

TABU SEARCH WITH FULLY SEQUENTIAL

PROCEDURE FOR SIMULATION OPTIMIZATION

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING AND THE INSTITUTE OF ENGINEERING AND

SCIENCE OF BİLKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Savaş Çevik

August, 2003

I certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Master of Science.

Prof. İhsan Sabuncuoğlu (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Master of Science.

Prof. Erdal Erel

I certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Mustafa Akgül

Approved for the Institute of Engineering and Science:

Prof . Mehmet Baray
Director of Institute of Engineering and Science

Prof. Kürşat Aydoğan
Director

ABSTRACT

TABU SEARCH WITH FULLY SEQUENTIAL
PROCEDURE FOR SIMULATION OPTIMIZATION

Savaş Çevik

M.S. in Industrial Engineering

Advisor: Prof. İhsan Sabuncuoğlu

August,2003

 Simulation is a descriptive technique that is used to understand the behaviour of

both conceptual and real systems. Most of the real life systems are dynamic and

stochastic that it may be very difficult to derive analytical representation. Simulation

can be used to model and to analyze these systems. Although simulation provides

insightful information about the system behaviour, it cannot be used to optimize the

system performance. With the development of the metaheuristics, the concept

simulation optimization has became a reality in recent years. A simulation

optimization technique uses simulation as an evaluator, and tries to optimize the

systems performance by setting appropriate values of simulation input. On the other

hand, statistical ranking and selection procedures are used to find the best system

design among a set of alternatives with a desired confidence level. In this study, we

combine these two methodologies and investigate the performance of the hybrid

procedure. Tabu Search (TS) heuristic is combined with the Fully Sequential

Procedure (FSP) in simulation optimization context. The performance of the

combined procedure is examined in four different systems. The effectiveness of the

FSP is assessed considering the computational effort and the convergence to the best

(near optimal) solution.

Keywords: Simulation Optimization, Ranking and Selection, Tabu Search, Fully

Sequential Procedure.

ÖZET

SİMÜLASYONLA ENİYİLEME İÇİN TABU ARAMASI İLE

BİRLEŞTİRİLMİŞ SIRALI SEÇİM METODU

Savaş Çevik

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. İhsan Sabuncuoğlu

Ağustos 2003

 Simülasyon var olan veya tasarım aşamasındaki sistemlerin davranışlarını

anlamak için kullanılan tanımlayıcı bir araçtır. Var olan sistemlerin çoğu dinamik ve

rassal bir yapıya sahiptir. Bu durum sistemin analitik bir modelini çıkarmayı

güçleştirebilir. Simülasyon bu tür sistemlerin modellenmesinde ve analiz edilmesinde

kullanılabilir. Sistem davranışı hakkında çok yararlı bilgiler sağlasa da, simülasyon

tek başına sistem performansını eniyilemede kullanılamaz. Son yıllarda, sezgisel

yöntemlerin geliştirilmesiyle birlikte, simülasyonla eniyileme kavramı büyük önem

kazanmıştır. Simülasyonla eniyileme teknikleri simülasyonu bir değerleme aracı

olarak kullanır ve simülasyon girdi degerlerini uygun şekilde ayarlayarak sistemin

performansını en iyilemeye calışır. Diğer taraftan, istatiksel sıralama ve seçim

metodları belirli bir güven seviyesiyle alternatif sistemler içinden en iyi sistemi

seçmek için kullanılırlar. Bu çalışmada, bu iki metodolojiyi birleştirdik ve ortaya

çıkan hibrid metodun performansını inceledik. Tabu Araması, Tamamen Sıralı Seçim

metoduyla simülasyonla eniyileme bağlamında birleştirildi. Ortaya çıkan metodun

performansı dört farklı sistem üzerinde denendi. Tamamen Sıralı Seçim metodunun

etkinligi hesapsal efor ve en iyi çözüme yakınsama göz önünde tutularak

degerlendirildi.

Anahtar kelimeler: Simulasyonla eniyileme, sıralama ve seçim metodları, tabu

araması, tamamen sıralı seçim metodu.

Arife ve Seniye ye,

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Prof. İhsan Sabuncuoğlu who

supervised me through all stages of this research. He always encouraged me to go for

this thesis.

I am also indebted to Prof. Erdal Erel and Assoc. Prof. Mustafa Akgül for
their accepting to read and review this thesis and valuable comments.

I would also like to thank Prof. Barbaros Tansel for his support. He helped

and supported this thesis to its end.

I want to express my gratefulness to my beloved family, they are the greatest.

Especially my brother Barış for his patience! with me while we were playing Diablo

II.

 I want to thank to my friends Nur, Gürol, Batu, Halil, Arda, Sezgin, Ozan,

Burhan, Ünal, İbrahim, Çağatay, Aykut, Sabri, Banu, Abdullah, Burhaneddin, Rabia,

and Ömer for their friendship and morale support all the time. I especially want to

memorize my friends Kutay, Osman, Deniz, Hasan, Hasan (Doğa’s father), and

Derya.

 As a final word, I want to thank Conan The Barbarian and The Cranberries.

They make me feel great.

May the force be with you.

TABLE OF CONTENTS

CHAPTER 1 ... 1

INTRODUCTION.. 1

1.1. BASIC CONCEPTS ... 1

1.2. SIMULATION AS AN OPERATIONS RESEARCH (OR) TECHNIQUE......................... 3

1.3. AIM OF THE STUDY .. 4

CHAPTER 2 ... 9

LITERATURE REVIEW.. 9

2.1. INTRODUCTION... 9

2.2. THE GENERAL STRUCTURE OF A SIMULATION OPTIMIZATION PROBLEM 9

2.2.1. Simulation Optimization Methodologies.. 11

2.2.1.1. Gradient-based Search Methods ... 11

2.2.1.2 Stochastic Approximation.. 11

2.2.1.3. Response Surface Methodology (RSM) ... 13

2.2.1.4. Heuristic Methods ... 13

2.2.1.5. Statistical Methods .. 15

2.2.2. LITERATURE SURVEY SIMULATION OPTIMIZATION....................................... 15

2.3. RANKING AND SELECTION ... 22

2.3.1. Multiple Comparison Procedures (MCPs) .. 23

2.3.2. Ranking and Selection Procedures .. 24

2.3.2.1. Subset Selection .. 24

2.3.2.2. Indifference-zone Selection .. 24

2.3.3. Literature Survey Ranking and Selection... 25

CHAPTER 3 ... 32

PROPOSED STUDY ... 32

3.1. METHODOLOGY ... 32

3.1.1. Tabu Search ... 33

3.1.1.1. Tabu Algorithm... 35

3.1.2. The Fully Sequential Procedure (FSP) .. 36

3.1.2.1. The Fully Sequential Algorithm (Kim and Nelson (2000)) 36

3.2. EXPERIMENTAL SETTINGS.. 39

3.2.1. Manufacturing Problem... 39

3.2.2. Inventory Control Problem .. 41

3.2.3. Job Shop Problem .. 43

3.2.4. Three-stage Buffer Allocation Problem ... 46

CHAPTER 4 ... 48

EXPERIMENTAL RESULTS.. 48

4.1. MANUFACTURING PROBLEM.. 48

4.1.1. The Construction.. 48

4.1.2. Results .. 50

4.2. INVENTORY CONTROL PROBLEM ... 59

4.2.1. The Construction.. 59

4.2.2. The Results ... 60

4.3. JOB SHOP PROBLEM ... 68

4.3.1. The Construction.. 68

4.3.2. The Results ... 68

4.4. THREE-STAGE BUFFER ALLOCATION PROBLEM ... 72

4.4.1. The Construction.. 72

4.4.2. The Results ... 73

CHAPTER 5 ... 76

CONCLUSIONS .. 76

REFERENCES... 80

LIST OF TABLES

Table 1.1. The most known simulation optimization software packages, and supported

simulation software. ……………………………………………………………………...

