2.2) follows by direct application of the online convex

optimization results [51] after regularization. The convergence rate (or the rate

of the regret) of the RLS algorithm is also shown to be optimal so that O(lnT)

in the upper bound cannot be improved [52]. It is also shown in [52] that one

can reach the optimal upper bound (with exact scaling terms) by using a slightly

8

modified version of (2.1)

wt =

(
t∑
l=1

xlx
T
l

)−1(t−1∑
l=1

xldl

)
. (2.3)

Note that the extension (2.3) of (2.1) is a forward algorithm (Section 5 of [53])

and one can show that, in the scalar case, the predictions of (2.3) are always

bounded (which is not the case for (2.1)) [52].

We emphasize that in the basic application of the RLS algorithm, all data

pairs (xl, dl), l = 1, . . . , t, receive the same “importance” or weight in (2.1).

Although there exists exponentially weighted or windowed versions of the basic

RLS algorithm [32], these methods weight (or concentrate on) the most recent

samples for better modeling of the nonstationarity [32]. However, in the boosting

framework [20], each sample pair receives a different weight based on not only

those weighting schemes, but also the performance of the boosted algorithms

on this pair. As an example, if a CF performs worse on a sample, the next

CF concentrates more on this example to better rectify this mistake. In the

following sections, we use this notion to derive different boosted online regression

algorithms.

Although in this thesis, we use linear CFs for the sake of notational simplicity,

one can readily extend our approach to nonlinear and piecewise linear regression

methods. For example, one can use tree based online regression methods [54, 55]

as the constituent filters, and boost them with the proposed approach.

9

Chapter 3

New Boosted Online Regression

Algorithms

In this section we present the generic form of our proposed algorithms and pro-

vide the guaranteed performance bounds for that. Regarding the notion of “online

boosting” introduced in [33], the online constituent filters need to perform well

only over smooth distributions of data points. We first present the generic algo-

rithm in Algorithm 1 and provide its theoretical justifications, then discuss about

its structure and the intuition behind it.

In this algorithm, each constituent filter receives a sequence of data points

(xt, dt) and a corresponding weight 0 ≤ λt ≤ 1 for each point. Since dt ∈ [−1, 1],

we define the Weighted MSE (WMSE) of a learning algorithm as
∑T
t=1 λt(et)

2

4
∑T
t=1 λt

,

where et = dt − d̂t ∈ [−2, 2]. In the following theorem, we show that if
∑T

t=1 λt

is large enough (the meaning of which become clear at the proof of Theorem 1),

there exists an online constituent filter that achieves a specific (better than the

trivial solution) WMSE.

Assumption: (H-strong convexity [56]) We use the e2
t as a measure of loss and

assume that

‖∇e2
t‖ ≤ G,

10

and

‖∇2e2
t‖ ≥ H In.

Theorem 1. Suppose for any sequence of data points and corresponding weights

λt, where λ1 = 1, there is an offline algorithm with a WMSE of σ2
off, i.e.,∑T

t=1 λt(e
off
t)2

4
∑T

t=1 λt
= σ2

off

Moreover, assume that
T∑
t=1

λt ≥
G2

4εHσ2
off

, (3.1)

where ε is a positive number. Under the stated conditions, there exists an online

algorithm with a WMSE of at most σ2 = (1 + ε)σ2
off.

Proof. According to [56], if we use online gradient descent algorithm with the

step sizes ηt, we reach the following upper bound on the regret of the online

algorithm with respect to the best offline algorithm (which uses the constant

vector w∗).

T∑
t=1

λt
(
e2
t (wt)− e2

t (w
∗)
)
≤

T∑
t=1

λt‖wt −w∗‖2

(
1

ηt+1

− 1

ηt
−H

)
+G2

T∑
t=1

λtηt+1.

(3.2)

Also, by mathematical induction, it can be shown that if 0 ≤ λt ≤ 1 and λ1 = 1,

we have
T∑
t=1

λt∑t
i=1 λi

≤ 1 + ln
T∑
t=1

λt.

Hence, by choosing ηt+1 , 1
H
∑t
i=1 λi

, it is straightforward to show that

T∑
t=1

λt
(
e2
t (wt)− e2

t (w
∗)
)
≤ G2

H

(
1 + ln

T∑
t=1

λt

)
. (3.3)

Now, by dividing both sides by 4
∑T

t=1 λt, and taking into account the Assump-

tion in (3.1), we observe that

1 + ln
T∑
t=1

λt ≤ (
4εHσ2

off

G2
)

T∑
t=1

λt,

11

or equivalently,

G2

4H
∑T

t=1 λt

(
1 + ln

T∑
t=1

λt

)
≤ εσ2

off

This concludes the proof of Theorem 1.

Algorithm 1 Boosted online regression algorithm

1: Input: (xt, dt) (data stream), m (number of constituent filters running in

parallel), σ2
m (the modified desired MSE), and σ2 (the guaranteed achievable

WMSE).

2: Initialize the regression coefficients w
(k)
1 for each CF; and the combination

coefficients as z1 = 1
m

[1, 1, . . . , 1]T ; λ
(k)
1 = 1;

3: for t = 1 to T do

4: Receive the regressor data instance xt;

5: Compute the CFs outputs d̂
(k)
t ;

6: Produce the final estimate d̂t = zTt yt = zTt [d̂
(1)
t , . . . , d̂

(m)
t]T ;

7: Receive the true output dt (desired data);

8: λ
(1)
t = 1; l

(1)
t = 0;

9: for k = 1 to m do

10: λ
(k)
t = min

{
1, (σ2)

l
(k)
t /2

}
(for t ≥ 2);

11: Update the CF(k), such that it has a WMSE ≤ σ2;

12: e
(k)
t = dt − d̂(k)

t ;

13: l
(k+1)
t = l

(k)
t +

[
σ2
m −

(
e

(k)
t

)2
]
;

14: end for

15: Update zt based on et = dt − zTt yt;
16: end for

In Algorithm 1, we have m copies of an online CF, each of which is guaranteed

to have a WMSE of at most σ2. We prove that the Algorithm 1 can reach a

desired MSE, σ2
d, through Lemma 1, Lemma 2, and Theorem 2. Note that since

we assume dt ∈ [−1, 1], the trivial solution d̂t = 0 incurs an MSE of at most 1.

Therefore, we define a constituent filter as an algorithm which has an MSE less

than 1, i.e., a WMSE less than 1/4.

Lemma 1. In Algorithm 1, if there is an integer M such that
∑T

t=1 λ
(k)
t ≥ κT

12

for every k ≤ M , and also
∑T

t=1 λ
(M+1)
t < κT , where 0 < κ < σ2

d is arbitrarily

chosen, it can reach a desired MSE,
∑T
t=1 e

2
t

T
≤ σ2

d.

Proof. The proof of Lemma 1 is given in A.1.

Lemma 2. If the constituent filters are guaranteed to have a weighted MSE less

than σ2, i.e.,

∀k :

∑T
t=1 λ

(k)
t (e

(k)
t)2

4
∑T

t=1 λ
(k)
t

≤ σ2 ≤ 1

4
,

there is an integer M that satisfies the conditions in Lemma 1.

Proof. The proof of Lemma 2 is given in A.2.

Theorem 2. If the constituent filters in line 11 of Algorithm 1 achieve a weighted

MSE of at most σ2 < 1
4

, there exists an upper bound for m such that the algorithm

reaches the desired MSE.

Proof. This theorem is a direct consequence of combining Lemma 1 and Lemma

2.

Note that if T ≥ G2

4κεHσ2
off

, then the Assumption (3.1) will be satisfied for all

constituent filters, i.e., in order to boost the performance of the constituent filters

using the Algorithm 1, we only need to have a sufficiently large number of data.

Furthermore, although we are using copies of a base learner as the constituent

filters and seek to improve its performance, the constituent CFs can be different.

However, by using the boosting approach, we can improve the MSE performance

of the overall system as long as the CFs can provide a weighted MSE of at most σ2.

For example, we can improve the performance of mixture-of-experts algorithms

([25]) by leveraging the boosting approach introduced in this thesis.

As shown in Fig. 3.1, at each iteration t, we have m parallel running CFs with

estimating functions f
(k)
t , producing estimates d̂

(k)
t = f

(k)
t (xt) of dt, k = 1, . . . ,m.

As an example, if we use m “linear” algorithms, d̂
(k)
t = xTt w

(k)
t is the estimate

generated by the kth CF. The outputs of these m CFs are then combined using

the linear weights zt to produce the final estimate as d̂t = zTt yt [26], where yt ,

[d̂
(1)
t , . . . , d̂

(m)
t]T is the vector of outputs. After the desired output dt is revealed,

the m parallel running CFs will be updated for the next iteration. Moreover,

13

the linear combination coefficients zt are also updated using the normalized LMS

[32], as detailed later in Section 3.1.

