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ABSTRACT
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Advisor: Tolga Mete Duman

October 2016

Wireless networks are vulnerable to various kinds of attacks such as eavesdropping

because of their open nature. As a result, security is one of the most important

challenges that needs to be addressed for such networks. To address this issue, we

utilize information theoretic secrecy approach and develop randomized channel

coding techniques akin to the approach proposed by Wyner as a general method

for confusing the eavesdropper while making sure that the legitimate receiver is

able to recover the transmitted message.

We first study the application of convolutional codes to the randomized encod-

ing scheme. We argue how dual of a code plays a major role in this construction

and obtain dual of a convolutional code in a systematic manner. We propose op-

timal and sub-optimal decoders for additive white Gaussian noise (AWGN) and

binary symmetric channels and obtain bounds on the decoder performance ex-

tending the existing lower and upper bounds on the error rates of coded systems

with maximum likelihood (ML) decoding. Furthermore, we apply list decoding

to improve the performance of the sub-optimal decoders. We demonstrate via

several examples that security gaps achieved by the randomized convolutional

codes compete favorably with some of the existing coding methods.

In order to improve the security gap hence the system performance further,

we develop concatenated coding approaches applied to the randomized encoding

scheme as well. These include serial and parallel concatenated convolutional

codes and serial concatenation of a low density generator matrix code with a

convolutional code. For all of these solutions low-complexity iterative decoders

are proposed and their performance in the wiretap channel is evaluated in terms

of the security gap. Numerical examples show that for certain levels of confusion
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at the eavesdropper, randomized serially concatenated convolutional codes offer

the best performance.

Keywords: Randomized codes, wiretap channel, security gap, physical layer se-

curity, convolutional codes, turbo codes, low density generator matrix codes.



ÖZET

HAT DİNLEMELİ KANALLAR İÇİN
RASGELELEŞTİRİLMİŞ KIVRIMLI VE UÇ UÇA

EKLEMELİ KODLAR

Alireza Nooraiepour

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Tolga Mete Duman

Ekim 2016

Kablosuz ağlar dışa açık olan yapıları ile gizli dinleme gibi saldırılara maruz

kalmaktadır. Dolayısı ile, güvenlik bu tip ağlarda üzerinde durulması gereken en

zorlu işlerden biridir. Bu konuyu incelemek için, biz bilgi kuramsal yaklaşımları

kullandık ve rasgeleleştirilmiş kodlama yöntemleri geliştirdik. Geliştirdiğimiz

yöntemler Wyner’in yaklaşımlarına benzemektedir ve esas alıcıda mesajın doğru

bir şekilde alınması koşulu ile gizli dinleyicinin kafasının karıştırılması esasına

dayanmaktadır.

İlk olarak kıvrımlı kodları rasgeleleştirilmiş kodlama şeması üzerine uygu-

ladık. Kodun ikili karşılığının bu uygulamadaki kritik önemine değindik ve

kıvrımlı kodun ikili karşılığını sistematik bir biçimde elde ettik. Toplanır

beyaz Gauss gürültüsü (AWGN) kanalı ve ikili simetrik kanalı için standart

ve standart altı çözücüler önerdik. Bu çözücülerin performans sınırlarını ise en

büyük olabilirlik (ML) çözücülerinin kodlanmış sistemlerdeki mevcut alt ve üst

sınırlarını genişleterek elde ettik. Ayrıca, listelemeli bir çözücü ile standart altı

çözücülerin performansını iyileştirdik. Verdiğimiz bir çok örnek ile gösterdik ki

rasgeleleştirilmiş kıvrımlı kodlar sonucu giderilen güvenlik açığı mevcut kodlama

yöntemleriyle kıyas edilebilecek düzeydedir.

Güvenlik açığını kapatmak yani sistem performansını daha ileriye taşımak için,

uç uca eklenmiş kodlama yaklaşımını rasgeleleştirilmiş kodlama şeması üzerine

uyguladık. Bu yaklaşımlar seri ve paralel uç uça eklenmiş kıvrımlı kodları ve

kıvrımlı kodlu düşük yoğunluklu üretici matrisin seri olarak uç uça eklenmesini

kapsamaktadır. Tüm bu çözümler için, düşük karmaşıklığa sahip yinelemeli
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çözücüler önerdik ve hat dinlemeli kanallardaki performanslarını güvenlik se-

viyeleri açısından değerlendirdik. Elde ettiğimiz nümerik sonuçlar göstermektedir

ki rasgeleleştirilmiş ve seri olarak uç uça eklenmiş kıvrımlı kodlar en iyi perfor-

mansı göstermektedir.

Anahtar sözcükler : Rasgeleleştirilmiş kodlar, hat dinleme kanalı, güvenlik açığı,

fiziksel katmanda güvenlik, kıvrımlı kodlar, turbo kodlar, düşük yoğunluklu

üreteç matrisi kodları.
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Chapter 1

Introduction

Wireless communications has become an indispensable part of the modern life

through its ubiquitous applications. Wireless networks have a broadcast nature

which makes them vulnerable to the potential attackers because anybody within

the coverage range of a transmitter can receive its signal. Therefore, providing

secure communications is one of the most important problems for today’s wireless

networks.

Security issues arising in communication networks can be classified into four

main areas: confidentiality, integrity, authentication, and non-repudiation. Confi-

dentiality guarantees that legitimate recipients successfully obtain their intended

messages while they are protected against eavesdropping. Integrity provides com-

municating parties with the assurance that a message is not modified during its

transmission. Authentication ensures that a recipient of information is able to

identify the sender. Non-repudiation ensures that parties involved in communi-

cation cannot deny their roles, i.e., transmitting a signal or receiving it.

There are two types of attackers in wireless networks in general: passive at-

tackers and active attackers. An active attacker intentionally disrupts the system

while a passive attacker tries to interpret the signal he/she receives without any

effort to modify the source of the signal, i.e., the attacker listens to the signal

1



but does not modify it. In this work, we mainly focus on techniques which are

designed to combat passive attackers.

Figure 1.1 depicts a cryptographic encryption scheme [1] which is the basic

method for conventional techniques for achieving confidentiality in communica-

tion networks. The transmitter (Alice) uses a key to encrypt the information

(which is referred to as plaintext) to convert it into ciphertext. The legitimate

receiver (Bob) can extract the original plaintext from the ciphertext by the cor-

responding key. Assume that an eavesdropper (Eve) has access to the ciphertext

without any knowledge about the corresponding decryption key. Then, in prac-

tice, where Eve has limited time and can’t test all possible keys, it cannot obtain

the source information. Figure 1.1 illustrates this process along with the encoding

and decoding steps which are aimed to combat the channel transmission errors.

Figure 1.1: Illustration of cryptographic encryption and decryption with channel
coding

There are two types of algorithms for encryption: secret-key encryption and

public-key encryption. In secret-key encryption, the transmitter encrypts the

plaintext and the legitimate receiver decrypts the ciphertext using the same key.

On the other hand, in public-key encryption, the transmitter and receiver use dif-

ferent keys for encryption and decryption. Specifically, the transmitter encrypts

the information with a public key which is known to all the receivers and eaves-

droppers. Then, a legitimate receiver uses a private key corresponding to that

public key for decryption. It is practically impossible for the eavesdroppers who

do not have a private key to obtain the plaintext.

There are advantages and disadvantages associated with each of the algo-

rithms mentioned above. Public-key algorithms make key management simple

but require extensive computational resources and they are not completely secure

against all kinds of attacks. Secret-key algorithms are computationally efficient
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although key management is a major challenge. Hence, in practice hybrid cryp-

tosystems [2] are employed which enables distribution of secret keys by public-key

algorithms. However, the lack of infrastructure in networks makes key distri-

bution difficult and dynamic topology of networks makes the key management

expensive.

Although these methods provide a reliable way for achieving security, they lack

the theoretical justification for achieving perfectly secure communications. The

notion of perfect secrecy introduced in physical layer security which has emerged

as a promising way to address security issues in wireless communications and

other applications.

1.1 Physical Layer Security

Physical Layer Security is a promising way to provide secure communications

without the aforementioned issues associated with the cryptography. This ap-

proach was initiated by Wyner [3] and by Csiszar and Korner [4] who proved

that confidential messages can be transmitted securely without the need for us-

ing an encryption key. Cryptographic methods rely on practical mathematical

difficulties in decryption to achieve security, however, information theoretic ap-

proach puts “perfect” secrecy as the ultimate goal, where the attacker will not

be able to extract any information from what it receives, not because the plain-

text is very powerfully encrypted, but because the received message is too noisy

to understand. Furthermore, information theoretic approach does not give any

prior information to the parties involved in the communication and merely relies

on the differences between the channels of the legitimate receivers and attackers

(i.e., randomness of communication channels).

Shannon [5] proved that a plaintext message M can be sent with perfect secrecy

by transmitting a ciphertext c =M⊕K where K is a random key and ⊕ denotes

the mod-2 addition. He defined the notion of perfect secrecy to mean that c gives

no additional information about the original message M , i.e., H(M) = H(M ∣c)
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or I(M ; c) = 0, where H(M) is the entropy of the plaintext and H(M ∣c) is the

conditional entropy of the plain-text given the cipher-text c, and I(M ; c) is the

mutual information between the plaintext and ciphertext. Shannon referred to

such keys as pads and showed that in order to keep the message secure, H(K)

must be bigger than H(M) and the key must be used only once (one-time pad).

In [3], Wyner introduced the famous wire-tap channel shown in Figure 1.2

where there is a transmitter, a legitimate receiver and an eavesdropper who tries

to obtain information about the message signal.

Figure 1.2: Wire-tap channel model.

Wyner defined a quantity called equivocation (denoted by ∆) in order to mea-

sure secrecy of the transmission as

∆ =
1

K
H(SK ∣Zn) (1.1)

Large values of ∆ are desirable since this implies that there is more confusion

at the eavesdropper. Wyner defined the notion of perfect secrecy as ∆ = 1
KH(SK)

and proved that for discrete memoryless channels (DMCs), it can be achieved if

the wiretapper channel is degraded with respect to the main channel. We note

that the perfect secrecy condition introduced by Wyner is known as weak secrecy

stated as 1
K I(M,Z) → 0 in the recent literature. It is pointed out in [3] that a

rate-equivocation pair (R,d) is achievable if there exists an encoder and a decoder

which satisfy
HSK

N
≥ R − ε

∆ ≥ d − ε

Pe ≤ ε

(1.2)

4



where HS is entropy of the source, R is transmission rate and Pe denotes proba-

bility of error at the legitimate receiver computed as

Pe =
1

K

K

∑
k=1

Pr{SK ≠ ŜK} (1.3)

where ŜK denotes the decoded signal. Wyner characterized the set R of achiev-

able (R,d) pairs for the case where wiretapper channel is degraded with respect

to the main channel in the following way

0 ≤ R ≤ CM

0 ≤ d ≤HS

Rd ≤HSΓ(R)

(1.4)

where CM = supp(x) I(X;Y ) is the main channel capacity and Γ(R) is defined as

(where X → Y → Z form a Markov chain)

Γ(R) = CM −CWiretapper (1.5)

which measures the maximum information that can be shared between transmit-

ter and the legitimate receiver without leaking any information to Eve at any

given rate R where capacity of the wiretapper channel is denoted by CWiretapper.

Using (1.4), the achievable region R for the pairs (R,d) is illustrated in Figure

1.3. Wyner called the CS in this figure, secrecy capacity which is the maximum

transmission rate that satisfies perfect secrecy condition (∆ =HS). Furthermore,

for the case when wiretapper’s channel is degraded with respect to the main

channel, he proved that there exists CS such that

0 ≤ CM −Cwiretapper ≤ CS ≤ CM (1.6)

where CM and CWiretapper denote the main and wiretapper channels capacities,

respectively.

Extensive research has been carried out to generalize Wyner’s results. Gaus-

sian wire-tap channel was studied in [3] and Csiszar and Korner in [4] introduced

broadcast channels with confidential messages generalizing the wire-tap channel

model. They consider a sender who wants to transmit common information to
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Figure 1.3: Achievable region R

both the legitimate receiver and the eavesdropper while a confidential message

is also being transmitted to the legitimate receiver. Moreover, they provide a

mathematical expression for calculating the secrecy capacity as follows

Cs = max
V→X→(Y,Z)

[I(V ;Y ) − I(V ;Z)] (1.7)

where V is an arbitrary random variable such that V → X → (Y,Z) is a Markov

chain.

Vast majority of the research in this field focuses on information theoretic

approaches to obtain achievable rate regions. In contrast, there are also a few

works which propose constructive coding schemes for the wiretap channel. In fact,

coding schemes exist for only a few special cases based on Wyner’s basic approach

in [3] which utilizes a randomized encoding scheme to achieve the secrecy capacity.

This method is known as coset-coding where each secret message is mapped to a

coset of code in a random fashion. Inspired by this method, application of low

density parity check (LDPC) codes to the wiretap channel is studied in [6]. The

authors prove that using capacity approaching codes for each secret message over

the wiretapper channel can achieve the secrecy capacity asymptotically. More

practically, when the main channel is noiseless and the wiretapper channel is a
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binary erasure channel, they point out that using the dual of an LDPC code and

its cosets can satisfy the security condition without the need for using capacity

approaching codes. Application of lattice codes in the context of physical layer

security is studied in [8] where the authors define a secrecy gain metric which

was related to the theta series of lattices and show the amount of confusion at

the eavesdropper. Without introducing a decoding method, they evaluate the

performance of different lattices based on the secrecy gain. The confusion at

the eavesdropper in [8] is the result of using a random lattice in addition to the

lattice which is responsible for transmitting the original message. Application of

polar codes to the randomized coding scheme is studied in [7] where the channel

polarization phenomenon of polar codes enables the proposal of a practical coding

scheme which achieves secrecy capacity when both main and wiretapper channels

are binary symmetric.