 7

Table 2.1. The summary of some studies in the literature. ……………………………… 21

Table 2.2. Some of the R&S procedures in the literature. ………………………………. 30

Table 3.1. Model parameters of the production problem. ……………………………….. 40

Table 3.2. The parameters of the inventory control problem. …………………………… 42

Table 3.3. The routings of the jobs. ……………………………………………………... 44

Table 3.4. The distances between the stations (in feet). ………………………………… 44

Table 3.5. The mean processing times of the machines. ………………………………… 45

Table 3.6. The adjusted profits/costs of jobs/machines. ………………………………… 46

Table 4.1. The number of machines in the best solutions of the first nine iterations. …... 49

Table 4.2. The results of STS method. ………………………………………...………… 50

Table 4.3. The results of TS+FSP method. …………………………………………...…. 50

Table 4.4. The computational times of the methods. …………………………...……….. 53

Table 4.5. The performances of the solutions according to 100 replications. ………...… 54

Table 4.6. The results of TS+FSP method when 100 =n . ………………………...…… 54

Table 4.7. The results of STS method with doubled processing times. ………..……….. 55

Table 4.8. The results of TS+FSP method with doubled processing times. ………..…... 55

Table 4.9. The values of Bβ and Dβ parameters of related machines. …………...…… 57

Table 4.10. The results of STS method with breakdowns. ……………...………………. 57

Table 4.11. The results of TS+FSP method with breakdowns. ………………...……….. 58

Table 4.12. The computational times of the methods. …………………..……………… 58

Table 4.13. The long run performances of the best solutions found by both methods. 58

Table 4.14. The neighbours of the solution (-5,10). ………………..…………………... 60

Table 4.15. The results of STS method. …………………………………………………. 60

Table 4.16. The results of TS+FSP method. …………………………………………….. 61

Table 4.17. The computational times of the methods. ………………..………………… 62

Table 4.18. The performances of the solutions based on 100 replications. ………..…… 62

Table 4.19. The results of STS method with doubled number of neighbour solutions..... 64

Table 4.20. The results of TS+FSP method with doubled number of neighbour

solutions………………………………………………………………………………….

64

Table 4.21. The results of STS method with random shelf lives. ……………………….. 65

Table 4.22. The results of TS+FSP method with random shelf lives.…………………… 65

Table 4.23. The performances of the solutions based on 100 replications. …………...… 66

Table 4.24. The results of STS method. ………………………………………..……….. 68

Table 4.25. The results of TS+FSP method. …………………………………………….. 69

Table 4.26. The computational times of the methods. ………………………………….. 69

Table 4.27. The performances of the solutions based on 100 replications. ……………... 70

Table 4.28. The results of STS method. ………………………………………..……….. 71

Table 4.29. The results of TS+FSP method. …………………………………………….. 71

Table 4.30. The performances of the solutions based on 100 replications. ……………... 72

Table 4.31. The results of STS method. ………………………………………..……….. 73

Table 4.32. The results of TS+FSP method. …………………………………………….. 73

Table 4.33. The performances of the solutions based on 100 replications. …………….. 74

Table 4.34. The computational times of the methods. ………………………………….. 74

LIST OF FIGURES

Figure 1.1. Simulation model of a system. …………………………………………….. 2

Figure 1.2. Working of a simulation model...………………………………….……….. 2

Figure 1.3. Simulation optimization model. …………………………………………… 6

Figure 1.4. The comparison of an ordinary TS approach and our approach. ………….. 8

Figure 2.1. Classification of Simulation Optimization Methodologies………………… 12

Figure 3.1. The graph of)(rWij .……………………………………………………….. 38

Figure 3.2. The outline of the production facility. …………………………….……….. 39

Figure 3.3. The outline of the job shop problem. ……………………………………… 43

Figure 3.4. The outline of the three-stage buffer allocation problem. …………………. 46

Figure 4.1. The convergence of the methods when the initial solution is (1111111)…... 52

Figure 4.2. The convergence of the methods when the initial solution is (3 6 3 5 2 4 2). 52

Figure 4.3. The convergence of the methods when the initial solution is (2 4 2 4 2 4 2). 59

Figure 4.4. The convergences of the methods when the initial solution is (2,15). …….. 63

Figure 4.5. The convergences of the methods when the initial solution is (-1,5). …….. 63

Figure 4.6. The convergences of the methods when the initial solution is (2,10). …….. 67

Figure 4.7. The convergences of the methods when the initial solution is (4,5). ……… 67

Figure 4.8. The convergences of the methods when the initial solution is (4 1 4 2 2 2). 70

Figure 4.9. The convergences of the methods when the initial solution is (2 2 2 2 2 2). 71

Figure 4.10. The convergences of the methods when the initial solution is (2 2 2 2 18). 75

CHAPTER 1

INTRODUCTION

1.1. Basic Concepts

 Simulation is a very useful tool in understanding the behavior of both existing

and conceptual systems. It is used in a wide variety of areas from manufacturing to

military applications. Although, there are many definitions to simulation, the

simplest one is “the imitation of life”. The aim of the simulation is to give insights, to

provide information about the system being simulated. According to the simulation

results (output or response), one can observe if the system operates as it is intended

to be. The factors that affect its performance can be detected and by adjusting these

factors, system performance may be improved to the desired level. It is also

beneficial to simulate conceptual systems that are considered to build. A lot of

information can be gathered from simulation output and analyzing this data, the

conceptual system may be redesigned in order to improve the system performance.

 The Oxford English Dictionary gives the following definition of simulation:

“The technique of imitating the behaviour of some situation or process (whether

economic, military, mechanical, etc.) by means of a suitably analogous situation or

apparatus, especially for the purpose of study or personnel training”. Shannon (1975)

defines simulation as “the process of designing a model of a real system and

conducting experiments with this model for the purpose either of understanding the

system or of evaluating various strategies (within the limits imposed by a criterion or

set of criteria) for the operation of the system”. Following figure illustrates a

simulation model of a system:

 2

where Conceptual Model defines and integrates model elements (e.g., entities,

processes, resources, queues, etc.), and Logical Model defines logical interactions

between these elements (e.g., precedence relations, queuing strategies, etc.). After

combining these separate models in to one model called Simulation Model, one can

evaluate system performance and detect various effects that manipulate the output.

Following figure shows working of a simulation model:

 Simulation models offer a completely controllable environment. Every aspect

of the system is controllable to the experimenter. Simulation models are flexible.

When needed parameters and variables of the system can easily be changed. This is a

very useful feature especially when employing “what-if” questions in order to

improve the performance of the system. Finally, simulation time is completely

independent from the real time in the way that one can speed up the simulation time

to quickly access the simulation output, while the other can slow it down in order to

be able to observe certain processes (zooming) in the system.

 Simulation experiments are done according to prepared plans called

experimental design. “A simulation experiment can be defined as a test or series of

tests in which meaningful changes are made to the input variables of a simulation

model so that we may observe and identify the reasons for changes in the output

variables” (Carson and Maria (1997)). Experimental design is another crucial point

in simulation. The factors that are considered to have effects on system performance

are determined. After determination of these factors, simulation experiments are

conducted for different values, which are defined as levels, of these factors. By

Conceptual Model
Simulation

Model

Real world

Logical Model

x1
x2

xn

y1
y2

ym

Input Output
Simulation

Model

Figure 1.1. Simulation model of a system.

Figure 1.2. Working of a simulation model.

 3

analyzing simulation output, one may find out the factors that are significant and

extract the optimal levels for these factors. Significant factors and the levels

associated with them may be used to redesign the system and improve the system

performance.

1.2. Simulation as an Operations Research (OR) Technique

 Consider a manufacturing facility that faces a decision making problem. There

are two available options: to build another job shop or to rearrange the existing one

in order to meet the increasing demand. This is a critical decision. If the facility

decides to build another job shop where they actually can meet the increasing

demand by rearranging their manufacturing environment (existing job shop), then

they would have invested a lot of money in vain. Off course this is an undesirable

situation. On the other hand, they may decide rearranging their facility and it may

turn out that rearrangement fails to meet the demand. This is even worse because

there will be an additional cost of loosing customer to the cost of rearrangement. The

cost of loosing customer is much more crucial than the former. Making use of

simulation can help to make decisions.

 First, the two alternative systems are examined, and then conceptual and logical

models of the alternatives are built to combine them in a simulation model. After the

construction of the simulation models for both systems, input data (e.g., distribution

functions of the inter-arrival time of demands, of the amount of demands, and of the

processing times of the jobs etc.) analysis is conducted. This analysis is very

important because simulation models are driven by input data, and using wrong or

inadequate data may (actually does) lead unreliable output hence wrong decision. So,

statistical analysis tools must be utilized for both input and output data analysis.

