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ABSTRACT 
 
 

TABU SEARCH WITH FULLY SEQUENTIAL 
PROCEDURE FOR SIMULATION OPTIMIZATION 

 
Savaş Çevik 

M.S. in Industrial Engineering 

Advisor: Prof. İhsan Sabuncuoğlu 

August,2003 

 
 
         Simulation is a descriptive technique that is used to understand the behaviour of 

both conceptual and real systems. Most of the real life systems are dynamic and 

stochastic that it may be very difficult to derive analytical representation. Simulation 

can be used to model and to analyze these systems. Although simulation provides 

insightful information about the system behaviour, it cannot be used to optimize the 

system performance. With the development of the metaheuristics, the concept 

simulation optimization has became a reality in recent years. A simulation 

optimization technique uses simulation as an evaluator, and tries to optimize the 

systems performance by setting appropriate values of simulation input. On the other 

hand, statistical ranking and selection procedures are used to find the best system 

design among a set of alternatives with a desired confidence level. In this study, we 

combine these two methodologies and investigate the performance of the hybrid 

procedure. Tabu Search (TS) heuristic is combined with the Fully Sequential 

Procedure (FSP) in simulation optimization context. The performance of the 

combined procedure is examined in four different systems. The effectiveness of the 

FSP is assessed considering the computational effort and the convergence to the best 

(near optimal) solution. 

 

Keywords: Simulation Optimization, Ranking and Selection, Tabu Search, Fully 

Sequential Procedure.    

 

 



 

 
 

ÖZET 
 
 
SİMÜLASYONLA ENİYİLEME İÇİN TABU ARAMASI İLE 

BİRLEŞTİRİLMİŞ SIRALI SEÇİM METODU    
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Ağustos 2003 

 
 
          Simülasyon var olan veya tasarım aşamasındaki sistemlerin davranışlarını 

anlamak için kullanılan tanımlayıcı bir araçtır. Var olan sistemlerin çoğu dinamik ve 

rassal bir yapıya sahiptir. Bu durum sistemin analitik bir modelini çıkarmayı 

güçleştirebilir. Simülasyon bu tür sistemlerin modellenmesinde ve analiz edilmesinde 

kullanılabilir. Sistem davranışı hakkında çok yararlı bilgiler sağlasa da, simülasyon 

tek başına sistem performansını eniyilemede kullanılamaz. Son yıllarda, sezgisel 

yöntemlerin geliştirilmesiyle birlikte, simülasyonla eniyileme kavramı büyük önem 

kazanmıştır. Simülasyonla eniyileme teknikleri simülasyonu bir değerleme aracı 

olarak kullanır ve simülasyon girdi degerlerini uygun şekilde ayarlayarak sistemin 

performansını en iyilemeye calışır. Diğer taraftan, istatiksel sıralama ve seçim 

metodları belirli bir güven seviyesiyle alternatif sistemler içinden en iyi sistemi 

seçmek için kullanılırlar. Bu çalışmada, bu iki metodolojiyi birleştirdik ve ortaya 

çıkan hibrid metodun performansını inceledik. Tabu Araması, Tamamen Sıralı Seçim 

metoduyla simülasyonla eniyileme bağlamında birleştirildi. Ortaya çıkan metodun 

performansı dört farklı sistem üzerinde denendi. Tamamen Sıralı Seçim metodunun 

etkinligi hesapsal efor ve en iyi çözüme yakınsama göz önünde tutularak 

degerlendirildi. 

 

Anahtar kelimeler: Simulasyonla eniyileme, sıralama ve seçim metodları, tabu 

araması, tamamen sıralı seçim metodu. 
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CHAPTER 1 
 

INTRODUCTION 
 
1.1. Basic Concepts 

 

         Simulation is a very useful tool in understanding the behavior of both existing 

and conceptual systems. It is used in a wide variety of areas from manufacturing to 

military applications. Although, there are many definitions to simulation, the 

simplest one is “the imitation of life”. The aim of the simulation is to give insights, to 

provide information about the system being simulated. According to the simulation 

results (output or response), one can observe if the system operates as it is intended 

to be. The factors that affect its performance can be detected and by adjusting these 

factors, system performance may be improved to the desired level. It is also 

beneficial to simulate conceptual systems that are considered to build. A lot of 

information can be gathered from simulation output and analyzing this data, the 

conceptual system may be redesigned in order to improve the system performance. 

          The Oxford English Dictionary gives the following definition of simulation: 

“The technique of imitating the behaviour of some situation or process (whether 

economic, military, mechanical, etc.) by means of a suitably analogous situation or 

apparatus, especially for the purpose of study or personnel training”. Shannon (1975) 

defines simulation as “the process of designing a model of a real system and 

conducting experiments with this model for the purpose either of understanding the 

system or of evaluating various strategies (within the limits imposed by a criterion or 

set of criteria) for the operation of the system”. Following figure illustrates a 

simulation model of a system: 
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where Conceptual Model defines and integrates model elements (e.g., entities, 

processes, resources, queues, etc.), and Logical Model defines logical interactions 

between these elements (e.g., precedence relations, queuing strategies, etc.). After 

combining these separate models in to one model called Simulation Model, one can 

evaluate system performance and detect various effects that manipulate the output. 

Following figure shows working of a simulation model: 

 

 

 

 

 

         Simulation models offer a completely controllable environment. Every aspect 

of the system is controllable to the experimenter. Simulation models are flexible. 

When needed parameters and variables of the system can easily be changed. This is a 

very useful feature especially when employing “what-if” questions in order to 

improve the performance of the system. Finally, simulation time is completely 

independent from the real time in the way that one can speed up the simulation time 

to quickly access the simulation output, while the other can slow it down in order to 

be able to observe certain processes (zooming) in the system. 

          Simulation experiments are done according to prepared plans called 

experimental design. “A simulation experiment can be defined as a test or series of 

tests in which meaningful changes are made to the input variables of a simulation 

model so that we may observe and identify the reasons for changes in the output 

variables” (Carson and Maria (1997)). Experimental design is another crucial point 

in simulation. The factors that are considered to have effects on system performance 

are determined. After determination of these factors, simulation experiments are 

conducted for different values, which are defined as levels, of these factors. By 

Conceptual Model  
Simulation

Model 

Real world 

Logical Model

x1
x2 
 
xn

y1
y2 
 
ym

Input Output 
Simulation 

Model 

Figure 1.1. Simulation model of a system. 

Figure 1.2. Working of a simulation model. 
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analyzing simulation output, one may find out the factors that are significant and 

extract the optimal levels for these factors. Significant factors and the levels 

associated with them may be used to redesign the system and improve the system 

performance. 

 

1.2. Simulation as an Operations Research (OR) Technique   

 

         Consider a manufacturing facility that faces a decision making problem. There 

are two available options: to build another job shop or to rearrange the existing one 

in order to meet the increasing demand. This is a critical decision. If the facility 

decides to build another job shop where they actually can meet the increasing 

demand by rearranging their manufacturing environment (existing job shop), then 

they would have invested a lot of money in vain. Off course this is an undesirable 

situation. On the other hand, they may decide rearranging their facility and it may 

turn out that rearrangement fails to meet the demand. This is even worse because 

there will be an additional cost of loosing customer to the cost of rearrangement. The 

cost of loosing customer is much more crucial than the former. Making use of 

simulation can help to make decisions.  

         First, the two alternative systems are examined, and then conceptual and logical 

models of the alternatives are built to combine them in a simulation model. After the 

construction of the simulation models for both systems, input data (e.g., distribution 

functions of the inter-arrival time of demands, of the amount of demands, and of the 

processing times of the jobs etc.) analysis is conducted. This analysis is very 

important because simulation models are driven by input data, and using wrong or 

inadequate data may (actually does) lead unreliable output hence wrong decision. So, 

statistical analysis tools must be utilized for both input and output data analysis.  

         Assuming input data and simulation models are ready, simulation experiments 

are performed according to an experimental design to obtain the output data. 

Analyzing this data, one can decide which one of the alternatives is more 

appropriate. The manufacturing facility can now select the best alternative. Of course 

this simulation study comes with a certain cost, but this cost is not comparable to the 

cost of making wrong decision. From this point of view, simulation can be seen as an 

Operations Research, OR, technique. As with all other OR techniques, simulation is 

utilized to make the best decision among alternatives as in above example.  
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         Simulation is superior in comparison to other OR techniques when dealing with 

stochastic systems those are too complex to derive an analytical (mathematical) 

model, which consist of the majority of the real life systems. Since analytical model 

is too hard to obtain if not impossible or even does not exist, classical deterministic 

OR techniques cannot be used to solve these problems. Some assumptions may be 

made in order to come up with an analytical model but this approach may divert us 

from the real problem.  

         Simulation is welcome to overcome this deficiency. As we describe it, it is 

simply the imitation of life and any real world system can be transformed into a 

simulation model. And once you have the simulation model, every aspects of the 

system can be inspected. By analyzing output data and employing some “what if” 

questions, the model can be easily modified. This allows researchers to redesign the 

system being simulated in order to improve the performance of the system.  

         Unfortunately, simulation does not provide optimal solution, which makes it a 

descriptive tool. This is the major drawback of the simulation when compared to 

other OR techniques. But it has many advantages that surpass this drawback. 

Furthermore, with the incredible advances in the computer science and technology 

and the emergence of the metaheuristics, the concept “simulation optimization” 

attracts many researchers and scientist during the last decade. A lot of papers have 

been published and are being published. 

         The main reason behind this attraction is, as we mentioned, almost any real life 

system has a stochastic nature that is hard or impossible to describe analytically, and 

one of the simplest ways to optimize these systems without being diverted from the 

very essence of the problem is to make use of simulation within a simulation 

optimization framework. 

 
1.3. Aim of the Study 

 

         The aim of this study is to examine the effects of a Ranking and Selection 

(R&S) tool namely Fully Sequential Procedure (FSP) due to Kim and Nelson (2001), 

on the output of a heuristic search algorithm, Tabu Search, in the context of 

simulation optimization. The approach is simply embedding the FSP in TS. 

         Our motivation is to find better search directions in each iteration of TS. In TS 

a neighbourhood set of solutions to the current solution is created at each iteration. 
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The solutions in the neighbourhood are evaluated to find the best of them. Evaluation 

of the solutions is based on taking arbitrarily number of observations (replications). 

Instead, one can use a statistical technique to find the best among neighbours which 

may give better search directions. 

         We try to find out if employing the FSP increases the solution quality. If it 

does, is it worth increasing computational effort. How does the FSP affect the 

convergence behaviour of the search. And finally, if the FSP should be implemented 

to increase the efficiency of the search or not.   

         TS is a very effective global search algorithm, which is first introduced by 

Glover (1986). FSA is a recently developed ranking and selection tool, which 

reduces the computational effort dramatically when compared to conservative 

ranking and selection procedures. Detailed descriptions of these methods will be 

given in Chapter 3. In what follows, we will introduce the concepts of simulation 

optimization and ranking and selection.  

         Simulation optimization is defined as optimization of performance measures 

(e.g., throughput, waiting time in the system, and production cost or profit etc.) by 

adjusting model settings (input variables or decision variables) according to 

simulation output of previous settings. Another definition is “the process of finding 

the best input variable values from among all possibilities without explicitly 

evaluating each possibility” (Carson and Maria (1997)). Law and McComas (2000) 

define simulation optimization as “orchestration of the simulation of sequence of 

system configurations (each configuration corresponds to particular settings of the 

decision variables (factors)) so that a system configuration is eventually obtained that 

provides an optimal or near optimal solution.” 

          The idea is using simulation as an evaluation function or an evaluator. First, 

simulate the system with current model settings, and then observe the output and take 

this data to an optimization algorithm. The algorithm analyses the output by means 

of the effects of the current model settings on the output. According to this analysis 

algorithm generates new model settings to simulate the system with this new model 

settings. The process repeats itself until a certain stopping condition is satisfied (e.g. 

a certain improvement has been made or pre-specified number of iterations has 

passed etc.) The following figure illustrates the logic of the simulation optimization 

model: 
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         Here are some application areas of simulation optimization: Manufacturing 

systems; one can build a simulation model for a specific production facility (e.g., job 

shop, assembly line etc.), and use this model in order to maximize the number of the 

finished jobs or products while minimizing the cost incurred in conjunction with a 

simulation optimization technique. Supply chain systems; simulation optimization 

can be used in order to minimize inventory levels and response times while 

maximizing fill rates. Queuing systems; waiting times of customers or jobs can be 

minimized or total number of served customers can be maximized by making use of 

simulation optimization. Inventory control models; one can use a simulation 

optimization method in order to determine optimal levels of s, re-order point, and S, 

order-up-to point, that minimize the cost which consists of ordering, holding, and 

shortage costs. There are many other application areas in addition to above ones. 

         For example, a manufacturing facility wants to optimize the number of 

machines in one of their job shops in order to maximize the throughput. The above 

approach, illustrated in Figure 1.3, may be used until the maximum throughput is 

reached i.e., adding one more machine does not improve the objective function. The 

number of machines at this point is the optimal solution. Actually, due to the 

stochasticity, is not the optimal but very close to optimal. This is a very simple 

example. When the size and the complexity of the problem increases, more 

sophisticated algorithms are needed to come up with near optimal solutions. 

         There are many simulation optimization algorithms in the literature. But the 

most commonly used algorithms are called metaheuristics, which includes Tabu 

Search (TS), Genetic Algorithm (GA), and Simulated Annealing (SA). The role of 

the metaheuristics in simulation optimization’s popularity is unquestionable. 

         Many software developers for simulation modeling and analysis add a 

simulation optimization module into their software packages. Since simulation 

Simulation Model 

Is stopping criteria 
satisfied? 

Simulation Optimization
Algorithm 

No

Yes

Stop

OutputInput

Figure 1.3. Simulation optimization model. 
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optimization applications are widely used nowadays, software vendors want to make 

their product preferable to others. Following table summarizes the most known 

optimization packages and supported simulation software (adapted from Law and 

McComas (2002)): 

 

 

Optimization 

Package 
Vendor 

Simulation software 

supported 
Search Strategies 

AutoStart Brooks-PRI 
Automation AutoMod, AutoSched Evolution Strategies 

Extend Optimizer Imagine That Extend Evolution Strategies 

OptQuest Optimization 
Technologies 

Arena, Flexim ED, Micro 
Saint, Pro-Model, 
QUEST, SIMUL8 

Scatter Search, Tabu 
Search, Neural 

Networks 

WITNESS 
Optimizer Lanner Group WITNESS 

Simulated 
Annealing, Tabu 

Search 
 

         Ranking and Selection procedures are statistical tools that select the best 

alternative from a set of alternatives with a given confidence level. They can be 

grouped into two categories. The first one is Multiple Comparison Procedures 

(MCPs) and the other is Subset Selection and Indifference Zone Selection. In MCPs, 

alternative system designs are compared to each other and according to the 

comparison results the best system design or designs are determined. In Subset 

Selection a subset, which contains the best, is excluded from a set of alternatives, 

while in Indifference Zone Selection, the best alternative is selected. The detailed 

examinations of these methods will be given in Chapter 2. 

         Increasing attraction to simulation optimization area made researchers to seek 

new methodologies. One of these new methodologies is combining simulation 

optimization with ranking and selection. A couple of papers have been published 

related to this topic. A simulation optimization technique and a ranking and selection 

procedure can be used in conjunction in two ways. One is using ranking and 

selection procedure after a simulation optimization study. The elite solutions 

encountered by the search can be further inspected by the accompanying ranking and 

selection algorithm thus increasing the solution quality. Since the simulation 

optimization search already took observations from these elite solutions, there is no 

need for ranking and selection procedure to perform first stage sampling. This 

Table 1.1. The most known simulation optimization software packages, and supported
simulation software. 
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approach may increase the solution quality with little extra computational effort. The 

other way, which we will implement in this study, is using ranking and selection 

algorithm within the search. This approach may lead to search quickly converge the 

best (near optimal) solution thus reducing the computational effort. The following 

figure illustrates our approach: 

 

 

 

 

 

 

 

 

 

 

 

 

 

         In the following chapter, we will describe the simulation optimization and 

ranking and selection methodologies and review the studies in the literature related to 

both topics. In Chapter 3, we will introduce our approach and give the details of the 

experimental study including descriptions of the various system designs in which we 

implement our methodology. The results of the experimental study will be given in 

Chapter 4. Our conclusions will be formed in Chapter 5.    

 

Current 
solution 

Neighbour 
solutions 

The best neighbour 
based on 5 replications

Move 

An ordinary TS approach 

Current 
solution

Neighbour 
solutions 

THE BEST 
NEIGHBOUR 
SELECTED BY 

Move

Our approach 

Figure 1.4. The comparison of an ordinary TS approach and our approach. 