It is also worth mentioning that randomized encoding scheme is not the only

way of confusing the eavesdropper, for instance, in [9], the authors propose the

use of punctured LDPC codes over the Gaussian wiretap channel where the secret

messages are transmitted over punctured bits to hide data from eavesdroppers.

As another transmission scheme, the authors in [10] propose to implement non-

systematic coded transmission by scrambling the information bits, and character-

ize the bit error rate of scrambled transmissions through theoretical arguments

and numerical simulations. In [11] a concatenated coding scheme based on po-

lar codes and LDPC codes is proposed for the additive white Gaussian noise

(AWGN) wiretap channel where the bit error rate (BER) performance is ana-

lyzed through density evolution. The common tread of these works is that they

propose coding schemes which achieve given BER targets at Eve and Bob, while

keeping the required quality difference between the main and the eavesdropper’s

channels (termed as security gap [9]) as small as possible.

In [12], authors link the classical information theoretic measure (equivocation)

with the error rate based secrecy measures, where the main goal is to propose a

secret key sharing scheme for the wiretap channel. Presence of an error-free public

channel between the source and destination is considered to help the secret sharing

process. The authors in [13] use an approximate version of equivocation rate as
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the measure of secrecy at the eavesdropper and propose a code optimization

algorithm which allows to design practical irregular LDPC codes which are able

to approach the secure performance limits at moderate codeword lengths, i.e., in

the order of 104 bits.

1.2 Contributions of the Thesis

We develop approaches of implementing Wyner’s randomized encoding method

with the common element in all of them being the presence of a convolutional

code. First, we study how convolutional codes can be applied to the randomized

encoding scheme. We develop the required mathematical background and argue

that the concept of dual of a convolutional code plays a crucial role in both

encoding and decoding schemes in this set-up. Using convolutional codes in the

randomized encoding scheme enables us to propose effective and computationally

inexpensive decoders whose objective is to choose the right coset. Moreover, we

evaluate the performance of finite length (terminated) randomized convolutional

codes over the Gaussian and binary symmetric wiretap channels. We note that

achievable security gaps in our scheme using suitably designed generators for

random and data bits, compete favorably with other techniques, e.g., the LDPC

with puncturing.

We also consider the use of several concatenated codes in the randomized

encoding scheme, including serial and parallel concatenated convolutional codes

(turbo codes) and serial concatenation of a low density generator matrix (LDGM)

with a recursive systematic convolutional (RSC) code. The iterative decoder for

each scheme is proposed based on the turbo principle and the BCJR algorithm.

Turbo codes have a very sharp slope in their bit error rate performance which

makes them desirable for the wiretap channel in order to achieve very small

security gaps. In fact, as it will be demonstrated with several examples, for certain

levels of confusion at the eavesdropper, serially concatenated convolutional codes

outperform the existing coding schemes proposed for the wiretap channel.
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The thesis is organized as follows. In Chapter 2, we propose the use of con-

volutional codes in the randomized coding scheme and provide upper and lower

bounds on their error rate performance. In Chapter 3, we discuss how three dif-

ferent concatenated codes can be applied to the present setup, and compare their

performance with that of convolutional codes and other existing coding meth-

ods for the wiretap channel in the literature. Finally, we conclude the thesis in

Chapter 4.
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Chapter 2

Randomized Convolutional

Codes for the Wiretap Channel

In this chapter, we study application of convolutional codes to the randomized

encoding scheme introduced by Wyner [3] as a way of confusing the eavesdrop-

per over the wiretap channel. We describe optimal and practical sub-optimal

decoders for the main and wiretapper channels, and estimate the security gap

which is used as the main measure of physical layer security. The sub-optimal

decoder works based on the trellis of the code generated by a convolutional code

and its dual where one encodes data bits and the other encodes the random

bits. By developing a code design metric, we describe how these two generators

should be selected for optimal performance over a Gaussian wiretap channel. We

also propose application of list Viterbi decoding algorithm to this setup so as

to improve the performance of sub-optimal decoders. Furthermore, we provide

an analytical characterization of the system performance by extending existing

lower and upper bounds for coded systems to the current randomized convo-

lutional coding setup. We illustrate our findings via extensive simulations and

numerical examples.

The chapter is organized as follows. An introduction to the problem being

solved is provided in Section 2.1. The channel model is introduced in Section 2.2.
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The encoding scheme and convolutional code design for the randomized coding

scheme are given in Section 2.3. The optimal and several sub-optimal decoders

are presented in Section 2.4. Lower and upper bounds on the error rate perfor-

mance of the proposed system are developed in Section 2.5. Extensive numerical

examples are provided in Section 2.6, and finally, the chapter is summarized in

Section 2.7.

2.1 Introduction

Wiretap channel introduced by Wyner [3] is a basic model for studying secure

communications and was described in chapter 1. In his original work, Wyner

introduces a metric called equivocation indicating how much information can be

extracted by the eavesdropper about the original message as a measure of its

confusion and points out that a system designer wants to make the probability

of decoding error over the main channel minimum (reliability constraint) while

maximizing the equivocation (security constraint). Wyner defines the notion of

secrecy capacity Cs as the maximum achievable transmission rate that satisfies

the security condition. He also proves that one can achieve the secrecy capacity

using a randomized encoding scheme at the transmitter which is the main source

of confusion for the eavesdropper [3]. This encoding method is often referred as

coset-coding and is studied further in the subsequent literature, e.g. in [14].

From an information theoretic point of view, the equivocation, which is defined

as the conditional entropy of the secret message given the eavesdropper’s obser-

vation, is a valuable metric in order to measure the level of secrecy. On the other

hand, it is difficult to work with for designing practical coding schemes. There-

fore, bit error rate (BER) becomes an important metric with the motivation that

if the BER at the eavesdropper is close to 1/2, we expect that the eavesdropper

cannot extract much information about the original message from what it receives

[9], [10]. In this work, we follow the same approach and use the BERs Pmain and

Peve calculated through the main and eavesdropper channels, respectively, as the
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measure of secrecy. Denoting the desired maximum BER through the main chan-

nel with Pmax
main and the desired minimum BER through the eavesdropper channel

with Pmin
eve , reliability and security constraints are stated as Pmain ≤ Pmax

main (≈ 0)

and Peve ≥ Pmin
eve (≈ 0.5), respectively. We consider SNRmain as the lowest SNR

which satisfies the reliability constraint and SNReve as the largest SNR which sat-

isfies the security constraint. Difference between SNRmain and SNReve is defined

as the security gap. Clearly, codes with small security gaps are desirable.

In this chapter, we describe how convolutional codes can be applied to Wyner’s

randomized encoding method, evaluate the performance of finite length (termi-

nated) randomized convolutional codes over the Gaussian and binary symmetric

wiretap channels, and provide practical decoders for use at the receivers. We

argue that the concept of dual of a convolutional code plays a crucial role in

both encoding and decoding schemes in this setup. In the randomized encoding

scheme, there are multiple codewords (i.e., members of a coset) which represent a

message whereas in conventional encoding, each message is mapped to one code-

word. To transmit a message, one first chooses the corresponding coset and then

selects one of the codewords within that coset uniformly randomly.

Using convolutional codes in the randomized encoding scheme enables us to

propose effective and computationally inexpensive decoders whose objective is to

choose the right coset. Optimal decoder needs to run through all the codewords

in all the cosets which makes it impractical for medium to large length codes

which motivates the development of sub-optimal approaches. Furthermore, us-

ing existing algorithms [15] to compute the distance spectrum of convolutional

codes, we provide lower and upper bounds on the performance of the randomized

convolutional codes in terms of message error probability. The upper bound em-

ployed is based on an application of the tangential sphere bound (TSB) which is

a tight bound on the maximum likelihood (ML) decoder performance [16], while

the lower bound is an approximate version of Seguin’s bound adapted from [17].
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2.2 Channel Model

The wiretap channel consists of one transmitter and two receivers. For the Gaus-

sian wiretap channel, We assume that both the main and wiretapper channels are

additive white Gaussian noise (AWGN) channels and express the input-output

relationship as

y = xi +N (2.1)

where xi = (−1)ci is the Binary phase-shift keying (BPSK) modulated version of

the transmitted codeword of length n. N is a length n Gaussian noise vector with

independent and identically distributed (i.i.d.) components with zero mean and

variance N0/2. Note that for unit energy per dimension (E = 1), Eb = 1/R where

Eb is energy per bit and R is the transmission rate. We emphasize that the model

in (2.1) is used for both the main and wiretapper channels (with different noise

power levels).

2.3 Randomized Convolutional Codes – Encod-

ing

2.3.1 Randomized Encoding Method

To construct a randomized encoding scheme which aims to confuse the eavesdrop-

per, we assign one coset to each message being transmitted as in [6]. To transmit

a k-bit message we need 2k many cosets. Suppose that there are 2r codewords

in each coset. Then, we need a linear code of length n and dimension at least

k + r (assuming k + r ≤ n) which we call the big code to cover all the codewords

in this setup. In this manner, each coset consists of a unique set of codewords

and no n-tuple can be found which belongs to more than one coset. We choose

a terminated convolutional code C(n, r) (with length n and dimension r) as the

first coset which we call small code with generators g1,g2, ...,gr where gi’s are

1×n vectors. To generate the remaining 2k − 1 cosets with unique codewords, we

identify linearly independent n-tuples outside C which we denote by h1,h2, ...,hk.
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A message denoted by data bits s = [s1, s2, ..., sk] is mapped to the coset ob-

tained by s1h1+s2h2+...+skhk+C which makes the transmission rate R = k/n. Fi-

nally, the transmitted codeword c of length n is determined by choosing a random

codeword in C which is done using a random vector denoted by v = [v1, v2, ..., vr]

(where vi’s are i.i.d. 0’s and 1’s each with probability 1/2) in the following way

[6]

c = s1h1 + s2h2 + ... + skhk + v1g1 + v2g2 + ... + vrgr. (2.2)

Figure 2.1 illustrates the randomized encoding scheme and shows how every

secret message maps to a unique coset. This method requires two sets of gen-

erators to encode the message: one for random bits (vi's) and one for data bits

(si's). It is desirable to select hi’s and gi’s such that bit error probability of s

through the main channel goes to 0 (reliability constraint) while it goes to 1/2 in

the wiretapper channel (security constraint).

Figure 2.1: Illustration of the randomized encoding scheme where cij denotes jth
codeword in ith coset and si’s correspond to the all possible non-zero messages
of length k. H is a matrix whose rows are h1 through hk introduced in (2.2).

We note that one of the main motivations for using convolutional codes (rather

than LDPC codes) is that the big code formed by two convolutional codes (C and
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C⊥) is another convolutional code as will be discussed in Section 2.4.2.2. Hence,

its trellis structure enables us to propose efficient sub-optimal decoders which are

necessary in practice. Furthermore, as will be shown in Section 2.6, achievable se-

curity gaps using suitably designed generators for random and data bits, compete

favorably with other techniques, e.g., the LDPC puncturing method [9]. Finally,

by utilizing the distance spectra of convolutional codes [15], we can obtain lower

and upper bounds on the codeword error rates in the randomized encoding setup

(see Section 2.5) which are important for a theoretical characterization of the

performance at the eavesdropper and the main user, respectively.

Given the generators of C (gi’s), obtaining hi’s requires an exhaustive search

which is not practical for medium to large length codes. Here, we introduce a

practical way to attack this problem by first defining what we refer to as pseudo-

self-dual codes.

Definition 1 A linear code C(n, r) with generator matrix G is called pseudo-

self-dual if GGT = 0.

Theorem 1 Suppose C⊥(n,n−r) is the dual of linear code C(n, r). The non-zero

codewords of C⊥ and C are different if C⊥ is not pseudo-self-dual.

Proof 1 Let us denote the generator matrices of C and C⊥ with G and G⊥, re-

spectively. Assume that there is one non-zero codeword belongs to both of these

codes, so there should be non-zero vectors u and v such that uG = vG⊥. Multi-

plying both sides with (G⊥)T from right side, we obtain uG(G⊥)T = vG⊥
(G⊥)T

which results in vG⊥
(G⊥)T = 0 since C and C⊥ are dual of each other. But the last

equality is in contradiction with the assumption that C⊥ is not pseudo-self-dual.

Hence, there cannot be a non-zero n-tuple which is a codeword generated by both

G and G⊥.

We recall that two conditions need to be satisfied for hi’s: 1) they should not

be a codeword in the small code C; 2) they should be linearly independent. Using
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Theorem 1, by choosing generators of C⊥ as hi’s, the first condition is satisfied

if C is not pseudo-self-dual, and the second condition is satisfied since they are

generators of a linear code (C⊥).

Theorem 1 implies that it is not always possible to use generators of the C⊥ to

construct the cosets of C. As an example, let us consider the small code C to be a

single parity check (SPC) code (n = 8, k = 7, dmin = 2). C⊥ is then the repetition

code (n = 8, k = 1, dmin = 8) which only has one generator: G⊥ = [1 1 1 1 1 1 1 1].

But this generator is a codeword in C which means using it in (2.2) only reproduce

the small code C and will not result in a new coset. In this example, we note that

G⊥(G⊥)T = 0 which means C⊥ is pseudo-self-dual.

2.3.2 Dual of a Convolutional Code

Based on Theorem 1, we use the dual of a convolutional code for the randomized

encoding scheme if it is not pseudo-self-dual. In this subsection, we describe how

the dual of a convolutional code can be obtained in a systematic way.

For a binary convolutional encoder of rate a/b and memory m, the information

sequence u = u0u1u2... (ui’s are 1 × a) and the encoded sequence v = v0v1v2...

(vi’s are 1 × b) satisfy

vt = utG0 + ut−1G1 + ... + ut−mGm (2.3)

where Gi is an a × b binary matrix. That is, one can write v = uG with

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

G0 G1 . . . Gm

G0 G1 . . . Gm

⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.4)

The generator matrix of the dual code which is of rate (b − a)/a can be written

as

G⊥ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

G⊥0 G⊥1 . . . G⊥m⊥

G⊥0 G⊥1 . . . G⊥m⊥

⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.5)

with G(G⊥)T = 0. We now restate a result from [18].
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Definition 2 Reverse of a convolutional code C with polynomial generator

G(D) = G0 + G1D + ... + GmDm is defined as the convolutional code C̃ with

polynomial generator G̃(D) = Gm +Gm−1D + ... +G0Dm.