 Assuming input data and simulation models are ready, simulation experiments

are performed according to an experimental design to obtain the output data.

Analyzing this data, one can decide which one of the alternatives is more

appropriate. The manufacturing facility can now select the best alternative. Of course

this simulation study comes with a certain cost, but this cost is not comparable to the

cost of making wrong decision. From this point of view, simulation can be seen as an

Operations Research, OR, technique. As with all other OR techniques, simulation is

utilized to make the best decision among alternatives as in above example.

 4

 Simulation is superior in comparison to other OR techniques when dealing with

stochastic systems those are too complex to derive an analytical (mathematical)

model, which consist of the majority of the real life systems. Since analytical model

is too hard to obtain if not impossible or even does not exist, classical deterministic

OR techniques cannot be used to solve these problems. Some assumptions may be

made in order to come up with an analytical model but this approach may divert us

from the real problem.

 Simulation is welcome to overcome this deficiency. As we describe it, it is

simply the imitation of life and any real world system can be transformed into a

simulation model. And once you have the simulation model, every aspects of the

system can be inspected. By analyzing output data and employing some “what if”

questions, the model can be easily modified. This allows researchers to redesign the

system being simulated in order to improve the performance of the system.

 Unfortunately, simulation does not provide optimal solution, which makes it a

descriptive tool. This is the major drawback of the simulation when compared to

other OR techniques. But it has many advantages that surpass this drawback.

Furthermore, with the incredible advances in the computer science and technology

and the emergence of the metaheuristics, the concept “simulation optimization”

attracts many researchers and scientist during the last decade. A lot of papers have

been published and are being published.

 The main reason behind this attraction is, as we mentioned, almost any real life

system has a stochastic nature that is hard or impossible to describe analytically, and

one of the simplest ways to optimize these systems without being diverted from the

very essence of the problem is to make use of simulation within a simulation

optimization framework.

1.3. Aim of the Study

 The aim of this study is to examine the effects of a Ranking and Selection

(R&S) tool namely Fully Sequential Procedure (FSP) due to Kim and Nelson (2001),

on the output of a heuristic search algorithm, Tabu Search, in the context of

simulation optimization. The approach is simply embedding the FSP in TS.

 Our motivation is to find better search directions in each iteration of TS. In TS

a neighbourhood set of solutions to the current solution is created at each iteration.

 5

The solutions in the neighbourhood are evaluated to find the best of them. Evaluation

of the solutions is based on taking arbitrarily number of observations (replications).

Instead, one can use a statistical technique to find the best among neighbours which

may give better search directions.

 We try to find out if employing the FSP increases the solution quality. If it

does, is it worth increasing computational effort. How does the FSP affect the

convergence behaviour of the search. And finally, if the FSP should be implemented

to increase the efficiency of the search or not.

 TS is a very effective global search algorithm, which is first introduced by

Glover (1986). FSA is a recently developed ranking and selection tool, which

reduces the computational effort dramatically when compared to conservative

ranking and selection procedures. Detailed descriptions of these methods will be

given in Chapter 3. In what follows, we will introduce the concepts of simulation

optimization and ranking and selection.

 Simulation optimization is defined as optimization of performance measures

(e.g., throughput, waiting time in the system, and production cost or profit etc.) by

adjusting model settings (input variables or decision variables) according to

simulation output of previous settings. Another definition is “the process of finding

the best input variable values from among all possibilities without explicitly

evaluating each possibility” (Carson and Maria (1997)). Law and McComas (2000)

define simulation optimization as “orchestration of the simulation of sequence of

system configurations (each configuration corresponds to particular settings of the

decision variables (factors)) so that a system configuration is eventually obtained that

provides an optimal or near optimal solution.”

 The idea is using simulation as an evaluation function or an evaluator. First,

simulate the system with current model settings, and then observe the output and take

this data to an optimization algorithm. The algorithm analyses the output by means

of the effects of the current model settings on the output. According to this analysis

algorithm generates new model settings to simulate the system with this new model

settings. The process repeats itself until a certain stopping condition is satisfied (e.g.

a certain improvement has been made or pre-specified number of iterations has

passed etc.) The following figure illustrates the logic of the simulation optimization

model:

 6

 Here are some application areas of simulation optimization: Manufacturing

systems; one can build a simulation model for a specific production facility (e.g., job

shop, assembly line etc.), and use this model in order to maximize the number of the

finished jobs or products while minimizing the cost incurred in conjunction with a

simulation optimization technique. Supply chain systems; simulation optimization

can be used in order to minimize inventory levels and response times while

maximizing fill rates. Queuing systems; waiting times of customers or jobs can be

minimized or total number of served customers can be maximized by making use of

simulation optimization. Inventory control models; one can use a simulation

optimization method in order to determine optimal levels of s, re-order point, and S,

order-up-to point, that minimize the cost which consists of ordering, holding, and

shortage costs. There are many other application areas in addition to above ones.

 For example, a manufacturing facility wants to optimize the number of

machines in one of their job shops in order to maximize the throughput. The above

approach, illustrated in Figure 1.3, may be used until the maximum throughput is

reached i.e., adding one more machine does not improve the objective function. The

number of machines at this point is the optimal solution. Actually, due to the

stochasticity, is not the optimal but very close to optimal. This is a very simple

example. When the size and the complexity of the problem increases, more

sophisticated algorithms are needed to come up with near optimal solutions.

 There are many simulation optimization algorithms in the literature. But the

most commonly used algorithms are called metaheuristics, which includes Tabu

Search (TS), Genetic Algorithm (GA), and Simulated Annealing (SA). The role of

the metaheuristics in simulation optimization’s popularity is unquestionable.

 Many software developers for simulation modeling and analysis add a

simulation optimization module into their software packages. Since simulation

Simulation Model

Is stopping criteria
satisfied?

Simulation Optimization
Algorithm

No

Yes

Stop

OutputInput

Figure 1.3. Simulation optimization model.

 7

optimization applications are widely used nowadays, software vendors want to make

their product preferable to others. Following table summarizes the most known

optimization packages and supported simulation software (adapted from Law and

McComas (2002)):

Optimization

Package
Vendor

Simulation software

supported
Search Strategies

AutoStart Brooks-PRI
Automation AutoMod, AutoSched Evolution Strategies

Extend Optimizer Imagine That Extend Evolution Strategies

OptQuest Optimization
Technologies

Arena, Flexim ED, Micro
Saint, Pro-Model,
QUEST, SIMUL8

Scatter Search, Tabu
Search, Neural

Networks

WITNESS
Optimizer Lanner Group WITNESS

Simulated
Annealing, Tabu

Search

 Ranking and Selection procedures are statistical tools that select the best

alternative from a set of alternatives with a given confidence level. They can be

grouped into two categories. The first one is Multiple Comparison Procedures

(MCPs) and the other is Subset Selection and Indifference Zone Selection. In MCPs,

alternative system designs are compared to each other and according to the

comparison results the best system design or designs are determined. In Subset

Selection a subset, which contains the best, is excluded from a set of alternatives,

while in Indifference Zone Selection, the best alternative is selected. The detailed

examinations of these methods will be given in Chapter 2.

 Increasing attraction to simulation optimization area made researchers to seek

new methodologies. One of these new methodologies is combining simulation

optimization with ranking and selection. A couple of papers have been published

related to this topic. A simulation optimization technique and a ranking and selection

procedure can be used in conjunction in two ways. One is using ranking and

selection procedure after a simulation optimization study. The elite solutions

encountered by the search can be further inspected by the accompanying ranking and

selection algorithm thus increasing the solution quality. Since the simulation

optimization search already took observations from these elite solutions, there is no

need for ranking and selection procedure to perform first stage sampling. This

Table 1.1. The most known simulation optimization software packages, and supported
simulation software.

 8

approach may increase the solution quality with little extra computational effort. The

other way, which we will implement in this study, is using ranking and selection

algorithm within the search. This approach may lead to search quickly converge the

best (near optimal) solution thus reducing the computational effort. The following

figure illustrates our approach:

 In the following chapter, we will describe the simulation optimization and

ranking and selection methodologies and review the studies in the literature related to

both topics. In Chapter 3, we will introduce our approach and give the details of the

experimental study including descriptions of the various system designs in which we

implement our methodology. The results of the experimental study will be given in

Chapter 4. Our conclusions will be formed in Chapter 5.