 

 

 

 

 
 
 
 
 
CHAPTER 2 
 

LITERATURE REVIEW 
 
2.1. Introduction 

          

         In this chapter we will introduce the basics of the simulation optimization and 

ranking and selection. And then some studies in the literature related to both topics 

will be summarized respectively. We first start with a general structure of the 

simulation optimization problem. Then we describe the simulation optimization 

methodologies in short. A summary of the studies in the literature will follow. After 

describing the ranking and selection concept and methodologies we will review the 

literature. 

             
2.2. The General Structure of a Simulation Optimization Problem 

          

         A simulation optimization problem is defined, as in all other optimization 

problems, by decision variables, an objective function, and constraints. 

 

Decision variables 

         Realizations of decision variables i.e., values of variables, directly affect the 

system’s response. A complete set of decision variables is called a solution. The aim 

of the simulation optimization is to find the best set of decision variables (the best 

solution), which optimizes the objective function. For example, s, re-order point, and 

S, order-up-to point, are decision variables in an inventory control problem. 
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Objective function 

         Objective function is the function that is wanted to be optimized. It may be 

simply one of the performance measures (e.g., number of finished jobs, waiting time 

in the system, and cycle time, makespan etc.) or it may be represented as a linear or 

non-linear function of decision variables. In inventory control problem, the objective 

function is the total cost function, which consists of ordering, holding, and shortage 

costs. Note that, in this example, decision variables, (s,S), are not visible in the 

representation of the objective function but still the objective function, the cost 

function, is a function of decision variables. 

 

Constraints 

         There are two types of constraints: qualitative and quantitative. Quantitative 

constraints may be linear or non-linear combinations of the decision variables. For 

example, S, order-up-to point, must be lower than some upper bound due to capacity 

limitations. On the other hand, some constraints cannot be represented 

mathematically. For example, a finished part on a machine blocks the machine until 

succeeding buffer has an empty room or an AGV (or forklift) unloads the part. 

Another example is the dispatching rule that is used in a queuing problem. The 

Shortest Processing Time (SPT) rule cannot be expressed mathematically. Actually 

this is a good representation of the power of the simulation. 

         In general a simulation optimization problem is represented as: 

                                              )]([  min(max) xfE
Cx∈

 

where x  is the solution vector, i.e., ],.....,[ 21 nxxxx = , and C is the set of quantitative 

constraints. The qualitative constrains are represented in the simulation model. Note 

that we use the expectation of the objective function instead of the function itself in 

the formula. This is because the function itself cannot be calculated due to stochastic 

nature of the problem. One can only estimate it. A solution cannot be hundred 

percent said better than another one (of course, if not one of the solutions clearly 

inferior to the other one), instead one is said better than the other according to a 

confidence level. Normally high-level confidence is desired which may cause very 

exhaustive simulation optimization study, i.e., longer runs and/or more replications. 

Furthermore, if the number of the alternative solutions is large the simulation 

optimization study may become intractable. 
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2.2.1. Simulation Optimization Methodologies 
 

         Simulation optimization methods can be grouped into six main categories. 

Figure 1.4 illustrates these categories (adapted from Carson and Maria (1997)). 

2.2.1.1. Gradient-based Search Methods 
 

         “Methods in this category estimate the response function gradient (f) to assess 

the shape of the objective function and employ deterministic mathematical 

programming techniques” (Carson and Maria (1997)). “Two major factors in 

determining the success of these methods are reliability and efficiency” (Azadivar 

(1999)). Since a simulation optimization problem has a stochastic nature there will be 

an error in estimating the gradient. If this error is large, then this may lead the search 

to the wrong directions. This is why reliability is a major factor in determining the 

success of the methods. On the other hand, the efficiency of a gradient estimation 

method can be measured by the required number of function evaluations 

(replications) to be able to estimate the gradient. Since the simulation experiments 

are expensive, less number of required replications means more efficiency. When the 

size and the complexity of the problem increase, efficiency becomes more important. 

Some of the gradient based search methods are: finite difference estimates, 

perturbation analysis, likelihood ratio estimates, and frequency domain analysis. One 

can refer to Carson and Maria (1997) and Adizavar (1999) for brief explanations of 

these methods. 

2.2.1.2 Stochastic Approximation 
 

         “Stochastic approximation methods refer to a family of recursive procedures 

that approach to the minimum or maximum of the theoretical regression function of a 

stochastic response surface using noisy observations made on the function. These are 

based on the original works of Robins and Monro (1951) and Kiefer and Wolfowitz 

(1952)” (Adizavar (1998)). These methods use a recursive formula iteratively in 

order to find the optimal solution. The number of observations required in each 

iteration increases when the number of decision variables increases. Stochastic 

approximation methods slowly converge to the optimum and suffer from the lack of 

good stopping rules. Furthermore, they have difficulties with handling constraints.
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Figure 2.1. Classification of Simulation Optimization Methodologies (Carson and Maria (1997)).



2.2.1.3. Response Surface Methodology (RSM) 
 

         “Response Surface Methodology is a procedure for fitting a series of regression 

models to the output variable of a simulation model (by evaluating it several input 

variable values) and optimizing the resulting regression function” (Carson and Maria 

(1997)). “The process usually starts with a first order regression function and after 

reaching the vicinity of the optimum, higher degree regression functions are utilized” 

(Avdizavar (1998)). When compared to gradient estimation methods RSM is more 

efficient in terms of the required number of replications. On the other hand, if the 

complexity of the objective function (thus the response surface) increases, i.e. sharp 

ridges, flat valleys, RSM may become inefficient because of the relatively large 

errors in the fitted regression function. 

2.2.1.4. Heuristic Methods 
 

         With the development of the heuristic methods attraction to the simulation 

optimization field has been increased. Because of the exploration and exploitation 

features, heuristics are very efficient global search strategies. The most known 

heuristic methods are: 

 

2.2.1.4.1. Genetic Algorithms (GA) 
 

         Genetic algorithm is analogous to the biologic evolution. GA was developed by 

Holland (1992). Its DNA determines the fitness of an organism, which is defined as 

the ability to survive in its environment. A DNA can be represented as a string of 

values. An offspring’s DNA consists of two parts. One part that inherits from its 

parents and the other is due to mutation. The idea behind the GA is to increase the 

overall fitness of the population by inheriting good features (traits) of the parents to 

the next generations.  

         The DNA of a population member can be thought as a solution, thus member as 

a solution and the population as a solution space. Each value in the DNA string 

represents a decision variable. The fitness of a solution (member) is determined by 

an objective (evaluation) function. Creation of an offspring (a new solution) is 

subject to biological operators. Where the crossover operator takes different parts of 
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parents’ DNAs and brings them together to build offspring’s DNA, the mutation 

operator randomly selects a position (a decision variable) in this new string and 

changes its value according to a pre-specified probability. There are also selection 

and reproduction operators. After a certain number of generations (iterations), the 

solution(s) with the best fitness value is (are) selected as the optimal. GA is noted for 

robustness in searching complex spaces and is best suited for combinatorial 

problems. 

 

2.2.1.4.2. Simulated Annealing (SA) 
 

         Simulated Annealing process is analogous to the physical annealing process. It 

was introduced by Metropolis et. al. (1953). The key feature of this process is the 

temperature, T. SA starts with an initial solution and an initial temperature value. 

This temperature value remains same for a certain number of iterations and gradually 

decreases until the pre-determined final temperature is reached. At each iteration, a 

neighbor solution is generated and evaluated. If any improvement is made then the 

neighbor solution replaces the current solution. If no improvement is made then the 

neighbor solution may still be accepted as the current solution with a probability, 

which is a function of T. The reason behind this move is to avoid being trapped by 

the local optima. When T decreases the acceptance probability of non-improving 

solution decreases. 

 

2.2.1.4.3. Tabu Search (TS) 
 

         Tabu Search can be classified as a neighborhood search. It is developed by 

Glover (1989). TS starts with an initial solution, and a neighborhood set, a subset of 

solution space, is created at each iteration. Each solution in this set is evaluated and 

the best one is selected as the new current solution if it is not classified as tabu. The 

old solution is classified as tabu and added to the tabu solutions list. Tabu solutions 

cannot be selected as a new solution for a certain number of iterations, which is 

called tabu tenure. At each iteration tabu tenure is decreased by 1. When tenure 

reaches zero the solution is removed from the tabu list. The search continues until a 

stopping criterion is satisfied. 
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         Apart from these heuristics, Evolution Strategies, Nelder and Mead’s Simplex 

Search, and Complex Search, an extension of Simplex Search, are also used in 

simulation optimization applications. 

2.2.1.5. Statistical Methods 
 

         Most of the statistical simulation optimization techniques are Ranking and 

Selection Techniques (R&S). We will be inspecting these techniques in Section 2.3. 

In the following section we summarize some of the simulation optimization studies 

in the literature. 

 

2.2.2. Literature Survey Simulation Optimization 

 

         In Carson and Maria (1997) a general review of the simulation optimization 

methods in the literature is given. The simulation optimization methods are classified 

into six main categories, which are Gradient based Search Methods, Stochastic 

Optimization, Response Surface Methodology, Heuristic Methods, A-teams, and 

Statistical Methods. Brief explanations of these methods can be found in the paper. 

Some of the examples of the simulation optimization applications and software are 

also mentioned. 

         Olafsson and Kim (2002) made a broad introduction to simulation optimization 

concept. General problem setting of a simulation optimization problem, i.e. decision 

variables, objective function, and constraints, is discussed. Brief information on 

some simulation optimization techniques for both continuous decision variables and 

discrete decision variables cases can be found in the paper. A couple of simulation 

optimization software is mentioned to stress out the increasing usage and popularity 

of the simulation optimization techniques in practice. 

         Fu (2001) summarized most of the major approaches and briefly described the 

most known software implementations in question-answer (Q&A) formatted tutorial 

paper. 

         Law and Kelton (2002) presented a tutorial, which is an introductory level, to 

simulation optimization. A simulation optimization problem is introduced. 

Experimental results of two commercial optimization packages applied to this 
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problem are illustrated. A table, which shows popular optimization software 

packages, supported software, and utilized strategies, is also included in the paper. 

         Azadivar (1999) addressed some specific issues related to decision variables, 

objective function, and constraints. Several problem classifications, i.e., according to 

single objective versus multi-criteria or continuous decision variables versus discrete 

decision variables, are mentioned. Brief descriptions of some simulation optimization 

approaches including gradient based approaches and heuristic search strategies are 

given. Discussion on multi-criteria optimization and on-parametric optimization are 

added to the paper. 

         Abspoel et. al. (2000) developed an optimization strategy that is based on a 

series of linear approximate sub problems. Each sub problem is built according to the 

outcomes of simulation experiments. A D-optimal designs of experiments is used to 

plan the simulation experiments. Stochasticity in constraints and objective function is 

dealt with explicitly using safety indices. Two text problems including a simulation 

based four-station production flow line problem are presented to illustrate proposed 

strategy. 

         Lee et. al. (1999) proposed an algorithm that searches the effective and reliable 

alternatives satisfying the target values of the system to be designed through a single 

run in a relatively short time period. The algorithm estimates an autoregressive 

model and constructs mean and confidence interval for evaluating the objective 

function obtained by small amount of data. The algorithm is applied to an (s,S) 

inventory control problem. Experimental results are illustrated in the paper. 

         Olafsson and Shi (1998) developed a new simulation based optimization 

method called Nested Partitions (NP) method. The method generates a Markov chain 

thus solving the optimization problem becomes equivalent to maximizing the 

stationary distribution of this Markov chain over certain states. The method may 

therefore be considered a Monte Carlo Sampler that samples from the stationary 

distribution. It is also shown in the paper that Markov chain converges geometrically 

fast to the true stationary distribution. 

         Olafsson and Shi (1999) analyzed a new simulation based optimization method 

that draws from two recent stochastic optimization methods: Nested Partitions, which 

is an adaptive sampling approach, and ordinal optimization. The new method 

guarantees global convergence under certain conditions. Furthermore, for certain 

problems, the method has exponential convergence rate characteristics, which is 
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shown by using ordinal optimization perspective. New conditions, under which 

asymptotic convergence holds, are derived and practical guidelines for determining 

the sampling effort in each iteration are provided. 

          Pichitlamken and Nelson (2002) proposed an optimization-via-simulation 

algorithm that combines Shi and Olafsson’s (2000) Nested Partitions (NP) method 

with Sequential Selection with Memory (SSM) method due to Pichitlamken and 

Nelson (2001), and Hill Climbing (HC) algorithm. A numerical example on three-

stage buffer allocation problem is presented. Comparisons with other optimization 

algorithms such as Simulated Annealing (SA), Random Search (RS), and Nested 

Partitions are also illustrated in the paper. 

         Pichitlamken and Nelson (2001) proposed a ranking and selection algorithm, 

Sequential Selection with Memory (SSM), very similar to Kim and Nelson’s (2001) 

Fully Sequential Algorithm (FSA) in order to use in simulation optimization context. 

Idea is using SSM in a neighborhood search to find the best solution among 

neighbors. The algorithm uses a statistical selection approach to ensure the best 

selection with a certain probability (confidence level), while it makes use of memory, 

i.e. encountered solutions so far, to reduce the computational effort. A numerical 

example and comparisons to a few other selection approaches are presented in the 

paper. 

         Brady and McGarvey (1998) integrated the heuristic search methods with a 

simulation model to improve the operating performance of a pharmaceutical 

manufacturing laboratory. The problem is allocating small set of operators to a large 

set of test machines. A very detailed simulation model is used in conjunction with 

some heuristics namely Simulated Annealing (SA), Genetic Algorithm (GA), Tabu 

Search (TS), and Frequency Based Heuristic in order to improve operating 

performance of the laboratory, which can be defined in terms of work in process, 

operator efficiency, and operator balance. Dramatic improvements are achived up to 

nearly 16% with different heuristics. 

         Finke et. al. (2002) combined Tabu Search (TS) with simulation to develop a 

scheduling procedure for an automated steel plate fabrication facility in order to 

minimize earliness/tardiness penalties. The performance of the procedure is 

evaluated by comparisons to the optimal solutions for small problem instances and to 

a good heuristic for longer problems, TS allowed the incorporation of more realistic 
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constraints on system operation. Experimentation and results are presented in the 

paper. 

         Joines et. al. (2002) addressed the critical decision problems of “How much to 

order” and “How often to order” in a supply chain environment. A genetic algorithm 

is developed to optimize these system parameters. The quality of the results depends 

on the performance measure that is optimized. The deficiencies of using traditional 

performance measures are discussed and a new genetic algorithm methodology is 

developed to overcome these limitations.  

         Baretto et. al. (1999) applied the Linear Move and Exchange Move 

Optimization (LEO), which is based on a Simulated Annealing (SA) algorithm 

designed for solving hard combinatorial optimization problems, to a manufacturing 

problem. The problem description and results are presented in the paper. The paper 

also demonstrates the effectiveness and the versatility of the algorithm. 

         Baesler and Sepulveda (2000) introduced a new approach to solve multi 

objective simulation optimization problems. The approach integrates a simulation 

model with a genetic algorithm and a goal programming model. The genetic 

algorithm is modified to perform the search considering the mean and the variance of 

the responses. This new approach is able to lead the search towards a multi objective 

solution. 

         Altiparmak et. al. (2002) developed an artificial neural network (ANN) 

metamodel for simulation model of asynchronous assembly system. This metamodel 

is used in conjunction with Simulated Annealing (SA) to optimize the buffer sizes in 

the system. Experimental results are presented in the paper.   

         Humprey and Wilson (1998) developed a variant of Nelder and Mead’s (NM) 

Simplex Search procedure, Revised Simplex Search (RSS), for simulation 

optimization. This new search method is designed to avoid the weaknesses, which 

can be stated as excessive sensitivity of starting values, being trapped by local 

optima, lack of robustness, and lack of computational efficiency, of some other direct 

search methods. A simulation study conducted to compare RSS to NM and RS9 (a 

simplex search procedure recently proposed by Barton and Ivey (1990)) based on 

separate factorial experiments for selected performance measures. Experimental 

results show that the improved performance of RSS with marginally increased 

computational effort. 
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         Gupta and Sivakumar (2002) combined discrete event simulation and various 

techniques, which are used to deal with multi objective optimization such as 

weighted aggregation approach, global criterion method, minimum deviation 

method, and compromise programming, in order to generate optimal schedules for 

semiconductor manufacturing where there are more than one objectives to satisfy 

including cycle time, machine utilization, and due date accuracy. First, the job shop 

scheduling problem is modeled and the problem is divided in to simulation clock 

based lot selection sub problems. Then at each decision point in simulated time, a 

Pareto optimal lot is selected using the techniques mentioned above. Results show 

that how these techniques work effectively in solving the multi objective scheduling 

problem using discrete event simulation. 