Theorem 2 (Taken from [18]) Dual of a convolutional code C with polyno-

mial generator G(D) has a polynomial generator of the form H̃(D) where

G(D)(H(D))T = 0.

Proof 2 For completeness, we provide a brief proof of this result. let G(D) =

G0 + G1D + ... + GmDm and denote the polynomial generator of its dual C⊥ by

G⊥(D) = G⊥
0 +G⊥

1D + ... +G⊥
m⊥D

m. The reverse of C⊥ is determined as G̃⊥(D) =

G⊥
m⊥ +G⊥

m⊥−1D + ... +G⊥
0D

m. Consider

G(D)(G̃⊥(D))T =G0(G⊥m⊥)T + (G0(G⊥m⊥−1)T +G1(G⊥m⊥)T )D + ⋅ ⋅ ⋅ +Gm(G⊥0)TDm+m⊥

(2.6)

One can see that the coefficients of Di (for all i) in (2.6) are elements of

the matrix G(G⊥)T which are equal to zero since G and G⊥ are dual of each

other, i.e., G(D)(G̃⊥(D))T = 0 which results in H(D) = G̃⊥(D) or equivalently,

G⊥(D) = H̃(D) concluding the proof.

To use Theorem 2, we need to compute H(D) based on G(D) such that

G(D)(H(D))T = 0. A straightforward way is to convert G(D) to its sys-

tematic form by row operations. Having Gsys(D) = [Ik∣P(D)] one can write

Hsys(D) = [PT (D)∣In−k] where I is the identity matrix and some elements of

Hsys(D) are rational functions of D. Multiplying Hsys(D) by a suitable polyno-

mial will remove the denominators and will result in H(D).

As a simple example, if G(D) = [1+D+D2 1+D2] then H(D) = [1+D2 1+

D + D2]. Using Theorem 2 we get G⊥(D) = H̃(D) = [1 + D2 1 + D + D2].

Hence, the dual of a [7 5] 1 (in octal notation) convolutional code with memory

2 is the [5 7] convolutional code. Similarly, dual of a [117 155] with memory 6 is

[133 171]. For these two cases, one can also verify that G⊥ is not pseudo-self-dual

1Throughout this work, we denote convolutional codes with octal notation.
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which makes them suitable for the proposed encoding scheme over the wiretap

channel.

2.3.3 Obtaining a Subset of Convolutional Codes

As discussed in Section 2.3.1, the codewords in each coset represent a single mes-

sage and are aimed at confusing the eavesdropper. If the main channel is noiseless,

we are not concerned with the decoding process at the legitimate receiver, and

we only want to confuse the eavesdropper. In this case, it is desirable to use as

many codewords as possible in each coset. If the main channel is also noisy, then

one should consider reducing the number of codewords in each coset in order to

increase error correction capabilities at the legitimate receiver. As discussed in

Section 2.3.1, the number of codewords in each coset is governed by the small

code C(n, r) introduced in Section 2.3.1 and equals 2r assuming that the random

bits are being encoded by generators of the small code.

Let C be a convolutional code of rate a/b with the generator matrix G(D) with

a rows. After finding the equivalent generator matrix G[k](D) to G(D) with rate

ka/kb for k = 2,3, . . . , one can obtain a subset of C by choosing different rows

from ka available rows of the G[k](D). Clearly, the resulting convolutional code

has a smaller rate than C and improved error correction capabilities.

We now explain how one can obtain an equivalent generator matrix G[k](D)

with rate k/bk, k = 2,3, . . . for a convolutional code with generator matrix G(D)

of rate 1/b. The extension of the method to the general case (for a rate a/b code)

is quite straightforward. G[k](D) accepts k input bits in each time slot, so the

input bits ui’s are fed to the encoders in the following manner

. . . ui+3k−1 ui+2k−1 ui+k−1 → g1

. . . ui+3k−2 ui+2k−2 ui+k−2 → g2

⋮ ⋮ ⋮ ⋮

. . . ui+2k+1 ui+k+1 ui+1 → gk−1

. . . ui+2k ui+k ui → gk

. . . D2 D 1

(2.7)
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where “→ gi” means that the bits are being fed to a specific generator gi (a row of

G[k](D)) and the last row denotes the delay associated with the input bits in each

column. We denote the output sequence of G(D) to the input bit ui+f with vf

whose elements are vf,j where 0 ≤ f ≤ k−1 and 1 ≤ j ≤ b. Furthermore, we consider

the corresponding output of G[k](D) to the input vector [ui ui+1 . . . ui+k−1] as

[o0 o1 . . . ok−1] where each of is a vector consisting of b sequences, and each

sequence is the sum of the delayed ui’s produced through the k generators within

the structure in (2.7). G[k](D) and G(D) are equivalent if

vf = ok−f−1, 0 ≤ f ≤ k − 1 (2.8)

where vf = ui+fG(D) which is known since G(D) is given. We note that each

element of oi is produced by a column of G[k](D). Hence, each of the bk equa-

tions in (2.8) determines the suitable k generators, gi’s, 1 ≤ i ≤ k needed for the

corresponding column of G[k](D).

Example 1 Consider the [561 753] convolutional code of memory m = 8 and

rate 1/2, i.e.,

G(D) = [1 +D2 +D3 +D4 +D8 1 +D +D2 +D3 +D5 +D7 +D8]. (2.9)

Following the same steps described above, we can obtain the equivalent gener-

ator matrix of G(D) with rate 4/8:

G[4](D) =

⎡
⎢
⎢
⎢
⎢
⎣

p(D) 1+D2 0 1+D 1 1 1 1+D
D D+D2 p(D) 1+D2 0 1+D 1 1

D D D D+D2 p(D) 1+D2 0 1+D
0 D+D2 D D D D+D2 p(D) 1+D2

⎤
⎥
⎥
⎥
⎥
⎦

(2.10)

where p(D) = 1 +D +D2. To obtain a subset of C, one can use any subset of the

rows of G[4](D) as the generator matrix. We note that the resulting subset has a

smaller rate than the original code C. For example, if we choose only one of the

rows of G[4](D) as the generator matrix, the resulting code has a rate of 1/8. ∎
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2.3.4 Convolutional Code Design for the Randomized En-

coding Scheme

Earlier in this section, we discussed how a small code and its dual can be used

to form the big code. Since both the small code and its dual are assumed to

be convolutional codes, the big code is also a convolutional code. Clearly, the

minimum pairwise distance among the codewords in each coset with respect to

a specific codeword is larger than (or equal to) the minimum distance of the big

code with respect to the same codeword. So, the codewords at minimum distance

in the big code belong to different cosets and assuming that a minimum distance

decoder is being used, they are important sources of decoding errors. Hence,

a design metric becomes the minimum pairwise distance among the codewords

of the big code which controls the error correcting capability of the minimum

distance decoder. In practice, one should choose this distance in a way that

results in the smallest security gap.

If one uses a convolutional code C(n, r) (small code) to encode random bits and

its dual C⊥(n,n− r) to encode the data bits, the big code would consist of all the

2n n-tuples (ignoring trellis termination to zero state for the time being); a fact

that results in the lowest possible minimum distance (one) for the big code. In

this case, performance of the minimum distance decoder is poor from legitimate

receiver’s point of view. Alternatively, one can use the approach described in the

previous subsection to obtain a subset of C(n, r) denoted by C′(n, r′) where r′ < r.

Now, using generators of C′ and C⊥ to encode random and data bits, respectively,

the big code will have r′ + n − r many generators which is less than n; hence, the

resulting big code can achieve a larger minimum distance. We note that in either

case transmission rate is (n − r)/n since the data bits’ encoder is the same.

Consider the small code C to be a convolutional code of rate R = b/c with

minimal-basic generator matrix G(D) [18]. Equivalent generator matrices to

G(D) which reproduce C are obtained by

G2nd(D) = T(D)G(D) (2.11)

where T(D) is a b×b full rank matrix. Then, instead of working with G(D), one
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may use G2nd(D) in Section 2.3.3 to obtain new subsets of C and consequently

new generators for random bits. Hence, different choices for T(D) result in

different generators for random bits. It is clear that different generators for

random bits, result in different sets of codewords in each coset and consequently

possible different minimum distances for the big code. In the next example, given

the encoder for data bits, we search for an encoder for random bits which results

in a big code with a large minimum distance.

Example 2 Let us choose the small code C as the convolutional code [561 753]

which is the same code given earlier in (2.9). Its dual C⊥ is the optimal convolu-

tional code of memory 8 and rate 1/2 with the generator [657 435]. If one uses

generators of C⊥ and the entire C to encode data and random bits, respectively,

the resulting big code will have a minimum distance of 2 (they do not cover all

the n-tuples because of the trellis termination to zero state). However, if one uses

generators of C⊥ for data bits and [D D D D + D2 p(D) 1 + D2 0 1 + D] for

random bits which is a subset of C as we derived in Example 1, the big code will

attain a minimum distance of 6.

We can improve the minimum distance even more by using (2.11)

G
[4]
2nd(D) = T(D)G[4](D) (2.12)

where G[4](D) is the same as (2.10) and the 4 × 4 matrix T(D) is given by its

polynomial inverse

T−1(D) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 +D D D 1 +D

D D2 + 1 1 D

D D 1 +D D

1 +D 1 D D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.13)

After some straightforward algebra, one can calculate G
[4]
2nd(D) (which is 4×8)
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and obtain one of its rows as

[D5 +D4 +D3 D5 +D3 +D2 D4 +D3 D5 +D D5 +D4 +D3 +D2 +D + 1

D5 +D3 +D2 +D + 1 D3 +D2 D3 +D2 + 1]

(2.14)

Using C⊥ and (2.14), we obtain a big code with minimum distance 10. Here, it

is clear that data bits are encoded with rate 1/2 while random bits’ encoding rate

is 1/8. We note that the code C⊥ has a minimum distance of 12 which is an upper

bound on the minimum distance of the big code. ∎

2.4 Decoding Methods

2.4.1 Optimal Decoder

Given a received noisy vector y, the optimal decoder would pick a coset index

which maximizes the probability p(Ci∣y) where Ci denotes the ith coset. Assum-

ing there are M cosets which represent M messages and in each of them there

are N codewords, the output of the optimal MAP decoder is

î = argmax
i=1,2,...,M

p(Ci∣y) (2.15)

Using Bayes’ rule and the total probability theorem (assuming that the codewords

in each coset have equal probabilities to be transmitted through the channel), we

can write

p(Ci∣y) =
p(y∣Ci)p(Ci)

p(y)
,

p(y∣Ci) =
1

N

N

∑
j=1

p(y∣cji),

(2.16)

where cji denote the jth codeword in the ith coset. Finally, for an AWGN channel

and equiprobable cosets, the optimal decoder has the form

î = argmax
i=1,2,...,M

N

∑
j=1

e
−∥y−cji∥

2

2σ2 , (2.17)
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where σ2 = N0/2. Note that for the main and wiretapper channel the noise

variances are different, hence the resulting optimal decoding rules are different.

For the case of a binary symmetric channel with cross over probability p

p(y∣cji) = (1 − p)n(
p

1 − p
)
dH(y,cji)

(2.18)

where dH(y,cji) is the Hamming distance between received vector y and code-

word cji. In this case, the optimal decoding rule for BSC can be obtained from

(2.16) as

î = argmax
i=1,2,...,M

N

∑
j=1

(
p

1 − p
)
dH(y,cji)

. (2.19)

We note that for optimal decoding, one goes through all the codewords in all
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Figure 2.2: Performance of the optimal decoder introduced in (2.17) over an
AWGN channel using a Reed-Muller code of length 16 to encode the messages.
The number of cosets or messages is 25 each of which containing 211 codewords
(n = 16, r = 11, k = 5). The lower and upper bounds are developed in Section 2.5.

the cosets making the algorithm prohibitively complex to implement in practice.

However, this process can be used for toy examples with small length codes. For

instance, the performance of the optimal decoder is shown for a Reed-Muller code

of length 16 in Figures 2.2 and 2.3 for AWGN and BSC channels, respectively

(along with the corresponding performance bounds which will be introduced in
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Figure 2.3: Performance of the optimal decoder introduced in (2.19) over BSC
channel using a Reed-Muller code of length 16 to encode the messages. The
number of cosets or messages is 25 each of which contains 211 codewords (n =

16, r = 11, k = 5). The lower and upper bounds are discussed in Section 2.5.

Section 2.5). We emphasize that this is introduced as a toy example only, and

the code has a poor performance in terms of the resulting security gap. We will

provide examples of good codes with low security gaps in Section 2.6. The upper

bound (which is a true bound) shows the worst case analysis for the main channel.

On the other hand, the lower bound (which is approximate) represents the best

that can be done by the eavesdropper (in terms of message error probability).

Figure 2.2 and 2.3 also demonstrate that the upper and lower bounds are tight

especially for high SNRs.

2.4.2 Sub-Optimal Decoders

The optimal decoding procedure for the randomized encoding scheme is too com-

plex for practical implementations, hence here we consider several sub-optimal

decoding alternatives.
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2.4.2.1 Binary Gaussian Elimination

The encoding scheme in Section 2.3.1 can be written in matrix form. Suppose

G is the generator matrix of the small code C(n, r). We form a matrix H whose

rows are k linearly independent n-tuples h1,h2, ...,hk outside C. Therefore, as in

[6] one can write the transmitted codeword as follows

x = [s v]GB, GB =

⎡
⎢
⎢
⎢
⎢
⎣

H

G

⎤
⎥
⎥
⎥
⎥
⎦

. (2.20)

Motivated by this, a rough decoding approach could be to perform hard de-

cisions on the received vector from the channel to obtain a binary vector which

will be denoted by x̂. Then, one can form [GB ∣x̂T ], and through binary Gaussian

elimination obtain [I∣xTd ] where I is the identity matrix. The first k bits of xd

are the decoded versions of the transmitted message s.