Current
solution

Neighbour
solutions

The best neighbour
based on 5 replications

Move

An ordinary TS approach

Current
solution

Neighbour
solutions

THE BEST
NEIGHBOUR
SELECTED BY

Move

Our approach

Figure 1.4. The comparison of an ordinary TS approach and our approach.

CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

 In this chapter we will introduce the basics of the simulation optimization and

ranking and selection. And then some studies in the literature related to both topics

will be summarized respectively. We first start with a general structure of the

simulation optimization problem. Then we describe the simulation optimization

methodologies in short. A summary of the studies in the literature will follow. After

describing the ranking and selection concept and methodologies we will review the

literature.

2.2. The General Structure of a Simulation Optimization Problem

 A simulation optimization problem is defined, as in all other optimization

problems, by decision variables, an objective function, and constraints.

Decision variables

 Realizations of decision variables i.e., values of variables, directly affect the

system’s response. A complete set of decision variables is called a solution. The aim

of the simulation optimization is to find the best set of decision variables (the best

solution), which optimizes the objective function. For example, s, re-order point, and

S, order-up-to point, are decision variables in an inventory control problem.

 10

Objective function

 Objective function is the function that is wanted to be optimized. It may be

simply one of the performance measures (e.g., number of finished jobs, waiting time

in the system, and cycle time, makespan etc.) or it may be represented as a linear or

non-linear function of decision variables. In inventory control problem, the objective

function is the total cost function, which consists of ordering, holding, and shortage

costs. Note that, in this example, decision variables, (s,S), are not visible in the

representation of the objective function but still the objective function, the cost

function, is a function of decision variables.

Constraints

 There are two types of constraints: qualitative and quantitative. Quantitative

constraints may be linear or non-linear combinations of the decision variables. For

example, S, order-up-to point, must be lower than some upper bound due to capacity

limitations. On the other hand, some constraints cannot be represented

mathematically. For example, a finished part on a machine blocks the machine until

succeeding buffer has an empty room or an AGV (or forklift) unloads the part.

Another example is the dispatching rule that is used in a queuing problem. The

Shortest Processing Time (SPT) rule cannot be expressed mathematically. Actually

this is a good representation of the power of the simulation.

 In general a simulation optimization problem is represented as:

)]([min(max) xfE
Cx∈

where x is the solution vector, i.e.,],.....,[21 nxxxx = , and C is the set of quantitative

constraints. The qualitative constrains are represented in the simulation model. Note

that we use the expectation of the objective function instead of the function itself in

the formula. This is because the function itself cannot be calculated due to stochastic

nature of the problem. One can only estimate it. A solution cannot be hundred

percent said better than another one (of course, if not one of the solutions clearly

inferior to the other one), instead one is said better than the other according to a

confidence level. Normally high-level confidence is desired which may cause very

exhaustive simulation optimization study, i.e., longer runs and/or more replications.

Furthermore, if the number of the alternative solutions is large the simulation

optimization study may become intractable.

 11

2.2.1. Simulation Optimization Methodologies

 Simulation optimization methods can be grouped into six main categories.

Figure 1.4 illustrates these categories (adapted from Carson and Maria (1997)).

2.2.1.1. Gradient-based Search Methods

 “Methods in this category estimate the response function gradient (f) to assess

the shape of the objective function and employ deterministic mathematical

programming techniques” (Carson and Maria (1997)). “Two major factors in

determining the success of these methods are reliability and efficiency” (Azadivar

(1999)). Since a simulation optimization problem has a stochastic nature there will be

an error in estimating the gradient. If this error is large, then this may lead the search

to the wrong directions. This is why reliability is a major factor in determining the

success of the methods. On the other hand, the efficiency of a gradient estimation

method can be measured by the required number of function evaluations

(replications) to be able to estimate the gradient. Since the simulation experiments

are expensive, less number of required replications means more efficiency. When the

size and the complexity of the problem increase, efficiency becomes more important.

Some of the gradient based search methods are: finite difference estimates,

perturbation analysis, likelihood ratio estimates, and frequency domain analysis. One

can refer to Carson and Maria (1997) and Adizavar (1999) for brief explanations of

these methods.

2.2.1.2 Stochastic Approximation

 “Stochastic approximation methods refer to a family of recursive procedures

that approach to the minimum or maximum of the theoretical regression function of a

stochastic response surface using noisy observations made on the function. These are

based on the original works of Robins and Monro (1951) and Kiefer and Wolfowitz

(1952)” (Adizavar (1998)). These methods use a recursive formula iteratively in

order to find the optimal solution. The number of observations required in each

iteration increases when the number of decision variables increases. Stochastic

approximation methods slowly converge to the optimum and suffer from the lack of

good stopping rules. Furthermore, they have difficulties with handling constraints.

12

Simulation Optimization Methodologies

Gradient Based
Search Methods

Statistical
Methods

A- TeamsHeuristic Methods Response Surface
Methodology

(RSM)

Stochastic

OPTIMIZ
ATION

Finite
Difference
Estimation

Likelihood
Ratio

Estimators

Perturbation
Analysis

Frequency
Domain

Experiments

Evolutionary
Strategies

(ES)

Simulated
Annealing

(SA)

Tabu
Search
(TS)

Simplex
Search

Genetic
Algorithm

Importance
Sampling

Ranking
and

Selection

Multiple
Comparisons

(MC)

Figure 2.1. Classification of Simulation Optimization Methodologies (Carson and Maria (1997)).

2.2.1.3. Response Surface Methodology (RSM)

 “Response Surface Methodology is a procedure for fitting a series of regression

models to the output variable of a simulation model (by evaluating it several input

variable values) and optimizing the resulting regression function” (Carson and Maria

(1997)). “The process usually starts with a first order regression function and after

reaching the vicinity of the optimum, higher degree regression functions are utilized”

(Avdizavar (1998)). When compared to gradient estimation methods RSM is more

efficient in terms of the required number of replications. On the other hand, if the

complexity of the objective function (thus the response surface) increases, i.e. sharp

ridges, flat valleys, RSM may become inefficient because of the relatively large

errors in the fitted regression function.

2.2.1.4. Heuristic Methods

 With the development of the heuristic methods attraction to the simulation

optimization field has been increased. Because of the exploration and exploitation

features, heuristics are very efficient global search strategies. The most known

heuristic methods are:

2.2.1.4.1. Genetic Algorithms (GA)

 Genetic algorithm is analogous to the biologic evolution. GA was developed by

Holland (1992). Its DNA determines the fitness of an organism, which is defined as

the ability to survive in its environment. A DNA can be represented as a string of

values. An offspring’s DNA consists of two parts. One part that inherits from its

parents and the other is due to mutation. The idea behind the GA is to increase the

overall fitness of the population by inheriting good features (traits) of the parents to

the next generations.

 The DNA of a population member can be thought as a solution, thus member as

a solution and the population as a solution space. Each value in the DNA string

represents a decision variable. The fitness of a solution (member) is determined by

an objective (evaluation) function. Creation of an offspring (a new solution) is

subject to biological operators. Where the crossover operator takes different parts of

 14

parents’ DNAs and brings them together to build offspring’s DNA, the mutation

operator randomly selects a position (a decision variable) in this new string and

changes its value according to a pre-specified probability. There are also selection

and reproduction operators. After a certain number of generations (iterations), the

solution(s) with the best fitness value is (are) selected as the optimal. GA is noted for

robustness in searching complex spaces and is best suited for combinatorial

problems.

2.2.1.4.2. Simulated Annealing (SA)

 Simulated Annealing process is analogous to the physical annealing process. It

was introduced by Metropolis et. al. (1953). The key feature of this process is the

temperature, T. SA starts with an initial solution and an initial temperature value.

This temperature value remains same for a certain number of iterations and gradually

decreases until the pre-determined final temperature is reached. At each iteration, a

neighbor solution is generated and evaluated. If any improvement is made then the

neighbor solution replaces the current solution. If no improvement is made then the

neighbor solution may still be accepted as the current solution with a probability,

which is a function of T. The reason behind this move is to avoid being trapped by

the local optima. When T decreases the acceptance probability of non-improving

solution decreases.