(1)

tf1
CF

(1)

1t 

(1)

t

Parameters

Update





(1)

te

(1)

tl

(1)ˆ
td

(1)

tz

-

(2)

tl

(1)

t

(2)

tf2

(2)

1t 

(2)

t

Parameters

Update





(2)

te

(2)

tl

(2)ˆ
td

(2)

tz

-

(3)

tl

(2)

t

(m)

tfm

(m)

1t 

(m)

t

Parameters

Update


(m)

te

(m)

tl

(m)ˆ
td -

(m)

t

(m)

tz
Combination

Weights





ˆ
td

-

Combining the results
of all CFs

td

te

Final

Estimate

Input

Vector tx

Desired

Output

+

+

+

+

CF

CF

Figure 3.1: The block diagram of a boosted online regression system that uses the input

vector xt to produce the final estimate d̂t. There are m constituent CFs f
(1)
t , . . . , f

(m)
t , each

of which is an adaptive filter that generates its own estimate d̂
(k)
t . The final estimate d̂t is a

linear combination of the estimates generated by all these CFs, with the combination weights

z
(k)
t ’s corresponding to d̂

(k)
t ’s. The combination weights are stored in a vector which is updated

after each iteration t. At time t the kth CF is updated based on the values of λ
(k)
t and e

(k)
t ,

and provides the (k+ 1)th filter with l
(k+1)
t that is used to compute λ

(k+1)
t . The parameter δ

(k)
t

indicates the WMSE of the kth CF over the first t estimations, and is used in computing λ
(k)
t .

After dt is revealed, the constituent CFs, f
(k)
t , k = 1, . . . ,m, are consecutively

14

_
+ +

Parameters

Update

Figure 3.2: Parameters update block of the kth constituent filter, which is embedded in the

kth filter block as depicted in Fig. 3.1. This block receives the parameter l
(k)
t provided by

the (k − 1)th filter, and uses that in computing λ
(k)
t . It also computes l

(k+1)
t and passes it to

the (k + 1)th filter. The parameter [e
(k)
t]+ represents the error of the thresholded estimate as

explained in (3.7), and Λ
(k)
t shows the sum of the weights λ

(k)
1 , . . . , λ

(k)
t . The WMSE parameter

δ
(k)
t−1 represents the time averaged weighted square error made by the kth filter up to time t−1.

updated, as shown in Fig. 3.1, from top to bottom, i.e., first k = 1 is updated,

then, k = 2 and finally k = m is updated. However, to enhance the performance,

we use a boosted updating approach ([20]), such that the (k+ 1)th CF receives a

“total loss” parameter, l
(k+1)
t , from the kth CF, as

l
(k+1)
t = l

(k)
t +

[
σ2
m −

(
dt − f (k)

t (xt)
)2
]
, (3.4)

to compute a weight λ
(k)
t . The total loss parameter l

(k)
t , indicates the sum of

the differences between the modified desired MSE (σ2
m) and the squared error of

the first k − 1 CFs at time t. Then, we add the difference σ2
m − (e

(k)
t)2 to l

(k)
t ,

to generate l
(k+1)
t , and pass l

(k+1)
t to the next CF, as shown in Fig. 3.1. Here,[

σ2
m −

(
dt − f (k)

t (xt)
)2
]

measures how much the kth CF is off with respect to

the final MSE performance goal. For example, in a stationary environment, if

dt = f(xt) + νt, where f(·) is a deterministic function and νt is the observation

noise, one can select the desired MSE σ2
d as an upper bound on the variance of

the noise process νt, and define a modified desired MSE as σ2
m , σ2

d−4κ

1−κ . In this

sense, l
(k)
t measures how the CFs j = 1, . . . , k are cumulatively performing on

15

(xt, dt) pair with respect to the final performance goal.

We then use the weight λ
(k)
t to update the kth CF with the “weighted updates”,

“data reuse”, or “random updates” method, which we explain later in Sections

4.1 and 4.2. Our aim is to make λ
(k)
t large if the first k− 1 CFs made large errors

on dt, so that the kth CF gives more importance to (xt, dt) in order to rectify

the performance of the overall system. We now explain how to construct these

weights, such that 0 < λ
(k)
t ≤ 1. To this end, we set λ

(1)
t = 1, for all t, and

introduce a weighting similar to [42, 33]. We define the weights as

λ
(k)
t = min

{
1,
(
σ2
)l(k)
t /2

}
, (3.5)

where σ2 is the guaranteed upper bound on the WMSE of the constituent filters.

However, since there is no prior information about the exact MSE performance

of the constituent filters, we use the following weighting scheme

λ
(k)
t = min

{
1,
(
δ

(k)
t−1

)c l(k)
t

}
, (3.6)

where δ
(k)
t−1 indicates an estimate of the kth constituent filter’s MSE, and c ≥ 0 is

a design parameter, which determines the “dependence” of each CF update on

the performance of the previous CFs, i.e., c = 0 corresponds to “independent”

updates, like the ordinary combination of the CFs in adaptive filtering [26, 25],

while a greater c indicates the greater effect of the previous CFs performance

on the weight λ
(k)
t of the current CF. Note that including the parameter c does

not change the validity of our proofs, since one can take
(
δ

(k)
t−1

)c
as the new

guaranteed WMSE. Here, δ
(k)
t−1 is an estimate of the WMSE of the kth CF over

{xt}t≥1 and {dt}t≥1. In the basic implementation of the online boosting [42, 33],(
1− δ(k)

t−1

)
is set to the classification advantage of the constituent filters [42],

where this advantage is assumed to be the same for all constituent filters. In this

thesis, to avoid using any a priori knowledge and to be completely adaptive, we

choose δ
(k)
t−1 as the weighted and thresholded MSE of the kth CF up to time t− 1

16

as

δ
(k)
t =

t∑
τ=1

λ
(k)
τ

4

(
dτ −

[
f

(k)
τ (xτ)

]+
)2

∑t
τ=1 λ

(k)
τ

=

Λ
(k)
t−1δ

(k)
t−1 +

λ
(k)
t

4

(
dt −

[
f

(k)
t (xt)

]+
)2

Λ
(k)
t−1 + λ

(k)
t

, (3.7)

where Λ
(k)
t ,

∑t
τ=1 λ

(k)
τ , and

[
f

(k)
τ (xτ)

]+

thresholds f
(k)
τ (xτ) into the range

[−1, 1]. This thresholding is necessary to assure that 0 < δ
(k)
t ≤ 1, which guar-

antees 0 < λ
(k)
t ≤ 1 for all k = 1, . . . ,m and t. We point out that (3.7) can be

recursively calculated.

Regarding the definition of λ
(k)
t , if the first k CFs are “good”, we will pass less

weight to the next CFs, such that those CFs can concentrate more on the other

samples. Hence, the CFs can increase the diversity by concentrating on different

parts of the data [26]. Furthermore, following this idea, in (3.6), the weight λ
(k)
t

is larger, i.e., close to 1, if most of the CFs, 1, . . . , k − 1, have errors larger than

σ2
m on (xt, dt), and smaller, i.e., close to 0, if the pair (xt, dt) is easily modeled

by the previous CFs such that the CFs k, . . . ,m do not need to concentrate more

on this pair.

3.1 The Combination Algorithm

Although in the proof of our algorithm, we assume a constant combination vector

z over time, we use a time varying combination vector in practice, since there

is no knowledge about the exact number of the required week learners for each

problem. Hence, after dt is revealed, we also update the final combination weights

zt based on the final output d̂t = zTt yt, where d̂t = zTt yt, yt = [d̂
(1)
t , . . . , d̂

(m)
t]T .

To update the final combination weights, we use the normalized LMS algorithm

[32] yielding

zt+1 = zt + µzet
yt
‖yt‖2

. (3.8)

17

3.2 Choice of Parameter Values

The choice of σ2
m is a crucial task, i.e., we cannot reach any desired MSE for

any data sequence unconditionally. Suppose we aim to boost the performance

of a constituent filter from a specific class of learning algorithms. Clearly, we

cannot perform better than the best offline algorithm in this class. Therefore, it

is reasonable to assume that σ2
m ≥ γ2

off, where γ2
off indicates the (unweighted) MSE

of the best offline algorithm in the class. This, in turn, results in the following

upper bound on the κ.

κ ≤ γ2
off − σ2

d

γ2
off − 4

(3.9)

Since the upper bound in (3.9) is a decreasing function of the γ2
off, if we use a

stronger class, i.e., if γ2
off is smaller, we can use a greater value for κ. We emphasize

that a greater κ leads to a smaller number of CFs (M), i.e., less computational

complexity.

Intuitively, there is a guaranteed upper bound (i.e., σ2) on the worst case

performance, since in the weighted MSE, the samples with a higher error have a

more important effect. On the other hand, if one chooses a σ2
m smaller than the

noise power, l
(k)
t will be negative for almost every k, turning most of the weights

into 1, and as a result the constituent filters fail to reach a WMSE smaller than

σ2. Nevertheless, in practice we have to choose the parameter σ2
m reasonably and

precisely such that the conditions of Theorem 2 are satisfied. For instance, we

set σ2
m to be an upper bound on the noise power.

In addition, the number of constituent filters, m, is chosen regarding to the

computational complexity constraints. However, in our experiments we choose a

moderate number of constituent filters, m = 20, which successfully improves the

performance. Moreover, according to the results in Section 7.1.3, the optimum

value for c is around 1, hence, we set the parameter c = 1 in our simulations.

18

Chapter 4

Boosted Linear Adaptive Filters

4.1 Boosted RLS Algorithms

At each time t, all of the CFs (shown in Fig. 3.1) estimate the desired data dt

in parallel, and the final estimate is a linear combination of the results generated

by the CFs. When the kth CF receives the weight λ
(k)
t , it updates the linear

coefficients w
(k)
t using one of the following methods.