This decoding method ignores the available soft information and may not result

in a good performance, however it is a general method, i.e., given the generator

matrices for random and data bits (G and H), it can be applied to any kind of

codes. Specifically, low density generator matrix (LDGM) codes introduced in

[19] are systematic codes with generator matrices of the form G = [Ik×k∣Pk×(n−k)]

where P is a sparse matrix. Hence, given one of G or H, the other can be

obtained, and the binary Gaussian elimination can be used for this setup with

ease.

2.4.2.2 Trellis Based Decoding

When the Euclidean distances among the codewords in each coset are relatively

large or when the SNR is sufficiently high, the summation in the optimal decoder

expressions in (2.17) or (2.19) is dominated by terms which correspond to code-

words at the minimum Euclidean distance to the received vector y. Therefore, as

an approximate decoding approach, one can find the codeword at the minimum

Euclidean (or, Hamming) distance to the given received noisy vector (referred as
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the minimum distance decoder). Since at high SNRs, most errors will be due to

closeby codewords, we expect that the performance of this decoder will be close

to that of the optimal decoder in this regime.

Following with the development in Section 2.3, we recall that the encoding

process needs two convolutional codes whose trellises can be combined to form a

trellis for the big code governing codewords obtained by (2.2), i.e., the codewords

that are being sent through the channel. This “big” trellis enables us to find

the minimum distance codeword to the output of the channel y by applying the

Viterbi algorithm.

The overall encoder for the big code can be implemented using generators for

random and data bits in parallel. As an example, when G(D) = [1+D+D2 1+D2]

encodes random bits and G⊥(D) = [1 +D2 1 +D +D2] encodes data bits, the

overall encoder is shown in Figure 2.4.

We note that development and analysis of this decoding approach in the ran-

domized coding scheme is important in other possible schemes as well, e.g., for

turbo codes which are basically parallel (or serial) concatenation of convolutional

codes.

2.4.2.3 List Decoding for Randomized Convolutional Codes

One way to improve the performance of the minimum distance decoder is to

incorporate more terms in the sums of (2.17) or (2.19). Observing that the terms

which correspond to the codewords at low distances to the received noisy vector

make the highest contributions to the results of the sums, we propose the use of

List Viterbi Decoding Algorithm (LVA) [22] for this purpose. Namely, LVA can

be used to nominate the top L codewords which are closest to the received vector,

and then one can apply the decision rule in (2.17) or (2.19) among these L most

probable codewords.

We can also devise a bit-wise decoder when LVA is used in the randomized

26



Figure 2.4: The overall encoder for the randomized encoding scheme when a [7 5]
convolutional code encodes random bits and a [5 7] convolutional code (which is
the dual of [7 5]) encodes data bits.

encoding scheme. In this case, assuming an AWGN channel, we assign a proba-

bility to each nominated codeword based on its Euclidean distance to the received

vector y, which is denoted by pi for the ith nominated codeword with

pi =
e
−∥y−ci∥2

2σ2

∑
L
k=1 e

−∥y−ck∥2
2σ2

, i = 1, . . . , L. (2.21)

For the case of BSC, we assign probabilities based on Hamming distance which

results in

pi =
(

p
1−p)

dH(y,ci)

∑
L
k=1 (

p
1−p)

dH(y,ck)
, i = 1, . . . , L. (2.22)

where p is the cross-over probability of BSC. Then log-likelihood ratio for each

bit is calculated as

LLR(j) = log
Pr(Xj = 1)

Pr(Xj = 0)
= log

Σ
i∶ci(j)=1

pi

Σ
i∶ci(j)=0

pi
, j = 1, . . . , n, (2.23)

where ci(j) denote the jth bit of the ith nominated codeword. If LLR > 0 the

corresponding bit is decoded as 1 and is decoded as 0 otherwise.
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2.5 Performance Bounds

In order to provide a theoretical assessment of the decoder performance in the

randomized encoding scheme, we provide bounds on the resulting error rates.

Specifically, we obtain lower and upper bounds on the error rates which indicate

the best performance of the eavesdropper and the worst performance of the le-

gitimate receiver, respectively, which are important from a design and analysis

point of view.

2.5.1 Assumptions

As mentioned in Section 2.3.1, the adopted randomized encoding scheme maps

each message to a coset of codewords. Hence, in contrast to conventional encod-

ing, decision region for each message is not just a simple Voronoi region around

the transmitted codeword. This fact results in further complications in calculat-

ing the corresponding ML decoding bounds. To proceed, we define the notion of

favorable codewords.

Definition 3 Suppose cij which is the ith codeword in the jth coset is sent

through the channel. We call all the other codewords in jth coset (i.e., ckj such

that k = 1,2, . . . ,N , and k ≠ i) favorable to cij.

Known bounds on the ML decoding performance of linear codes can be ap-

plied to the randomized encoding scheme by making the following assumption:

considering transmission of cij, we ignore all the favorable codewords to cij, i.e.,

neglect part of correct decision region, and compute lower and upper bounds on

the performance of decoders in the randomized encoding scheme accordingly.

The following theorem proves the geometric uniformity of the big code after

ignoring the favorable codewords.

Theorem 3 Let cij be the ith codeword in the jth coset and denote the distance

spectrum of the code C with respect to the codeword cij by DSC{cij}, and the
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distance spectrum of the big code (bc) after ignoring favorable codewords with

respect to cij by DS{cij}. Then DS{cij} = DS{clk}, i ≠ l and j ≠ k, if the big

code (bc) and the small code (sc) are both linear.

Proof 3 The distance spectrum of the big code with respect to cij after ignoring

favorable codewords can be written as DS{cij} =DSbc{cij}−DScoset j{cij} which

means for each distance d ≥ 1 subtract the numbers of codewords with distance

d in DSbc{cij} and DScoset j{cij} from each other. Since the big code is linear

DSbc{cij} =DSbc{clk}. Linearity of small code results in DSsc{c11} =DSsc{ci1}.

Furthermore, coset j obtained by adding a unique codeword to the small code

which does not have any effect on the distance spectrum, namely, DScoset j{cij} =

DScoset k{clk} =DSsc{c11}, hence DS{cij} =DS{clk} concluding the proof.

By using Theorem 3, it is possible to compute the distance spectrum of the big

code after ignoring the favorable codewords by considering only all-zero codeword

as transmitted codeword, via the distance spectra of the small and big codes.

Once the distance spectrum is computed, we utilize it with the existing bounds

on ML decoding performance to obtain performance bounds for the randomized

encoding scheme. If both the small and big codes are convolutional, their distance

spectra can be obtained through efficient algorithms (e.g., [15]) which work based

on their state transition matrix computed using the trellis representations of the

convolutional codes employed.

We recall that the trellis of the big code is formed by trellises of the small

code and its dual. If the generator for the random bits which produces the

small code has memory m and the one for the data bits has memory n, then

the state transition matrices of the small code and big code are 2m × 2m and

(2m × 2n) × (2m × 2n), respectively. Specifically, for the generators selected in

Example 2 (which result in the big code of minimum distance 10), the state

transition matrix is (28 × 25) × (28 × 25) for the resulting big code.

We further note that the derived bounds are applicable to other randomized

coding setups as well (once the appropriate weight distributions are known). For
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instance, one can easily obtain lower bounds on the error rates of LDPC coded

systems (e.g., as in [6]) in a straightforward manner as only a subset of codewords

with small weights are needed in the computation.

2.5.2 Performance Lower Bounds

We first note that the assumption made in Section 2.5.1, namely, ignoring part

of the correct decision region, results in approximate lower bounds. Particularly,

this assumption makes lower bounds overestimate the error probability. On the

other hand, since distance of a codeword to its favorable codewords is much larger

than its distance to the other codewords (see Section 2.3.4), we expect ignoring

favorable codewords to not have a great impact on the final result.

We use Seguin’s bound [17] to provide a lower bound on the decoder per-

formance which states that the probability of error given that the signal su is

transmitted through an AWGN channel with variance N0/2, denoted by P (ε∣su),

is lower bounded as

P (ε∣su) ≥∑
i≠u

Q2(
√

2DuiEs/N0)

∑j≠u Ψ(ρij,
√

2DuiEs/N0,
√

2DujEs/N0)
(2.24)

where Dui is the Hamming distance between codewords i and j, Es/N0 is the

SNR, Q is the usual Q-function (right tail probability of standard Gaussian dis-

tribution), and

Ψ(ρ, p1, p2) =
1

2π
√

1 − ρ2
∫

∞

p1
∫

∞

p2

exp(−
x2 − 2ρxy + y2

2(1 − ρ2)
)dxdy (2.25)

with ρij defined as

ρij =
w((ci + cu)(cj + cu))
√
w(ci + cu)w(cj + cu)

(2.26)

is the correlation between two codewords ci and cj given that cu was transmitted.

Here, w denotes the Hamming weight of a sequence.

It is clear from (2.24) that one can obtain a lower bound by taking only a subset

of codewords into account; in other word, one does not need the entire distance

spectrum to obtain a lower bound. Besides, as noted in [23], considering the
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codewords at the minimum distance and ρij’s play an important role on tightness

of this bound. Finally, for the case of BSC, we use the lower bound introduced

by Cohen and Merhav in [24].

2.5.3 Performance Upper Bounds

Similar to the lower bound, we ignore the favorable codewords in obtaining an

upper bound on the error rates of the randomized encoding scheme. However, the

resulting bound in this case is a true bound (not an approximate result) on the

performance of the maximum likelihood decoder. This is because, we ignore part

of correct decision region which naturally results in a looser characterization.

There are many upper bounds on the ML decoding performance of coded

systems in the literature; to name two important ones, we cite Duman-Salehi

bound [25] and tangential sphere bound (TSB) [16].

TSB is essentially based on a technique developed by Gallager [6] which utilizes

the following intuitive inequality

P (error) ≤ P (error, y ∈R) + P (y ∉R)

where R is a region around the transmitted codeword. Poltyrev [16] selects R

to be a canonical region. It should be noted that many improved upper bounds

can be derived by an appropriate selection of the region R, such as tangential

bound(TB) [26] (which let the radius of the cone to be infinity), Divsalar bound

[27] (where the region R is a hyper sphere with optimized center), sphere upper

bound [28] (which is the special case of Divsalar bound with a fixed center at the

transmitting point) which all used for the equal energy constellations or Hughes

bound [29] which can be used for non-equal signal energies also. It is worth

mentioning that the union bound can be obtained via TSB method setting region

R to be the whole space. TSB is one of the tightest bound known on the ML

decoding error probability of binary block codes in AWGN channel [30], [31], [32].

For a detailed review of performance bounds, see [33].

TSB uses a method based on 2-levels of separation of noise components (radial
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and tangential components) from the rest, resulting in

P (ε) ≤ ∫
∞

−∞

e−
z21

2σ2

√
2πσ

⎧⎪⎪⎨⎪⎪⎩
∑

k≤
nr2

0
n+r2

0

{Sk ∫
rz1

βk(z1)

e−
z22

2σ2

√
2πσ
∫

r2
z1
−z2

2

0
fV (v)dvdz2} + 1 − γ(

n − 1
2

,
r2
z1

2σ2
)
⎫⎪⎪⎬⎪⎪⎭
dz1

(2.27)

where Sk is the number of codewords with Hamming weight k , βk(z1) = (
√
n −

z1)/(
√
n/k − 1), rz1 = r0(

√
n − z1), r0 is the optimal value of rz1 [16] and

fV (v) =
v
n−4

2 e−
v

2σ2

2
n−2

2 σn−2 Γ(n−2
2 )

, v ≥ 0,

γ(a, x) =
1

Γ(a) ∫
x

0
ta−1e−tdt, a > 0, x ≥ 0.

(2.28)

For the case of a BSC, we use what is called the S bound (SB) given by [16]

P (ε) ≤
2(m0−1)
∑
w=d

Sw
m0−1

∑
η=tw

(w
η
)pη(1 − p)w−η

m0−η−1

∑
k=0

(n −w
k

)pk(1 − p)n−w−k +
n

∑
t=m0

(n
l
)pl(1 − p)n−l

(2.29)

where tw = ⌈w/2⌉ and m0 is the smallest integer such that

2m

∑
w=d

Sw
m

∑
η=tw

(
w

η
)(
n −w

m − η
) ≥ (

n

m
). (2.30)

2.5.4 A Simple Example

As an example the performance of lower and upper bounds introduced in Sections

2.5.2 and 2.5.3, for a Reed-Muller code is shown in Figure 2.2 and 2.3 which

indicate a good match between the bounds and simulated performance of the

optimal decoders. We will provide further examples for more practical codes

(considering both AWGN and binary symmetric channels) in Section 2.6.

2.6 Numerical Examples

In this section, we provide numerical examples on the performance of the sub-

optimal decoders introduced in Sections 2.4.2.1 and 2.4.2.2, theoretical bounds
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introduced in Section 2.5, different code designs for the cases where main channel

is noiseless or noisy, and application of list Viterbi decoding in 2.4.2.3 in the

randomized encoding scheme.

2.6.1 Noiseless Main Channel

In this case, we assume that the main channel in wiretap channel is noiseless and

the wiretapper channel is an AWGN or binary symmetric channel. As discussed

in Section 2.3.4, for this scenario, the only task is to confuse the eavesdropper

without worrying about the decoding process at the legitimate receiver. There-

fore, the big code should have a low minimum distance; which is achieved using

generators of the entire small code C(n, r) to encode random bits and generators

of its dual C⊥(n,n − r) for data bits (see section 2.3.4).