2.2.1.4.3. Tabu Search (TS)

 Tabu Search can be classified as a neighborhood search. It is developed by

Glover (1989). TS starts with an initial solution, and a neighborhood set, a subset of

solution space, is created at each iteration. Each solution in this set is evaluated and

the best one is selected as the new current solution if it is not classified as tabu. The

old solution is classified as tabu and added to the tabu solutions list. Tabu solutions

cannot be selected as a new solution for a certain number of iterations, which is

called tabu tenure. At each iteration tabu tenure is decreased by 1. When tenure

reaches zero the solution is removed from the tabu list. The search continues until a

stopping criterion is satisfied.

 15

 Apart from these heuristics, Evolution Strategies, Nelder and Mead’s Simplex

Search, and Complex Search, an extension of Simplex Search, are also used in

simulation optimization applications.

2.2.1.5. Statistical Methods

 Most of the statistical simulation optimization techniques are Ranking and

Selection Techniques (R&S). We will be inspecting these techniques in Section 2.3.

In the following section we summarize some of the simulation optimization studies

in the literature.

2.2.2. Literature Survey Simulation Optimization

 In Carson and Maria (1997) a general review of the simulation optimization

methods in the literature is given. The simulation optimization methods are classified

into six main categories, which are Gradient based Search Methods, Stochastic

Optimization, Response Surface Methodology, Heuristic Methods, A-teams, and

Statistical Methods. Brief explanations of these methods can be found in the paper.

Some of the examples of the simulation optimization applications and software are

also mentioned.

 Olafsson and Kim (2002) made a broad introduction to simulation optimization

concept. General problem setting of a simulation optimization problem, i.e. decision

variables, objective function, and constraints, is discussed. Brief information on

some simulation optimization techniques for both continuous decision variables and

discrete decision variables cases can be found in the paper. A couple of simulation

optimization software is mentioned to stress out the increasing usage and popularity

of the simulation optimization techniques in practice.

 Fu (2001) summarized most of the major approaches and briefly described the

most known software implementations in question-answer (Q&A) formatted tutorial

paper.

 Law and Kelton (2002) presented a tutorial, which is an introductory level, to

simulation optimization. A simulation optimization problem is introduced.

Experimental results of two commercial optimization packages applied to this

 16

problem are illustrated. A table, which shows popular optimization software

packages, supported software, and utilized strategies, is also included in the paper.

 Azadivar (1999) addressed some specific issues related to decision variables,

objective function, and constraints. Several problem classifications, i.e., according to

single objective versus multi-criteria or continuous decision variables versus discrete

decision variables, are mentioned. Brief descriptions of some simulation optimization

approaches including gradient based approaches and heuristic search strategies are

given. Discussion on multi-criteria optimization and on-parametric optimization are

added to the paper.

 Abspoel et. al. (2000) developed an optimization strategy that is based on a

series of linear approximate sub problems. Each sub problem is built according to the

outcomes of simulation experiments. A D-optimal designs of experiments is used to

plan the simulation experiments. Stochasticity in constraints and objective function is

dealt with explicitly using safety indices. Two text problems including a simulation

based four-station production flow line problem are presented to illustrate proposed

strategy.

 Lee et. al. (1999) proposed an algorithm that searches the effective and reliable

alternatives satisfying the target values of the system to be designed through a single

run in a relatively short time period. The algorithm estimates an autoregressive

model and constructs mean and confidence interval for evaluating the objective

function obtained by small amount of data. The algorithm is applied to an (s,S)

inventory control problem. Experimental results are illustrated in the paper.

 Olafsson and Shi (1998) developed a new simulation based optimization

method called Nested Partitions (NP) method. The method generates a Markov chain

thus solving the optimization problem becomes equivalent to maximizing the

stationary distribution of this Markov chain over certain states. The method may

therefore be considered a Monte Carlo Sampler that samples from the stationary

distribution. It is also shown in the paper that Markov chain converges geometrically

fast to the true stationary distribution.

 Olafsson and Shi (1999) analyzed a new simulation based optimization method

that draws from two recent stochastic optimization methods: Nested Partitions, which

is an adaptive sampling approach, and ordinal optimization. The new method

guarantees global convergence under certain conditions. Furthermore, for certain

problems, the method has exponential convergence rate characteristics, which is

 17

shown by using ordinal optimization perspective. New conditions, under which

asymptotic convergence holds, are derived and practical guidelines for determining

the sampling effort in each iteration are provided.

 Pichitlamken and Nelson (2002) proposed an optimization-via-simulation

algorithm that combines Shi and Olafsson’s (2000) Nested Partitions (NP) method

with Sequential Selection with Memory (SSM) method due to Pichitlamken and

Nelson (2001), and Hill Climbing (HC) algorithm. A numerical example on three-

stage buffer allocation problem is presented. Comparisons with other optimization

algorithms such as Simulated Annealing (SA), Random Search (RS), and Nested

Partitions are also illustrated in the paper.

 Pichitlamken and Nelson (2001) proposed a ranking and selection algorithm,

Sequential Selection with Memory (SSM), very similar to Kim and Nelson’s (2001)

Fully Sequential Algorithm (FSA) in order to use in simulation optimization context.

Idea is using SSM in a neighborhood search to find the best solution among

neighbors. The algorithm uses a statistical selection approach to ensure the best

selection with a certain probability (confidence level), while it makes use of memory,

i.e. encountered solutions so far, to reduce the computational effort. A numerical

example and comparisons to a few other selection approaches are presented in the

paper.

 Brady and McGarvey (1998) integrated the heuristic search methods with a

simulation model to improve the operating performance of a pharmaceutical

manufacturing laboratory. The problem is allocating small set of operators to a large

set of test machines. A very detailed simulation model is used in conjunction with

some heuristics namely Simulated Annealing (SA), Genetic Algorithm (GA), Tabu

Search (TS), and Frequency Based Heuristic in order to improve operating

performance of the laboratory, which can be defined in terms of work in process,

operator efficiency, and operator balance. Dramatic improvements are achived up to

nearly 16% with different heuristics.

 Finke et. al. (2002) combined Tabu Search (TS) with simulation to develop a

scheduling procedure for an automated steel plate fabrication facility in order to

minimize earliness/tardiness penalties. The performance of the procedure is

evaluated by comparisons to the optimal solutions for small problem instances and to

a good heuristic for longer problems, TS allowed the incorporation of more realistic

 18

constraints on system operation. Experimentation and results are presented in the

paper.

 Joines et. al. (2002) addressed the critical decision problems of “How much to

order” and “How often to order” in a supply chain environment. A genetic algorithm

is developed to optimize these system parameters. The quality of the results depends

on the performance measure that is optimized. The deficiencies of using traditional

performance measures are discussed and a new genetic algorithm methodology is

developed to overcome these limitations.

 Baretto et. al. (1999) applied the Linear Move and Exchange Move

Optimization (LEO), which is based on a Simulated Annealing (SA) algorithm

designed for solving hard combinatorial optimization problems, to a manufacturing

problem. The problem description and results are presented in the paper. The paper

also demonstrates the effectiveness and the versatility of the algorithm.

 Baesler and Sepulveda (2000) introduced a new approach to solve multi

objective simulation optimization problems. The approach integrates a simulation

model with a genetic algorithm and a goal programming model. The genetic

algorithm is modified to perform the search considering the mean and the variance of

the responses. This new approach is able to lead the search towards a multi objective

solution.

 Altiparmak et. al. (2002) developed an artificial neural network (ANN)

metamodel for simulation model of asynchronous assembly system. This metamodel

is used in conjunction with Simulated Annealing (SA) to optimize the buffer sizes in

the system. Experimental results are presented in the paper.

 Humprey and Wilson (1998) developed a variant of Nelder and Mead’s (NM)

Simplex Search procedure, Revised Simplex Search (RSS), for simulation

optimization. This new search method is designed to avoid the weaknesses, which

can be stated as excessive sensitivity of starting values, being trapped by local

optima, lack of robustness, and lack of computational efficiency, of some other direct

search methods. A simulation study conducted to compare RSS to NM and RS9 (a

simplex search procedure recently proposed by Barton and Ivey (1990)) based on

separate factorial experiments for selected performance measures. Experimental

results show that the improved performance of RSS with marginally increased

computational effort.