4.1.1 Directly Using λ’s as Sample Weights

Here, we consider λ
(k)
t as the weight for the observation pair (xt, dt) and apply a

weighted RLS update to w
(k)
t . For this particular weighted RLS algorithm, we

define the Hessian matrix and the gradient vector as

R
(k)
t+1 , βR

(k)
t + λ

(k)
t xtx

T
t , (4.1)

p
(k)
t+1 , βp

(k)
t + λ

(k)
t xtdt, (4.2)

19

where β is the forgetting factor [32] and w
(k)
t+1 =

(
R

(k)
t+1

)−1

p
(k)
t+1 can be calculated

in a recursive manner as

e
(k)
t = dt − xTt w

(k)
t ,

g
(k)
t =

λ
(k)
t P

(k)
t xt

β + λ
(k)
t x

T
t P

(k)
t xt

,

w
(k)
t+1 = w

(k)
t + e

(k)
t g

(k)
t ,

P
(k)
t+1 = β−1

(
P

(k)
t − g

(k)
t x

T
t P

(k)
t

)
. (4.3)

where P
(k)
t ,

(
R

(k)
t

)−1
, and P

(k)
0 = v−1I, and 0 < v � 1. The complete algo-

rithm is given in Algorithm 2 with the weighted RLS implementation in (4.3).

4.1.2 Data Reuse Approaches Based on The Weights

Another approach follows Ozaboost [29]. In this approach, from λ
(k)
t , we generate

an integer, say n
(k)
t = ceil(Kλ

(k)
t), where K is a design parameter that takes

on positive integer values. We then apply the RLS update on the (xt, dt) pair

repeatedly n
(k)
t times, i.e., run the RLS update on the same (xt, dt) pair n

(k)
t times

consecutively. Note that K should be determined according to the computational

complexity constraints. However, increasing K does not necessarily result in a

better performance, therefore, we use moderate values for K, e.g., we use K = 5

in our simulations. The final w
(k)
t+1 is calculated after n

(k)
t RLS updates. As

a major advantage, clearly, this reusing approach can be readily generalized to

other adaptive algorithms in a straightforward manner.

We point out that Ozaboost [29] uses a different data reuse strategy. In this

approach, λ
(k)
t is used as the parameter of a Poisson distribution and an integer

n
(k)
t is randomly generated from this Poisson distribution. One then applies the

RLS update n
(k)
t times.

20

4.1.3 Random Updates Approach Based on The Weights

In this approach, we simply use the weight λ
(k)
t as a probability of updating the

kth CF at time t. To this end, we generate a Bernoulli random variable, which is

1 with probability λ
(k)
t and is 0 with probability 1 − λ(k)

t . Then, we update the

kth CF, only if the Bernoulli random variable equals 1. With this method, we

significantly reduce the computational complexity of the algorithm. Moreover,

due to the dependence of this Bernoulli random variable on the performance of the

previous constituent CFs, this method does not degrade the MSE performance,

while offering a considerably lower complexity, i.e., when the MSE is low, there

is no need for further updates, hence, the probability of an update is low, while

this probability is larger when the MSE is high.

4.2 Boosted LMS Algorithms

In this case, as shown in Fig. 3.1, we have m parallel running CFs, each of which

is updated using the LMS algorithm. Based on the weights given in (3.6) and the

total loss and MSE parameters in (3.4) and (3.7), we next introduce three LMS

based boosting algorithms, similar to those introduced in Section 4.1.

4.2.1 Directly Using λ’s to Scale The Learning Rates

We note that by construction method in (3.6), 0 < λ
(k)
t ≤ 1, thus, these weights

can be directly used to scale the learning rates for the LMS updates. When the

kth CF receives the weight λ
(k)
t , it updates its coefficients w

(k)
t , as

w
(k)
t+1 =

(
I − µ(k)λ

(k)
t xtx

T
t

)
w

(k)
t + µ(k)λ

(k)
t xtdt, (4.4)

where 0 < µ(k)λ
(k)
t ≤ µ(k). Note that we can choose µ(k) = µ for all k, since the

online algorithms work consecutively from top to bottom, and the kth CF will

have a different learning rate µ(k)λ
(k)
t .

21

4.2.2 A Data Reuse Approach Based on The Weights

In this scenario, for updating w
(k)
t , we use the LMS update n

(k)
t = ceil(Kλ

(k)
t)

times to obtain the w
(k)
t+1 as

q(0) = w
(k)
t ,

q(a) =
(
I − µ(k)xtx

T
t

)
q(a−1) + µ(k)xtdt, a = 1, . . . , n

(k)
t ,

w
(k)
t+1 = q

(
n

(k)
t

)
. (4.5)

where K is a constant design parameter.

Similar to the RLS case, if we follow the Ozaboost [29], we use the weights to

generate a random number n
(k)
t from a Poisson distribution with parameter λ

(k)
t ,

and perform the LMS update n
(k)
t times on w

(k)
t as explained above.

4.2.3 Random Updates Based on The Weights

Again, in this scenario, similar to the RLS case, we use the weight λ
(k)
t to generate

a random number from a Bernoulli distribution, which equals 1 with probability

λ
(k)
t , and equals 0 with probability 1− λ(k)

t . Then we update wt using LMS only

if the generated number is 1.

22

Algorithm 2 Boosted RLS-based algorithm

1: Input: (xt, dt) (data stream), m (number of CFs) and σ2
m.

2: Initialize the regression coefficients w
(k)
1 for each CF; and the combination

coefficients as z1 = 1
m

[1, 1, . . . , 1]T ; and for all k set δ
(k)
0 = 0.

3: for t = 1 to T do

4: Receive the regressor data instance xt;

5: Compute the CFs outputs d̂
(k)
t = xTt w

(k)
t ;

6: Produce the final estimate d̂t = zTt [d̂
(1)
t , . . . , d̂

(m)
t]T ;

7: Receive the true output dt (desired data);

8: λ
(1)
t = 1; l

(1)
t = 0;

9: for k = 1 to m do

10: λ
(k)
t = min

{
1,
(
δ

(k)
t−1

)c l(k)
t

}
;

11: Update the regression coefficients w
(k)
t by using the RLS and the weight

λ
(k)
t based on one of the introduced algorithms in Section 4.1;

12: e
(k)
t = dt − d̂(k)

t ;

13: δ
(k)
t =

Λ
(k)
t−1δ

(k)
t−1+

λ
(k)
t
4

(
dt−

[
f

(k)
t (xt)

]+)2

Λ
(k)
t−1+λ

(k)
t

;

14: Λ
(k)
t = Λ

(k)
t−1 + λ

(k)
t

15: l
(k+1)
t = l

(k)
t +

[
σ2
m −

(
e

(k)
t

)2
]
;

16: end for

17: et = dt − zTt yt;
18: zt+1 = zt + µzet

yt
‖yt‖2

;

19: end for

23

Chapter 5

Boosted Piecewise Linear

Adaptive Filters

We use a piecewise linear adaptive filtering method, such that the desired signal

is predicted as

d̂t =
N∑
i=1

si,tw
T
i,txt, (5.1)

where si,t is the indicator function of the ith region, i.e.,

si,t =

1 if xt ∈ Ri

0 if xt /∈ Ri.
(5.2)

Note that at each time t, only one of the si,t’s is nonzero, which indicates the

region in which xt lies. Thus, if xt ∈ Ri, we update only the ith linear filter.

As an example, consider 2-dimensional input vectors xt, as depicted in Fig. 5.1.

Here, we construct the piecewise linear filter ft such that

d̂t = ft(xt) = s1,tw
T
1,txt + s2,tw

T
2,txt

= stw
T
1,txt + (1− st)wT

2,txt, (5.3)

Then, if st = 1 we shall update w1,t, otherwise we shall update w2,t, based on

the amount of the error, et.

24

θ

Region 2 Region 1
1, 1,() T

t t t tf =x x w2, 2,() T
t t t tf =x x w

1ts =0ts =

Direction
vector

Separating
hyper-plane

Figure 5.1: A sample 2-region partition of the input vector (i.e., xt) space, which is 2-

dimensional in this example. st determines whether xt is in Region 1 or not, hence, can be

used as the indicator function for this region. Similarly, 1− st serves as the indicator function

of Region 2.

Now, we present different variants of the aforementioned piecewise linear filter,

based on the introduced boosting algorithm in Chapter 3. We emphasize that one

can use either LMS or RLS algorithm to update the linear filters in each region

of a piecewise linear constituent filter. However, as we show now, extending of

our method to these scenarios is straightforward.

5.1 Boosted RLS-based Piecewise Linear Algo-

rithms

As depicted in Fig. 5.2, each constituent filter is a piecewise linear filter consist-

ing of N linear filters. At each time t, all of the constituent filters (shown in Fig.

3.1) estimate the desired data dt in parallel, and the final estimate is a linear

combination of the results generated by the constituent filters. However, at each

time t, exactly one of the N linear filters in each constituent filter is used for

estimating dt. Correspondingly, when we update the constituent filters, only the

filter that has been used for the estimation will be updated. To this end, we use

the indicator function s
(k)
i,t for the ith linear filter embedded in the kth constituent

25

(k)

1,twk
Linear

Filter


(k)

te

(k)ˆ
td
-

td

Input

Vector tx

Desired

Signal

+

1

Adaptation

Block

(k)

i,twk
Linear

Filter i

(k)

N,twk
Linear

Filter N

(k)

t













(k)

i,ts

(k)

1,ts

(k)

N,ts

(k)

N,ts

(k)

i,ts

(k)

1,ts

Piecewise Linear Adaptive Filter

Figure 5.2: A sample piecewise linear adaptive filter, used as the kth constituent filter in the

system depicted in Fig. 3.1. This fliter consists of N linear filters, one of which produces the

estimate at each iteration t. Based on where the input vector at time t, xt, lies in the input

vector space, one of the s
(k)
i,t ’s is 1 and all others are 0. Hence, at each iteration only one of the

linear filters is used for estimation and upadated correspondingly.

filter, as was explained before. Therefore, at each time t, only the filters whose

indicator functions equal 1, will be updated. When the kth constituent filter

receives the weigh λ
(k)
t , it updates the linear coefficients w

(k)
i,t , assuming that xt

lies in the ith region of the kth constituent filter. We consider λ
(k)
t as the weight

for the observation pair (dt,xt) and apply a weighted RLS update to w
(k)
i,t .