The approximate lower bounds on the following figures show the bounds on

the best decoding capability of the eavesdropper through the wiretapper channel

while the upper bounds (which are true bounds) indicate the worst case scenario

for the legitimate receiver through the main channel. Both the upper and lower

bounds are in terms of codeword error probabilities and they are computed under

the assumptions stated in Section 2.5. We also note that the Seguin’s bound

is obtained by considering the codewords at minimum Hamming distance and

calculating the correlations among them, while the TSB uses the entire distance

spectrum.

Figure 2.5 illustrates the message error rates for the randomized encoding

scheme with a convolutional encoder with generator [7 5] encoding the random

bits and its dual [5 7] (which was derived in Section 2.3.2) encoding the data

bits. The length of the data and random bits are both 100. With trellis termi-

nation, the overall codeword length is 204. That is, the small code and its dual

are C(204,100) and C⊥(204,100), respectively, and the big code parameters are

(204,200). Comparing the two sub-optimal decoders introduced in Section 2.4.2,

we observe that the performance of the trellis based decoder is always better

than performance of the binary Gaussian elimination decoder. Also TSB and

Seguin’s bound are quite tight in this case and all the curves meet at high SNRs
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Figure 2.5: Performance of the sub-optimal decoders introduced in Section 2.4.2
and the bounds in Section 2.5 when a [7 5] convolutional code with its dual
[5 7] has been used. The length of the codewords is 204. There are 2100 cosets
each of which containing 2100 codewords.

as expected. Furthermore, Figure 2.6 shows the performance of the bounds and

minimum distance decoder over a BSC where the lengths of the data and random

bit sequences are both 50.

As a second example, we consider a convolutional encoder with polynomial

generator [117 155] for random bits and its dual [133 171] for data bits. As

shown in Figure 2.7, performance of binary Gaussian elimination is almost the

same as the one in Figure 2.5, however, performance of the trellis based decoder

in this case is much better than that of the binary Gaussian elimination decoder

at high SNRs which is a result of using a higher memory size for convolutional

encoders. For this example, lengths of the data and random bit sequences are

both 100 which result in a codeword of length 212.

Seguin’s bound relies on low weight codewords to provide tight lower bounds on

the performance of the ML decoders [23]. We note that the lower bound in Figure

2.7 is not as tight as the one in Figure 2.5 because the minimum distance of the

big code in Figure 2.7 is 2 while it is 1 in Figure 2.5. Finally, TSB is not included
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Figure 2.6: Performance of the minimum Hamming distance decoder (based on
trellis) and the bounds introduced in Section 2.5 over BSC when a [7 5] convo-
lutional code with its dual [5 7] has been used. The length of the codewords is
104. There are 250 cosets each of which containing 250 codewords.

in Figure 2.7 because state transition matrix of the big code is (64×64)×(64×64),

and calculating the entire distance spectrum which is required for the TSB is not

computationally feasible.

Figure 2.8 shows the bit error rates when trellis based decoder is used for

convolutional codes while binary Gaussian elimination decoder is used for an

LDGM code for data bits of length 100. The LDGM code is based on the structure

given in [21] with a 100 × 200 parity check matrix H where degrees of check

nodes are equal to 5. It has 100 variable nodes of degree 4 and the rest are of

degree 1. We have H = [P100×100∣I100×100] whose generators encode random bits

and G = [I100×100∣PT
100×100] whose generators encode data bits. Figure 2.8 shows

that using the more complicated generators for random and data bits (higher

memory sizes) improves the resulting error correction capabilities for high SNRs.

Furthermore, considering existing decoding methods for the randomized encoding

scheme, we obtain a better performance using convolutional codes for lower SNRs.
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Figure 2.7: Effect of increasing memory size on the performance of the sub-
optimal decoders using convolutional codes [117 155] and [133 171] with memory
size m = 6. The length of the codewords is 212 and there are 2100 cosets each of
which represents a unique message and contains 2100 codewords.

2.6.2 Noisy Main Channel

We now assume that both the main and wiretapper channels are noisy. Therefore,

the generators for random and data bits should be selected in a way that result

in low security gaps. We consider the channels in this part to be AWGN, and for

the case of BSC we provide an example in the next subsection. In Section 2.3.4,

we described how to reduce the number of codewords in each coset in randomized

encoding scheme to obtain a big code with larger minimum distances to improve

the decoding performance of the minimum distance decoder. To evaluate the

performance of the proposed randomized convolutional coding solution, we show

the BER at the eavesdropper (Pmin
eve ) as a function of security gap in Figure 2.9

where convolutional code [657 435] of rate 1/2 is used for data bits and a subset

of its dual for random bits. Specifically, we use the following generator with rate

1/8 and memory 4 to encode the random bits

[D3 + 1 D4 + 1 D4 +D3 +D2 D4 +D3 +D + 1 D3 +D2 +D D3

D3 +D2 D3 +D2 + 1]
(2.31)
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Figure 2.8: Bit error probability for 3 convolutional codes with different memory
sizes (m) and an LDGM code. The number of cosets is 2100 each contains 2100

codewords (k = 100, r = 100). Length of the LDGM code is 200 and length of
convolutional codes are 200 + 2m.

which is obtained using section 2.3.3 and equation (2.11) with the following choice

of T−1(D)

T−1(D) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 D2 1 1

D 1 1 1

1 1 1 D

1 1 D 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.32)

We note that the resulting big code has a minimum distance of 8. One can

increase this distance to 10 by using the following encoder of rate 1/8 and memory

5 for random bits (which is another subset of dual of [657 435])

[D4 +D3 + 1 D3 + 1 D5 +D4 +D2 +D + 1 D4 D5 +D4 +D3 +D2

D4 +D2 + 1 D5 +D4 +D3 +D2 +D + 1 D5 +D4 +D2 +D].
(2.33)

Table 2.1 summarizes several important results from Figure 2.9 and shows

that a security gap of 4 dB is achievable for Pmax
main ≈ 10−5 and Pmin

eve ≥ 0.48 by

choosing [657 435] as data bit sequence encoder and (2.33) as the random bit

sequence encoder. For similar Pmax
main and Pmin

eve values, it is reported in [10] that

alternative methods based on puncturing a (770,385) LDPC code and scram-

bling a (511,385) BCH code need a security gap of 5 and 3 dB, respectively. We

37



note that in order to achieve smaller security gaps in the randomized encoding

scheme, it is possible to use turbo codes which are obtained via parallel or se-

rial concatenation of two convolutional codes extending the convolutional coding

setup proposed here (which is left as future work). In Figure 2.10, we use the

Table 2.1: Important results of Figure 2.9 when Pmax
main ≈ 10−5 and data bits encoder

is [657 435]. k and r denotes number of data and random bits, respectively, and
n is length of the codewords.

Random bits’ encoder SNReve SNRmain Pmin
eve

n = 256, k = 120, r = 28 Eq. (2.31) 0 5 0.41
n = 856, k = 420, r = 103 Eq. (2.31) 0 5 0.47
n = 2056, k = 1020, r = 510 Eq. (2.31) 0.5 5 0.48
n = 2056, k = 1020, r = 510 Eq. (2.33) 0.5 4.5 0.48
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Figure 2.9: Bit error probability of the eavesdropper versus the security gap (at
Pmax
main ≈ 10−5) when convolutional code [657 435] encodes data bits for 3 different

codeword lengths and two different random bit encoders in (2.31) and (2.33).
Numbers of data and random bits for each curve are provided in Table 2.1.

idea of scrambling data bits introduced in [10] along with the proposed random-

ized encoding scheme. The main idea in scrambling is to multiply a non-singular

k×k binary scrambling matrix S with the information vector u of length k before

multiplying u with the generator matrix Gk×n corresponding to a linear code in

the encoding process. Authors in [10] assume that both the legitimate receiver

and eavesdropper know S completely and multiply the decoded sequence with
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Figure 2.10: Performance of randomized encoding scheme along with scrambling.
Perfect scrambling which is defined in [10] has been used here where n = 256, k =
120, r = 27.

S−1 to obtain the message bits. A suitable choice of S makes the bit error rate

close to 1/2 even when there is a single error bit in decoded sequence. The codes

used in Figure 2.10, are the same as the ones in Example 2 which produces a big

code with minimum distance 10. Figure 2.10 shows that the scrambling approach

makes the bit error rate at 0 dB approximately 1/2 even for a small code of length

256. Hence, for Pmax
main ≈ 10−5, we achieve the security gap of 5 dB with a code of

length 256.

2.6.3 Application of List Decoding in the Randomized En-

coding Scheme

We now investigate the performance of LVA described in Section 2.4.2.3 in the

randomized coding setup with a particular list size (L = 40). For this part, the

generator for data bit sequence is [117 155] of memory m = 6 and rate R = 1/2

while random bits gets encoded through a subset of its dual, [133 171], with
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Figure 2.11: Performance of List Viterbi decoding Algorithm for the randomized
encoding scheme over a binary symmetric channel. There are 296 cosets each of
which consisting of 228 codewords of length 204.

m = 5 and rate R = 1/6

[1 +D +D2 +D3 +D5 1 +D +D2 +D4 +D5 D +D2 +D3 +D4 +D5

1 +D +D4 1 +D +D2 +D3 +D5 1 +D +D2 +D4 +D5]
(2.34)

which is obtained using section 2.3.3 and equation (2.11) with the following choice

of T−1(D)

T−1(D) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 +D2 D D

D2 1 +D2 1

D +D2 D 1 +D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.35)

The resulting error rate performance is illustrated in Figure 2.11 where it can

be seen that while LVA does not improve the codeword error probability (at

least in a noticeable manner), there is an improvement in the resulting BERs.

This is explained by noting that almost all the L nominated codewords in LVA

belong to different cosets (as observed through extensive simulations); hence,

incorporating them into (2.17) or (2.19) results in the same performance as the

minimum distance decoder. However, the LVA is useful to improve the bit error

rates compared to the minimum distance decoder (using (2.23)).
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2.7 Chapter Summary

In this chapter, we have applied the convolutional codes to the randomized en-

coding scheme and argued that how dual of a convolutional code plays a crucial

role for this purpose. Furthermore, We described how dual of a convolutional

code can be obtained. By introducing a design metric, we discussed that how a

convolutional code and its dual shall be chosen to result in a low security gaps

which we have used a measure of security.

We proposed optimal and practical sub-optimal decoder for AWGN and BSC

channels. Moreover, we provided theoretical lower and upper bounds on perfor-

mance of the decoders in the wiretap channel by extending existing bounds on

the ML decoding performances. Application of list decoding was also studied in

this chapter as a way to improve the performance of the sub-optimal decoders.

The resulting security gaps obtained by using randomized convolutional codes

outperform some existing coding methods for the wiretap channel like LDPC

puncturing method [9]. However, in general scrambling coding scheme [10] pro-

vides lower security gaps in comparison to the randomized convolutional codes.

In the next chapter, we will utilize concatenated codes to come up with coding

schemes achieving lower security gaps.
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Chapter 3

Concatenated Codes for the

Wiretap Channel

In Chapter 2, we studied application of convolutional codes to the randomized

encoding scheme for physical layer security and demonstrated that the resulting

security gaps compete favorably with the ones offered by result from some other

existing coding methods in the literature. A natural question that arises here

is whether it is possible to propose other randomized coding schemes to achieve

smaller security gaps. In this chapter, we explore several such possibilities by

studying concatenated codes and applying them to the randomized encoding

scheme of Wyner.

Concatenated codes are used in order to achieve better performance in terms of

decoding error probabilities. Two important types of code concatenation which

have been widely used in the coding theory literature are serial and parallel

concatenation of convolutional codes known as turbo codes which proved to have a

near Shannon limit error correcting capabilities. Technically, one can concatenate

any two (or more) arbitrary codes, however, only concatenation of certain codes

result in tremendous error-correction improvements. The invention of turbo codes

has led to extensive research efforts on a broad area of iteratively decodable codes

and iterative receiver processing. These codes have a sharp slope in their bit
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error rate behaviors, and as a result, they are potential candidates for physical

layer security. With this primary motivation, in this chapter, we consider the

application of concatenated convolutional codes to physical layer security.

The chapter is organized as follows: we review parallel and serially concate-

nated convolutional codes in Section 3.1. We study serial concatenation of an

LDGM code with a convolutional code in Section 3.2. Then, we study how these

codes can be applied to the randomized encoding scheme in Section 3.3. And

finally, we provide a short chapter summary in Section 3.4.

3.1 Review of Parallel and Serial Concatenated

Convolutional Codes

3.1.1 Encoding

Berrou et al. discovered turbo codes in their ground-breaking paper in 1993 [34].

These codes are random-like codes and are able to achieve exceptionally good

error correcting performance. In fact, for information block lengths larger than

104, turbo codes with iterative decoding can achieve bit error rates (BERs) as

low as 10−5 within 1 dB from the Shannon’s limit over an AWGN channel [35].

Parallel concatenation of two recursive systematic convolutional (RSC) codes

is known as parallel concatenated convolutional codes (PCCCs) whose block di-

agram is depicted in Figure 3.1. Information sequence denoted by u is encoded,

and parity sequences p and q are produced. The two RSC codes are of rate 1/2,

separated by a K-bit interleaver. Though not essential, the RSC codes in Figure

3.1 are taken to be the same with the generator G(D) = [1 g2(D)
g1(D)]. We assume the

information sequence is of length K so the resulting codewords are of length 3K

which makes the transmission rate 1/3. However, puncturing mechanisms can be

employed in order to increase the resulting code rate.
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Benedetto et al. proposed serially concatenated convolutional codes (SCCC)

depicted in Figure 3.2 in [36]. Here, the first RSC code (abbreviated as RSC1)

encodes the information sequence, i.e., uk’s where 1 ≤ k ≤ K. The resulting

codeword gets permuted, and then it is fed to the second RSC code (RSC2) to

generate the final codeword. So, the overall transmission rate is the multiplication

of the individual rates corresponding to each constituent code. It is noted in [39]

that the turbo decoding gain can still be obtained even if the outer code in this

scheme is not recursive.