 19

 Gupta and Sivakumar (2002) combined discrete event simulation and various

techniques, which are used to deal with multi objective optimization such as

weighted aggregation approach, global criterion method, minimum deviation

method, and compromise programming, in order to generate optimal schedules for

semiconductor manufacturing where there are more than one objectives to satisfy

including cycle time, machine utilization, and due date accuracy. First, the job shop

scheduling problem is modeled and the problem is divided in to simulation clock

based lot selection sub problems. Then at each decision point in simulated time, a

Pareto optimal lot is selected using the techniques mentioned above. Results show

that how these techniques work effectively in solving the multi objective scheduling

problem using discrete event simulation.

 Sivakumar (1999) developed a discrete event simulation based “on-line near-

real time” dynamic scheduling and optimization system to optimize the cycle time

and asset utilization in semiconductor test manufacturing. The system has been

implemented at a semiconductor back-end site. The impact of the system includes the

achievement of very good cycle time, improved machine utilization, and more

predictable and highly repeatable manufacturing performance.

 Schruben (1997) introduced a new simulation optimization approach that takes

advantage of the ability to run simultaneous replications of different experimental

factor settings in a single run. Different time scales for the events corresponding to

different design points can be used. In this manner, the run can focus on factor

settings that are likely to be optimal and feasible. An example is presented using a

penalty function to dilate event times to find the cycle time constrained capacity of a

queue.

 Lee et. al. (1997) developed a simulation optimization technique exploring a

new paradigm called the “reverse simulation”. The paper focuses on the method of

on-line determination of steady state, which is a very important issue in reverse

simulation optimization, and the construction of a reverse simulation algorithm with

expert systems. The algorithm employs the Lyapunov exponent of Chaos Theory to

determine the steady state of the system and an optimal state. M/M/s queuing model

is chosen to illustrate the algorithm. Experimental results show that obtained number

of servers by the algorithm corresponds to the theoretical value.

 Neddermeijer et. al. (2000) developed a framework for automated optimization

of stochastic simulation models using RSM. The framework is especially intended

 20

for simulation models where the calculation of the corresponding stochastic response

function is very expensive or time consuming. Many choices that have to be made in

development of an automated RSM algorithm are described in the framework.

 Angun et. al. (2002) modified RSM in the way that the determination of the

search directions. Classical RSM locally fits first order polynomials in the first stages

of the search, and then uses Steepest Descent (SD) strategy, which is scale

dependent, to determine search direction. A scale independent search strategy,

Adapted Steepest Descent (ASD), is derived which accounts for covariance between

components of the local gradient. Monte Carlo experiments show that ASD gives a

better search direction compared to SD. In multi objective analogous, interior point

methods and binary search are used to derive scale independent search direction.

Monte Carlo experiments show that a neighborhood of the true optimum can be

reached in a few runs. Experimental results are presented in the paper.

 Marito and Lee (1997) presented a simulation optimization approach for

finding a dynamic dispatching priority in a stochastic job shop environment under

the presence of multiple identical jobs. The key ingredients of the approach are: an

efficient processing time based dispatching rule, simulation model of a job shop, and

a mechanism to fake (or modify) job processing times based on the information of

job slack obtained from simulation. An overall approach to fake processing times is

described and alternative strategies for algorithm design are identified in the paper.

Experimental results are illustrated.

 Rogers (2002) applied a commercial simulation optimization tool, OptQuest, to

manufacturing system design and control problems. After a brief introduction to both

general simulation optimization concept and OptQuest for Arena, implementation of

the software in tackling with sequence dependent setup problem for a production

facility, and optimal order acceptance/rejection problem in a make to order

environment is reported in detail. Results and conclusions are presented in the paper.

Table 2.1. summarizes the studies :

 21

Baesler and Sepulveda
(2000)

New approach integrates GA with Goal Programming to

solve multi objective optimization problems.

Authors The Paper

Carson and Maria (1997) Overview of methodologies.

Olafsson and Kim
(2002)

Overview of methodologies, some problem settings, and

software.

Fu (2001) Question and answer (Q&A) formatted tutorial.

Law and Kelton (2002)
An introductory level tutorial and some software

applications.

Azadivar (1999) General review of methodologies.

Abspoel et. al. (2000)
New methodology based on a series of linear

approximate sub problems.

Lee et. al. (1999)
New algorithm based on estimating an autoregressive

model.

Olafsson and Shi (1998) New method Nested Partitions (NP).

Olafsson and Shi (1999)
New approach that combines NP and ordinal

optimization.

Pichitlamken and Nelson
(2001)

New Ranking and Selection approach, Sequential

Selection with Memory (SSM).

Pichitlamken and Nelson
(2002)

New approach, which is a combination of NP, SSM, and

Hill Climbing .

Brady and McGarvey
(1998)

Application of heuristic search methods to optimize the

operating performance of pharmaceutical manufacturing

facility.

Finke et. al. (2002)

Application of Tabu Search (TS) to minimize the

earliness/tardiness penalties in a steel plate fabrication

facility.

Joines et. al. (2002)
Application of Genetic Algorithm (GA) in a supply chain

environment.

Baretto et. al. (1999)
Application of Linear Move and Exchange Move

Optimization (LEO) to a manufacturing problem.

Table 2.1. The summary of some studies in the literature.

 22

2.3. Ranking and Selection

 One of the most important areas that simulation is used is comparing alternative

system designs. For example, suppose two layout designs for a production facility

are being considered. Decision maker wants to know which design is better. One can

make use of simulation in order to compare the designs and select the best one

among. Of course this task must be performed carefully to avoid the possibility of

Authors The Paper

Altiparmak et. al.

Application of Simulated Annealing (SA) in conjunction

with an artificial Neural Network (ANN) metamodel, to

an asynchronous assembly system in order to optimize

the buffer sizes.

Humprey and Wilson
(1998)

New approach, Revised Simplex Search (RSS), which is

a variant of Nelder and Mead’s (NM) Simplex Search

procedure.

Gupta and Sivakumar
(2002)

New approach that combines discrete event simulation

and various techniques, which are used to deal with multi

objective optimization.

Sivakumar (1999)

New approach, dynamic scheduling and optimization

system, to optimize the cycle time and asset utilization in

semiconductor test manufacturing.

Schruben (1997)
New approach based on simultaneous replications of

different experimental factor settings.

Lee et. al. (1997) New approach based on Reverse Simulation.

Neddermeijer et. al.
(2000)

Framework for automated optimization of stochastic

simulation models using Response Surface Methodology

(RSM).

Angun et. al. (2002) Modification of RSM.

Marito and Lee (1997)
New approach for finding a dynamic dispatching priority

in a stochastic job shop environment

Rogers (2002)
Application of OptQuest, to manufacturing system design

and control problems

 23

selecting the wrong system. Even if the simulation study is performed perfectly, an

appropriate method must be chosen to compare the systems using simulation output.

This issue is very important. Because of the stochastic nature of simulation, arising

from randomness, one can never be sure which system is better with certainty. So,

appropriate statistical methods must be used to distinguish the best system from the

other alternatives within a given confidence level.

 There are a lot of statistical methods to compare the alternative system designs.

When we look at the literature, these procedures can be divided into two main

categories. The first category is Multiple Comparison Procedures (MCPs) and the

second is Ranking and Selection (R&S) procedures.

2.3.1. Multiple Comparison Procedures (MCPs)

 These procedures basically construct confidence intervals, with the desired

confidence level, around the differences of two systems’ performance measures and

try to give insights about the systems’ performances with respect to each other.

 The most known procedure is due to Tukey. (Goldsman and Nelson (1998)).

The procedure requires identical, independent, and normally distributed outputs from

each system. The procedure does pair wise comparison, takes difference between two

alternatives and constructs a confidence interval to see the magnitude and the

direction of the difference. k(k-1)/2 confidence intervals are formed for k alternatives.

 Instead of comparing each alternative with the others, one can compare each

system with the best of the remaining systems thus reducing the number of

confidence intervals. This kind of comparison is called Multiple Comparisons with

the Best (MCB). “The first MCB procedures were developed by Hsu.” (Goldsman

and Nelson (1998))

 Another type of multiple comparison procedures is called Multiple

Comparisons with the Control (MCC). In this approach alternative systems are

compared to a control (or a default) system. Thus we only need to construct k-1

confidence intervals. This kind of situation may arise when we compare alternative

designs to an existing system. “MCC procedures are well known for the case when

the variances across systems are equal and the data are normal (Goldsman and

Nelson (1998)).