Consider a “Weighted Updates” approach for boosting. Therefore, for this par-

ticular weighted RLS algorithm, we define the autocorrelation matrix and the

cross correlation vector as

R
(k)
i,t+1 , βR

(k)
i,t + λ

(k)
t xtx

T
t , (5.4)

p
(k)
i,t+1 , βp

(k)
i,t + λ

(k)
t xtdt, (5.5)

26

where β is the forgetting factor [32] and w
(k)
i,t+1 =

(
R

(k)
i,t+1

)−1

p
(k)
i,t+1 can be calcu-

lated in a recursive manner as

e
(k)
t = dt − xTt w

(k)
i,t ,

g
(k)
i,t =

λ
(k)
t P

(k)
i,t xt

β + λ
(k)
t x

T
t P

(k)
i,t xt

,

w
(k)
t+1 = w

(k)
i,t + e

(k)
t g

(k)
i,t ,

P
(k)
i,t+1 = β−1

(
P

(k)
i,t − g

(k)
i,t x

T
t P

(k)
i,t

)
. (5.6)

where P
(k)
i,t ,

(
R

(k)
i,t

)−1
, and P

(k)
i,0 = v−1I for i = 1, . . . , N , and 0 < v � 1.

One can obtain similar updating methods for the “Data Reuse” and “Random

Updates” as well.

5.2 Boosted LMS-based Piecewise Linear Algo-

rithms

In this case, as shown in Fig. 3.1, we have m parallel running piecewise linear

filters, each of which updated using LMS algorithm with a different learning

rate, i.e., if the input vector xt lies in the ith region of the kth filter partition,

s
(k)
i,t = 1, hence, we use w

(k)
i,t to estimate dt, and update this linear filter with its

own learning rate µ
(k)
i . Based on the weights given in (3.6) and the total loss

and MSE parameters in equations (3.4) and (3.7), we can use three LMS based

boosting algorithms, similar to those introduced in Chapter 4.

For instance, in the “Weighted Updates” scenario, we adjust the filter coeffi-

cients in each region of the constituent filters using the following equation.

w
(k)
i,t+1 =

(
I − µ(k)

i λ
(k)
t xtx

T
t

)
w

(k)
i,t + µ

(k)
i λ

(k)
t xtdt, (5.7)

where 0 < µ
(k)
i λ

(k)
t ≤ µ

(k)
i . Note that we can choose µ

(k)
i = µi for all k, since the

adaptive algorithms work consecutively from top to bottom, and the ith linear

27

filters of different constituent filters will have different learning rates µiλ
(k)
t . Also,

other variants can be straightforwardly obtained in a similar manner.

Remark 2: We supposed that each constituent filter is built up based upon a

fixed partition, which means that the partition cannot be updated during the

algorithm. However, one can use a method similar to that in [36] to make the

partitioning adaptive. As an example, suppose that each constituent filter is

defined on a 2-region partition, as shown in Fig. 5.1, the regions of which are

separated using a hyper-plane with the direction vector θ
(k)
t , which is going to be

updated at each time t. In order to boost the performance of a system made up

of N such piecewise linear filters, we not only apply the weights effects to update

the linear filters updates in each region of each constituent filter, but also update

the direction vectors θ
(k)
t in a boosted manner. In order to indicate the region in

which xt lies, we use an indicator function s
(k)
t defined as follows

s
(k)
t =

1

1 + exp(−θTt xt)
, (5.8)

and the estimate made by the kth filter is represented by

d̂
(k)
t = s

(k)
t d̂

(k)
1,t +

(
1− s(k)

t

)
d̂

(k)
2,t (5.9)

which, yields the following ordinary LMS update for θ
(k)
t [36]

θ
(k)
t+1 = θ

(k)
t + µθe

(k)
t

(
d̂

(k)
1,t − d̂

(k)
2,t

)
∇θt

(
s

(k)
t

)
= θ

(k)
t + µθe

(k)
t

(
d̂

(k)
1,t − d̂

(k)
2,t

)
s

(k)
t

(
1− s(k)

t

)
xt. (5.10)

Then, in “random updates” scenario we either will or will not perform this update

with probabilities λ
(k)
t and 1 − λ

(k)
t , respectively, and for “weighted updates”

scenario we achieve the following update for θ
(k)
t

θ
(k)
t+1 = θ

(k)
t + µθλ

(k)
t e

(k)
t

(
d̂

(k)
2,t − d̂

(k)
1,t

)
s

(k)
t

(
1− s(k)

t

)
xt. (5.11)

However, for the “data reuse” scenario, we perform this update n
(k)
t = ceil(λ

(k)
t K)

28

times, along with updating the linear filters coefficients, which results in

ϑ(a+1) = ϑ(a) + µθε
(a)xtx

T
t

(
q

(a)
1 − q

(a)
2

)
ψ(a)

(
1− ψ(a)

)
,

q
(a+1)
1 = q

(a)
1 + µ

(k)
i ψ(a)ε(a)xt,

q
(a+1)
2 = q

(a)
2 + µ

(k)
i (1− ψ(a))ε(a)xt,

ψ(a+1) =
1

1 + exp(−ϑTt xt)
,

ε(a+1) = dt −
(
ψ(a+1)q

(a+1)
1 + (1− ψ(a+1))q

(a+1)
2

)
xt, (5.12)

where a = 0, . . . , (n
(k)
t − 1), ϑ(0) = θ

(k)
t , ε(0) = e

(k)
t ,ψ(0) = s

(k)
t , and q

(0)
i = w

(k)
i,t

for i = 1, 2. Also, the updated values are θ
(k)
t+1 = ϑ(n

(k)
t), and w

(k)
i,t+1 = q

(n
(k)
t)

i for

i = 1, 2.

29

Chapter 6

Analysis Of The Proposed

Algorithms

In this section we provide the complexity analysis for the proposed algorithms.

We prove an upper bound for the weights λ
(k)
t , which is significantly less than

1. This bound shows that the complexity of the “random updates” algorithm is

significantly less than the other proposed algorithms, and slightly greater than

that of a single CF. Hence, it shows the considerable advantage of “boosting with

random updates” in processing of high dimensional data.

6.1 Complexity Analysis

Here we compare the complexity of the proposed algorithms and find an upper

bound for the computational complexity of random updates scenario (introduced

in Section 4.1.3 for RLS, and in Section 4.2.3 for LMS updates), which shows its

significantly lower computational burden with respect to two other approaches.

For xt ∈ Rr, each CF performs O(r) computations to generates its estimate, and

if updated using the RLS algorithm, requires O(r2) computations due to updating

the matrix R
(k)
t , while it needs O(r) computations when updated using the LMS

30

method (in their most basic implementation).

We first derive the computational complexity of using the RLS updates in

different boosting scenarios. Since there are a total of m CFs, all of which are

updated in the “weighted updates” method, this method has a computational

cost of order O(mr2) per each iteration t. However, in the “random updates”, at

iteration t, the kth CF may or may not be updated with probabilities λ
(k)
t and

1− λ(k)
t respectively, yielding

C
(k)
t =

O(r2) with probability λ
(k)
t

O(r) with probability 1− λ(k)
t ,

(6.1)

where C
(k)
t indicates the complexity of running the kth CF at iteration t. There-

fore, the total computational complexity Ct at iteration t will be Ct =
∑m

k=1 C
(k)
t ,

which yields

E [Ct] = E

[
m∑
k=1

C
(k)
t

]
=

m∑
k=1

E[λ
(k)
t]O(r2) (6.2)

Hence, if E
[
λ

(k)
t

]
is upper bounded by λ̃(k) < 1, the average computational com-

plexity of the random updates method, will be

E [Ct] <
m∑
k=1

λ̃(k)O(r2). (6.3)

In Theorem 3, we provide sufficient constraints to have such an upper bound.

Furthermore, we can use such a bound for the “data reuse” mode as well. In

this case, for each CF f
(k)
t , we perform the RLS update λ

(k)
t K times, resulting a

computational complexity of order E [Ct] <
m∑
k=1

K λ̃(k)(O(r2)). For the LMS up-

dates, we similarly obtain the computational complexities O(mr),
∑m

k=1O
(
λ̃(k)r

)
,

and
∑m

k=1 O
(
Kλ̃(k)r

)
, for the “weighted updates”, “random updates”, and “data

reuse” scenarios respectively.

The following theorem determines the upper bound λ̃(k) for E
[
λ

(k)
t

]
.

Theorem 3. If the CFs converge and achieve a sufficiently small MSE (according

to the proof following this Theorem), the following upper bound is obtained for

31

λ
(k)
t , given that σ2

m is chosen properly,

E
[
λ

(k)
t

]
≤ λ̃(k) =

(
γ−2σ2

m(1 + 2ζ2 ln γ)
) 1−k

2
, (6.4)

where γ , E
[
δ

(k)
t−1

]
and ζ2 , E

[(
e

(k)
t

)2
]

.