The role of interleaver in both PCCC and SCCC is to permute the incoming

bit sequence in a pseudo-random fashion in order to assure that a sequence which

results in a low weight codeword in one of the RSC codes is unable to do the same

for the other one. One can use one of the well-known interleavers which offers

such behavior, i.e., the S-random interleaver [37]. This interleaver separates any

two input bits whose positions are within S bits of each other by an amount

greater than S. For this interleaver to be effective, S should be selected as large

as possible for a given value of K.

Figure 3.1: The encoder for a parallel-concatenated convolutional code (PCCC).

Figure 3.2: The encoder for a serial-concatenated convolutional code (SCCC).
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3.1.2 Decoding

Concatenated codes are decoded using soft-input soft-output (SISO) decoders

and an iterative process. For the case of PCCC and SCCC, the SISO decoders

work based on the BCJR algorithm, and iterative process involves passing soft

information between these constituent decoders.

3.1.2.1 Overview of the BCJR Algorithm

We now briefly discuss the main points of BCJR decoding algorithm introduced

by Bahl, Cocke, Jelinek and Raviv [38] as a bit-wise maximum aposteriori proba-

bility (MAP) decoder in 1974. Denoting the posteriori probability (APP) of each

information bit ul by P (ul∣y)1 where y is the received noisy vector, the bit-wise

MAP decoding criterion is given by

ûl = argmax
ul

P (ul∣y) (3.1)

We describe the logarithmic BCJR which calculates the log likelihood ratio

(LLR)

L(ul) = log [
P (ul = 1∣y)

P (ul = 0∣y)
] (3.2)

and consequently the estimated bit is obtained by

ûl =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, L(ul) > 0

0, L(ul) < 0
(3.3)

Similar to the Viterbi algorithm, the BCJR algorithm works based on branch

and path metrics. Every received bit cause the trellis to move from one state s′

to another state s, where s, s′ ∈ S and S denotes the set of all possible states.

From this trellis point of view, using Bayes’ rule and total probability theorem,

1Throughout this chapter, P denotes probability and p is used to refer to the probability
density function.
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we may write L(ul) as

L(ul) = log [
∑U1

p(sl−1 = s, sl = s′,y)

∑U0
p(sl−1 = s, sl = s′,y)

] (3.4)

where Uj is the set of pairs (s′, s) for the state transitions (sl−1 = s′)→ (sl = s) (sl

denotes the encoder state at time l) whose corresponding input labels are j. So the

problem of computing LLRs boils down to how to compute p(sl−1 = s, sl = s′,y)

terms. These terms can be factorized in the following manner

p(sl−1 = s, sl = s
′,y) = αl−1(s

′)γl(s
′, s)βl(s) (3.5)

where α, β and γ values are defined as (with the notation yba = [ya, ya+1, . . . , yb])

αl(s) = p(sl = s,y
l
1),

γl(s
′, s) = p(sl = s, yl∣sl−1 = s

′),

βl(s) = p(y
L
l+1∣sl = s).

(3.6)

Moreover, by several applications of Bayes’ rule and the total probability the-

orem αl(s) and βl(s) are computed using backward and forward recursions

αl(s) =∑
s′
γl(s

′, s)αl−1(s
′),

βl−1(s
′) =∑

s

βl(s)γl(s
′, s).

(3.7)

These are initialized by assuming that the trellis starts from and ends with the

all-zero state (by using termination bits)

α0(s) = βL(s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, s = 0,

0, s ≠ 0,
(3.8)

and the branch metric γl(s′, s) is computed through

γl(s
′, s) = p(s, yl∣s

′)

=
P (s, s′)

P (s′)
.
p(s, s′, yl)

P (s, s′)

= P (s∣s′)p(yl∣s, s
′)

= P (ul)p(yl∣ul)

(3.9)
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where ul denotes the input label corresponding to the transition s → s′. p(yl∣ul)

is determined based on the transmission channel is being used, for instance, for

an AWGN channel

p(yl∣ul) =
1

2πσ2
exp [ −

∥yl − cl∥
2

2σ2
], (3.10)

and for a BSC, we have

P (yl∣ul) = (1 − p)(n−dH(yl,cl))pdH(yl,cl), (3.11)

where cl denotes the output label corresponding to the transition s → s′, σ2 =

N0/2, p denotes the transition probability of the BSC, and dH is the Hamming

distance. We are now able to compute (3.5) and consequently L(ul) in (3.4).

However, since these numerical computations may not be stable, and may even

diverge, in practice, the log version of BCJR is used with the following mappings

α̃l(s) = log(αl(s))

= log∑
s′

exp(α̃l−1(s
′) + γ̃l(s

′, s)),

β̃l−1(s
′) = log(βl−1(s

′))

= log∑
s

exp(β̃l(s) + γ̃l(s
′, s)),

γ̃l(s
′, s) = log γl(s

′, s)

(3.12)

and the initialization rules in (3.8) are converted to

α̃0(s) = β̃L(s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, s = 0,

−∞, s ≠ 0
(3.13)

Finally, L(ul) is computed using

L(ul) = log [∑U1
αl−1(s′)γl(s′, s)βl(s)

∑U0
αl−1(s′)γl(s′, s)βl(s)

]

= log [∑
U1

exp (α̃l−1(s′) + γ̃l(s′, s) + β̃l(s))] − log [∑
U0

exp (α̃l−1(s′) + γ̃l(s′, s) + β̃l(s))]

(3.14)

where Uj’s are defined earlier. It is clear that the constant terms in γ̃l(s′, s) can be

ignored in this algorithm since they contribute the same value to all the branches

and will not have a role in final decision.
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We emphasize that (3.14) provides LLR information on the input bit at time

l. Similar information can be obtained for the output bits from (3.14) as well

by choosing the suitable sets for the sums to be used instead of U1 and U0, for

example, let us denote the second output at time k with qk, then L(qk) is readily

obtained from (13) by using Q1 and Q0 instead of U1 and U0, respectively, where

Qj denotes the set of pairs (s′, s) for the state transitions (sl−1 = s′) → (sl = s)

whose second output bit is j. Furthermore, initialization rules in 3.13, are based

on the assumption that trellis ends with the all zero-state. For non-recursive

convolutional codes, this could be simply achieved by adding enough zero bits to

the end of input sequence. However, for the case of RSC codes, this approach does

not necessarily force the corresponding trellis to the all-zero state and one need

to obtain suitable terminating bits for this purpose based on the input sequence.

3.1.2.2 Iterative Decoder

We now describe iterative decoder for the PCCC and SCCC proposed in [34]

and [36]. For the case of PCCC, a schematic of the decoder is presented in

Figure 3.3. We denote the received vector with y = [y1, y2, . . . , yK] where yk
∆
=

[yuk , ypk , yqk] and yuΠ,k is the interleaved version of yuk . Basically, there are two

RSC codes in PCCC for each of which BCJR algorithm needs to be employed.

One main difference is about the a priori information. The BCJR algorithm

described in Section 3.1.2.1, has no prior information on a specific bit ul, hence

it assumes P (ul) = 1/2. However, each BCJR decoder in Figure 3.3 provides a

priori information for the other one, which is known as extrinsic information and

is denoted by Le21 and Le12. This would indeed affect the calculation of the branch

metrics γl(s′, s) in (3.9).

For calculation of the extrinsic information, it is important to pass only the

information which is unknown at the other decoder. This is done by changing

the branch metrics γl(s′, s) accordingly, for instance, assume that p(ul) denotes

the extrinsic information coming from the decoder corresponding to RSC1, then

p(ul) must be dropped in γl(s′, s) for computation of the extrinsic information

which goes to the RSC1 decoder since it is already known at RSC1.
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For the SCCC case, the iterative decoder is shown in Figure 3.4. We assume

that the output codeword of RSC2 and RSC1 in Figure 3.2 are of form c2 =

[v1, q1, v2, q2, . . . , vK , qK] and c1 = [u1, p1, u2, p2, . . . , uK , pK], respectively, and the

received vector after the channel is denoted by y = [yv1 , yq1 , yv2 , yq2 , . . . , yvK , yqK ].

In this case, the channel observations are for RSC2 only. Therefore, the BCJR

algorithm on the trellis of RSC1 works merely based on the extrinsic information

it receives from RSC2. In this case, γl(s′, s) for RSC1 becomes

γ̃l(s
′, s) = log (P (uk)) + log (P (pk)). (3.15)

Moreover, RSC1 needs to send extrinsic information on uk’s and pk’s to RSC2

which can be done by equating γ̃l(s′, s) to log (P (pk)) and log (P (uk)), respec-

tively, and using the method introduced in Section 3.1.2.1.

Figure 3.3: Iterative decoding for a PCCC.

Figure 3.4: Iterative decoding for a SCCC.

Figure 3.5 shows the performance of PCCCs and SCCCs over an AWGN chan-

nel for different codeword lengths where the number of iterations is set to 8. The

49



constituent encoders are assumed to be [1 7/5] (in octal notation), and S de-

notes the parameter of the S-random interleaver. The trellises corresponding to

the first and the outer RSC codes are forced to zero state for the PCCC and the

SCCC cases, respectively.

It is clear that by increasing the codeword length, the performance of these

schemes gets improved significantly. Furthermore, for similar codeword lengths,

SCCCs outperform PCCCs for high SNRs while the situation is reversed in the

low SNR regime.
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Figure 3.5: Performance of PCCC and SCCC in the AWGN channel where n and
k denote length of the codewords and data bits, respectively.

3.2 Concatenation of LDGM and Convolutional

Codes

In this section, we study another form of concatenated codes which consists of a

low density generator matrix (LDGM) code and a convolutional code. Our final

goal is to apply these codes to the randomized encoding scheme and evaluate

their performance in terms of the resulting security gap. First, we will take a

closer look at the LDGM codes.
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Low density parity check (LDPC) codes invented by Gallager in [20] have

a sparse parity check matrix and are considered extremely efficient in terms of

their decoding algorithms which are based on the message passing method. This

method exploits the sparse nature of the parity-check matrices to achieve very

good performance with very low complexity. However, the generator matrix of

LDPC codes is usually dense. In the context of physical layer security, this

is a problem since the dual of the LDPC code needs to be considered as well.

Some approaches have been proposed in the literature which try to exploit the

sparse nature of the parity-check matrix also in the encoding stage. This can be

achieved if, for instance, the parity check matrix has a sparse representation in

lower triangular form [40]. Moreover, for the cases where this form does not hold,

using only row and column permutations can result in an approximately lower

triangular parity check matrices [40].

Alternatively, one can use LDGM codes [41] which have a sparse generator

matrix (in addition to a sparse parity check matrix) as a very efficient way to

reduce significantly the amount of calculations needed at the encoder. LDGM

code performance is studied in [19] where the authors point out that since they

have variable nodes with degree 1 in their Tanner graphs, they exhibit high

error floors. On the other hand, they show that serial concatenation of two

or more LDGM codes can reduce such floors significantly at the cost of increased

complexity.

Quasi-cyclic low-density parity-check (QC-LDPC) codes have their parity-

check and generator matrices formed by circulant blocks. The structure which

allows for the use of simple encoding circuits, based on shift registers, that exploit

the quasi-cyclic nature of the codes [43]. An interesting family of QC-LDPC codes

are based on difference families [42] and have circulant blocks with row (column)

weights greater than one. The structure of the parity-check matrix of these codes

with length N consists of a row of sparse circulant blocks as follows:

H = [H0∣H1∣ . . . ∣HNb−1] (3.16)

where each Hi is of size (N/Nb) × (N/Nb). A circulant matrix H is defined over
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the Galois field of order p, GF (p), as follows:

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h0 h1 h2 . . . hn−1

hn−1 h0 h1 . . . hn−2

⋮ ⋮ ⋮ ⋱ ⋮

h1 h2 h3 . . . h0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.17)

where hi ∈ GF (p), i = 0,1, . . . , n−1. In fact H is described by one of its rows and

others is obtained by cyclically shifting that row. We will denote the number of

nonzero symbols in each row (or column) of H with W [H]. Table 3.1 provides

three practical examples of such codes with the corresponding minimum distances

(dmin) which will be used later on.

Provided that at least one of the blocks is of full rank, the code rate is (Nb −

1)/Nb. A low density generator matrix for the codes having parity check matrix

of the form (3.16) can be found easily if one of the blocks Hi’s is an identity

matrix. For instance, if HNb−1 = I(N/Nb×N/Nb), then

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

HT
0

HT
1

I(N(Nb−1)/Nb×N(Nb−1)/Nb) ⋮

HT
Nb−2

HT
Nb−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.18)

where I denotes the identity matrix and superscript T denotes transposition.

However, this would be detrimental on the error correcting capabilities of the

code, since the resulting code has a smaller minimum distance.

In this work, we will use LDGM codes with the generator and parity check

matrices given in (3.18) and (3.16), respectively. This would make such codes

useful for the randomized encoding scheme, since G and H are duals of each

other, and if they are not pseudo-self-dual (as defined in the previous chapter),

they will provide us with two sets of generators, i.e., the rows of G and the rows

of H, which can be used for encoding random bits and data bits, respectively.
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Table 3.1: Three instances of QC-LDPC code with the structure given in (3.16).

Code (N,K) n W [Hi], i = 0,1,2, . . . ,Nb − 1 dmin
(2560,2048) 512 {6,6,6,6,1} 7
(1880,1504) 376 {5,5,5,5,1} 6
(1248,936) 312 {5,5,5,1} 6

3.2.1 LDGM-RSC Concatenated Codes

Serial concatenation of an LDGM code with an RSC code is illustrated in Figure

3.6. Data bits ui’s are first encoded by the LDGM code and the resulting code-

word is fed into a recursive systematic convolutional code. The codeword trans-

mitted through the channel is denoted by c = [c1, c2, . . . , cK] where ck
∆
= [vk, qk].

In this scheme, there is no need for an interleaver between the two constituent

encoders since the Tanner graph for the LDGM code acts like an interleaver. The

resulting transmission rate is the multiplication of the rates corresponding to each

encoder. We note that the structure given in the last section usually results in

high rate LDGM codes (R ≥ 0.8). If we consider an RSC code of rate 1/2, the

overall code is of rate would be R ≥ 0.4.