         Sivakumar (1999) developed a discrete event simulation based “on-line near-

real time” dynamic scheduling and optimization system to optimize the cycle time 

and asset utilization in semiconductor test manufacturing. The system has been 

implemented at a semiconductor back-end site. The impact of the system includes the 

achievement of very good cycle time, improved machine utilization, and more 

predictable and highly repeatable manufacturing performance. 

         Schruben (1997) introduced a new simulation optimization approach that takes 

advantage of the ability to run simultaneous replications of different experimental 

factor settings in a single run. Different time scales for the events corresponding to 

different design points can be used. In this manner, the run can focus on factor 

settings that are likely to be optimal and feasible. An example is presented using a 

penalty function to dilate event times to find the cycle time constrained capacity of a 

queue. 

         Lee et. al. (1997) developed a simulation optimization technique exploring a 

new paradigm called the “reverse simulation”. The paper focuses on the method of 

on-line determination of steady state, which is a very important issue in reverse 

simulation optimization, and the construction of a reverse simulation algorithm with 

expert systems. The algorithm employs the Lyapunov exponent of Chaos Theory to 

determine the steady state of the system and an optimal state. M/M/s queuing model 

is chosen to illustrate the algorithm. Experimental results show that obtained number 

of servers by the algorithm corresponds to the theoretical value. 

         Neddermeijer et. al. (2000) developed a framework for automated optimization 

of stochastic simulation models using RSM. The framework is especially intended 
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for simulation models where the calculation of the corresponding stochastic response 

function is very expensive or time consuming. Many choices that have to be made in 

development of an automated RSM algorithm are described in the framework. 

         Angun et. al. (2002) modified RSM in the way that the determination of the 

search directions. Classical RSM locally fits first order polynomials in the first stages 

of the search, and then uses Steepest Descent (SD) strategy, which is scale 

dependent, to determine search direction. A scale independent search strategy, 

Adapted Steepest Descent (ASD), is derived which accounts for covariance between 

components of the local gradient. Monte Carlo experiments show that ASD gives a 

better search direction compared to SD. In multi objective analogous, interior point 

methods and binary search are used to derive scale independent search direction. 

Monte Carlo experiments show that a neighborhood of the true optimum can be 

reached in a few runs. Experimental results are presented in the paper. 

         Marito and Lee (1997) presented a simulation optimization approach for 

finding a dynamic dispatching priority in a stochastic job shop environment under 

the presence of multiple identical jobs. The key ingredients of the approach are: an 

efficient processing time based dispatching rule, simulation model of a job shop, and 

a mechanism to fake (or modify) job processing times based on the information of 

job slack obtained from simulation. An overall approach to fake processing times is 

described and alternative strategies for algorithm design are identified in the paper. 

Experimental results are illustrated. 

         Rogers (2002) applied a commercial simulation optimization tool, OptQuest, to 

manufacturing system design and control problems. After a brief introduction to both 

general simulation optimization concept and OptQuest for Arena, implementation of 

the software in tackling with sequence dependent setup problem for a production 

facility, and optimal order acceptance/rejection problem in a make to order 

environment is reported in detail. Results and conclusions are presented in the paper.  

Table 2.1. summarizes the studies : 

 

 

 

 

 

 



 21

 

Baesler and Sepulveda 
(2000) 

New approach integrates GA with Goal Programming to 

solve multi objective optimization problems. 

Authors The Paper 

Carson and Maria (1997) Overview of methodologies. 

Olafsson and Kim 
(2002) 

Overview of methodologies, some problem settings, and 

software.  

Fu (2001) Question and answer (Q&A) formatted tutorial. 

Law and Kelton (2002) 
An introductory level tutorial and some software 

applications. 

Azadivar (1999) General review of methodologies. 

Abspoel et. al. (2000) 
New methodology based on a series of linear 

approximate sub problems. 

Lee et. al. (1999) 
New algorithm based on estimating an autoregressive 

model. 

Olafsson and Shi (1998) New method Nested Partitions (NP). 

Olafsson and Shi (1999) 
New approach that combines NP and ordinal 

optimization. 

Pichitlamken and Nelson 
(2001) 

New Ranking and Selection approach, Sequential 

Selection with Memory (SSM). 

Pichitlamken and Nelson 
(2002) 

New approach, which is a combination of NP, SSM, and 

Hill Climbing . 

Brady and McGarvey 
(1998) 

Application of heuristic search methods to optimize the 

operating performance of pharmaceutical manufacturing 

facility.  

Finke et. al. (2002) 

Application of Tabu Search (TS) to minimize the 

earliness/tardiness penalties in a steel plate fabrication 

facility.  

Joines et. al. (2002) 
Application of Genetic Algorithm (GA) in a supply chain 

environment. 

Baretto et. al. (1999) 
Application of Linear Move and Exchange Move 

Optimization (LEO) to a manufacturing problem. 

Table 2.1. The summary of some studies in the literature. 
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2.3. Ranking and Selection 

 
         One of the most important areas that simulation is used is comparing alternative 

system designs. For example, suppose two layout designs for a production facility 

are being considered. Decision maker wants to know which design is better. One can 

make use of simulation in order to compare the designs and select the best one 

among. Of course this task must be performed carefully to avoid the possibility of 

Authors The Paper 

Altiparmak et. al. 

Application of Simulated Annealing (SA) in conjunction 

with an artificial Neural Network (ANN) metamodel, to 

an asynchronous assembly system in order to optimize 

the buffer sizes.   

Humprey and Wilson 
(1998) 

New approach, Revised Simplex Search (RSS), which is 

a variant of Nelder and Mead’s (NM) Simplex Search 

procedure.  

Gupta and Sivakumar 
(2002) 

New approach that combines discrete event simulation 

and various techniques, which are used to deal with multi 

objective optimization. 

Sivakumar (1999) 

New approach, dynamic scheduling and optimization 

system, to optimize the cycle time and asset utilization in 

semiconductor test manufacturing. 

Schruben (1997) 
New approach based on simultaneous replications of 

different experimental factor settings. 

Lee et. al. (1997) New approach based on Reverse Simulation. 

Neddermeijer et. al. 
(2000) 

Framework for automated optimization of stochastic 

simulation models using Response Surface Methodology 

(RSM). 

Angun et. al. (2002) Modification of RSM. 

Marito and Lee (1997) 
New approach for finding a dynamic dispatching priority 

in a stochastic job shop environment 

Rogers (2002) 
Application of OptQuest, to manufacturing system design 

and control problems 
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selecting the wrong system. Even if the simulation study is performed perfectly, an 

appropriate method must be chosen to compare the systems using simulation output. 

This issue is very important. Because of the stochastic nature of simulation, arising 

from randomness, one can never be sure which system is better with certainty. So, 

appropriate statistical methods must be used to distinguish the best system from the 

other alternatives within a given confidence level. 

         There are a lot of statistical methods to compare the alternative system designs. 

When we look at the literature, these procedures can be divided into two main 

categories. The first category is Multiple Comparison Procedures (MCPs) and the 

second is Ranking and Selection (R&S) procedures.  

2.3.1. Multiple Comparison Procedures (MCPs) 
 

         These procedures basically construct confidence intervals, with the desired 

confidence level, around the differences of two systems’ performance measures and 

try to give insights about the systems’ performances with respect to each other.  

         The most known procedure is due to Tukey. (Goldsman and Nelson (1998)). 

The procedure requires identical, independent, and normally distributed outputs from 

each system. The procedure does pair wise comparison, takes difference between two 

alternatives and constructs a confidence interval to see the magnitude and the 

direction of the difference. k(k-1)/2 confidence intervals are formed for k alternatives. 

         Instead of comparing each alternative with the others, one can compare each 

system with the best of the remaining systems thus reducing the number of 

confidence intervals. This kind of comparison is called Multiple Comparisons with 

the Best (MCB). “The first MCB procedures were developed by Hsu.” (Goldsman 

and Nelson (1998)) 

         Another type of multiple comparison procedures is called Multiple 

Comparisons with the Control (MCC). In this approach alternative systems are 

compared to a control (or a default) system. Thus we only need to construct k-1 

confidence intervals. This kind of situation may arise when we compare alternative 

designs to an existing system. “MCC procedures are well known for the case when 

the variances across systems are equal and the data are normal (Goldsman and 

Nelson (1998)). 
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         Although MCPs give insights when comparing alternatives, they do not either 

provide much information or select the best. But we can detect the systems worth 

examining further by using MCPs. At this point of view they can be considered as 

selection procedures. 

2.3.2. Ranking and Selection Procedures         

2.3.2.1. Subset Selection 
 
         In subset selection approach, we form a subset of alternative systems which 

includes the best system. The cardinality of the subset depends on the procedure 

used. It can be random-size or pre-determined. The most known method is Gupta’s 

single stage procedure (Goldsman and Nelson (1998)). The method assumes that 

simulation outputs are independent, balanced (equal number of observations from 

each system), and normally distributed with common (unknown) variance. ”Gupta 

and Huang” proposed a similar procedure for the unbalanced case” (Goldsman and 

Nelson (1998)). 

2.3.2.2. Indifference-zone Selection   
 

         The indifference-zone procedures select the best system among alternatives 

with pre-determined confidence level. The term indifference-zone, δ, comes from 

user specified parameter that indicates practically significant difference. This means, 

if a system’s expected value for a given performance measure is at least δ amount 

better than the others then the system is considered as the best. If the differences 

between expected values of two or more systems are within the indifference zone 

(less than δ) then this means there is no practically significant difference between 

systems and one of them can be selected as the best. 

         Most of the indifference-zone procedures are two-stage procedures. In the first 

stage, sample variances are calculated from simulation output for each system. Then 

using a simple formula, that accounts for these sample variances, and a user specified 

indifference zone parameter, and a statistical constant that is a function of number of 

systems, and desired confidence level, the required sample sizes are calculated. In the 

second stage, more replications are performed according to the required sample sizes. 

After required replications are taken new sample means are calculated and one of the 



 25

systems is selected as the best by looking the sample means of each system. If the 

largest is better then the system with the largest sample mean is selected. 

         The most known indifference zone procedures are due to Rinott and due to 

Dudewicz and Dalal (Goldsman and Nelson (1998)). Both methods are two-stage 

procedures and assume normality and independence across systems. The main 

difference is, in the second stage, unlike Rinott’s, Dudewicz and Dalal’s procedure 

uses the weighted averages. Nelson and Matejcik proposed procedures those can 

handle dependence across systems. (Goldsman and Nelson (1998)) 

         “Matejcik and Nelson established a fundamental conjunction between 

indifference-zone selection and MCB by showing that most indifference-zone 

procedures can simultaneously provide MCB confidence intervals with the width of 

the intervals corresponding to the indifference zone.” (Goldsman and Nelson (1998)) 

There are several combined procedures: Rinott+MCB, NM+MCB, and 

Bonferroni+MCB. 

         The multinomial selection approach is an another kind of indifference-zone 

procedures.(Goldsman and Nelson (1998)) This approach tries to select the system 

that is most likely to have the best response. Let pi be the probability that system i 

will produce the best response from a given observation from each system. “The goal 

is to select the best system with a given confidence level whenever the ratio of the 

best to the second-best pi is greater than some user specified constant, say θ>1. The 

indifference constant θ can be regarded as the smallest ratio worth detecting” 

(Goldsman and Nelson (1998)). Bechhofer, Elmaghraby and Morse (BEM) proposed 

a single stage procedure that uses this approach. “There is also more efficient but 

more complex method due to Bechhofer and Goldsman (BG)” (Goldsman and 

Nelson (1998)). 

2.3.3. Literature Survey Ranking and Selection  
 

         Goldsman (1983) introduced some common ranking and selection terminology 

and procedures. Some additional references for more complicated procedures are 

given. Indifference-zone approach, subset selection approach, and other approaches 

are explained. Discussion on R&S procedures in simulation applications is included. 

         Goldsman and Nelson (1998) presented a review of screening, selection, and 

multiple comparisons procedures that are used to compare system designs via 
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computer simulation. Screening large number of system designs, selecting the best 

system, and comparing all systems to a standard are the main topics of the paper. 

         Goldsman et. al. (1999) presented a review paper in the area of ranking and 

selection available to practicing engineers and management scientists. 

         Nelson (1993) used the multiple comparisons with the best (MCB) procedures 

to analyze simulation experiments that employ common random numbers (CRNs). 

         Matejcik and Nelson (1993) proposed three procedures that combine 

indifference-zone selection and multiple comparison inference. The first method uses 

Rinott’s indifference-zone procedure then constructs MCB confidence intervals. This 

method requires independence across systems. The second and the third methods 

allow dependence across systems. The second one uses Clark and Yang’s 

indifference-zone selection procedure than constructs MCB confidence intervals. The 

third method is due to Nelson and Matejcik and works as the same way as the others. 

The importance of this paper comes from that it shows indifference-zone procedures 

can be used in conjunction with MCB. 

         Haynes et. al. (1997) conducted a robustness study. A new family of 

distributions called g-and-k distributions, which may be used to approximate a wide 

class of distributions and allow effectively controlling skewness and kurtosis through 

independent parameters, are used in the study. The frequentist selection rules are 

found robust to small changes in the distributional shape parameters g and k. The 

study can be used to assess robustness and to develop procedures to allow for non-

normality and also to understand the effects of non-normality on selection 

procedures. 

         Matejcik and Nelson (1995) developed two-stage sampling procedures to 

compare a small number of stochastic systems. The procedures are MCB procedures 

and require independence and normality. They also allow experimenter to specify the 

desired precision in advance. The paper includes guidelines for experiment design 

and an illustrative example. 

         Inoue and Chick (1998) compared the Bayesian Approach and the frequentist 

approaches in the literature. First, Bayesian Approach for both known and unknown 

precision is introduced. Then, a bayesian model is constructed for multiple systems 

for dependent and independent cases. Finally, comparison of Bayesian Approach to 

classical approaches, under the normality assumption for both dependent and 

independent cases, is illustrated. Although Bayesian Approach produced better 
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results, the differences between the proposed approach and the other approaches are 

not significant. 

         Ahmed and Alkhamis (1999) presented a new iterative method that combines 

the simulated annealing method and the ranking and selection procedures for solving 

discrete stochastic optimization problems. 

         Olafson (1999) developed a new algorithm for simulation based optimization 

where the number of alternatives is finite but very large. The method combines the 

Nested Partitions (NP) method for global optimization and Rinott’s two-stage 

procedure. 

         Goldsman and Marshall (1999) modified Rinott’s procedure. Instead of using 

classical variance estimators, variance estimators arising from the method of 

Standardized Time Series (STS), are used. STS variance estimators have more 

degrees of freedom according to Batch Means (BM) variance estimators. On the 

other hand STS variance estimators require more sample sizes to achieve the desired 

probability of correct selection. The paper stresses out this trade-off between STS 

and BM variance estimators. 

         Morrice et. al. (1999) conducted a sensitivity analysis on a ranking and 

selection procedure for making multiple comparisons of systems that have multiple 

performance measures. The procedure combines Multiple Attribute Utility (MAU) 

theory with ranking and selection. The analysis focused on the weights generated by 

the MAU procedure. Implementation of the analysis, on a simulation model of a 

large project that has six performance measures is illustrated. The impact of the 

sensitivity analysis on the results of the ranking and selection procedure is also 

discussed. 

         Kim and Nelson (2001) developed a new ranking and selection procedure, 

Fully Sequential Procedure (FPS), for indifference-zone selection. The motivation of 

the procedure is eliminating apparently inferior systems at the early stages of the 

experimentation thus reducing the computational effort. The procedure only requires 

normality and can handle dependence across systems. Actually, it is shown that 

inducing dependence increases the efficiency of the procedure. The results of 

different configurations for varying number of systems are presented in the paper. 

Comparisons to some existing procedures are also given.   

         Goldsman et. al. (2000) presented two ranking and selection procedures for use 

in steady state simulation experiments. Both procedures require independent and 
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normally distributed data. The procedures are extensions of Rinott’s procedure and 

Fully Sequential Procedure (FSP). They were modified to handle steady-state 

simulation. Experimental design and summary of the results are presented in the 

paper. 

         Chen and Kelton (2000) proposed a two stage selection procedure called an 

Enhanced Two-Stage Selection (ETSS) procedure. The main difference is required 

sample size for each system in the second stage is determined by both the variances 

of the sample means and the differences of the sample means of alternative designs. 

The procedure is compared to Rinott’s procedure. Several experiments under 

different conditions are performed to show the procedure’s validity. Results of the 

experiments are presented in the paper. 

         Nelson et. al. (2000) addressed the problem of selecting the best system when 

the number of alternatives is too large that ranking and selection procedures may 

require too much computation to be practical. A new approach, combining screening 

procedures with indifference-zone procedures, is proposed. A combined procedure 

may eliminate inferior systems at the first step and thus reduces the number of 

alternatives for attached indifference-zone procedure. Computational effort may be 

dramatically reduced according to stand-alone indifference-zone procedure. A 

general theory for constructing combined screening and indifference-zone 

procedures is presented. Several combined procedures are proposed. An empirical 

evaluation study and some results of the study are also given. 