It can be straightforwardly shown that, this bound is less than 1 for appropriate

choices of σ2
m, and reasonable values for the MSE according to the proof. This

theorem states that if we adjust σ2
m such that it is achievable, i.e., the CFs can

provide a slightly lower MSE than σ2
m, the probability of updating the CFs in the

random updates scenario will decrease. This is of course our desired results, since

if the CFs are performing sufficiently well, there is no need for additional updates.

Moreover, if σ2
m is opted such that the CFs cannot achieve a MSE equal to σ2

m,

the CFs have to be updated at each iteration, which increases the complexity.

Proof: For simplicity, in this proof, we have assumed that c = 1, however, the

results are readily extended to the general values of c. We construct our proof

based on the following assumption:

Assumption: assume that e
(k)
t ’s are independent and identically distributed

(i.i.d) zero-mean Gaussian random variables with variance ζ2.

We have

E
[
λ

(k)
t

]
= E

[
min

{
1,
(
δ

(k)
t−1

)l(k)
t

}]

≤ min

{
1, E

[(
δ

(k)
t−1

)l(k)
t

]}
(6.5)

Now, we show that under certain conditions, E
[(
δ

(k)
t−1

)l(k)
t
]

will be less than 1,

hence, we obtain an upper bound for E
[
λ

(k)
t

]
. We define s , ln(δ

(k)
t−1), yielding

E

[(
δ

(k)
t−1

)l(k)
t

]
= E

[
E
[
exp

(
s l

(k)
t

)∣∣∣s]] = E
[
M

l
(k)
t

(s)
∣∣∣s] , (6.6)

where M
l
(k)
t

(.) is the moment generating function of the random variable l
(k)
t .

From the Algorithm 2, l
(k)
t = (k − 1)σ2

m −
∑k−1

j=1

(
e

(j)
t

)2
. According to the As-

sumption,
e
(j)
t

ζ
is a standard normal random variable. Therefore,

∑k−1
j=1

(
e

(j)
t

)2
has

32

a Gamma distribution as Γ
(
k−1

2
, 2ζ2

)
[57], which results in the following moment

generating function for l
(k)
t

M
l
(k)
t

(s) = exp
(
s(k − 1)σ2

m

) (
1 + 2ζ2s

) 1−k
2

=
(
δ

(k)
t−1

)(k−1)σ2
m
(

1 + 2ζ2 ln
(
δ

(k)
t−1

)) 1−k
2
. (6.7)

In the above equality δ
(k)
t−1 is a random variable, the mean of which is denoted by

γ. We point out that γ will approach to ζ2 in convergence. We define a function

ϕ(.) such that E
[
λ

(k)
t

]
= E

[
ϕ
(
δ

(k)
t−1

)]
, and seek to find a condition for ϕ(.) to be

a concave function. Then, by using the Jenssen’s inequality for concave functions,

we have

E
[
λ

(k)
t

]
≤ ϕ(γ). (6.8)

Inspired by (6.7), we define A
(
δ

(k)
t−1

)
, δ

(k)
t−1

−2σ2
m
(

1 + 2ζ2 ln
(
δ

(k)
t−1

))
and

ϕ
(
δ

(k)
t−1

)
,
(
A
(
δ

(k)
t−1

)) 1−k
2

. By these definitions we obtain

ϕ′′
(
δ

(k)
t−1

)
=

1− k
2

(
A
(
δ

(k)
t−1

))−k−3
2

[(
−k − 1

2

)(
A′
(
δ

(k)
t−1

))2

+
(
A
(
δ

(k)
t−1

))2
A′′
(
δ

(k)
t−1

)]
. (6.9)

Considering that k > 1, in order for ϕ(.) to be concave, it suffices to have(
A
(
δ

(k)
t−1

))2

A′′
(
δ

(k)
t−1

)
>

(
k + 1

2

)(
A′
(
δ

(k)
t−1

))2

, (6.10)

which reduces to the following necessary and sufficient conditions:(
δ

(k)
t−1

)2σ2
m(

1 + 2ζ2 ln
(
δ

(k)
t−1

))2 <
(1 + 2σ2

m)
2

4(k + 1)
, (6.11)

and
(1− ξ1)σ2

m

1− 2σ2
m ln

(
δ

(k)
t−1

) < ζ2 <
(1− ξ2)σ2

m

1− 2σ2
m ln

(
δ

(k)
t−1

) , (6.12)

where

ξ1 =
α2(1 + 2σ2

m) + α

√
(1 + 2σ2

m)2α2 − 4(k + 1)(δ
(k)
t−1)2σ2

m

2(k + 1)(δ
(k)
t−1)2σ2

m

,

33

ξ2 =
α2(1 + 2σ2

m)− α
√

(1 + 2σ2
m)2α2 − 4(k + 1)(δ

(k)
t−1)2σ2

m

2(k + 1)(δ
(k)
t−1)2σ2

m

,

and

α , 1 + 2ζ2 ln
(
δ

(k)
t−1

)
.

Under these conditions, ϕ(.) is concave, therefore, by substituting ϕ(.) in (6.8)

we achieve (6.4). This concludes the proof of the Theorem 3. 2

34

Chapter 7

Experiments and Conclusion

7.1 Experiments

In this section, we demonstrate the efficacy of the proposed boosting algorithms

for RLS and LMS linear, as well as piecewise linear, CFs under different scenarios.

To this end, we first consider the “online regression” of data generated with a

stationary linear model. Then, we illustrate the performance of our algorithms

under nonstationary conditions, to thoroughly test the adaptation capabilities

of the proposed boosting framework. Furthermore, since the most important

parameters in the proposed methods are σ2
m, c, and m, we investigate their effects

on the final MSE performance. Finally, we provide the results of the experiments

over several real and synthetic benchmark datasets.

Throughout this section, “LMS” represents the linear LMS-based CF, “RLS”

represents the linear RLS-based CF, and a prefix “B” indicates the boosting al-

gorithms. In addition, we use the suffixes “-WU”, “-RU”, or “-DR” to denote the

“weighted updates”, “random updates”, or “data reuse” modes, respectively, e.g.,

the “BLMS-RU” represents the “Boosted LMS-based algorithm using Random

Updates”. Also, a prefix “P” before the “LMS” or “RLS” indicates a piece-

wise linear filter with two regions, based on the corresponding update method,

35

and “SPLMS” denotes an LMS-based piecewise linear filter with “Soft” (flexible)

boundaries.

In order to observe the boosting effect, in all experiments, we set the step

size of LMS and the forgetting factor of the RLS to their optimal values, and

use those parameters for the CFs, too. In addition, the initial values of all of

the constituent filters in all of the experiments are set to zero. However, in all

experiments, since we use K = 5 in Data Reuse variants, we set the step size of

the CFs in BLMS-DR method to µ/K = µ/5, where, µ is the step size of the

LMS. To compare the performance, we have provided the MSE results.

7.1.1 Stationary and Non-Stationary Data

In this experiment, we consider the case where the desired data is generated by

a stationary linear model. The input vectors xt = [x1 x2 1] are 3-dimensional,

where [x1 x2] is drawn from a jointly Gaussian random process and then scaled

such that xt = [x1 x2]T ∈ [0 1]2. We include 1 as the third entry of xt to consider

affine learners. Specifically the desired data is generated by dt = [1 1 0] xt + νt,

where νt is a random Gaussian noise with a variance of 0.01. Moreover, in the

non-stationary scenario, we have

dt =

[1 1 0] xt + νt, t ≤ T/2

[1 −1 0] xt + νt, O.W.

In our simulations, we use m = 20 CFs and µ = 0.1 for all LMS learners. In ad-

dition, for RLS-based boosting algorithms, we set the forgetting factor β = 0.9999

for all algorithms. Moreover, we choose σ2
m = 0.02 for LMS-based algorithms and

σ2
m = 0.004 for RLS-based algorithms, K = 5 for data reuse approaches, and

c = 1 for all boosting algorithms. To achieve robustness, we average the results

over 100 trials.

As depicted in Fig. 7.1, our proposed methods boost the performance of a

36

Data Length (T) ×104
0 1 2 3 4 5 6 7 8 9 10

M
ea

n
S

qu
ar

ed
 E

rr
or

×10-3

4.6

4.8

5

5.2

5.4

5.6

5.8

Mean Squared Error Performance - Stationary Experiment

LMS BLMS (all)

RLS and BRLS (all)

Figure 7.1: The MSE performnce of the proposed algorithms in the stationary data experi-

ment.

single linear LMS-based CF. Nevertheless, we cannot further improve the perfor-

mance of a linear RLS-based CF in such a stationary experiment since the RLS

achieves the lowest MSE. We point out that the random updates method achieves

the performance of the weighted updates method and the data reuse method with

a much lower complexity. In addition, we observe that by increasing the data

length, the performance improvement increases (Note that the distance between

the ASE curves is slightly increasing). In addition, according to Fig. 7.2, our

piecewise linear methods significantly outperform a single constituent filter, even

in RLS-based filters.