Figure 3.6: The encoder for the serial concatenation of a LDGM code with an
RSC code.

By denoting the received noisy vector by y = [y1, y2, . . . , yK] where yk
∆
= [yvk, y

q
k],

we can illustrate the corresponding iterative decoder in Figure 3.7. The channel

observations are used in the BCJR algorithm applied to the trellis of the RSC

code and soft information on bits bk’s is obtained. We note that bk’s are common

between the two constituent codes in this scheme, and the extrinsic information

terms are denoted by Le12 and Le21.

The decoder for an LDGM code is the well-known belief propagation (BF)
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Figure 3.7: The iterative decoder for the serial concatenation of a LDGM code
with an RSC code.

decoder which is initialized with the information (Le21) provided by the BCJR

algorithm on trellis of the RSC code. The LLRs are passed directly to the check

nodes of the LDGM code, and then the extrinsic information comes back to each

variable node. The resulting soft information is fed into the BCJR algorithm as

Le12 for another round of iteration. After a desired number of iterations, the final

decisions on the information bits ûk’s are made.

Figure 3.8 illustrates the performance of this coding scheme over an AWGN

channel where the number of iterations is set tot 10. The RSC code [1 7/5] of

rate 1/2 is used along with the LDGM codes described in Table 3.1. We note

that trellis termination is enforced by adding zero bits to the end of the input

sequence. We observe that the error rate results exhibit error floors which is

mainly because of the structure of the LDGM codes employed here.

3.3 Code Concatenation for the Randomized

Encoding Scheme

In this section, we apply the three concatenated codes discussed in the previous

section, i.e., PCCCs, SCCCs and LDGM-RSC codes, to the randomized encoding

scheme. From Chapter 2, one recalls that this scheme needs two encoders, one for
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Figure 3.8: Performance of LDGM-RSC scheme in the AWGN channel where n
and k denote length of the codewords and data bits, respectively.

encoding random bits and the other for data bits. Hence, based on the discussion

in Chapter 2, we need to obtain the dual of the concatenated code to be employed.

We also propose an iterative decoder for each case and evaluate performance of

the randomized coding schemes in terms of the resulting security gaps.

3.3.1 Randomized PCCCs

3.3.1.1 Encoding

Figure 3.9 illustrates a PCCC where the interleaved version of the input sequence

is also considered in the output sequence. We note that conventionally the inter-

leaved version of the input sequence, i.e., uΠ, is not transmitted in PCCC, since

it would be an unnecessary overhead. However, we are transmitting uΠ in this

scheme, since we need to obtain dual of a PCCC, in other words, obtaining dual

of a PCCC in the way we describe here (by substituting dual of each RSC code)

is not feasible if one does not transmit the uΠ sequence. In order to use this code

in the randomized encoding scheme, dual of a PCCC needs to be obtained. We

emphasize that the PCCC consists of two RSC codes, so its dual is obtained by
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substituting the dual of each RSC code, as illustrated in Figure 3.10.

To obtain the dual of an RSC code, first, one should derive the equivalent non-

recursive generator by multiplying a suitable polynomial (g1(D)) with its encoder.

We note that these two encoders result in the same set of codewords and the only

difference is in the way they map messages to codewords. Then, one can use

Theorem 2 from Chapter 2 to obtain the dual of the resulting non-recursive code.

Finally, an equivalent systematic version of the dual can be obtained through

division of the encoder by a suitable polynomial. Particularly, for the RSC codes

with a polynomial generator of the form G(D) = [1 g2(D)
g1(D)], the generator for its

dual is obtained as G⊥(D) = [
g̃2(D)
g̃1(D) 1] where g̃(D) denotes reverse of g(D).

We can use one of the encoders in Figures 3.9 and 3.10 to encode the random

bits and the other one to encode the data bits. In this scheme, if the codeword

length is n, then the number of data and random bits which equal to the number

of cosets and the number of codewords in each coset, respectively, is n/4; in other

words, the transmission rate is 1/4. We denote the output codeword of PCCC by

c1 = [c1, c2, . . . , cK] where ck
∆
= [uk, pk, uΠ,k, qk], and the output codeword of the

dual of PCCC by c2 = [c′1, c
′
2, . . . , c

′
K] where c′k

∆
= [p′k, u

′
k, q

′
k, u

′
Π,k]. The codeword

transmitted through the channel is the modulo-2 sum of c1 and c2, i.e., c = c1+c2.

Figure 3.9: The encoder for parallel-concatenated convolutional code (PCCC).
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Figure 3.10: The encoder for dual of a PCCC.

3.3.1.2 Decoding

Earlier in this chapter, the iterative decoder for a single PCCC was de-

scribed. We denote the received vector with y = [y1, y2, . . . , yK] where yk
∆
=

[yuk+p
′
k , ypk+u

′
k , yuΠ,k+q′k , yqk+u

′
Π,k]. In this section, we utilize the decoder in Fig-

ure 3.3, in order to introduce an iterative decoder for the randomized encod-

ing scheme. For this purpose, we note that the trellises of RSC1 and RSC1⊥

in Figures 3.9 and 3.10 govern the bit sequence [u1, p1, u2, p2, . . . , uK , pK] and

[p′1, u
′
1, p

′
2, u

′
2, . . . , p

′
K , u

′
K], respectively. Hence, it is possible to form a big trel-

lis combining them to govern the modulo-2 sum of these two bit sequences, i.e.,

[u1 + p′1, p1 + u′1, u2 + p′2, p2 + u′2, . . . , uK + p′K , pK + u′K]. Having the observations

yuk+p
′
k and ypk+u

′
k , we are able to compute the joint probabilities for the bits of

the input sequences, i.e., ui’s and u′i’s applying the BCJR algorithm to the big

trellis. By applying the same idea for RSC2 and RSC2⊥, we propose the iter-

ative decoder depicted in Figure 3.11 for the randomized encoding scheme. We

emphasize that this decoder jointly decodes random and data bits approximating

the MAP decoding rule given by

(ûl, û
′
l) = argmax

(ul,u′l)
P ((ul, u

′
l)∣y) (3.19)
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where y is the received codeword and (ul, u′l) ∈ {00,01,10,11}. Joint probabilities

P ((ul, u′l)∣y) are computed using the following equation in the big trellis

P ((ul = k, u
′
l = j)∣y) =∑

Ukj
p(sl−1 = s

′, sl = s,y), k, j ∈ {0,1} (3.20)

where Ukj is the set of pairs (s′, s) for the state transitions (sl−1 = s′) → (sl =

s) whose corresponding input labels are kj. Using the BCJR algorithm, such

probabilities are computed efficiently by the factorization method described in

(3.5). Specifically, using the notation introduced in (3.12)

log (P ((ul = k, u
′
l = j)∣y)) = log(∑

Ukj
exp (α̃l−1(s

′) + γ̃l(s
′, s) + β̃l(s))) (3.21)

Here, using (3.9) and (3.11), the logarithmic branch metric γ̃l(s, s′) for the AWGN

channel is computed as

γ̃l(s, s
′) = log (P e

ulu
′
l
) −

∥yl − cl∥
2

2σ2
(3.22)

which is used to obtain α̃l(s′) and β̃l(s) based on (3.12). P e(ul, u′l) in (3.22)

is the extrinsic information being exchanged between the two BCJR decoders

in this case. Such information is denoted by M e
12 and M e

21 in Figure 3.11

which are of the form [ log(P e
00) log(P e

01) log(P e
10) log(P e

11)] where P e
kj de-

notes the extrinsic probability that (ul, u′l) = (k, j) satisfying P e
00 + P

e
01 + P

e
10 +

P e
11 = 1. Furthermore, the initial value for either of M e

12 and M e
21 is set to

[ log(0.25) log(0.25) log(0.25) log(0.25)]. Extrinsic information P e
kj is used to

send only the information which is unknown to the other decoder in order to

avoid positive feed-back. It is computed by using

γ̃l(s, s
′) = −

∥yl − cl∥
2

2σ2
(3.23)

in the BCJR algorithm.

To sum up, we emphasize that the extrinsic information which is received from

the decoder, say corresponding to RSC1 and RSC1⊥, is used to compute α̃l(s′)

and β̃l(s) at the decoder which corresponds to RSC2 and RSC2⊥ based on (3.22).

However, the latter decoder will not use such information in computing γ̃l(s, s′),

in other words, it utilizes (3.23) in the BCJR algorithm. After exchanging ex-

trinsic information between the two decoders by a preset number of iterations,

the random and data bits can be jointly decoded.
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Figure 3.11: Iterative decoder for the randomized encoding scheme where one of
the encoders in Figures 3.9 and 3.10 encodes random bits and the other encodes
data bits.

3.3.1.3 Example

Figure 3.12 illustrates the performance of the iterative decoder described in Figure

3.11 over an AWGN channel. S denotes the interleaver size, the number of

iterations is set to the 10 and the constituent RSC codes are [5/7 1] and [1 5/7],

both of rate 1/2 where all the trellises terminated at the all-zero state. The

randomized PCCC makes the BER very high (≥ 0.3) up to some SNR values.

On the other hand, BER is very small (≈ 10−5) after another SNR value which

legitimate receiver is supposed to work with. As one can see in Figure 3.8, a

randomized PCCC of length 104 is able to make the difference between these two

SNRs (security gap) approximately 1.8 dB.

As another example, the performance of randomized PCCC over a binary

symmetric channel is shown in Figure 3.13 for three different code lengths.

59



0 1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
it 

er
ro

r 
ra

te
 (

B
E

R
)

 

 

n=4008, k=1000, S=18
n=10008, k=2500, S=23
n=2008, k=500, S=13

Figure 3.12: Performance of the randomized PCCC in the AWGN channel where
n denotes the length of the codewords and transmission rate is about 1/4

3.3.2 Randomized SCCCs

3.3.2.1 Encoding

Similar to the PCCC case, we apply SCCC to the randomized encoding scheme

as well. Figure 3.14 depicts an SCCC consisting of two RSC codes with gen-

erators G(D) = [1 g2(D)
g1(D)]. The dual of the SCCC is obtained by replacing

each constituent RSC encoder with its dual, i.e., G⊥(D) = [
g̃2(D)
g̃1(D) 1], as in

Figure 3.15. Hence, we are able to use one of the encoders in Figures 3.14

and 3.15 to encode the random bits and the other one for the data bits. It

is clear that without any puncturing, the rates of the encoders are 1/4, and as-

suming c1 = [v1, q1, v2, q2, . . . , vK , qK] and c2 = [v′1, q
′
1, v

′
2, q

′
2, . . . , v

′
K , q

′
K], the code-

word transmitted through the channel is their modulo-2 sum, i.e., c = c1 + c2 =

[v1 + v′1, q1 + q′1, v2 + v′2, q2 + q′2, . . . , vK + v′K , qK + q′K].
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Figure 3.13: Performance of the randomized PCCC in the binary symmetric
channel where n denotes the length of the codewords and transmission rate is
about 1/4

Figure 3.14: The encoder for serial-concatenated convolutional code (SCCC).

3.3.2.2 Decoding

We denote the received noisy vector by y = [y1, y2, . . . , yK] where yk = [yvk, y
q
k] =

[yvk+v
′
k , yqk+q

′
k]. By extending the decoder introduced for a single SCCC in Section

3.1.2.2, we propose an iterative joint decoder for this scenario which similar to

randomized PCCC case, which estimates the best (ul, u′l) pair.

We note that the trellises of RSC2 and RSC2⊥ in Figures 3.14 and 3.15

govern the bit sequence [v1, q1, v2, q2, . . . , vK , qK] and [v′1, q
′
1, v

′
2, q

′
2, . . . , v

′
K , q

′
K],

respectively. Hence, one can form a big trellis combining them which gov-

erns the modulo-2 sum of these two bit sequences, i.e., [v1 + v′1, q1 + q′1, v2 +

v′2, q2 + q′2, . . . , vK + v′K , qK + q′K]. Having the observations yvk+v
′
k and yqk+q

′
k , we

are able to compute the joint probabilities of the input bits by applying the
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Figure 3.15: The encoder for dual of the SCCC in Figure 3.14.

BCJR algorithm to this big trellis. These bits are indeed an interleaved ver-

sion of the output bits produced by the big trellis which corresponds to RSC1

and RSC1⊥, so using probabilities on such bits enables us to obtain soft infor-

mation on the random and data bits pairs (ul, u′l) jointly. Figure 3.16 illus-

trates this procedure where Me
12 and Me

21 represent the extrinsic messages which

are of the form [ log(P e
00) log(P e

01) log(P e
10) log(P e

11)] with initial value set to

[ log(0.25) log(0.25) log(0.25) log(0.25)]. P e
ij denotes the extrinsic probability

that bk equals i and b′k equals j satisfying P e
00+P

e
01+P

e
10+P

e
11 = 1. One can see that

for this case, two constituent decoders exchange information on the joint proba-

bilities of bk’s and b′k’s. The decoder related to RSC2 and RSC2⊥ works similar

to the decoders for the PCCC case in the sense that it receives soft information

from the channel and extrinsic information from the other decoder.

For an AWGN channel, α̃l(s′) and β̃l(s) are computed using

γ̃l(s, s
′) = log (P e(bΠ

l , b
′Π
l )) −

∥yl − cl∥
2

2σ2
(3.24)

where cl is the output label for each branch in the trellis at time l . Then the

outgoing extrinsic information Me
21 can be calculated using α̃l(s′) and β̃l(s) and

γ̃l(s, s
′) = −

∥yl − cl∥
2

2σ2
. (3.25)

The decoder corresponding to RSC1 and RSC1⊥ works slightly differently since

there is no channel observation and the only input is the extrinsic information

received from the other decoder, Me
21. For this decoder the logarithmic branch

metric used to obtain α̃l(s) and β̃l(s) is computed as

γ̃i(s, s
′) = log (P e

b2i−1b
′
2i−1

) + log (P e
b2ib

′
2i

). (3.26)
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Then the extrinsic information on bits b2i−1’s can be computed using

γ̃i(s, s
′) = log (P e

b2ib
′
2i

), (3.27)

while the extrinsic information on b2i’s is computed by setting

γ̃i(s, s
′) = log (P e

b2i−1b
′
2i−1

) (3.28)

in the BCJR algorithm. In practice, one should set a maximum number of itera-

tions for exchanging the extrinsic information between the two decoders. Finally,

the random and data bit pair at time l, (ul, u′l), is decoded by applying the BCJR

algorithm with (3.26) to the big trellis corresponding to RSC1 and RSC1⊥.