         Nelson and Goldsman (2000) considered the problem of comparing finite 

number of systems with respect to a single system (standard). The goal is to find out 

if systems better than the standard exist, and if so, to determine the best of 

alternatives. Two-stage experiment design and analysis procedures are proposed. The 

analysis is based on variety of scenarios including dependence across systems. A 

couple of methods for estimating the critical constants required by the proposed 

procedures are provided. A portion of an extensive empirical study and 

demonstration of one of the procedures are presented in the paper. 

         Hedlund and Mollaghasemi (2001) developed a methodology based on a 

genetic algorithm in conjunction with an indifference-zone selection procedure under 

common random numbers (CRN). The method is applied to a stochastic 

mathematical model. Results are presented in the paper. 
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         Chen (2001) discussed the validity of using common random numbers (CRN) 

with two-stage selection procedures to improve the probability of correct selection. 

An experimental study is performed using several procedures including Rinott’s 

procedure and an Enhanced Two-Stage Selection (ETSS) procedure. It is shown that 

when CRN was employed, the procedures returned better results compared to 

independent case. Experimental design and the results are presented in the paper. 

         Chen (2002) brought a conservative adjustment to ETSS procedure to increase 

the probability of correct selection. An experimental study is conducted and the 

results, which show the efficiency of the adjustment, are presented in the paper. 

Comparisons to Rinott’s procedure and original ETSS procedure are also given. 

         Boesel et. al. (2002) considered the problem of finding the best system when 

the number of systems is large and initial samples from each system have already 

been taken. This situation may be encountered when a heuristic search procedure has 

been applied in a simulation optimization context. The true best system may not be 

the system that the search procedure indicates because of the stochastic variation. 

Some statistical procedures that return the best system encountered by the search 

with a pre-specified probability are developed. An empirical study and the results are 

presented in the paper. 

         A summary of the R&S procedures is given in Table 2.2:  
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Procedure Equal 
variance 

Known 
variance 

Balanced 
first sampling Dependence Normality # of stages Type 

Rinott (1978) No No Yes No Yes 2 IZ 
Dudewicz and Dalal() No No Yes No Yes 2 IZ 

Clark and Yang (1986) No No Yes Yes Yes 2 IZ 

Nelson and Matejcik (1993) Yes No Yes Yes Yes 2 IZ 

Nelson and Matejcik 
Two-stage MCB (1995) No No No No Yes 2 MCB 

BT (Bechhofer, Turnbull) (1978) Yes No Yes No Yes 2 IZ+MCB 

BEM (Bechhofer, Elmaghraby, Morse) 
 (1959) No No Yes No Yes 1 MSA 

BG (Bechhofer, Goldsman) (1986) No No Yes No Yes Seq. MSA 

AVC (Miller, Nelson, Reilly) (1998) No No Yes Yes Yes 1 MSA 

Nelson and Goldsman (2000) No No Yes No Yes 2 CWS 

Goldsman and Marshall (Rinott+STS)  
(1999) No No Yes No Yes 2 IZ 

Table 2.2. Some of the R&S procedures in the literature. 
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Procedure Equal 
variance 

Known 
variance 

Balanced 
first 

sampling 
Dependence Normality # of stages Type 

ETSS (2000) No No Yes No Yes 2 IZ+SS 

Fully Sequential Procedure (2000) No No Yes Yes Yes Seq. IZ 

Screen-to-the-best (Nelson et. al.) 
(2000) No No Yes Yes Yes 1 SS 

Combined Procedure (Nelson et. al.) 
(2000) No No Yes No Yes 2 IZ+SS 

Group Screening (Nelson et. al.) 
(2000) No No Yes No Yes 2 IZ+SS 

Tukey () Yes No No No Yes 1 MCP 

Gupta (1956) Yes No Yes No Yes 1 SS 

IZ : Indifference-zone selection MSA : Multinomial Selection Approach MCP : Multiple Comparison Proc. 

SS : Subset Selection MCB : Multiple Comparisons with the Best CWS : Comparison with Standard 

Note : “Yes” means that the method requires (or allows in “dependence” case) the feature that reads in the column head, while “No” 
means the opposite. 
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CHAPTER 3 
 

PROPOSED STUDY 
 
3.1. Methodology 

 
         As we stated in the first chapter, the aim of this study is to investigate the 

effects of the Fully Sequential Procedure (FSP) when embedded in Tabu Search 

(TS). TS, when applied in simulation optimization context, uses simulation as an 

evaluator. In each iteration, a solution is selected as the best among the neighbours. 

This best solution is used as a starting point for next iterations, i.e., the new 

neighbourhood set is generated according to this solution. The efficiency of the 

search is directly related to selecting the best (or near best) solution in each step. 

Selecting the best solution in each step makes the search to converge quickly to the 

optimal (or near optimal) solution. Hence, the computational effort is reduced. 

         An ordinary TS algorithm uses arbitrary number of replications when 

evaluating the neighbours to find the best among them. This is, take an arbitrary 

number of replications, say n, from each alternative, and select the solution with 

largest average value (in a maximization problem) as the best. Due to stochasticity, 

this approach may lead the search to the wrong directions or it may make the search 

delayed especially when n is small. It is even worse when the size and the 

complexity of the problem increase. 
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         At this point, we think if a Ranking and Selection (R&S) algorithm, which 

guarantees the best selection with a certain probability, is used then the efficiency of 

the search might be improved. We expect better solutions with decreased number of 

iterations. On the other hand, wrong selection in any iteration does not always mean 

the search will not end up with a good (near optimal) solution. If this is the case then 

employing a R&S algorithm is useless. And considering the additional computational 

effort, it is certainly beneficial not to employ it. This is a trade-off and we will be 

examining this trade-off in the following sections. The next two sections describe the 

TS and FSP respectively, while the remaining sections present analysis and results of 

our approach when applied on a various system designs. 

3.1.1. Tabu Search 
 

         Tabu Search is an iterative search heuristic due to Glover (1986). It is designed 

to solve combinatorial optimization problems. Classical optimization techniques are 

inefficient to solve these problems because of the computational intractability of the 

problems when the size of the problem gets larger. To overcome this difficulty 

heuristic methods were developed. Although these methods do not guarantee the 

optimal solution, they provide good (close to optimal) solutions. TS is one of the 

most known and the most efficient of these methods. It has many application areas 

including production scheduling, location allocation, telecommunication, routing, 

and graph optimization. 

         The key features of TS are intensification and diversification strategies, and its 

utilization of memory (history). Intensification is, as the name implies, to intense the 

search around promising or good solutions to improve the objective function value, 

while the diversification means to direct the search to the new compromising regions 

to avoid being trapped by the local optima.  

         Memory plays very important role in implementing these strategies. Recency 

based (short term) memory keeps track of recent solutions. Recently encountered 

solutions are classified as tabu, and for a certain number of iterations, which is called 

tabu tenure, the search cannot move into those solutions. This prevents the search 

from going into a cycle. Frequency based (long-term) memory, on the other hand, 

records solutions encountered by the search. The frequent solutions according to this 

memory may be penalized to diversify the search. Also the search may be restarted to 
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thoroughly search the neighbourhood of the good (elite) solutions in the long-term 

memory. 

         If a solution is tabu then this solution is ignored by the search even it is the best 

solution in the neighbourhood. There are a couple of ways to make tabu 

classifications. One of them is using a part of a solution e.g., one of the solution 

variables, and another one is using the solution itself (the whole solution). In the 

former case tabu list is designed to record any part of the solution (any solution 

variable). To determine whether a solution is tabu or not, solution variables are 

compared to counterparts in the tabu list. For example, suppose a solution consists of 

five solution variables, ),,,,( 54321 xxxxxx = . And tabu list at some iteration of the 

search is formed as (just illustration purposes): 

Variable Value Tenure
1x  or 1 5 3 

2x or 2 3 2 

3x  or 3 3 3 

4x or 4 1 2 

5x or 5 2 1 
 

         This means if variable 1x  of a solution is equal to 5 then that solution becomes 

tabu (classified as tabu). And this situation continues for the next three iterations 

since tabu tenure equals to 3. Similar explanations are valid for the other variables. 

Note that actually tabu list has more elements than it is shown in the table. In the 

latter case in which the tabu classification is made by looking the whole solution, the 

picture of the tabu list becomes the following:  

 

Tabu Solution Tenure
(5,2,3,4,4) 5 
(5,3,3,3,4)      4 
(4,3,3,3,3) 3 
(4,4,3,3,3) 2 
(3,4,4,3,4) 1 

 

         The solution (5,2,3,4,4) is tabu and following 5 iterations the search cannot 

move into this solution. But there are no restrictions for the variables in the solution. 

For example, the solution (5,2,3,4,3) is not tabu. The last variable of the solution 
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prevents it from being tabu. This kind of tabu classification is less restrictive than the 

former one. 

         Tabu status of a solution can be overridden according to some criterion. This is 

called aspiration criterion. There are several types of aspiration criterion. For 

example, if the objective function value of the tabu solution is better than the best 

solution encountered by the search so far then the tabu status of the solution is 

overridden. If all solutions in the neigbourhood are tabu then tabu status of the best 

solution is overridden.  

         Another important issue in TS is the generation of the neighbourhood set. The 

efficiency of the search can be improved by implementing clever neighbourhood 

generation algorithms that make use of memory. By utilizing memory better search 

directions can be found, and neighbourhood generation algorithm may focus on these 

directions. 

3.1.1.1. Tabu Algorithm 
 

         Here is the Tabu Search algorithm.  

Step1 : Start with an initial Xx ∈  and let xxbest = . Set the iteration counter, 0=c , 

and empty the tabu list, ∅=T . 

Step2 : If stopping criteria is satisfied, i.e., simple iteration count or a certain 

improvement has been made etc., then stop and return bestx . 

Step3 : Generate )(xN , neighbourhood set to the current solution. Evaluate the 

neighbours and select the best, newx , if it is not classified as tabu, i.e., it is not in the 

tabu list, Txnew ∉ . If it is in the tabu list, but satisfies aspiration criterion, 

)()( bestnew xfxf > (in a maximization problem), then still select the solution as the 

new current solution. Otherwise select the second best solution as the new current 

solution. 

Step4 : If )()( bestnew xfxf >  then set newbest xx = . 

Step5 : Increase iteration count, update tabu list, T, by adding newx  to the list, and 

decreasing the tabu tenures of the solutions in the tabu list. If tabu tenure of a 

solution is zero then remove the solution from the list. Goto Step2.  

x  denotes solution vector, 

X  denotes solution space, 
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T denotes tabu list, 

bestx  denotes best solution so far, 

)(xf  denotes objective function, and 

)(xN  denotes neighbourhood set of x . 

 

         One can refer to Glover (1989) and Glover and Laguna (2002) for better 

understanding of TS. 

3.1.2. The Fully Sequential Procedure (FSP) 
 

         The Fully Sequential Procedure (FSP) is a sequential, indifference-zone 

Ranking and Selection (R&S) algorithm proposed by Kim and Nelson (2000). It is 

designed to reduce computational effort by eliminating clearly inferior alternatives at 

the early stages of the experimentation. The procedure only assumes normally 

distributed data. It can handle unknown and unequal variances, and dependence 

across systems. Actually it is shown that employing Common Random Numbers 

(CRN) increases the efficiency of the procedure. 

3.1.2.1. The Fully Sequential Algorithm (Kim and Nelson (2000)) 
 

        The algorithm is directly excerpted from Kim and Nelson (2000). 

Setup: Select confidence level α−1 , indifference zone δ  and first stage sample size 

20 ≥n .   Calculate c and η  as described below. 

Initialization: Let { }kI ,...,2,1=  be the set of systems still in contention, and let 

)1(2 0
2 −×= nch η . 

Obtain 0n  observations 0,...,2,1 , njX ij =  from each system ki ,...,2,1= . 

For all li ≠  compute  
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Here 1+Ni  is the maximum number of observations that can be taken from system i. 

If ii Nn max0 >  then stop and select the system with the largest )( 0nX i  as the best. 

Otherwise set the observation counter 0nr =  and go to Screening. 
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Notice that )(rWil , which determines how far the sample mean from system i can 

drop below the sample means of the other systems without being eliminated, 

decreases monotonically as the number of replications r increases. 

Stopping Rule: If 1=I , then stop and select the system whose index is in I as the 

best. Otherwise, take one additional observation 1, +riX  from each system Ii ∈ and 

set 1+= rr . 

If 1max += ii Nr , then stop and select the system whose index is in I and has the 

largest )(rX i  as the best. Otherwise go to Screening. 

(Notice that the stopping rule can also be 1>= mI  if it is desired to find a subset 

containing the best, rather than the single best.) 

Constants: The constant c may be any nonnegative integer, with standard choices 

being 2,1=c ; these values are standard in the sense that they were used by 

Hartmann (1991), and that η  is easy to compute when 2or  1=c . We evaluate 

different choices later in the paper and argue that 1=c  is typically the best choice. 

The constant η  is the solution to the equation  
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where I is the indicator function. In the special case that 1=c we have the closed-

form solution 
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         At screening process each alternative is compared to the remaining alternatives 

in the set. If it is inferior to any of the other alternative then it is eliminated from the 

set. If it survives from the comparisons it stays in the set for further inspection. 

Comparisons are done in the following manner (in a maximization problem). If a 

system’s sample mean is bigger than or equal to the any other system’s sample mean 

minus a function value called xyW then this system passes the comparison. Otherwise 

it is eliminated. For example, let 20)( =rX i  be the sample mean of system i, and let 

22)( =rX j  be the sample mean of system j, and 3)( =rWij . If 

)()()( rWrXrX ijji −≥  then the system i passes the test, and it is compared with 

other systems in the same manner. If it passes all the tests then it stays in the set for 

further inspection. Since 1932220 =−>  system i passes the test. If 1)( =rWij  then 

the system i could not pass the test, and it would be eliminated by system j.  

         )(rWij  function, which is used in pairwise comparisons, monotonically 

decreases as the number of replications r increases. This function can be thought as a 

range (or window). The length of the range decreases with every additional iteration, 

and it becomes difficult for a system, which is not the true best, to stay in the set. 

When the length of the range reaches zero, if there are more than one alternative in 

the set then the alternative with the largest sample mean selected as the best. 

Statistically there is no difference between the alternatives in the set and any of them 

can be the true best. But, in most cases, the best is found before the length of the 

range ( )(rWij ) reaches zero. Following figure illustrates the graph of )(rWij :     

 

 

 

 

 

 r

)(rWij

Figure 3.1. The graph of )(rWij  
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         It can be seen that the )(rWij  quickly decreases in the early stages to eliminate 

the clearly inferior systems. Towards the end it slowly decreases to get rid of the 

possibility of wrong decision. The alternatives those survive towards the end of the 

stages should be carefully compared. 

         The validity of the procedure has been proven in the paper. Design of the 

procedure including choice of c, whether or not to use CRN, and the effect of the 

batch size is examined. The results of the experimental study performed to compare 

FSP to two other R&S algorithms namely Rinott’s (1978) procedure and 2SP 

proposed by Nelson et. al. (2000), are illustrated in the paper. 

 
3.2. Experimental Settings 

3.2.1. Manufacturing Problem 
 
         Our first problem is a production problem that is introduced by Law and 

McComas (2002). Since this problem is a test problem in simulation optimization 

area, we decided to start implementing our methodology with this problem. 

Following figure illustrates the outline of the production facility. 

 

 

 

 

 

 

 

 

 

 

         As seen in the Figure 3.2. the production facility consists of four work stations 

and three buffers located between workstations. The machines at a specific 

workstation are identical. The number of machines at each workstation may be 

different from others. The processing times of the machines at each workstation are 

exponentially distributed with means (0.3333, 0.5, 0.2, 0.25) respectively. There is an 

infinite supply in front of the first workstation. The parts enter system from 

workstation 1 and leave from workstation 4.  

Machines Buffer Positions

WS1 WS2 WS3 WS4

Buffer 1 Buffer 2 Buffer 3

Infinite 
Supply 

Figure 3.2. The outline of the production facility. 
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         A part enters the system as soon as if there is an available machine at 

workstation 1. When a part completes its processing, it is transferred to succeeding 

buffer if there is enough room (position) for the part. Otherwise it blocks the 

machine. The machine remains blocked until the part moves. A part that is waiting in 

the buffer moves the succeeding workstation if there is an available machine at that 

workstation. If not then the part waits in the buffer until a machine at succeeding 

workstation becomes available. The transfer times are negligible.  