7.1.2 Chaotic Data

Here, in order to show the tracking capability of our algorithms in nonstationary

enviroRLSents, we consider the case where the desired data is generated by the

Duffing map [58] as a chaotic model. Specifically, the data is generated by the

following equation xt+1 = 2.75xt − x3
t − 0.2xt−1, where we set x−1 = 0.9279 and

x0 = 0.1727. We consider dt = xt+1 as the desired data and [xt−1 xt 1] as the

37

Data Length (T) ×104
0.5 1 1.5 2 2.5

M
ea

n
S

qu
ar

ed
 E

rr
or

0.005

0.01

0.015

0.02

0.025

0.03

Mean Squared Error Performance - Nonstationary Experiment

PRLS
BPRLS-WU
BPRLS-DR
BPRLS-RU
PLMS
BPLMS-WU
BPLMS-DR
BPLMS-RU
SPLMS
BSPLMS-WU
BSPLMS-DR
BSPLMS-RU

Figure 7.2: The MSE performnce of the piecewise linear filters in the non-stationary data

experiment.

input vector. In this experiment, each boosting algorithm uses 20 CFs. The step

sizes for the LMS-based algorithms are set to 0.1, the forgetting factor β for the

RLS-based algorithms are set to 0.999, and the modified desired MSE parameter

σ2
m is set to 0.25 for BLMS methods, and 0.17 for the BRLS methods. Note that

although the value of σ2
m is higher than the achieved MSE, it can improve the

performance significantly. This is because of the boosting effect, i.e., emphasizing

on the harder data patterns. The figures show the superior performance of our

algorithms over a single CF (whose step size is chosen to be the best), in this

highly nonstationary enviroRLSent. Moreover, as shown in Fig. 7.3, in the LMS-

based boosted algorithms, the data reuse method shows a better performance

relative to the other boosting methods. However, the random updates method

has a significantly lower time consumption, which makes it desirable for larger

data lengths. From the Fig. 7.3, one can see that our method is truly boosting

the performance of the conventional linear CFs in this chaotic enviroRLSent.

From the Fig. 7.5, we observe the approximate changes of the weights, in the

BLMS-RU algorithm running over the Duffing data. As shown in this figure,

38

Data Length (T) ×104
0 0.5 1 1.5 2 2.5 3 3.5 4

M
ea

n
S

qu
ar

ed
 E

rr
or

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

Mean Squared Error Performance - Duffing Experiment

RLS

LMS

BRLS-RU
BRLS-DR

BRLS-WU

BLMS-WU and BLMS-RU

BLMS-DR

Figure 7.3: MSE performance of the proposed linear methods on a Duffing data set.

the weights do not change monotonically, and this shows the capability of our

algorithm in effective tracking of the nonstationary data. Furthermore, since we

update the CFs in an ordered manner, i.e., we update the (k + 1)th CF after the

kth CF is updated, the weights assigned to the last CFs are generally smaller than

the weights assigned to the previous CFs. As an example, in Fig. 7.5 we see that

the weights assigned to the 5th CF are larger than those of the 10th and 20th CFs.

Furthermore, note that in this experiment, the dependency parameter c is set to

1. We should mention that increasing the value of this parameter, in general,

causes the lower weights, hence, it can considerably reduce the complexity of the

random updates and data reuse methods.

7.1.3 The Effect of Parameters

In this section, we investigate the effects of the dependence parameter c and the

modified desired MSE σ2
m as well as the number of CFs ,m, on the boosting

performance of our methods in the Duffing data experiment, explained in Section

7.1.2. From the results in Fig. 7.6c, we observe that, increasing the number of CFs

up to 30 can improve the performance significantly, while further increasing of m

39

Data Length (T) ×104
0 0.5 1 1.5 2 2.5 3 3.5 4

M
ea

n
S

qu
ar

ed
 E

rr
or

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16
Mean Squared Error Performance - Duffing Experiment

BPRLS-WU
BPRLS-RU

BPRLS-DR

PRLS

PLMS
SPLMS

BPLMS (all)
BSPLMS (all)

Figure 7.4: MSE performance of the proposed piecewise linear methods on a Duffing data set.

Data Length (T) ×104
0 0.5 1 1.5 2 2.5 3 3.5 4

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Changes in λ values in Duffing experiment, BLMS-RU

5th CF
10th CF
20th CF

Figure 7.5: The changing of the weights in BLMS-RU algorithm in the Duffing data experi-

ment.

40

only increases the computational complexity without improving the performance.

In addition, as shown in Fig. 7.6b, in this experiment, the dependency parameter

c has an optimum value around 1. We note that choosing small values for c reduces

the boosting effect, and causes the weights to be larger, which in turn increases

the computational complexity in random updates and data reuse approaches. On

the other hand, choosing very large values for c increases the dependency, i.e., in

this case the generated weights are very close to 1 or 0, hence, the boosting effect

is decreased.

According to the Figs. 7.6b, 7.7, 7.8, 7.9, and 7.10, we observe that the MSE

curve has a minimum at a nonzero point. We emphasize that the performance

improvement due to increasing c from 0, shows that our method truly boosts

the adaptive filters. However, one may note the difference between the boosting

effect in these scenarios. Since the ensemble of the piecewise linear filters has a

slight diversity among them, the diversity risen from the boosting (that finally

yield an improvement in the MSE performance) is less in these cases.

Furthermore, as depicted in Fig. 7.6a, there is an optimum value around 0.5

for σ2
m in this experiment. Note that, choosing small values for σ2

m results in

large weights, thus, increases the complexity and reduces the diversity. However,

choosing higher values for σ2
m results in smaller weights, and in turn reduces

the complexity. Nevertheless, we note that increasing the value of σ2
m does not

necessarily enhance the performance. Through the experiments, we find out that

σ2
m must be in the order of the MSE amount to obtain the best performance.

7.1.4 Benchmark Real and Synthetic Data Sets

In this section, we demonstrate the efficiency of the introduced methods over

some widely used real life machine learning regression data sets. We have nor-

malized each dimension of the data to the interval [−1, 1] in all algorithms. We

present the MSE performance of the algorithms in Tables 7.1 and 7.2. These

experiments show that our algorithms can successfully improve the performance

of single linear CFs. We now describe the experiments and provide the results:

41

σ
m
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n
S

qu
ar

ed
 E

rr
or

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

The effect of σ
m
2 on the MSE performance-Duffing

BRLS-RU
BLMS-RU

(a) The effect of the parameter σ2
m

c
0 0.5 1 1.5 2 2.5 3

M
ea

n
S

qu
ar

ed
 E

rr
or

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

The effect of c on the MSE performance-Duffing

BRLS-RU
BLMS-RU

(b) The effect of the parameter c

the number of WLs (m)
0 10 20 30 40 50 60 70 80 90 100

M
ea

n
S

qu
ar

ed
 E

rr
or

0.13

0.14

0.15

0.16

0.17

0.18

The effect of m on the MSE performance

BRLS-RU
BLMS-RU

(c) The effect of the parameter m

Figure 7.6: The effect of the parameters σ2
m, c, and m, on the MSE performance of the

BRLS-RU and BLMS-RU algorithms in the Duffing data experiment.

42

c
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
S

qu
ar

ed
 E

rr
or

0.0756

0.0756

0.0756

0.0757

0.0757

0.0757

0.0757

0.0757

The effect of c on the MSE performance of BPLMS-RU
 in KINEMATIKS experiment

BPLMS-RU

Figure 7.7: The effect of the dependency parameter on the performance of BPLMS-RU in

kinematiks experiments.

c
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
S

qu
ar

ed
 E

rr
or

0.0739

0.0739

0.0739

0.0739

0.0739

0.0739

0.0739

0.0739

0.0739

0.0739

0.0739

The effect of c on the MSE performance of BPRLS-RU in
KINEMATIKS experiment

BPRLS-RU

Figure 7.8: The effect of the dependency parameter on the performance of BPRLS-RU in

kinematiks experiments.

43

c
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
S

qu
ar

ed
 E

rr
or

0.1490

0.1491

0.1491

0.1492

0.1493

0.1493

0.1493

The effect of c on the MSE performance of BPLMS-RU
 in PUMADYN experiment

BPLMS-RU

Figure 7.9: The effect of the dependency parameter on the performance of BPLMS-RU in the

Puma8NH experiment.

c
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
S

qu
ar

ed
 E

rr
or

0.1576

0.1576

0.1577

0.1577

0.1578

0.1578

0.1579

0.1579

0.1580

The effect of c on the MSE performance of BPRLS-RU
in PUMADYN experiment

BPRLS-RU

Figure 7.10: The effect of the dependency parameter on the performance of BPRLS-RU in

the Puma8NH experiment.

44

PPPPPPPPPPPP
Data Sets

Algorithms
LMS BLMS-WU BLMS-DR BLMS-RU

MV 0.2711 0.2707 0.2706 0.2707

Puma8NH 0.1340 0.1334 0.1332 0.1334

Kinematics 0.0835 0.0831 0.0830 0.0831

Compactiv 0.0606 0.0599 0.0608 0.0598

Protein Tertiary 0.2554 0.2550 0.2549 0.2550

ONP 0.0015 0.0009 0.0009 0.0009

California Housing 0.0446 0.0450 0.0452 0.0448

YPMSD 0.0237 0.0237 0.0233 0.0237

Table 7.1: The MSE of the LMS-based methods on real data sets.

PPPPPPPPPPPP
Data Sets

Algorithms
RLS BRLS-WU BRLS-DR BRLS-RU

MV 0.2592 0.2645 0.2587 0.2584

Puma8NH 0.1296 0.1269 0.1295 0.1284

Kinematics 0.0804 0.0801 0.0803 0.0801

Compactiv 0.0137 0.0086 0.0304 0.0078

Protein Tertiary 0.2370 0.2334 0.2385 0.2373

ONP 0.0009 0.0009 0.0009 0.0009

California Housing 0.0685 0.0671 0.0579 0.0683

YPMSD 0.0454 0.0337 0.0302 0.0292

Table 7.2: The MSE of the RLS-based methods on real data sets.