 24

 Although MCPs give insights when comparing alternatives, they do not either

provide much information or select the best. But we can detect the systems worth

examining further by using MCPs. At this point of view they can be considered as

selection procedures.

2.3.2. Ranking and Selection Procedures

2.3.2.1. Subset Selection

 In subset selection approach, we form a subset of alternative systems which

includes the best system. The cardinality of the subset depends on the procedure

used. It can be random-size or pre-determined. The most known method is Gupta’s

single stage procedure (Goldsman and Nelson (1998)). The method assumes that

simulation outputs are independent, balanced (equal number of observations from

each system), and normally distributed with common (unknown) variance. ”Gupta

and Huang” proposed a similar procedure for the unbalanced case” (Goldsman and

Nelson (1998)).

2.3.2.2. Indifference-zone Selection

 The indifference-zone procedures select the best system among alternatives

with pre-determined confidence level. The term indifference-zone, δ, comes from

user specified parameter that indicates practically significant difference. This means,

if a system’s expected value for a given performance measure is at least δ amount

better than the others then the system is considered as the best. If the differences

between expected values of two or more systems are within the indifference zone

(less than δ) then this means there is no practically significant difference between

systems and one of them can be selected as the best.

 Most of the indifference-zone procedures are two-stage procedures. In the first

stage, sample variances are calculated from simulation output for each system. Then

using a simple formula, that accounts for these sample variances, and a user specified

indifference zone parameter, and a statistical constant that is a function of number of

systems, and desired confidence level, the required sample sizes are calculated. In the

second stage, more replications are performed according to the required sample sizes.

After required replications are taken new sample means are calculated and one of the

 25

systems is selected as the best by looking the sample means of each system. If the

largest is better then the system with the largest sample mean is selected.

 The most known indifference zone procedures are due to Rinott and due to

Dudewicz and Dalal (Goldsman and Nelson (1998)). Both methods are two-stage

procedures and assume normality and independence across systems. The main

difference is, in the second stage, unlike Rinott’s, Dudewicz and Dalal’s procedure

uses the weighted averages. Nelson and Matejcik proposed procedures those can

handle dependence across systems. (Goldsman and Nelson (1998))

 “Matejcik and Nelson established a fundamental conjunction between

indifference-zone selection and MCB by showing that most indifference-zone

procedures can simultaneously provide MCB confidence intervals with the width of

the intervals corresponding to the indifference zone.” (Goldsman and Nelson (1998))

There are several combined procedures: Rinott+MCB, NM+MCB, and

Bonferroni+MCB.

 The multinomial selection approach is an another kind of indifference-zone

procedures.(Goldsman and Nelson (1998)) This approach tries to select the system

that is most likely to have the best response. Let pi be the probability that system i

will produce the best response from a given observation from each system. “The goal

is to select the best system with a given confidence level whenever the ratio of the

best to the second-best pi is greater than some user specified constant, say θ>1. The

indifference constant θ can be regarded as the smallest ratio worth detecting”

(Goldsman and Nelson (1998)). Bechhofer, Elmaghraby and Morse (BEM) proposed

a single stage procedure that uses this approach. “There is also more efficient but

more complex method due to Bechhofer and Goldsman (BG)” (Goldsman and

Nelson (1998)).

2.3.3. Literature Survey Ranking and Selection

 Goldsman (1983) introduced some common ranking and selection terminology

and procedures. Some additional references for more complicated procedures are

given. Indifference-zone approach, subset selection approach, and other approaches

are explained. Discussion on R&S procedures in simulation applications is included.

 Goldsman and Nelson (1998) presented a review of screening, selection, and

multiple comparisons procedures that are used to compare system designs via

 26

computer simulation. Screening large number of system designs, selecting the best

system, and comparing all systems to a standard are the main topics of the paper.

 Goldsman et. al. (1999) presented a review paper in the area of ranking and

selection available to practicing engineers and management scientists.

 Nelson (1993) used the multiple comparisons with the best (MCB) procedures

to analyze simulation experiments that employ common random numbers (CRNs).

 Matejcik and Nelson (1993) proposed three procedures that combine

indifference-zone selection and multiple comparison inference. The first method uses

Rinott’s indifference-zone procedure then constructs MCB confidence intervals. This

method requires independence across systems. The second and the third methods

allow dependence across systems. The second one uses Clark and Yang’s

indifference-zone selection procedure than constructs MCB confidence intervals. The

third method is due to Nelson and Matejcik and works as the same way as the others.

The importance of this paper comes from that it shows indifference-zone procedures

can be used in conjunction with MCB.

 Haynes et. al. (1997) conducted a robustness study. A new family of

distributions called g-and-k distributions, which may be used to approximate a wide

class of distributions and allow effectively controlling skewness and kurtosis through

independent parameters, are used in the study. The frequentist selection rules are

found robust to small changes in the distributional shape parameters g and k. The

study can be used to assess robustness and to develop procedures to allow for non-

normality and also to understand the effects of non-normality on selection

procedures.

 Matejcik and Nelson (1995) developed two-stage sampling procedures to

compare a small number of stochastic systems. The procedures are MCB procedures

and require independence and normality. They also allow experimenter to specify the

desired precision in advance. The paper includes guidelines for experiment design

and an illustrative example.

 Inoue and Chick (1998) compared the Bayesian Approach and the frequentist

approaches in the literature. First, Bayesian Approach for both known and unknown

precision is introduced. Then, a bayesian model is constructed for multiple systems

for dependent and independent cases. Finally, comparison of Bayesian Approach to

classical approaches, under the normality assumption for both dependent and

independent cases, is illustrated. Although Bayesian Approach produced better

 27

results, the differences between the proposed approach and the other approaches are

not significant.

 Ahmed and Alkhamis (1999) presented a new iterative method that combines

the simulated annealing method and the ranking and selection procedures for solving

discrete stochastic optimization problems.

 Olafson (1999) developed a new algorithm for simulation based optimization

where the number of alternatives is finite but very large. The method combines the

Nested Partitions (NP) method for global optimization and Rinott’s two-stage

procedure.

 Goldsman and Marshall (1999) modified Rinott’s procedure. Instead of using

classical variance estimators, variance estimators arising from the method of

Standardized Time Series (STS), are used. STS variance estimators have more

degrees of freedom according to Batch Means (BM) variance estimators. On the

other hand STS variance estimators require more sample sizes to achieve the desired

probability of correct selection. The paper stresses out this trade-off between STS

and BM variance estimators.

 Morrice et. al. (1999) conducted a sensitivity analysis on a ranking and

selection procedure for making multiple comparisons of systems that have multiple

performance measures. The procedure combines Multiple Attribute Utility (MAU)

theory with ranking and selection. The analysis focused on the weights generated by

the MAU procedure. Implementation of the analysis, on a simulation model of a

large project that has six performance measures is illustrated. The impact of the

sensitivity analysis on the results of the ranking and selection procedure is also

discussed.

 Kim and Nelson (2001) developed a new ranking and selection procedure,

Fully Sequential Procedure (FPS), for indifference-zone selection. The motivation of

the procedure is eliminating apparently inferior systems at the early stages of the

experimentation thus reducing the computational effort. The procedure only requires

normality and can handle dependence across systems. Actually, it is shown that

inducing dependence increases the efficiency of the procedure. The results of

different configurations for varying number of systems are presented in the paper.

Comparisons to some existing procedures are also given.

 Goldsman et. al. (2000) presented two ranking and selection procedures for use

in steady state simulation experiments. Both procedures require independent and

 28

normally distributed data. The procedures are extensions of Rinott’s procedure and

Fully Sequential Procedure (FSP). They were modified to handle steady-state

simulation. Experimental design and summary of the results are presented in the

paper.

 Chen and Kelton (2000) proposed a two stage selection procedure called an

Enhanced Two-Stage Selection (ETSS) procedure. The main difference is required

sample size for each system in the second stage is determined by both the variances

of the sample means and the differences of the sample means of alternative designs.

The procedure is compared to Rinott’s procedure. Several experiments under

different conditions are performed to show the procedure’s validity. Results of the

experiments are presented in the paper.