         The objective is to maximize the profit where each machine costs $250 and 

each buffer costs $10. We earn $2 per finished part. The objective (profit) function is 

formed as the following: 

P=finished parts*2 - total number of machines*250 - total number of buffer positions*10 

          

         The decision variables are the number of machines at each station and the 

number of buffer positions in each buffer. Let ),,,,,,( 7654321 xxxxxxxx = denotes a 

solution. The odd numbered variables 7531  and ,,, xxxx  represent the number of 

machines at workstations 1, 2, 3, and 4 respectively. And the even numbered 

variables 642  and ,, xxx  represent the number of buffer positions in buffer 1, 2, and 3. 

The objective function then can be formulated as follows: 

10)(250)(2parts finished)( 6424321 ⋅++−⋅+++−⋅= xxxxxxxxP  

         Although there are no limitations on the machine number at any workstation or 

the number of buffer positions in any buffer we put upper bounds on these variables 

for practical reasons. The maximum number of machines at any workstation will be 

3 and the maximum number of buffer positions in any buffer will be 8. These 

numbers are based on direct observations from Law and McComas (2002).  

         We developed a simulation model of the above problem to estimate the 

objective function. The model takes decision variables 7,..,2,1 , =ixi  as an input and 

gives the total profit. Model parameters are represented in Table 3.1: 

 

Parameter Value 
Run length (Hours) 920 

Warm-up period 
(Hours) 240 

WS1 WS2 WS3 WS4 Mean Processing Times 
(Hours) 0.3333 0.5 0.2 0.25 

 

Table 3.1. Model parameters of the production problem.
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         Although this simulation model can evaluate the solutions and give the output 

for a specific solution, it has nothing to do with optimization. It has to be used in 

conjunction with an optimization algorithm. TS can use this model as an evaluator in 

optimizing the objective function. At each iteration of TS, alternative solutions 

(neighbours) are evaluated using this model and the best solution is selected 

according to the simulation output.  

3.2.2. Inventory Control Problem 
 

           Our second problem is a single item single location continuous control 

inventory problem. We wanted to apply our methodology on different kind of system 

designs. Since inventory control problems are very common in real life, we decided 

to implement our methodology on this problem. It is taken from Yuksel (2000). The 

stored items are perishable. This means, after a time period, which is called shelf life, 

the items perish and become useless. The shelf life of the goods can be fixed or 

random. (s,S) policy is used to decide when to order and how much to order. 

         The inventory starts with S amount of goods. When a demand occurs, it is 

immediately met if there is enough amount of the item to meet the demand. 

Otherwise, the amount that could not be met is backordered. If the inventory level 

drops below a certain point s, re-order point, then an order is placed to raise the 

inventory level to S, order up to point. The order arrives after a certain time period, 

which is called lead-time. The backordered demands are met first when the order 

arrives. The items that fill their shelf lives are disposed. The items that are put 

inventory at the same time have the common shelf life. On the other hand, this shelf 

life could be fixed or random. 

         There are four types of cost incurred managing the inventory. The first one is 

the ordering cost, which is fixed and occurs when an order is placed. The second one 

is the holding cost. There is a unit cost of items during the time they are stored in the 

inventory. The third one is the backorder cost. If a demand cannot be met then it 

brings a certain amount of cost. Furthermore, it will cause the loss of customers’ 

goodwill. The backorder cost is time weighted. This means, a unit of backordered 

item will bring a certain amount of cost per unit time until it is met. The fourth type 

of cost is the perishing cost. When an item in the inventory completes its lifetime 
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then it becomes useless and is disposed. There is a cost per perished item. 

Assumptions of the inventory model are described below: 

- Single item single location, 

- Fixed or random shelf life (the shelf life of an item could be distributed 

exponentially or it could be gamma distributed), 

- The shelf life of all items in a batch is same, 

- The lead time is positive, 

- The FIFO rule applies, 

- (s,S) policy is used. 

         Inter-demand times are gamma distributed with the shape parameter 

04.0=idα and the coefficient of variation parameter 2=idβ . The demand quantities 

have a uniform distribution within the range U[0.5,1]. The shelf life of an item is 0.5 

time units in fixed case, and it is exponentially distributed with mean 5.0=slµ  in 

random case. The lead time is 1 time unit. The ordering cost is determined as $50. 

The holding cost is taken $1 unit per item. The time weighted backorder cost is set to 

$2 units per item. The perishing cost is $5 units per item. The following table 

summarizes the parameters of the system: 

 

Parameters Value 
Inter-demand times Gamma(0.04,2) 
Demand quantities Uniform[0.5,1] 

Shelf life 0.5 or 
Exponential(0.5) 

Lead time 1 
Ordering cost ($) 50 
Holding cost ($) 1 

Backorder cost ($) 2 
Perishing cost ($) 5 

Simulation run 
length 

1000 served 
customers 

Warm-up period 100 served customers 
      

         The objective is to minimize the total cost function. The total cost function is 

formed as: 

TC=Ordering cost + Holding cost + Backorder cost + Perishing cost. 

 

Table 3.2. The parameters of the inventory control problem. 
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         The decision variables are re-order point s, and order up to point S. A 

simulation model was constructed to estimate the total cost function. We try to 

optimize the objective (the cost) function using two different approaches as in the 

previous problem. These approaches were STS and TS+FSP respectively. Our aim is 

to compare these methods and examine the effects of the FSP on TS.  

3.2.3. Job Shop Problem 
 
         Our third problem is a job shop model. The model is taken from Law and 

Kelton (2000). Job shop production environments are part of many production 

facilities. We thought, it would be appropriate to apply our methodology on a job 

shop problem in order to be more realistic. There are five workstations and one 

input/output station in the shop. The machines in a particular station are identical. 

Jobs are transferred by forklift truck(s) from one station to another. The following 

figure illustrates the outline of the shop: 

 

 

 

 

 

 

 

 

 

 

 

         Jobs enter and leave the system through the station 6. The inter-arrival times of 

the jobs are exponentially distributed with mean 151=aµ  hours. There are three 

types of jobs namely job 1, job 2, and job 3 with probabilities 0.3, 0.5, and 0.2 

respectively. The jobs require a number of operations to be done. The number of 

operations depends on the type of the job. Each operation must be done at a specified 

workstation in a specified order. The routings of the jobs for each job type are 

illustrated in the following table: 

 

WS1 

WS4 WS3WS2 

Input/output station WS5 

Machines

Forklift Jobs

Figure 3.3. The outline of the job shop problem.
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                                          Table 3.3. The routings of the jobs. 

Job Type Workstations 

1 3-1-2-5 
2 4-1-3 
3 2-5-1-4-3 

 

         According to above table, a job of type 1 has to travel 3rd, 1st, 2nd, and 5th 

stations respectively in order to finish its processing and to leave the system. Of 

course, since jobs enter the system from station 6, the job first has to be moved to 

station 1 from station 6. Likely when the job finishes its processing at station 5, it has 

to be moved to station 6 to leave the system. A job is moved from one station to 

another by a forklift truck. A forklift truck moves at a constant speed of 5 feet per 

second. When a forklift becomes available, if there is more than one jobs waiting to 

be moved then the forklift processes the requests in increasing order of the distance 

between the forklift and the job. In other words, shortest distance first rule applies. 

The distances between stations are given in Table 3.4. When a forklift finishes 

moving a job to a station, it stays at that station if there is not any waiting job to be 

moved. On the other hand, when a job arrives at a station, if there is no available 

machine to process the job then the job joins a single FIFO queue at that station. 

Similarly, if there is not any forklift waiting in the 6th station, arriving jobs join a 

queue at the 6th station. 

 
                       

Stations 1 2 3 4 5 6 
1 0 150 213 336 300 150 
2 150 0 150 300 336 213 
3 213 150 0 150 213 150 
4 336 300 150 0 150 213 
5 300 336 213 150 0 150 
6 150 213 150 213 150 0 

 
 
         The processing time of a particular machine is a gamma random variable with 

shape parameter of 2 whose mean depends on the job type and the workstation to 

which the machine belongs. The mean processing times for each job type and each 

operation is given in the following table: 

 

 

Table 3.4. The distances between the stations (in feet).
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Job Type Mean processing time 
1 0.25 - 0.15 - 0.10 - 0.30 
2 0.15 - 0.20 - 0.3 
3 0.15 - 0.10 - 0.35 - 0.20 - 0.20 

 
         When a machine finishes processing a job, it remains blocked until a forklift 

removes the job. 

         We built a simulation model for this system design to use it as an evaluator in 

TS. A simulation run lasts 920 hours where the first 120 hours constitute the warm-

up period.  

         The decision variables are the number of machines at the workstations and the 

number of forklifts. Let ),,,,,( 654321 xxxxxxx = denote a solution where 

54321  and ,,,, xxxxx  represent the number of machines at each workstation 

respectively, and 6x  represents the number of forklifts. Our objective is to maximize 

the total profit function. We consider two cases with regard to the profit function. In 

the first case, all finished jobs are treated to be same and each has a common 

outcome, which is $2. Similarly each machine’s cost is same and set to $250, where 

a forklift truck costs $50. According to this setting the objective function is formed 

as: 

50250)(2jobs finished 654321 ⋅−⋅++++−⋅= xxxxxxP  

         In the second case, however, outcome of each job depends on its type and total 

processing time. This means, if the total processing time of a job is bigger than the 

other one then the outcome of the first job will be bigger than the second. For 

example, the total processing time of a job 3 is 1 hour, where it is 0.8 hours for a job 

1. Let the outcome of the job 3 be $2 then the outcome of the job1 will be 

0.8·2=$1.6. Additionally, we adjust the machine costs according to the total 

processing time at each workstation. We can calculate the total processing time for 

each workstation, and then calculate the machine costs according to these times. For 

example, the total processing times are 75.02.03.025.0 =++  and 

70.035.02.015.0 =++  for workstations 3 and 1 respectively. If we set the cost of a 

machine at the workstation 3 equal to $250 then the cost of a machine at workstation 

1 will be 33.233$75.0/2507.0 =⋅ . The adjusted profit and cost values for jobs and 

machines are given in the following table: 

Table 3.5. The mean processing times of the machines. 
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Job Types Profit ($) Machines at Cost ($) 
Job 1 1.6 Workstation 1 233.33 
Job 2 1.3 Workstation 2 83.33 
Job 3 2 Workstation 3 250 

  Workstation 4 116.66 
  Workstation 5 133.33 

 
         According to this table the total profit function can be formed as: 

50)33.13366.11625033.8333.233(       
23s job finished1.32s job finished1.61s job finished

654321 ⋅−⋅+⋅+⋅+⋅+⋅
−⋅+⋅+⋅=
xxxxxx

P
 

3.2.4. Three-stage Buffer Allocation Problem          
 

         Our fourth problem is very similar to the first problem. It is taken from 

Pichitlamken and Nelson (2002). The system consists of three workstations and two 

buffers between them. Following figure illustrates outline of the system: 

 

 

 

 

 

 

 

 

 
         Each workstation has a single machine, which has an exponentially distributed 

processing time with rate 3 and 1,2,i , =iµ . This is the main difference from the first 

problem. Apart from that, the two systems operate exactly the same way. 

         However, our decision variables and objective function are changed. This time 

our objective is to maximize the throughput, which is defined as the average output 

of the system per unit time. The decision variables are the service rates and the buffer 

sizes. Let ),,,,( 54321 xxxxxx =  denote a solution then the 321 ,, xxx are the service 

rates for workstations 1,2, and 3 respectively, where the 54  xand x  are the number of 

buffer positions in each buffer. There are also some constraints over decision 

variables. These are: 

Table 3.6. The adjusted profits/costs of jobs/machines.

Single server Buffer Positions 

WS1 WS2 WS3 

Buffer 1 Buffer 2

Infinite 
Supply 

Figure 3.4. The outline of the three-stage buffer allocation problem. 
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         The simulation run length is set to 2050 parts are served. The warm-up period 

is the first 2000 parts. This means the throughput is calculated over 50 parts. 

         The results of the experimental study covering these four systems will be 

illustrated in the following chapter. 
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CHAPTER 4 
 

EXPERIMENTAL RESULTS 
 
4.1. Manufacturing Problem 

4.1.1. The Construction 
 
         We developed a TS algorithm to optimize above problem. A whole solution is 

decided to be tabu since it is less restrictive. Tabu list records whole solution instead 

of any solution variable. If a solution is in tabu list then it becomes tabu and it is 

ignored by the search. We decided tabu tenure to be 5, and the maximum number of 

iterations to be 30. If tabu tenure is too small then most probably the search will go 

into a cycle. Since a solution that becomes tabu is a very good solution around that 

neighbourhood, the search will select that solution as the best after a few iterations 

later and it will go into a cycle. On the other hand, if tabu tenure is too large then the 

search may be diverted from the neighbourhood of the real best solution. This causes 

the search to be delayed, which reduces the efficiency. Thus we intuitively thought 5 

would be a good choice considering the maximum number of iterations is 30. We 

observed that in most of the experiments the TS algorithm found the best solution far 

before the 30th iteration. So there was no reason to keep searching beyond the 30th 

iteration. Our stopping criterion is reaching maximum number of iterations. Our 

neighbourhood strategy is the following. At first we fix the number of buffer 

positions for a certain number (9) of iterations. Our aim is to find a good 

combination of the number of machines. At each iteration, the search records the 
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number of machines 7531  and ,,, xxxx  of the best solution. At the end of the ninth 

iteration, the most frequent machine numbers are calculated. Since these numbers are 

the most frequent they together constitute a good combination of the number of 

machines. For the next nine iterations we fix the number of machines and try to find 

a good combination of the number of buffer positions in each buffer. For example, 

suppose the following table shows the number of machines in the best solutions of 

first nine iterations: 

 

Iteration WS1 WS2 WS3 WS4
1 2 2 2 2 
2 2 3 2 2 
3 3 3 3 2 
4 3 3 2 2 
5 3 3 2 3 
6 3 3 2 2 
7 3 3 3 3 
8 3 3 2 2 
9 3 3 2 2 

 

         The most frequent numbers are 3,3,2,2 for the workstations respectively. For 

the following nine iterations this combination will be fixed, and the search will try to 

find a good combination of the number of the buffer positions.  

         We coded the simulation model in Borland Delphi 6.0 with the accompanying 

TS algorithm. There are two versions of the code. One version takes arbitrarily and 

pre-specified number of replications to evaluate the alternatives. We call this version 

Standard Tabu Search (STS). The other version uses FSP to evaluate the alternatives. 

We call this version TS with FSP (TS+FSP).   

         The number of replications to evaluate the neighbours (alternatives) was set to 

5 in STS. The number of replications for the first stage sampling 0n  for FSP was set 

to 5. The indifference zone parameterδ  was set to $10. If this parameter is too small 

then the computational effort increases dramatically. On the other hand, if it is too 

large then the probability of the wrong selection increases. Five experiments for each 

version with different initial solutions and with different random numbers were 

made. CRN was employed in both versions. The experiments were conducted on a 

Table 4.1. The number of machines in the best  
                 solutions of the first nine iterations.
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PC that has a Pentium 4 1.7 GHz processor with 256 MB RAM. The operating 

system on the computer is Microsoft Windows 2000 5.00.2195. 

4.1.2. Results 
 
         Following tables show the results of the STS and TS+FPS, respectively: 

 

STS 

Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

Total number 
of replications 

1 1 1 1 1 1 1 3 8 3 7 2 6 2 5935 161 5 10 1690 
3 3 3 4 2 3 2 3 7 3 7 2 6 2 5914 134 5 10 1505 
3 6 3 5 2 4 2 3 7 3 7 2 5 2 5945 133 5 10 1505 
2 4 2 4 2 4 2 3 8 3 7 2 5 2 5776 161 5 10 1790 
3 8 3 8 3 8 3 3 7 3 7 2 4 2 5946 134 5 10 1465 
 

 

TS+FSP (indifference zone=$10, 50 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

1 1 1 1 1 1 1 3 7 3 7 2 4 2 5912 205 20 11 1850 851 
3 3 3 4 2 3 2 3 8 3 7 2 5 2 5884 188 27 17 2695 1882 
3 6 3 5 2 4 2 3 8 3 7 2 4 2 5873 159 26 13 2010 964 
2 4 2 4 2 4 2 3 7 3 7 2 5 2 5897 188 27 11 2040 2311 
3 8 3 8 3 8 3 3 6 3 7 2 5 2 5889 160 22 15 1710 944 
 

         Best solution column represents the best solution found by the search. Value 

column shows the objective function value of the best solution in dollars. Number of 

visited solutions column represents the number of distinct solutions that are 

encountered by the search. Number of replications column represents the number of 

replications that were taken from each alternative to find the best among them. In 

TS+FSP this number varies because FSP keeps taking replications one at a time from 

each alternative until finding the best. Iteration number column shows the number of 

iteration that the best solution updated for the last time. This means after that 

iteration the search could not find a better solution. Total number of replications 

column represents the total number of replications that were taken up to iteration 

number. In TS+FSP table this column is further divided into two columns. The first 

column represents the total number of the replications that were taken during the first 

Table 4.2. The results of STS method.