Here, we briefly explain the details of the data sets:

1. MV: This is an artificial dataset with dependencies between the attribute

values. One can refer to [59] for further details. There are 10 attributes and

one target value. In this dataset, we can slightly improve the performance

of a single linear CF by using any of the proposed methods.

45

2. Puma Dynamics (Puma8NH): This dataset describes a realistic modeling

of the dynamics of a robot arm, called Puma 560 [59], where we seek to

estimate the angular acceleration of one of the robot arm’s links. To this

end, we use the input features consisting of angular positions, velocities and

torques of the robot arm. According to the ASE results in Fig. 7.11a, the

BRLS-WU has the best boosting performance in this experiment. Nonethe-

less, the LMS-based methods also improve the performance.

3. Kinematics: This dataset is concerned with the forward kinematics of an 8

link robot arm [59]. We use the variant 8RLS, which is highly non-linear and

noisy. As shown in Fig. 7.11b, our proposed algorithms slightly improve

the performance in this experiment.

4. Computer Activity (Compactiv): This real dataset is a collection of com-

puter systems activity measures [59]. The task is to predict USR, the por-

tion of time that CPUs run in user mode from all attributes ([59]). The

RLS-based boosting algorithms deliver a significant performance improve-

ment in this experiment, as shown by the results in Tables 7.1 and 7.2.

5. Protein Tertiary [60]: Having been collected from the Critical Assessment

of protein Structure Prediction (CASP) experiments 5− 9, the 45730 data

samples of this dataset are used to estimate the residue size using the 9

given attributes.

6. Online News Popularity (ONP) [60, 61]: This dataset consists of a heteroge-

neous features set regarding some articles that were published by Mashable

in two consecutive years. We seek to estimate the total number of shares

in social networks, which in turn shows the popularity of the articles.

7. California Housing: This dataset has been obtained from StatLib repository.

They have collected information on the variables using all the block groups

in California from the 1990 Census. Here, we seek to find the house median

values, based on the given attributes. For further description one can refer

to [59].

8. Year Prediction Million Song Dataset (YPMSD) [62]: The aim is predicting

the year when a song has been released, using its given audio features. This

46

dataset mainly includes western commercial song tracks released between

1922 and 2011. We use a subset of the Million Song Dataset [62]. As

shown in Tables 7.1 and 7.2 and Fig. 7.11c, our algorithms can significantly

improve the performance of the linear CF in this experiment.

47

Data Length (T)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ea

n
S

qu
ar

ed
 E

rr
or

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165
Mean Squared Error Performance - PUMADYN

RLS
BRLS-WU
BRLS-DR
BRLS-RU
LMS
BLMS-WU
BLMS-DR
BLMS-RU

(a) Puma8NH

Data Length (T)
1000 2000 3000 4000 5000 6000 7000 8000

M
ea

n
S

qu
ar

ed
 E

rr
or

0.08

0.085

0.09

0.095

0.1

0.105

Mean Squared Error Performance - KINEMATICS

RLS
BRLS-WU
BRLS-DR
BRLS-RU
LMS
BLMS-WU
BLMS-DR
BLMS-RU

(b) Kinematics.

Data Length (T) ×104
0 1 2 3 4 5 6 7 8 9 10

M
ea

n
S

qu
ar

ed
 E

rr
or

0.025

0.03

0.035

0.04

0.045

Mean Squared Error Performance - YPMSD

RLS
BRLS-WU
BRLS-DR
BRLS-RU
LMS
BLMS-WU
BLMS-DR
BLMS-RU

(c) YPMSD

Figure 7.11: The performance of the linear methods on three real life data sets.

48

Data Length (T)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ea

n
S

qu
ar

ed
 E

rr
or

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Mean Squared Error Performance - Puma8NH Experiment

PRLS
BPRLS-WU
BPRLS-DR
BPRLS-RU
PLMS
BPLMS-WU
BPLMS-DR
BPLMS-RU
SPLMS
BSPLMS-WU
BSPLMS-DR
BSPLMS-RU

(a) Puma8NH

Data Length (T)
1000 2000 3000 4000 5000 6000 7000 8000

M
ea

n
S

qu
ar

ed
 E

rr
or

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Mean Squared Error Performance - KINEMATIKS Experiment

PRLS
BPRLS-WU
BPRLS-DR
BPRLS-RU
PLMS
BPLMS-WU
BPLMS-DR
BPLMS-RU
SPLMS
BSPLMS-WU
BSPLMS-DR
BSPLMS-RU

(b) Kinematics.

Data Length (T) ×104
0 1 2 3 4 5 6 7 8 9 10

M
ea

n
S

qu
ar

ed
 E

rr
or

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Mean Squared Error Performance - YPMSD Experiment

SPLMS

BSPLMS-RU
BSPLMS-WU

PRLS

PLMS

BSPLMS-DR

BPRLS-DR

BPLMS-DR

BPRLS-RU
BPRLS-WU

BPLMS-WU
BPLMS-RU

(c) YPMSD

Figure 7.12: The performance of the piecewise linear methods on three real life data sets.

49

7.2 Conclusion

We introduced a novel family of boosted adaptive filters and proposed three differ-

ent boosting approaches, i.e., weighted updates, data reuse, and random updates,

which can be applied to different online learning algorithms (adaptive filters). We

provide theoretical bounds for the MSE performance of our proposed methods in

a strong mathematical sense. We emphasize that while using the proposed tech-

niques, we do not assume any prior information about the statistics of the desired

data or feature vectors. We show that by the proposed boosting approaches, we

can significantly improve the MSE performance of the conventional LMS and RLS

algorithms, both in the linear and piecewise linear scenarios. Moreover, we pro-

vide an upper bound for the weights generated during the algorithm that leads us

to a thorough analysis of the computational complexity of these methods. The

computational complexity of the random updates method is remarkably lower

than that of the conventional mixture-of-experts and other variants of the pro-

posed boosting approaches, without degrading the performance. Therefore, the

boosting using random updates approach is an elegant alternative to the conven-

tional mixture-of-experts method when dealing with real life large scale problems.

We provide several results that demonstrate the strength of the proposed algo-

rithms over a wide variety of synthetic as well as real data.

50

Bibliography

[1] S. Pan, J. Wu, X. Zhu, G. Long, and C. Zhang, “Boosting for graph classifi-

cation with universum,” Knowledge and Information Systems, vol. 50, no. 1,

pp. 53–77, 2017.

[2] E. Bauer and R. Kohavi, “An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants,” Machine Learning, vol. 36,

no. 1, pp. 105–139, 1999.

[3] T. G. Dietterich, “An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and randomiza-

tion,” Machine Learning, vol. 40, no. 2, pp. 139–157, 2000.

[4] A. Habrard, J.-P. Peyrache, and M. Sebban, “A new boosting algorithm for

provably accurate unsupervised domain adaptation,” Knowledge and Infor-

mation Systems, vol. 47, no. 1, pp. 45–73, 2016.

[5] B. X. Wang and N. Japkowicz, “Boosting support vector machines for im-

balanced data sets,” Knowledge and Information Systems, vol. 25, no. 1,

pp. 1–20, 2010.

[6] K. Dela Rosa, V. Metsis, and V. Athitsos, “Boosted ranking models: a

unifying framework for ranking predictions,” Knowledge and Information

Systems, vol. 30, no. 3, pp. 543–568, 2012.

[7] S. Shalev-Shwartz and Y. Singer, “On the equivalence of weak learnability

and linear separability: new relaxations and efficient boosting algorithms,”

Machine Learning, vol. 80, no. 2, pp. 141–163, 2010.

51

[8] E. Cesario, F. Folino, A. Locane, G. Manco, and R. Ortale, “Boosting

text segmentation via progressive classification,” Knowledge and Informa-

tion Systems, vol. 15, pp. 285–320, May 2008.

[9] M. J. Hosseini, A. Gholipour, and H. Beigy, “An ensemble of cluster-based

classifiers for semi-supervised classification of non-stationary data streams,”

Knowledge and Information Systems, vol. 46, no. 3, pp. 567–597, 2016.

[10] C. Preisach and L. Schmidt-Thieme, “Ensembles of relational classifiers,”

Knowledge and Information Systems, vol. 14, no. 3, pp. 249–272, 2008.

[11] A. L. Prodromidis and S. J. Stolfo, “Cost complexity-based pruning of

ensemble classifiers,” Knowledge and Information Systems, vol. 3, no. 4,

pp. 449–469, 2001.

[12] Y. Kim and J. Kim, “Convex hull ensemble machine for regression and clas-

sification,” Knowledge and Information Systems, vol. 6, no. 6, pp. 645–663,

2004.

[13] S. Pan, Y. Zhang, and X. Li, “Dynamic classifier ensemble for positive

unlabeled text stream classification,” Knowledge and Information Systems,

vol. 33, no. 2, pp. 267–287, 2012.

[14] A. Fern and R. Givan, “Online ensemble learning: An empirical study,”

Machine Learning, vol. 53, no. 1, pp. 71–109, 2003.

[15] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John Willey

and Sons, 2001.

[16] Y. Freund, “An adaptive version of the boost by majority algorithm,” Ma-

chine Learning, vol. 43, no. 3, pp. 293–318, 2001.

[17] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms. MIT

Press, 2012.

[18] S. Mannor and R. Meir, “On the existence of linear weak learners and appli-

cations to boosting,” Machine Learning, vol. 48, no. 1, pp. 219–251, 2002.

52

[19] N. Duffy and D. Helmbold, “Boosting methods for regression,” Machine

Learning, vol. 47, no. 2, pp. 153–200, 2002.

[20] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” Journal of Computer and System

Sciences, vol. 55, pp. 119–139, 1997.