Figure 3.16: Iterative decoder for the randomized encoding scheme where one of
the encoders in Figures 3.14 and 3.15 encodes random bits and the other encodes
data bits.

3.3.2.3 Example

Figure 3.17 illustrates the performance of the iterative decoder described in Figure

3.16 over an AWGN channel. S denotes size of the interleaver, the number of

iterations is set to the 10, and the constituent RSC codes are selected as [5/7 1]

and [1 5/7]. Both are of rate 1/2, and the inner trellis is terminated at the

all-zero state. It is clear that the randomized SCCC works even better than

the randomized PCCC in Figure 3.12 in terms of the security gap. Particularly,

for Pmin
eve ≥ 0.3 and Pmax

main ≤ 10−5, by using a codeword of length 8004 in the

randomized SCCC scheme, a security gap of less than 1 dB is achievable.
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As another example, the performance of the randomized SCCC over a binary

symmetric channel is shown in Figure 3.18 for two different code lengths.
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Figure 3.17: Performance of the randomized SCCC in the AWGN channel where
n denotes the length of the codewords and transmission rate is about 1/4

Achievable security gaps for the randomized PCCC and SCCC schemes de-

scribed in the last two sections are illustrated in Figure 3.19 for different values

of Pmin
eve (minimum probability of error at the eavesdropper). It can be seen that

randomized SCCC can achieve smaller security gaps which makes it more suit-

able for the wiretap channel. We also note that the length of the code used in

the randomized SCCC (8004) is smaller than that of randomized PCCC (10008).

Specifically, for Pmin
eve ≥ 0.3, the best security gap obtained is about 0.9 dB which

outperforms the existing coding schemes in the literature for these specific Pmin
eve

and Pmax
main values.

3.3.3 Randomized LDGM-RSC codes

We described a coding scheme which consists of serial concatenation of an LDGM

code with an RSC code in Section 3.2.1. Here, we apply such codes to the ran-

domized encoding scheme and evaluate their performance over a wiretap channel.
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Figure 3.18: Performance of the randomized SCCC in the binary symmetric chan-
nel where n and k denote the length of the codewords and data bits, respectively,
which makes transmission rate about 1/4

3.3.3.1 Encoding

Figure 3.20 illustrates an LDGM-RSC code concatenation where generator matrix

of the LDGM and RSC codes are denoted by G and [1 g2(D)
g1(D)], respectively.

Similar to the other randomized schemes, we need to obtain the dual of the code

in Figure 3.20 by substituting each constituent encoder’s dual. Hence, the dual of

an LDGM-RSC code is of the form depicted in Figure 3.21. Dual of the LDGM

code has the generator matrix H which is its parity check matrix, i.e., GHT = 0.

We use one of the encoders in Figures 3.20 and 3.21 to encode the random bits

and the other one to encode data bits. We denote c = [v1, q1, v2, q2, . . . , vK , qK],

c′ = [v′1, q
′
1, v

′
2, q

′
2, . . . , v

′
K , q

′
K]. Then, the codeword transmitted through the chan-

nel is the modulo-2 sum of these two codewords, i.e., c + c′ = [v1 + v′1, q1 + q′1, v2 +

v′2, q2 + q′2, . . . , vK + v′K , qK + q′K].
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Figure 3.19: Achievable security gaps for PCCC and SCCC randomized schemes
for different values of Pmin

eve where Pmax
main ≈ 10−5.

Figure 3.20: The encoder for the serial concatenation of a LDGM code with an
RSC code.

3.3.3.2 Decoding

In this section, we provide an iterative joint decoder of the randomzied LDGM-

RSC coding scheme which is a generalization of the decoder introduced in Section

3.2.1 for a single LDGM-RSC code. Let us denote the received signal after the

channel by y = [y1, y2, . . . , yK] where yk = [yvk, y
q
k] = [yvk+v

′
k , yqk+q

′
k].

Figure 3.22 depicts the schematic of the decoder for the randomized case. As

pointed out in the previous sections, given the observation, we are able to obtain

soft information on the pair of random and data bits (ui, u′i) applying the BCJR

algorithm to the big trellis which corresponds to the RSC code and its dual.

This information is sent to the other decoder as M e
21 = [P00, P01, P10, P11] where

Pab = P (ui = a, u′i = b).

The other constituent decoder is the decoder for the 2-user LDPC multiple
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Figure 3.21: The encoder for dual of the code in the Figure 3.20.

Figure 3.22: Iterative decoder for the randomized encoding scheme where one of
the encoders in Figures 3.20 and 3.21 encodes random bits and the other encodes
data bits.

access channel (LDPC-MAC) [44], [45] which jointly decodes the messages cor-

responding to the two independent senders. For the setup described here, one of

the users employs the LDGM code with generator G to encode the message and

the other uses the LDGM with generator H. Figure 3.23 illustrates the result-

ing Tanner graph which is composed of the 2 LDPC graphs which are connected

through state nodes. State nodes receive information on the pair of bits (Pab)

from the channel and exchange the information between two individual LDPC

decoders. In the figure, mk
ab denotes the message passed from node a to node b

for user k where a and b can be v for variable node, c for check node or s for state

node.

The vector P received through the channel is [P00, P01, P10, P11] with Pxy =

P (bi = x, b′i = y) denoting the outputs of the LDGM code and its dual with bi’s

and b′i’s, respectively (see Figures 3.20 and 3.21). mk
vc, m

k
cv, m

k
vs are calculated

based on the regular BP decoding algorithm. The only remaining messages are

67



Figure 3.23: Joint BP decoder on the factor graph of the 2-user MAC channel

mk
sv’s which are passed from the state nodes to the variable nodes by computing

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

m1
sv = log P00e

m2
vs+P01

P10em
2
vs+P11

,

m2
sv = log P00e

m1
vs+P10

P01em
1
vs+P11

.
(3.29)

For the decoder depicted in Figure 3.22, the vector P equals to M e
21 provided by

the BCJR algorithm. Then, we are able to incorporate the values in (3.29), and

run the joint decoder in Figure 3.23. After one round of iteration, this decoder

produces soft information on bi’s and b′i’s, i.e., P (bi) and P (b′i). Since bi’s and

b′i’s are assumed to be independent of each other, it is straightforward to compute

the extrinsic probabilities P (bi, b′i) by multiplication. Hence, we are able to send

extrinsic information from the LDPC joint decoder back to the BCJR decoder,

i.e., M e
12 of the form [P00, P01, P10, P11] where Pxy = P (bi = x, b′i = y).

In practice, one shall exchange extrinsic information between the two con-

stituent decoders for a certain number of iterations. Then, the joint LDPC de-

coder makes the final decisions on bi’s and b′i’s. We note that since the LDGM

codes described in Section 3.2 are systematic, a certain portion of bi’s equals

to ui’s, in other words, information bits are obtained directly from the decoded

codeword.
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3.3.3.3 Example

Performance of the randomized LDGM-RSC codes with the decoder described in

Figure 3.22 over an AWGN channel is illustrated in Figure 3.24. The number

of iterations is set to 10 and the constituent RSC code is [1 7/5] of rate 1/2

which is terminated at the all-zero state. The LDGM codes are chosen from the

Table 3.1. As pointed out in Section 3.2.1, such codes usually have a relatively

high error floors as also depicted in Figure 3.24. However, it can be seen that

for Pmin
eve ≥ 0.3 and Pmax

main ≤ 7.5 × 10−4, by using codeword length of 5124 in the

randomized LDGM-RSC coding scheme, a security gap of 2.5 dB is achievable.

We note that one way to improve the performance in Figure 3.24 and achieve

lower security gaps with the randomized LDGM-RSC schemes, is to use more

powerful LDGM codes with lower error floors. This topic has been studied in [46]

where the authors point out that concatenation of two LDGM codes can reduce

the error floors significantly.
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Figure 3.24: Performance of the randomized LDGM-RSC in the AWGN channel
where n denotes the length of the codewords.
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3.4 Chapter Summary

We have studied application of three concatenated codes to the randomized cod-

ing scheme for use over wiretap channels, namely, randomized PCCCs, random-

ized SCCCs and randomized LDGM-RSC codes. For the first two codes, we

obtained the iterative decoder generalizing the existing turbo decoders in the

literature. For randomized LDGM-RSC codes, we proposed the corresponding

iterative decoder utilizing the joint LDPC decoder along with the BCJR decoder.

Numerical results demonstrate that the randomized SCCC outperforms the other

two classes of codes in terms of the security gaps by exhibiting a sharper slope

in their BER behavior. Notably, we also observe that for certain selections of

Pmain
max and Pmin

eve , the randomized SCCCs provide lower security gaps in com-

parison with the other coding schemes proposed for the wiretap channel in the

existing literature.
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Chapter 4

Conclusions and Future Work

We studied physical layer security in wireless communication systems us-

ing information-theoretic secrecy definitions. Specifically, we proposed coding

schemes for physical layer security which are aimed at providing reliable and se-

cure transmission to a receiver, simultaneously. These coding schemes should

have a small security gap in order to achieve physical layer security even with a

small degradation of the wiretapper channel with respect to the main one.

In Chapter 2, we proposed a randomized coding scheme based on convolu-

tional codes and their duals for Gaussian and binary symmetric wiretap channels

(where a code encodes data bits while its dual encodes a sequence of random bits).

We described the optimal decoder and practically implementable sub-optimal al-

ternatives. In particular, one of the decoders utilizes the trellis of the big code

generated by two terminated convolutional codes which finds the codeword at

the minimum (Euclidean or Hamming) distance to the received noisy vector. We

also applied list Viterbi decoding to improve the decoding performance further.

We devise lower and upper bounds on the error rate performance of the decoders

in the proposed setup in terms of the message error probability to analytically

characterize the decoder behavior at the eavesdropper and legitimate receiver,

respectively. We noted that the derived bounds are applicable to other random-

ized coding setups as well (once the appropriate weight distributions are known).
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We also developed a code design metric and utilize this metric to come up with

specific convolutional encoders with small security gaps. Finally, we illustrated

our findings via extensive numerical examples.

In Chapter 3, we employed the results of Chapter 2 to design other random-

ized coding schemes based on concatenated codes to provide improved security

gaps. We applied three different concatenated coding schemes to the random-

ized encoding method: PCCC, SCCC and serial concatenation of an LDGM code

with an RSC code. For each of these schemes, we proposed an iterative decoding

method to estimate the transmitted codeword. For PCCC and SCCC randomized

schemes, the decoder is a generalized version of the decoder proposed for turbo

codes. For the LDGM-RSC randomized coding scheme, we utilized the LDPC

joint decoder along with the BCJR algorithm employing a big trellis.

Numerical results show that using concatenated codes can improve the security

gaps significantly for certain rates. Specifically, the SCCC based randomized

encoding scheme achieves a security gap of 0.9 dB when Pmin
eve ≥ 0.3, Pmax

main ≤ 10−5

for a transmission rate of R = 1/4 and codeword length of about 8000 bits over

an AWGN channel. We note that this scheme outperforms the other coding

strategies in the literature for the wiretap channel for these Pmain
max and Pmin

eve

values. For higher rates, e.g., R ≥ 0.4, LDGM-RSC randomized codes can be

used which achieve a security gap of 2.5 dB for Pmin
eve ≥ 0.3, Pmax

main ≤ 7.5 × 10−5

and codeword length of 5120. We believe that the error floors associated with

the LDGM codes result in such behavior, i.e., higher security gaps in comparison

with the SCCC and PCCC randomized coding schemes.

As a future research direction, we note that our proposed lower bound in Chap-

ter 2 is an approximation, so one can develop true lower bounds and tighter upper

bounds on performance of decoders in the wiretap channel by taking the effects

of favorable codewords into account. Moreover, one can design more powerful

convolutional generators for random and data bits to come up with big codes

with higher minimum distances than those of the codes we used in Chapter 2

in order to improve the security gaps. Studying the relationship between using

encoders with higher memory sizes (m > 2) in the randomized PCCC and SCCC,
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and the resulting security gaps can be another research direction.

The LDGM-RSC randomized coding scheme can also be investigated in more

detail in order to achieve improved results. Particularly, it is possible to use

more powerful LDGM codes (e.g., those introduced in [21] consisting of ψ-unitary

matrices for encoding). Such codes have larger minimum distances compared to

the ones used in this work, and consequently they may result in better BER

performances. Furthermore, it may be possible to design degree distributions for

the LDGM codes in order to obtain the best possible security gaps.

We note that systematic LDGM codes used in this work are known to have

high error floors mainly because the degree of a portion of their variable nodes is

one and consequently they do not help in the decoding process. One solution to

reduce the error floors in LDGM codes is to use a concatenated schemes, formed

by an outer high-rate LDGM code followed by an inner low-rate LDGM code [19],

[46]. One can use such codes in the randomized scheme and utilize the decoder

proposed in this work by further concatenating them with an RSC code. It is

clear that the resulting scheme would use an LDGM-LDGM-RSC code and its

dual for encoding random and data bits.

Finally, we note that for the case where an LDGM (or LDPC) code is used

along with its dual for the randomized encoding scheme, finding the corresponding

decoder is still an open problem. In this case, the joint LDPC decoder does not

work anymore because the channel observation fails to start the decoding process.

Therefore, finding a practical decoder for this scenario is also important.
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