Table 4.3. The results of TS+FSP method.
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stage sampling, while the second column represents the total number of the 

additional replications taken during the screening process.     

         When we look at the results we observe similarities in the solutions. The 

combination of the number of machines is same ‘3,3,2,2’ in all of the solutions. The 

number of buffer positions ‘7’ in buffer 2 is also common. The only difference is in 

the number of buffer positions in buffer 1 and 3. Solution values that are found by 

STS seem better than TS+FPS’s. Furthermore, when we compare the total number of 

replications, STS is much better than TS+FPS concerning computational effort. 

Actually total numbers of replications represented in the tables are exaggerated. 

Since we use same random numbers within each experiment, objective function 

value of a specific solution will not change throughout the search. So there is no need 

to evaluate solutions encountered before in STS. This is, record the objective 

function value of any solution encountered by the search, if this solution is needed to 

evaluate in the next iterations, instead of taking five replications again use the 

recorded value. This situation is a little bit different in TS+FSP case. Above 

approach can be used in first stage sampling since it has no differences with STS 

case. But when it comes to take additional replications, recorded values cannot be 

used. One additional replication must actually be taken. The first row of the total 

number of replications column then will be at most  805 = 5×161 in STS case. It will 

be at most 18618512055 =+×  in TS+FSP case.  

         When we compare the methods according to the number of visited solutions, 

STS is better than the other. It scanned smaller portion of the solution space to end 

up with good solutions compared to TS+FSP. 

         The methods almost similarly converged to the best solution (near optimal). In 

all of the experiments the best solution was found at 10th iteration in STS case. This 

number varied in TS+FSP between 10 and 18. The reason that the methods found the 

best solutions around 10th iteration lies in our neighbourhood generation algorithm. 

The algorithm tries to find a good combination of the number of the machines at the 

workstations for the first 9 iterations. After finding the combination, the number of 

buffer positions is determined. In a few number of iterations after 9th iteration, the 

methods find the best solution. Figure 4.1. and Figure 4.2. show the convergence of 

the methods for different initial solutions. We add STS-10 case in which the 

evaluations are based on 10 replications into the picture:      

 



 52

Convergence of the Methods
(initial solution 1111111)

1000
1300
1600
1900
2200
2500
2800
3100
3400
3700
4000
4300
4600
4900
5200
5500
5800
6100
6400

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Iteration

Th
e 

B
es

t S
ol

ut
io

n 
Va

lu
e

STS-5 STS-10 TS+FSP
 

 

         The convergences of the methods are almost same. This means, the idea of 

using TS+FPS to quickly converge to the best solution is proven wrong for this 

problem. The methods jumped to similar solutions at every iteration. But, STS used 

only five replications where TS+FSP used much more replications to statistically 

ensure the best selection.    
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         The picture is not different for the initial solution 3 6 3 5 2 4 2. This time we 

see STS-5 overestimated the best solution. Probably, the random numbers that were 

used caused this overestimation. When the number of replications increased i.e., in 

STS-10 and in TS+FSP it seems the overestimation was removed.   

Figure 4.1. The convergence of the methods when the initial solution is (1111111).

Figure 4.2. The convergence of the methods when the initial solution is (3 6 3 5 2 4 2).
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         When we look at the computational times that were spent by the methods, we 

observe that the STS method outperformed the TS+FSP. Table 4.4 shows the 

computational times in seconds for different experiments: 

 

STS TS+FSP 
Initial Solution Simulation 

Time 
Non-simulation 

Time 
Simulation 

Time 
Non-simulation 

Time 
Screening 

Time 
1 1 1 1 1 1 1 232.57 0.08 (0.03%) 423.53 0.12 (0.03%) 184.57 (43.5%) 
3 3 3 4 2 3 2 231.70 0.06 (0.03%) 473.78 0.08 (0.02%) 210.47 (44.4%) 
3 6 3 5 2 4 2 259.05 0.12 (0.05%) 471.85 0.11 (0.02%) 205.76 (43.6%) 
2 4 2 4 2 4 2 250.66 0.09 (0.04%) 655.43 0.20 (0.03%) 392.93 (59.9%) 
3 8 3 8 3 8 3 273.47 0.08 (0.03%) 556.87 0.17 (0.02%) 282.53 (50.7%) 

 

         The sum of the Simulation Time and the Non-simulation Time columns gives 

the total search time. The simulation time represents the time that is spent for 

simulation within the search. The non-simulation time represents the time that is 

spent for the other operations such as generation of neighbours, comparison of 

solutions, and maintaining the tabu list etc. The Screening Time indicates the total 

time that is spent for the screening process including the simulation time of 

additional replications. For example, in the TS+FSP method, the first experiment 

lasted 65.42312.053.423 =+  seconds. The 184.57 seconds of this time were spent 

for screening process. Note that the values within parenthesis are the percentages of 

related times over total search time.  

         When we look at the table, we observe that most of the simulation times were 

doubled in the TS+FSP method compared to the STS method. That is an expected 

result when we think the results in Table 4.2. and Table 4.3. The TS+FSP method 

took much more replications than the other. This caused the search to last much 

longer than the STS.  Looking closer one can observe the parallelism between these 

tables and the Table 4.4. Non-simulation time values seem negligible. On the other 

hand, screening times took almost the half of the total search time. The reason behind 

this situation is, most probably, that the smallness of the indifference zone parameter.   

         Although the above picture clearly shows that STS performed better than 

TS+FSP, one more analysis has to be done to be more definite. Since the solutions 

found by STS are results of only five replications, the objective function values of 

these solutions may be misleading. We took 100 replications of each solution 

founded by both methods. The following table represents the results: 

Table 4.4. The computational times of the methods. 
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Solution 
(STS) Value ($) Standard 

Deviation 
Solution 

(TS+FPS) Value ($) Standard 
Deviation

3 8 3 7 2 6 2 5861 123.4 3 7 3 7 2 4 2 5863 120.86 
3 7 3 7 2 6 2 5861 122.93 3 8 3 7 2 5 2 5863 121.27 
3 7 3 7 2 5 2 5865 122.39 3 8 3 7 2 4 2 5861 119.74 
3 8 3 7 2 5 2 5863 121.27 3 7 3 7 2 5 2 5865 122.39 
3 7 3 7 2 4 2 5863 120.86 3 7 3 7 2 6 2 5861 122.93 

 

         The values of the solutions are very close to each other. Although in some 

cases solutions found by TS+FPS seem better, the difference between values are 

insignificant. In other words, it is not worth additional computational effort. 

         We know that if we increase the first stage sampling size 0n , FSP performs 

better. So we decided to increase 0n  to 10 to see if TS+FSP could find better 

solutions. The following table shows the results of the five experiments: 

 

TS+FSP (indifference zone=$10, 100 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number of 
visited 

solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

1 1 1 1 1 1 1 3 8 3 7 2 5 2 5908 152 13 14 4501 51 
3 3 3 4 2 3 2 3 7 3 7 2 5 2 5887 134 10 10 3210 77 
3 6 3 5 2 4 2 3 7 3 7 2 5 2 5891 158 10 10 3210 123 
2 4 2 4 2 4 2 3 8 3 7 2 4 2 5893 187 11 13 4590 152 
3 8 3 8 3 8 3 3 7 3 7 2 4 2 5896 160 10 10 3130 185 
 

         The picture is not different than the previous one. Only required additional 

computation dramatically reduced at the cost of doubling 0n . Decreasing the 

indifference zone parameter can further increase the efficiency of the FSP. This also 

will increase the computational effort. But, since STS already found very good 

solutions, this approach seems meaningless. 

         Another point that should be stressed out is, as we said before, due to 

stochasticity one cannot be a hundred percent sure if a solution is optimal or not. It is 

clear from the tables that different random numbers direct us different solutions. 

Fortunately, these solutions are very close to each other and one of them can be 

selected as the best. Of course one can further inspect these solutions to find the real 

best among them, but most probably the gain will be insignificant considering the 

additional computation. 

Table 4.5. The performances of the solutions based on 100 replications.

Table 4.6. The results of TS+FSP method when 100 =n
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         As a conclusion TS+FSP did not perform better than STS contrary to our 

expectation. We thought simplicity of the problem caused that result. Even five 

replications are enough to distinguish good solutions from others. Only source of 

variability of the system is processing times of the machines. We thought if we could 

increase the system variability then this might have made it difficult to distinguish 

good systems taking small number of replications. First we decided to increase the 

processing time variability. We doubled the mean processing times of the machines 

at each workstation. The following tables illustrates the results:   

 

STS 

Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

Total number 
of replications 

1 1 1 1 1 1 1 3 7 3 7 2 4 2 1630 161 5 10 1750 
3 3 3 4 2 3 2 3 6 3 7 2 4 2 1620 160 5 10 1605 
3 6 3 5 2 4 2 3 6 3 7 2 4 2 1591 133 5 10 1755 
2 4 2 4 2 4 2 3 6 3 5 2 4 2 1583 187 5 30 5040 
3 8 3 8 3 8 3 3 6 3 5 2 4 2 1574 134 5 10 1265 

 

 

TS+FSP (indifference zone=$10, 50 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

1 1 1 1 1 1 1 3 6 3 7 2 4 2 1603 178 14 10 1715 323 
3 3 3 4 2 3 2 3 6 3 6 2 4 2 1605 160 18 12 1875 510 
3 6 3 5 2 4 2 3 6 3 5 2 4 2 1629 158 5 >30 - - 
2 4 2 4 2 4 2 3 7 3 5 2 5 2 1606 179 55 28 4955 4101 
3 8 3 8 3 8 3 3 6 3 7 2 4 2 1603 134 12 10 1715 1537 

 

         When we doubled the processing times the objective function values are 

reduced as expected. The solutions found by both methods still seem very close to 

each other. But, TS+FSP method requires much more replications to come up with 

these solutions. In the third experiment, TS+FSP method could not find a better 

solution from the initial. There may be two explanations for this situation. The first 

one is the initial solution is actually a very good solution. And the second one is, the 

FSP takes additional replications (more than 5) causing the sample means of the 

solutions are reduced to their real levels. Since the initial solution is evaluated based 

on 5 replications, the sample mean of the initial solution will be greater than the 

Table 4.7. The results of STS method with doubled processing times.

Table 4.8. The results of TS+FSP method with doubled processing times. 
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other solutions that are evaluated during the search. This situation causes the search 

could not find a better solution.  

         The results make us to conclude that there is no need to take more than five 

replications to distinguish the best system thus the FSP becomes useless again. 

Another way to increase the system variability is to add breakdowns for the 

machines. We added breakdowns to the machines in the following manner.   

         Since this system is a conceptual system, there is no available information 

about the distributions of the machine up times and down times. We used busy time 

approach described in Law and Kelton (2000) to model the machine breakdowns. 

According to this approach “the amount of the machine busy time before a failure 

has a gamma distribution with shape parameter 7.0=Bα  and the scale parameter 

Bβ  to be specified. The machine down time (or repair time) has a gamma 

distribution with shape parameter 4.1=Dα  and a scale parameter Dβ  to be 

determined.” Bβ  and Dβ  are calculated as the following: 
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where “the efficiency e is defined to be the long run proportion of potential 

processing time (i.e., parts present and machine not blocked) during which the 

machine actually processing parts.” It is calculated as: 
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where )B(EB =µ  mean amount of machine busy time before a failure and 

)D(ED =µ is estimate of machine down time.   

 

         We calculated these parameters by taking five replications of the model. We 

used the solution (3 8 3 7 2 4 2) as an input for the model. Because it is one of the 

good (near best) solutions and it is more appropriate than any unrealistic solution as 

(1 1 1 1 1 1 1). The following table shows the Bβ  and Dβ  for each machine: 
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Machine Efficiency Bβ  Dβ  
WS1 Machine1 0.685 5,180 1,190 
WS1 Machine2 0.679 5,040 1,190 
WS1 Machine3 0.680 5,072 1,190 
WS2 Machine1 0.991 394,107 1,785 
WS2 Machine2 0.990 366,007 1,785 
WS2 Machine3 0.989 323,990 1,785 
WS3 Machine1 0.658 2,757 0,714 
WS3 Machine2 0.542 1,691 0,714 
WS4 Machine1 0.789 6,709 0,892 
WS4 Machine2 0.692 4,015 0,892 

 

         Except for the machines at workstation 2, obtained results are not realistic. 

Machines up times before a failure are too small which is not the case in real life. 

Only for the machines at workstation 2 the parameters seem logical. So we added 

breakdowns for the machines at workstation 2. After a second thought we decided to 

add breakdowns for the machines at workstation 1 with the same parameters that 

were for the machines at workstation 2. It is logical because the parts enter the 

system from workstation 1, breakdowns at this station may affect the system 

variability. 

         We performed same experiments in previous case but this time with 

breakdowns. The following tables illustrate the results of STS and TS+FSP 

respectively:   

 

STS (with breakdowns) 

Initial 
solution Best Solution Value 

($) 

Number of 
visited 

solutions 

Number of 
Replications 

Iteration 
Number 

Total number of 
replications 

1 1 1 1 1 1 1 3 8 3 7 2 5 2 5799 161 5 10 1690 
3 3 3 4 2 3 2 3 8 3 7 2 4 2 5818 134 5 10 1510 
3 6 3 5 2 4 2 3 7 3 7 2 5 2 5804 133 5 10 1510 
2 4 2 4 2 4 2 3 7 3 7 2 5 2 5842 161 5 10 1790 
3 8 3 8 3 8 3 3 6 3 7 2 6 2 5796 134 5 10 1415 
 

 

 

 

 

 

 

Table 4.9. The values of Bβ  and Dβ  parameters of related machines. 

Table 4.10. The results of STS method with breakdowns.
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TS+FSP (indifference zone=$10, 50 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 
1 1 1 1 1 1 1 3 8 3 7 2 4 2 5845 206 37 17 2120 3882 
3 3 3 4 2 3 2 3 8 3 6 2 5 2 5832 161 37 12 1875 1296 
3 6 3 5 2 4 2 3 7 3 7 2 4 2 5837 186 29 17 2550 2443 
2 4 2 4 2 4 2 3 7 3 7 2 6 2 5845 188 22 13 2295 2891 
3 8 3 8 3 8 3 3 7 3 7 2 5 2 5871 161 23 11 1700 1586 
 

         As it is seen from the tables, solutions are very close to each other as in the 

previous case. Concerning computational effort we can clearly say STS is better than 

TS+FPS. It is understood from the results that adding breakdowns did change the 

variability of the system. Because, the additional computational effort was increased 

according to the previous case. The FSP needed to take much more additional 

replications to select the best solution. This situation is echoed in the computational 

times table. Table 4.12. shows the computational times for this case: 

 

STS TS+FSP 
Initial Solution Simulation 

Time 
Non-simulation 

Time 
Simulation 

Time 
Non-simulation 

Time 
Screening 

Time 
1 1 1 1 1 1 1 301.98 0.12 (0.04%) 691.28 0.18 (0.03%) 385.4 (55.7%) 
3 3 3 4 2 3 2 307.36 0.03 (0.01%) 622.71 0.33 (0.05%) 309.7 (49.7%) 
3 6 3 5 2 4 2 318.04 0.06 (0.02%) 782.29 0.23 (0.03%) 461.1 (58.9%) 
2 4 2 4 2 4 2 324.89 0.03 (0.01%) 1065.46 0.34 (0.03%) 737.6 (69.2%) 
3 8 3 8 3 8 3 316.81 0.03 (0.01%) 950.58 0.25 (0.03%) 610.7 (64.2%) 

 

         The screening times increased compared to the case without breakdowns. This 

is a direct result of increasing system variability by adding breakdowns to the 

machines. The long run performances of the best solutions found by both methods 

are shown below: 

 

Solution 
(STS) Value ($) Standard 

Deviation 
Solution 

(TS+FPS) Value ($) Standard 
Deviation

3 8 3 7 2 5 2 5779 133.93 3 8 3 7 2 4 2 5779 132.42 
3 8 3 7 2 4 2 5779 132.42 3 8 3 6 2 5 2 5773 133.45 
3 7 3 7 2 5 2 5779 133.68 3 7 3 7 2 4 2 5778 132.73 
3 7 3 7 2 5 2 5779 133.68 3 7 3 7 2 6 2 5777 133.94 
3 6 3 7 2 6 2 5770 134.95 3 7 3 7 2 5 2 5779 133.68 

 

Table 4.11. The results of TS+FSP method with breakdowns.

Table 4.13. The long run performances of the best solutions found by both methods. 