[21] C. K. Reddy and J.-H. Park, “Multi-resolution boosting for classification and

regression problems,” Knowledge and Information Systems, vol. 29, no. 2,

pp. 435–456, 2011.

[22] D. L. Shrestha and D. P. Solomatine, “Experiments with adaboost.rt, an im-

proved boosting scheme for regression,” in Experiments with AdaBoost.RT,

an improved boosting scheme for regression, 2006.

[23] B. Taieb and R. J. Hyndman, “Boosting multi-step autoregressive forecasts,”

in ICML, 2014.

[24] B. Taieb and R. J. Hyndman, “A gradient boosting approach to the kaggle

load forecasting competition,” International Journal of Forecasting, pp. 1–

19, 2013.

[25] J. Arenas-Garcia, L. A. Azpicueta-Ruiz, M. T. M. Silva, V. H. Nascimento,

and A. H. Sayed, “Combinations of adaptive filters: Performance and conver-

gence properties,” IEEE Signal Processing Magazine, vol. 33, pp. 120–140,

Jan 2016.

[26] S. S. Kozat, A. T. Erdogan, A. C. Singer, and A. H. Sayed, “Steady state

MSE performance analysis of mixture approaches to adaptive filtering,”

IEEE Transactions on Signal Processing, 2010.

[27] S. Shaffer and C. S. Williams, “Comparison of lms, alpha-lms, and data

reusing lms algorithms,” in Conference Record of the Seventeenth Asilomar

Conference on Circuits, Systems and Computers, 1983.

[28] Q. Wu, X. Zhou, Y. Yan, H. Wu, and H. Min, “Online transfer learning by

leveraging multiple source domains,” Knowledge and Information Systems,

pp. 1–21, 2017.

53

[29] N. C. Oza and S. Russell, “Online bagging and boosting,” in Proceedings of

AISTATS, 2001.

[30] S. Ben-David, E. Kushilevitz, and Y. Mansour, “Online learning versus of-

fline learning,” Machine Learning, vol. 29, no. 1, pp. 45–63, 1997.

[31] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in NIPS,

2008.

[32] A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley and Sons,

2003.

[33] S.-T. Chen, H.-T. Lin, and C.-J. Lu, “An online boosting algorithm with

theoretical justifications,” in ICML, 2012.

[34] B. C. Civek, D. Kari, . Delibalta, and S. S. Kozat, “Big data signal pro-

cessing using boosted rls algorithm,” in 2016 24th Signal Processing and

Communication Application Conference (SIU), pp. 1089–1092, May 2016.

[35] P. Malik, “Governing big data: Principles and practices,” IBM J. Res. Dev.,

vol. 57, pp. 1:1–1:1, May 2013.

[36] N. D. Vanli and S. S. Kozat, “A comprehensive approach to universal piece-

wise nonlinear regression based on trees,” IEEE Transactions on Signal Pro-

cessing, vol. 62, pp. 5471–5486, Oct 2014.

[37] D. Kari, I. Marivani, I. Delibalta, and S. S. Kozat, “Boosted lms-based

piecewise linear adaptive filters,” in 2016 24th European Signal Processing

Conference (EUSIPCO), pp. 1593–1597, Aug 2016.

[38] A. C. Singer, G. W. Wornell, and A. V. Oppenheim, “Nonlinear autore-

gressive modeling and estimation in the presence of noise,” Digital Signal

Processing, vol. 4, no. 4, pp. 207–221, 1994.

[39] V. H. Nascimento and A. H. Sayed, “On the learning mechanism of adaptive

filters,” IEEE Transactions on Signal Processing, vol. 48, no. 6, pp. 1609–

1625, 2000.

54

[40] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of adaptive filters

with error nonlinearities,” IEEE Transactions on Signal Processing, vol. 51,

no. 3, pp. 653–663, 2003.

[41] L. Breiman, “Prediction games and arcing algorithms,” 1997.

[42] R. A. Servedio, “Smooth boosting and learning with malicious noise,” Jour-

nal of Machine Learning Research, vol. 4, pp. 633–648, 2003.

[43] B. Babenko, M. H. Yang, and S. Belongie, “A family of online boosting

algorithms,” in Computer Vision Workshops (ICCV Workshops), 2009 IEEE

12th International Conference on, pp. 1346–1353, Sept 2009.

[44] A. Beygelzimer, S. Kale, and H. Luo, “Optimal and adaptive algorithms for

online boosting,” International Conference on Machine Learning (ICML),

pp. 2323–2331, 2015.

[45] Y. Freund, “Boosting a weak learning algorithm by majority,” Inf. Comput.,

vol. 121, pp. 256–285, Sept. 1995.

[46] A. Bertoni, P. Campadelli, and M. Parodi, “A boosting algorithm for regres-

sion.,” vol. 1327, pp. 343–348, Springer, 1997.

[47] A. Beygelzimer, E. Hazan, S. Kale, and H. Luo, “Online gradient boosting,”

Advances in Neural Information Processing Systems (NIPS), pp. 2458–2466,

2015.

[48] S. S. Kozat and A. C. Singer, “Universal switching linear least squares pre-

diction,” IEEE Transactions on Signal Processing, vol. 56, pp. 189–204, Jan.

2008.

[49] N. Merhav and M. Feder, “Universal schemes for sequential decision from

individual data sequences,” IEEE Trans. Inform. Theory, vol. 39, pp. 1280–

1291, 1993.

[50] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cam-

bridge University Press, 2006.

55

[51] S. Shalev-Shwartz, “Online learning and online convex optimization,” Foun-

dations and Trends in Machine Learning, vol. 4, pp. 107–194, 2012.

[52] A. C. Singer, S. S. Kozat, and M. Feder, “Universal linear least squares pre-

diction:upper and lower bounds,” IEEE Transactions on Information The-

ory, vol. 48, no. 8, pp. 2354–2362, 2002.

[53] K. S. Azoury and M. K. Warmuth, “Relative loss bounds for on-line density

estimation with the exponential family of distributions,” Machine Learning,

vol. 43, pp. 211–246, 2001.

[54] F. Khan, D. Kari, I. A. Karatepe, and S. S. Kozat, “Universal nonlinear

regression on high dimensional data using adaptive hierarchical trees,” IEEE

Transactions on Big Data, vol. 2, pp. 175–188, June 2016.

[55] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piecewise linear pre-

diction via context trees,” IEEE Transactions on Signal Processing, vol. 55,

pp. 3730–3745, July 2007.

[56] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for online

convex optimization,” Mach. Learn., vol. 69, pp. 169–192, Dec. 2007.

[57] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic

Processes. McGraw-Hill Higher Education, 4 ed., 2002.

[58] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and

Chaos. Springer New York, 2003.

[59] L. Torgo, “Regression data sets.”

[60] M. Lichman, “UCI machine learning repository,” 2013.

[61] F. Pereira, P. Machado, E. Costa, and A. Cardoso, Progress in Artificial

Intelligence: 17th Portuguese Conference on Artificial Intelligence, EPIA

2015, Coimbra, Portugal. Lecture Notes in Computer Science, Springer In-

ternational Publishing, 2015.

56

[62] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million

song dataset,” in Proceedings of the 12th International Conference on Music

Information Retrieval (ISMIR 2011), 2011.

57

Appendix A

Proofs

A.1 Proof of Lemma 1.

We observe that according to Algorithm 1,

l
(M+1)
t =

M∑
k=1

[σ2
m − (e

(k)
t)2],

et =
1

M

M∑
k=1

e
(k)
t ,

In addition, we have
M∑
k=1

(
e

(k)
t

)2

≥ 1

M

(
M∑
k=1

e
(k)
t

)2

,

and as a result, if e2
t > σ2

m, then l
(M+1)
t ≤ 0, i.e., λ

(M+1)
t = 1. Hence by defining

a modified desired MSE as σ2
m , σ2

d−4κ

1−κ , and zt = [1/M, ..., 1/M] for t = 1, ..., T ,

we have

|{t : e2
t > σ2

m}|
T

=
|{t : λ

(M+1)
t = 1}|
T

≤
∑T

t=1 λ
(M+1)
t

T

≤ κ.

58

Finally we have ∑T
t=1 e

2
t

T
=

∑
t;e2t≤σ2

m
e2
t

T
+

∑
t;e2t>σ

2
m
e2
t

T

≤
∑

t;e2t≤σ2
m
σ2
m

T
+

∑
t;e2t>σ

2
m

4

T

≤ (1− κ)σ2
m + 4κ

= σ2
d.

This completes the proof of Lemma 1. 2

A.2 Proof of Lemma 2.

We have
T∑
t=1

M∑
k=1

λ
(k)
t

[
1−

(
e

(k)
t

)2
]
≥ (1− 4σ2)

T∑
t=1

M∑
k=1

λ
(k)
t .

Moreover, since 0 ≥ −
(
e

(k)
t

)2

= l
(k+1)
t − l(k)

t − σ2
m ≥ −4, following the similar

lines as the proof of Lemma 5 in [42], we find that

T∑
t=1

M∑
k=1

λ
(k)
t

[
1−

(
e

(k)
t

)2
]
≤ −σ4σ2

m

T∑
t=1

M∑
k=1

λ
(k)
t +

1

σ ln(1/σ)
.

Since
∑T

t=1

∑M
k=1 λ

(k)
t ≥ κTM , we conclude that

M ≤ 1

(κσ ln(1/σ))(1− 4σ2 + σ4σ2
m)
.

This concludes the proof of Lemma 2. 2

59