Table 4.12. The computational times of the methods. 
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         The convergence of the methods was similar with previous case. Figure 4.3. 

shows the convergence of the methods for a specific initial solution:   
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         It seems all three methods converged to the best solution in same precision. 

Again TS+FSP needed to take much more replications than the others.  

         In sum, we conclude that STS performed better than TS+FPS and our claim is 

failed for this problem.   

 

4.2. Inventory Control Problem 

4.2.1. The Construction 
 

         We used similar TS algorithm to the one that was used in the previous problem. 

The only difference is the neighbourhood generation algorithm. In this case, we 

properly decreased and then increased one of the decision variables while remaining 

the other fixed to generate neighbours around the current solution. In other words, 

the decision variables were made to vary in a range with respect to each other. The 

number of neighbours was set to 81. Adjusting the length of the range this number 

can be changed. For example, let the current solution be (-5,10) and range equal to 4. 

To generate the neighbours to this solution, first the algorithm fixes 5−=s  then S is 

increased and decreased as a multiple of 0.25 in the range 

25.041025.0410 ⋅+≤≤⋅− S . The neighbours of the solution (-5,10) according to 

this setting are (-5,9),  (-5,9.25),  (-5,9.5),  (-5,9.75),  (-5,10),  (-5,10.25),  (-5,10.5),  

Figure 4.3. The convergence of the methods when the initial solution is (2 4 2 4 2 4 2).
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(-5,10.75), (-5,11). In the following steps s is varied within the range 

25.04525.045 ⋅+−≤≤⋅−− s  and above process is repeated for every s. The 

following table shows the neighbours of the solution (-5,10): 

 

s S 
-6 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 

-5.75 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 
-5.5 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 

-5.25 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 
-5 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 

-4.75 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 
-4.5 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 

-4.25 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 
-4 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 

 

         We chose the whole solution to be tabu. The tabu tenure was set to 5 iterations. 

The simulation model and TS algorithm was coded in Borland Delphi 6.0. We 

applied the methods for both fixed and random shelf lives. The CRN was employed. 

The indifference zone was set to $200. This time we set the indifference zone 

parameter value relatively high to avoid the unnecessary computational effort. The 

confidence level was set to %95. The procedures were applied for 5 different initial 

solutions each with different random numbers. 

4.2.2. The Results 
 
         The following tables show the results of the first set of experiments where the 

shelf life was fixed to 0.5 time unit and the lead time was set to 1 time unit:  

 

STS 
Initial 

solution Best Solution Value 
($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

Total number of 
replications 

2 , 15 -10.25, 24  2791 840 5 16 6160 
2 , 10 -10 , 23.5 2767 910 5 17 6545 
2 , 5 -10.25 , 23.75  2779 1187 5 23 8855 
4 , 5 -10 , 23.75 2773 1219 5 26 10010 
-1 , 5 -10.25 , 24.25 2793 1180 5 22 8020 

 

 

 

 

 

Table 4.15. The results of STS method.

Table 4.14. The neighbours of the solution (-5,10).
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TS+FSP (indifference zone=$200, 50 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

2 , 15 -10.25 , 23.75 2784 868 5 19 7315 60 
2 , 10 -10 , 23.5 2781 928 6 16 6160 90 
2 , 5 -9.25 , 23 2774 1189 6 23 8855 7631 
4 , 5 -10 , 24.25 2777 1242 5 28 10780 7190 
-1 , 5 -9.75 , 24.25 2785 1123 5 27 10395 7585 

 

         The results of the procedures are very close to each other. The objective 

function values of related solutions are almost same. The difference between them is 

insignificant. It can be observed from Table 4.16. that the required number of 

replications that must be taken to distinguish the best system is 5 in most of the 

cases, and it is 6 in the remaining. This means, FSP did not need to take additional 

replications to select the best. This result may be interpreted as taking 5 replications 

is enough to find out the best system among the alternatives, and there is no need for 

further inspection. In this case, additional computational effort that is spent by FSP 

(e.g., calculating variances of the differences of the systems, screening process etc.), 

becomes useless. Why to spend time and money where one can select the best 

alternative by simply taking 5 replications.  

         When we look at the additional column under the total number of replications 

header, we observe the number of additional replications in the first two rows are 

very small when compared to remaining three rows. The initial solutions of these 

experiments caused this huge difference. Since the initial solutions are far from the 

best solution, their cost function values are incredibly high. For example, the total 

cost is $72490 for the solution (5,2). At the early stages of the search (e.g., first two 

or three iterations) the costs are still too high because the solutions at these iterations 

are in the neighbourhood of the initial solution. Since indifference zone 200$=δ  is 

too small compared to these high costs, FSP requires much more additional 

replication to select the best among these high cost valued solutions. When the cost 

values become reasonable ranges at the later iterations of the search, the required 

number of additional replications is reduced to zero. In fact 7559 out of 7631 

additional replications were taken in the first six iterations of the third experiment. 

This situation leads us to the following conclusion. If the initial solution is relatively 

close to the best solution then the computational effort is incredibly reduced.    

Table 4.16. The results of TS+FSP method.
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         The numbers of visited solutions are close for both methods. This can be 

interpreted as at each iteration both methods selected the similar or same solutions as 

the current solution. Since neighbours were formed according to these solutions, the 

procedures span the similar portions of the solution space. 

         When we compare the total number of replications, STS seems performed 

better than TS+FSP. Except one case (the second experiment), TS+FSP requires 

much more replications than STS. As for the computational times, the picture did not 

chance much according to the previous problem. Table 4.17. shows the 

computational times for both methods: 

 

STS TS+FSP 
Initial Solution Simulation 

Time 
Non-simulation 

Time 
Simulation 

Time 
Non-simulation 

Time 
Screening 

Time 
2 , 15 49.1 2.87 (5.53%) 49.3 3.32 (6.31%) 0.06 (0.12%) 
2 , 10 49.2 2.90 (5.57%) 49.3 3.48 (6.59%) 0.09 (0.17%) 
2 , 5 53.4 2.95 (5.23%) 111.7 3.58 (3.16%) 57.78 (50.15%) 
4 , 5 53.4 2.93 (5.21%) 87.8 3.57 (3.91%) 33.67 (36.84%) 
-1 , 5 53.4 2.99 (5.31%) 93.5 3.59 (3.70%) 39.57 (40.74%) 

 

         Note that the resemblance to the Tables 4.15 and 4.16. Different from the 

previous problem the non-simulation times were a little increased. The 

neighbourhood generation algorithm might cause this situation. The algorithm has 

many loops within loops to generate the neighbours. This might have taken a while.  

Again we need to look at the long run performances of the solutions to be able to 

truly compare the solutions. We took 100 replications of each solution. The 

following table shows the performances of the system based on 100 replications: 

 

Solution (STS) Value ($) Standard 
Deviation 

Solution 
(TS+FPS) Value ($) Standard 

Deviation
-10.25, 24  2822 54.66 -10.25 , 23.75 2820 51.36 
-10 , 23.5 2820 57.23 -10 , 23.5 2820 57.23 

-10.25 , 23.75  2820 51.36 -9.25 , 23 2819 57.15 
-10 , 23.75 2820 58.30 -10 , 24.25 2821 55.95 

-10.25 , 24.25 2819 55.78 -9.75 , 24.25 2834 64.33 
 

         According to these performances the solution (-10 , 23.75) can be selected as 

the best (near optimal). But it seems there is no significant difference between the 

most of the solutions.  

Table 4.18. The performances of the solutions based on 100 replications. 

Table 4.17. The computational times of the methods. 
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         Our results show that the convergences of the methods are almost same. Figure 

4.4. and Figure 4.5. show the convergences of the methods for different initial 

solutions. Note that STS-10 method, in which evaluations are based on 10 

replications, is added to the picture. 

Convergence of the Methods
(initial solution 2 ,15)

2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Itereation

Th
e 

B
es

t S
ol

ut
io

n 
Va

lu
e 

STS-5 STS-10 TS+FSP
 

 

 

Convergence of the Methods
(initial solution -1 ,5)
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         In the first graph the methods starts to converge after 10th iteration, while in the 

second they starts to converge after 16th iteration. Considering the different initial 

solutions this is an expected result.  

Figure 4.4. The convergences of the methods when the initial solution is (2,15). 

Figure 4.5. The convergences of the methods when the initial solution is (-1,5).
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         It seems FSP procedure could not meet our expectations for this problem 

instance either. It is strange that the best solution can be selected based on five 

replications. Different from the previous problem FSP did not require additional 

replications apart from first stage sampling. This result indicates, indeed, even only 

the small number of replications is enough to distinguish the best alternative among 

others.  

         Before conducting experiments with random shelf life, we wanted to examine 

the results when the size of neighbour was increased (doubled). We adjusted our 

neighbourhood generation algorithm such that it doubles the size at each iteration 

according to the previous case. The following tables illustrates the results: 

 

STS 
Initial 

solution Best Solution Value 
($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

Total number of 
replications 

2 , 15 -10.25, 24  2791 1214 5 10 8250 
2 , 10 -10 , 23.5 2767 1381 5 10 8250 
2 , 5 -10.25 , 23.75  2779 1850 5 15 12730 
4 , 5 -10 , 23.75 2773 1853 5 15 12730 
-1 , 5 -10.25 , 24.25 2793 1781 5 15 12730 

 

 

TS+FSP (indifference zone=$200, 50 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

2 , 15 -10.25 , 24.75 2719 1397 6 10 8250 117 
2 , 10 -10.25 , 24.25 2724 1530 6 13 10725 94 
2 , 5 -10.25 , 24 2726 1784 5 14 11550 11807 
4 , 5 -9.75 , 24.5 2725 1929 5 17 14025 10069 
-1 , 5 -9.25 , 23.25 2738 1774 5 15 12375 9532 

 

         The solutions found by the STS method are not different than the previous case. 

On the other hand, as expected, the numbers of visited solutions are increased since 

the search evaluates more solution points. Doubling the number of neighbours made 

the search quickly converge to the best according to the previous case. We can 

observe from the tables that the search found the best solutions at the earlier 

iterations compared to the previous case. This is also an expected result. Since more 

number of neighbours are evaluated, the search can find the best solution at the early 

iterations. However, the computational effort increases because of the same reason. 

Table 4.19. The results of STS method with doubled number of neighbour solutions. 

Table 4.20. The results of TS+FSP method with doubled number of neighbour solutions.
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Furthermore, doubling the number of neighbours make the search to evaluate clearly 

inferior solutions which also increases the computational effort. 

         Although the solutions that were found by TS+FSP method are a little different 

than the previous case, there is no significant difference between the solutions. Again 

the method converged quickly than the previous case at the cost of increased 

computational effort. As a result, keeping the number of solutions at a reasonable 

level is beneficial considering the computational effort.  

         We performed same experiments with random shelf life. The following tables 

illustrate the results: 

  

STS 
Initial 

solution Best Solution Value 
($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

Total number of 
replications 

2 , 15 -10.25 , 24 2993 1090 5 18 7110 
2 , 10 -11.75 , 24.25 2984 1045 5 20 7900 
2 , 5 -10.25 , 23.25 3022 1171 5 30 11850 
4 , 5 -11.25 , 24.25 2985 1368 5 28 11060 
-1 , 5 -11 , 24 2994 1251 5 23 9085 

 

 

TS+FSP (indifference zone=$200, 50 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

2 , 15 -11.75 , 24.5 3016 1019 15 23 9085 4537 
2 , 10 -11 , 24.25 3004 1029 13 18 7110 2945 
2 , 5 -12.25 , 25 3004 1292 14 29 10455 15521 
4 , 5 -11.25 , 24.75 2982 1347 20 30 11850 11757 
-1 , 5 -11.75 , 25.5 3005 1181 21 25 9875 14709 

 
 
         The solutions that were found by either method seem close to each other. The 

objective function values were a little raised according to the previous case. The 

computational effort was increased in TS+FSP method with regard to fixed shelf life 

case. This can be explained by additional variability that was added by introducing 

random shelf lives. As expected, FSP procedure required more replications to 

distinguish the best system. But the picture was not change. STS still ended up with 

good solutions in spite of the increased variability. It is confusing that one needs to 

Table 4.21. The results of STS method with random shelf lives.

Table 4.22. The results of TS+FSP method with random shelf lives.
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take huge number of replications in order to statistically ensure the best selection, 

where actually taking five replications is quite enough to select the best alternative.  

         One can claim that the main reason behind this situation is utilizing TS. But, 

since we used same random numbers within each experiment, it is not different 

gathering for example, 1090 solutions (the number of visited solutions by STS 

method in the first experiment) in to a pool and to evaluate them based on 5 

replications to select the best solution among them. In this point of view FSP or any 

other R&S procedure become meaningless. Of course, we cannot generalize this 

statement but the two problems that we examined so far make us to come this 

conclusion. 

         To be fair we again looked the long run performances of the solutions and the 

convergences of the methods. Table 4.23. shows the long run performances of the 

solutions and the following graphs illustrate the convergences of the methods: 

 

Solution (STS) Value ($) Standard 
Deviation 

Solution 
(TS+FPS) Value ($) Standard 

Deviation 
-10.25 , 24 3079 104.70 -11.75 , 24.5 3058 82.55 

-11.75 , 24.25 3045 71.39 -11 , 24.25 3061 95.34 
-10.25 , 23.25 3064 90.41 -12.25 , 25 3052 64.19 
-11.25 , 24.25 30.51 94.57 -11.25 , 24.75 3060 101.74 

-11 , 24 30.54 83.21 -11.75 , 25.5 3071 95.52 
 

         As it can be observed the long run performances of the solutions are close to 

each other. The solution (-11.25,24.25) seems a little better than the others. Thus, it 

can be selected as the best solution. Figure 4.6. and Figure 4.7. illustrates the 

convergence of the methods for different initial solutions: 

 

Table 4.23. The performances of the solutions based on 100 replications. 
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         The convergences of the methods are almost same. After 12th iteration methods 

starts to converge to the best solution. 

 

Convergence of the Methods
(initial solution 4 ,5)
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         In this sample, the methods start to converge to the best solution at the late 

iterations of the search. The distance of the initial solution from the best (near 

optimal) solution can explain this situation. Although the methods converge 

similarly, this figure does not have the smoothness of the other examples.  

Figure 4.6. The convergences of the methods when the initial solution is (2,10).

Figure 4.7. The convergences of the methods when the initial solution is (4,5). 
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4.3. Job Shop Problem 

4.3.1. The Construction 
 

         Similar TS algorithm was used to optimize the problem. At each iterartion, the 

neighbourhood generation algorithm generates 64 neighbours. The algorithm is 

based on decreasing and increasing solution variables by 1, respectively. For 

example, let (2 2 2 2 2 2) be a solution. The two neighbours of this solution are (1 1 1 

1 1 1) and (1 1 1 1 1 3). As it seen, the last solution variable is increased and 

decreased by 1 while the others are decreased by 1. If we continue, (1 1 1 1 3 1) and 

(1 1 1 1 3 3) are other two neighbours. At final step, the neighbours will be (3 3 3 3 3 

1) and (3 3 3 3 3 3). This can be thought as a loop in loop. We chose the whole 

solution to be tabu. The tabu tenure was set to 5 iterations.  

         The simulation model and TS algorithm was coded in Borland Delphi 6.0. We 

applied the methods for both fixed and random shelf lives. The CRN was employed. 

The indifference zone was set to $200. The confidence level was set to %95. The 

procedures were applied for 5 different initial solutions each with different random 

numbers. 

4.3.2. The Results 
 

         As we stated in the third chapter, there are two cases with regard to the 

objective function. Following tables show the results of the first case where the 

profits of the jobs equal to each other and the costs of the machines at different 

workstations are the same: 

  

STS 
Initial 

solution Best Solution Value 
($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

Total number of 
replications 

4 1 4 2 2 2 7 2 9 6 5 3 16569 806 5 5 1585 
6 3 6 4 6 5 7 2 9 6 5 2 16660 748 5 3 955 
2 2 2 2 2 2 7 3 9 6 5 3 16552 886 5 7 2220 
3 2 4 3 2 1 7 2 8 6 4 3 16851 764 5 4 1270 
8 6 8 6 8 5 7 3 9 6 5 4 16447 748 5 3 955 
 

 

Table 4.24. The results of STS method.
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TS+FSP (indifference zone=$150, 50 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

4 1 4 2 2 2 7 2 9 6 5 3 16552 646 5 5 1815 0 
6 3 6 4 6 5 7 2 9 6 5 2 16678 584 5 3 955 0 
2 2 2 2 2 2 7 3 9 6 5 3 16531 926 5 7 2215 0 
3 2 4 3 2 1 7 2 8 6 4 5 16918 836 5 4 1270 0 
8 6 8 6 8 5 7 3 9 6 5 4 16434 784 5 3 955 0 
 

         The solutions found by both methods are almost same. The only difference is in 

the fourth experiment. But the difference is only in the number of forklifts. The 

numbers of machines are same. When we look at the values they are close to each 

other as a result. Note that the two procedures found the best solution at the same 

iterations. The numbers of replications are same for all experiments. Another point 

is, the FSP did not require to take additional replications. Since we selected the 

indifference zone parameter as $150, the FSP could distinguish the best system from 

the first stage sampling and at screening process inferior solutions were eliminated at 

once. If we had selected the indifference zone parameter as a smaller amount than the 

above one then the FSP would have required to take additional replications. 

         It seems taking five replications is enough to select the best system for this 

problem instance too. Employing FSP did not help to improve either the solution 

quality or convergence to the best. The computational times are still favourable to the 

STS method. Table 4.26. shows the computational times: 

 

STS TS+FSP 
Initial Solution Simulation 

Time 
Non-simulation 

Time 
Simulation 

Time 
Non-simulation 

Time 
Screening 

Time 
4 1 4 2 2 2 13079.8 6.89 (0.05%) 16372.6 492.8 (2.92%) 543.5 (3.22%) 
6 3 6 4 6 5  11662 6.43 (0.05%) 17396.4 449.6 (2.63%) 467.2 (2.61%) 
2 2 2 2 2 2  17010.3 2.82 (0.02%) 19977.5 494.6 (2.41%) 513.6 (2.50%) 
3 2 4 3 2 1 13994.8 7.74 (0.05%) 18752.1 437.7 (2.28%) 436.4 (2.27%) 
8 6 8 6 8 5 10338.9 2.93 (0.03%) 13358.7 595.8 (4.26%) 606.4 (4.34%) 

 

         Simulation time of this problem is much longer than the others. Thus, it has the 

longest total search time. Strangely, the non-simulation time in the TS+FSP method 

was incredibly increased compare to STS. The following table shows the long run 

performances of the solutions found by both methods:  

Table 4.25. The results of TS+FSP method.

Table 4.26. The computational times of the methods. 
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Solution 
(STS) Value ($) Standard 

Deviation 
Solution 

(TS+FPS) Value ($) Standard 
Deviation 

7 2 9 6 5 3 16598 221.23 7 2 9 6 5 3 16598 221.23 
7 2 9 6 5 2 16645 215.39 7 2 9 6 5 2 16645 215.39 
7 3 9 6 5 3 16348 223.81 7 3 9 6 5 3 16348 223.81 
7 2 8 6 4 3 16850 165.37 7 2 8 6 4 5 16837 168.34 
7 3 9 6 5 4 16298 225.84 7 3 9 6 5 4 16298 225.84 

 

         The solution (7 2 8 6 4 3) can be selected as the best solution since it has a 

better objective function value with lower standard deviation. Figure 4.8. and Figure 

4.9 show the convergences of the methods for different initial solutions:  

 

 

Convergence of the Methods
(initial solution: 4 1 4 2 2 2)
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         The methods converge exactly in the same fashion. After three or four iteration 

all methods seem to reach the best solution. This is an expected result since STS and 

TS+FSP took same number of replications. 

Table 4.27. The performances of the solutions based on 100 replications. 

Figure 4.8. The convergences of the methods when the initial solution is (4 1 4 2 2 2).
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Convergence of the Methods
(initial solution: 2 2 2 2 2 2)
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         The figure is not change for this instance either. Only the methods converged a 

little late according to the previous one. The distance between the initial solution and 

the best solution caused this situation. 

         The following tables show the results of the second case where the profits of 

the finished jobs and the costs of the machines calculated based on the total 

processing times:  

 

STS 
Initial 

solution Best Solution Value 
($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

Total number of 
replications 

4 1 4 2 2 2 7 2 9 6 5 3 12788 1086 5 5 1585 
6 3 6 4 6 5 7 2 9 6 5 2 12848 1036 5 3 955 
2 2 2 2 2 2 7 3 9 6 5 3 12862 888 5 7 2215 
3 2 4 3 2 1 7 2 8 6 4 3 12991 1120 5 4 1270 
8 6 8 6 8 5 7 3 9 6 5 2 12871 1032 5 3 955 

 

 

TS+FSP (indifference zone=150$, 50 =n ) 
Total number of 

replications Initial 
solution Best Solution Value 

($) 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

4 1 4 2 2 2 7 2 9 6 5 3 12834 806 5 25 12815 0 
6 3 6 4 6 5 7 2 9 6 5 2 12860 704 5 3 955 0 
2 2 2 2 2 2 7 3 9 6 5 3 12845 776 5 7 2215 0 
3 2 4 3 2 1 7 2 8 6 4 3 13036 844 5 4 1370 0 
8 6 8 6 8 5 7 3 9 6 5 2 12830 816 5 3 955 0 

Table 4.28. The results of STS method.

Table 4.29. The results of TS+FSP method.

Figure 4.9. The convergences of the methods when the initial solution is (2 2 2 2 2 2).
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         Both methods found same solutions. Again taking five replications is enough to 

select the best system. Except from the first experiment, the best solutions were 

found at the same iterations. The random numbers might have caused this situation. 

It seems at the early iterations of the search, a solution’s expected value was 

estimated high due to random numbers, and it was selected as the best solution. After 

that it took a while that the search to find the best solution. We need to look at long 

run performances of the solutions to distinguish the real best. The following table 

shows the performances of the solutions based on 100 replications:  

 
 

Solution 
(STS) Value ($) Standard 

Deviation 
Solution 

(TS+FPS) Value ($) Standard 
Deviation 

7 2 9 6 5 3 12796 166.55 7 2 9 6 5 3 12796 166.55 
7 2 9 6 5 2 12843 160.99 7 2 9 6 5 2 12843 160.99 
7 3 9 6 5 3 12712 169.90 7 3 9 6 5 3 12712 169.90 
7 2 8 6 4 3 12989 134.22 7 2 8 6 4 3 12989 134.22 
7 3 9 6 5 2 12764 165.54 7 3 9 6 5 2 12764 165.54 

 

         The solution (7 2 8 6 4 3) is proven to be the best since it has the highest 

performance and the lowest standard deviation.  

 

4.4. Three-stage Buffer Allocation Problem  

4.4.1. The Construction 
 

         We used similar TS algorithm with the previous problem. The neighbour 

generation algorithm is also same. Of course, the neighbours that do not satisfy the 

constraints are excluded from the neighbourhood set. The whole solution is chosen to 

be tabu as in the previous three problems. The tabu tenure was set to 5 iterations.  

         The simulation model and TS algorithm was coded in Borland Delphi 6.0. The 

CRN was employed. The indifference zone was set to 0.5. The confidence level was 

set to %90. And the first stage sample size 0n was set to 4. These parameters were 

taken from Pichitlamken and Nelson (2002). The procedures were applied for 5 

different initial solutions each with different random numbers. 

 

 

Table 4.30. The performances of the solutions based on 100 replications. 
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4.4.2. The Results 
 

         The following tables illustrates the results of both methods: 

 

STS 

Initial solution Best Solution Value 
Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

Total number of 
replications 

2 2 2 2 18 7 6 7 9 11 6.12 632 4 7 1320 
4 5 4 3 17 6 7 7 7 13 6.53 486 4 4 740 
10 5 5 8 12 6 7 7 11 9 6.23 468 4 5 664 
5 5 10 2 18 6 7 7 10 10 6.25 442 4 8 1060 
8 7 5 2 18 6 7 7 11 9 5.68 407 4 3 400 

 

 

TS+FSP (indifference zone=0.5, 40 =n ) 
Total number of 

replications Initial solution Best 
Solution Value 

Number 
of visited 
solutions 

Number of 
Replications 

Iteration 
Number 

0n  Additional 

2 2 2 2 18 6 7 7 9 11 6.15 589 10 21 3008 475 
4 5 4 3 17 6 7 7 12 8 6.69 518 5 13 1940 1277 
10 5 5 8 12 7 6 7 7 13 6.52 474 4 1 132 0 
5 5 10 2 18 7 7 6 9 11 6.18 522 9 13 1744 627 
8 7 5 2 18 7 6 7 8 12 6.11 416 17 8 1044 365 

 
         Although the best solutions seem close to each other, it is not proper to say that 

the solutions are almost same and there is no significant difference between them. 

The solutions must be further inspected. As in the previous problems we looked long 

run performances of the systems by taking 100 replications of each solution. Table 

4.27. illustrates the results. When we look at the iteration columns of both table we 

observe that the STS method found the best solution at the earlier iterations of the 

search according to the TS+FSP method in most of the experiments. Only in the third 

experiment the TS+FSP method performed better than the STS. As for the total 

number of replications STS is far superior to the TS+FSP. The FSP requires 

additional replications to select the best in most of the experiments except the third 

one. It seems the FSP did not work as we expected for this problem instance too. 

Although it provides good solutions, these solutions are not superior to the solutions 

that are found by taking relatively small number of replications. At this point of view 

the FSP as a R&S tool is not worth employing in the way we implement it.    

 

Table 4.31. The results of STS method.

Table 4.32. The results of TS+FSP method.
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Solution 
(STS) Value  Standard 

Deviation 
Solution 

(TS+FPS) Value  Standard 
Deviation 

7 6 7 9 11 5.76 0.64 6 7 7 9 11 5.81 0.68 
6 7 7 7 13 5.74 0.67 6 7 7 12 8 5.83 0.66 
6 7 7 11 9 5.84 0.67 7 6 7 7 13 5.70 0.63 
6 7 7 10 10 5.84 0.68 7 7 6 9 11 5.91 0.69 
6 7 7 11 9 5.81 0.68 7 6 7 8 12 5.74 0.63 

 

         The solution (7 7 6 9 11) is the best solution (near optimal) since the objective 

function value of the solution is better than the others and standard deviations are 

very close to each other. Table 4.34. shows the computational times in seconds:   

 

STS TS+FSP 
Initial Solution Simulation 

Time 
Non-simulation 

Time 
Simulation 

Time 
Non-simulation 

Time 
Screening 

Time 
2 2 2 2 18 81.99 1.56 (1.87%) 84.14 1.57 (1.83%) 10.53 (12.28%) 
4 5 4 3 17 65.44 1.57 (2.35%) 93.31 1.72 (1.81%) 27.97 (29.43%) 
10 5 5 8 12 68.07 1.47 (2.11%) 79 1.60 (1.99%) 3.47 (4.30%) 
5 5 10 2 18 66.18 1.56 (2.30%) 80.5 1.55 (1.89%) 18.11 (22.06%) 
8 7 5 2 18 73.40 1.47 (1.96%) 104.89 1.49 (1.40%) 28.44 (26.73%) 

 

         We observe that the TS+FSP method requires more time than STS to find the 

best solution. Since the best solutions are close to each other the method with less 

computational effort is preferable. The non-simulation times are higher than the first 

(manufacturing) problem. This is again because of the loopy structure of the 

neighbourhood generation algorithm. As a final analysis, Figure 4.10. shows the 

convergences of the methods for the initial solution (2 2 2 2 18): 

 

Table 4.33. The performances of the solutions based on 100 replications. 

Table 4.34. The computational times of the methods. 
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Convergence of the Methods
(initial solution: 2 2 2 2 18)

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Iteration

Th
e 

B
es

t S
ol

ut
io

n 
Va

lu
e

STS-4 STS-10 TS+FSP
 

 

         We can observe that STS methods converged faster than the TS+FSP. On the 

other hand STS-4 and TS+FSP overestimated the best solution, which may be caused 

by random numbers. Both methods took less number of replications compared to 

STS-10. 

Figure 4.10. The convergences of the methods when the initial solution is (2 2 2 2 18).
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CHAPTER 5 
 

CONCLUSIONS 
 
         In this study, we combined a simulation optimization methodology with a 

ranking and selection procedure. Simulation optimization has become a very active 

research area in recent years with the development of metaheuristics.  Since many 

real life systems could not be represented analytically, classical optimization 

methods become inefficient. Fortunately, simulation optimization offers a wide 

variety of solutions to this problem using the power of simulation. On the other hand 

due to the stochastic nature of the systems, one cannot a hundred percent sure if a 

solution is optimal. Instead it is said close to optimal. 

         Tabu Search (TS) is one of the most known and most used metaheuristic in the 

simulation optimization area. The intensification and diversification strategies made 

it a very efficient global search algorithm. Another important feature of TS is its 

making use of memory. The short and long termed memory structures prevent the 

search from going into cycles and being trapped by local optima.  

         Ranking and Selection (R&S) methods are used to compare the alternative 

system designs and to select the best design or a subset of alternatives, which 

contains the best. They are statistical methods and guarantee the best selection with a 

given confidence level. At some point of view, R&S procedures can be thought as a 

simulation optimization methodology especially when the size of the solution space 

is relatively small. Classical R&S procedures such as Rinott’s two-stage procedure 

are very conservative such that they require a huge number of observations to select 
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the best alternative. On the other hand, newly developed sequential R&S procedures 

such as the Fully Sequential Procedure (FSP) are very efficient since they incredibly 

reduce the computational effort to distinguish the best. 

         We decided to combine these two methodologies, TS and the FSP to further 

improve the performance of the search. Our idea is embedding the FSP into TS in the 

following manner. At each iteration of TS a neighbourhood set is generated and the 

neighbours are evaluated to find out the best among them by taking an arbitrary 

number of observations. Instead one can use the FSP to select the best among 

neighbours. Our motivation is quickly converge to the best solution utilizing the FSP 

hence increasing the efficiency of the search. 

         We tested our claim on four different system designs. A manufacturing 

problem, an inventory control problem, a job shop problem, and a three-stage buffer 

allocation problem. Five different experiments with different initial solutions and 

different random numbers were designed and conducted for all of the problem 

instances. However, the results showed that employing the FSP did not improve 

either solution quality or efficiency of the search. 

         In the manufacturing problem, although our methodology found good solutions 

its computational effort was much more (about two times) than the standard TS. 

Interestingly, STS, which uses only 5 replications, could end up with very good 

solutions removing the need for FSP to improve the solution quality. The 

convergences of the methods were almost same. Thus employing the FSP did not 

increase the efficiency but add further computational efforts. We thought the 

simplicity of the problem caused this situation and decided to increase the variability 

by increasing processing times and adding breakdowns for the machines. In both 

cases, the results did not change. Taking five replications was still sufficient to come 

up with good solutions. 

         In the inventory control problem, the picture was the same, i.e., employing the 

FSP did not bring much concerning the efficiency of the search. Since we decided to 

keep the indifference zone parameter relatively large the additional computational 

effort was incredibly reduced compared to the manufacturing problem. The FSP did 

not require additional replications apart from the first stage sampling, which was 

quite enough to select the best solution. 

         In the job shop problem, both methods found same solutions except for one 

case. The methods took same number of replications and found the best solution at 
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the same iteration. In other words, there was no difference between the two methods. 

Again it was useless to employ the FSP. 

         In the three stage buffer allocation problem, TS+FSP method found a good 

solution (probably the best) that the STS method could not find. But the 

computational effort was too much since the indifference zone parameter was small. 

Since the solutions found by both method seemed close to each other there was no 

need to employ the FSP. 

         It seems our claim is failed for all of the problem instances. Although it is 

known that taking small number of replications is not enough to compare the 

alternative system designs and to select the best one, our results indicate the contrary. 

Even when we increased the variability, 5 replications were enough to select the best 

system. This might be caused by the simplicity of the test problems. But the more 

complex real life problems are combinations of these relatively small problem 

instances. We think, even the complexity of the problem increases, the best solution 

can be found with less amount of computational effort than the FSP or any other 

R&S procedure would spend.  

         Although R&S procedures distinguish the best solution among a set of 

alternatives, their computational effort is too high. The FSP is one of the most 

efficient R&S procedures since it can find the best alternative with smaller number of 

observations compared to conservative R&S methods. This is why we preferred the 

FSP to other R&S methods to use in our methodology. However, our results showed 

that it is actually inefficient in the way that taking relatively small number of 

replications is enough to distinguish the best system. So we think, the presence and 

the future of the R&S procedures must be reviewed. Their efficiency must be tested 

on very large and complex simulated systems. And instead of comparing them to 

other R&S techniques, they must be compared to taking small number of 

replications.    

         On the other hand, TS has proven to deserve its reputation. It performed very 

well and found very good (near optimal) solutions with or without FSP. Using more 

intelligent neighbourhodd generation algorithms or more intelligent memory 

structures may further increase its efficiency.  

         In sum, we understand combining TS and the FSP in the way we did were not a 

good idea. But, maybe, the FSP can be used after an exhaustive simulation 

optimization search to further inspect the elite solutions that are encountered by the 
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search similar to our long run performance analysis. Since a number of replications 

have already been taken during the search, these observations can be used as a first 

stage sampling to the FSP thus reducing the computational effort.      
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