 Nelson et. al. (2000) addressed the problem of selecting the best system when

the number of alternatives is too large that ranking and selection procedures may

require too much computation to be practical. A new approach, combining screening

procedures with indifference-zone procedures, is proposed. A combined procedure

may eliminate inferior systems at the first step and thus reduces the number of

alternatives for attached indifference-zone procedure. Computational effort may be

dramatically reduced according to stand-alone indifference-zone procedure. A

general theory for constructing combined screening and indifference-zone

procedures is presented. Several combined procedures are proposed. An empirical

evaluation study and some results of the study are also given.

 Nelson and Goldsman (2000) considered the problem of comparing finite

number of systems with respect to a single system (standard). The goal is to find out

if systems better than the standard exist, and if so, to determine the best of

alternatives. Two-stage experiment design and analysis procedures are proposed. The

analysis is based on variety of scenarios including dependence across systems. A

couple of methods for estimating the critical constants required by the proposed

procedures are provided. A portion of an extensive empirical study and

demonstration of one of the procedures are presented in the paper.

 Hedlund and Mollaghasemi (2001) developed a methodology based on a

genetic algorithm in conjunction with an indifference-zone selection procedure under

common random numbers (CRN). The method is applied to a stochastic

mathematical model. Results are presented in the paper.

 29

 Chen (2001) discussed the validity of using common random numbers (CRN)

with two-stage selection procedures to improve the probability of correct selection.

An experimental study is performed using several procedures including Rinott’s

procedure and an Enhanced Two-Stage Selection (ETSS) procedure. It is shown that

when CRN was employed, the procedures returned better results compared to

independent case. Experimental design and the results are presented in the paper.

 Chen (2002) brought a conservative adjustment to ETSS procedure to increase

the probability of correct selection. An experimental study is conducted and the

results, which show the efficiency of the adjustment, are presented in the paper.

Comparisons to Rinott’s procedure and original ETSS procedure are also given.

 Boesel et. al. (2002) considered the problem of finding the best system when

the number of systems is large and initial samples from each system have already

been taken. This situation may be encountered when a heuristic search procedure has

been applied in a simulation optimization context. The true best system may not be

the system that the search procedure indicates because of the stochastic variation.

Some statistical procedures that return the best system encountered by the search

with a pre-specified probability are developed. An empirical study and the results are

presented in the paper.

 A summary of the R&S procedures is given in Table 2.2:

30

Procedure Equal
variance

Known
variance

Balanced
first sampling Dependence Normality # of stages Type

Rinott (1978) No No Yes No Yes 2 IZ
Dudewicz and Dalal() No No Yes No Yes 2 IZ

Clark and Yang (1986) No No Yes Yes Yes 2 IZ

Nelson and Matejcik (1993) Yes No Yes Yes Yes 2 IZ

Nelson and Matejcik
Two-stage MCB (1995) No No No No Yes 2 MCB

BT (Bechhofer, Turnbull) (1978) Yes No Yes No Yes 2 IZ+MCB

BEM (Bechhofer, Elmaghraby, Morse)
 (1959) No No Yes No Yes 1 MSA

BG (Bechhofer, Goldsman) (1986) No No Yes No Yes Seq. MSA

AVC (Miller, Nelson, Reilly) (1998) No No Yes Yes Yes 1 MSA

Nelson and Goldsman (2000) No No Yes No Yes 2 CWS

Goldsman and Marshall (Rinott+STS)
(1999) No No Yes No Yes 2 IZ

Table 2.2. Some of the R&S procedures in the literature.

31

Procedure Equal
variance

Known
variance

Balanced
first

sampling
Dependence Normality # of stages Type

ETSS (2000) No No Yes No Yes 2 IZ+SS

Fully Sequential Procedure (2000) No No Yes Yes Yes Seq. IZ

Screen-to-the-best (Nelson et. al.)
(2000) No No Yes Yes Yes 1 SS

Combined Procedure (Nelson et. al.)
(2000) No No Yes No Yes 2 IZ+SS

Group Screening (Nelson et. al.)
(2000) No No Yes No Yes 2 IZ+SS

Tukey () Yes No No No Yes 1 MCP

Gupta (1956) Yes No Yes No Yes 1 SS

IZ : Indifference-zone selection MSA : Multinomial Selection Approach MCP : Multiple Comparison Proc.

SS : Subset Selection MCB : Multiple Comparisons with the Best CWS : Comparison with Standard

Note : “Yes” means that the method requires (or allows in “dependence” case) the feature that reads in the column head, while “No”
means the opposite.

 32

CHAPTER 3

PROPOSED STUDY

3.1. Methodology

 As we stated in the first chapter, the aim of this study is to investigate the

effects of the Fully Sequential Procedure (FSP) when embedded in Tabu Search

(TS). TS, when applied in simulation optimization context, uses simulation as an

evaluator. In each iteration, a solution is selected as the best among the neighbours.

This best solution is used as a starting point for next iterations, i.e., the new

neighbourhood set is generated according to this solution. The efficiency of the

search is directly related to selecting the best (or near best) solution in each step.

Selecting the best solution in each step makes the search to converge quickly to the

optimal (or near optimal) solution. Hence, the computational effort is reduced.

 An ordinary TS algorithm uses arbitrary number of replications when

evaluating the neighbours to find the best among them. This is, take an arbitrary

number of replications, say n, from each alternative, and select the solution with

largest average value (in a maximization problem) as the best. Due to stochasticity,

this approach may lead the search to the wrong directions or it may make the search

delayed especially when n is small. It is even worse when the size and the

complexity of the problem increase.

 33

 At this point, we think if a Ranking and Selection (R&S) algorithm, which

guarantees the best selection with a certain probability, is used then the efficiency of

the search might be improved. We expect better solutions with decreased number of

iterations. On the other hand, wrong selection in any iteration does not always mean

the search will not end up with a good (near optimal) solution. If this is the case then

employing a R&S algorithm is useless. And considering the additional computational

effort, it is certainly beneficial not to employ it. This is a trade-off and we will be

examining this trade-off in the following sections. The next two sections describe the

TS and FSP respectively, while the remaining sections present analysis and results of

our approach when applied on a various system designs.

3.1.1. Tabu Search

 Tabu Search is an iterative search heuristic due to Glover (1986). It is designed

to solve combinatorial optimization problems. Classical optimization techniques are

inefficient to solve these problems because of the computational intractability of the

problems when the size of the problem gets larger. To overcome this difficulty

heuristic methods were developed. Although these methods do not guarantee the

optimal solution, they provide good (close to optimal) solutions. TS is one of the

most known and the most efficient of these methods. It has many application areas

including production scheduling, location allocation, telecommunication, routing,

and graph optimization.

 The key features of TS are intensification and diversification strategies, and its

utilization of memory (history). Intensification is, as the name implies, to intense the

search around promising or good solutions to improve the objective function value,

while the diversification means to direct the search to the new compromising regions

to avoid being trapped by the local optima.

 Memory plays very important role in implementing these strategies. Recency

based (short term) memory keeps track of recent solutions. Recently encountered

solutions are classified as tabu, and for a certain number of iterations, which is called

tabu tenure, the search cannot move into those solutions. This prevents the search

from going into a cycle. Frequency based (long-term) memory, on the other hand,

records solutions encountered by the search. The frequent solutions according to this

memory may be penalized to diversify the search. Also the search may be restarted to

 34

thoroughly search the neighbourhood of the good (elite) solutions in the long-term

memory.

 If a solution is tabu then this solution is ignored by the search even it is the best

solution in the neighbourhood. There are a couple of ways to make tabu

classifications. One of them is using a part of a solution e.g., one of the solution

variables, and another one is using the solution itself (the whole solution). In the

former case tabu list is designed to record any part of the solution (any solution

variable). To determine whether a solution is tabu or not, solution variables are

compared to counterparts in the tabu list. For example, suppose a solution consists of

five solution variables,),,,,(54321 xxxxxx = . And tabu list at some iteration of the

search is formed as (just illustration purposes):

Variable Value Tenure
1x or 1 5 3

2x or 2 3 2

3x or 3 3 3

4x or 4 1 2

5x or 5 2 1

 This means if variable 1x of a solution is equal to 5 then that solution becomes

tabu (classified as tabu). And this situation continues for the next three iterations

since tabu tenure equals to 3. Similar explanations are valid for the other variables.

Note that actually tabu list has more elements than it is shown in the table. In the

latter case in which the tabu classification is made by looking the whole solution, the

picture of the tabu list becomes the following:

Tabu Solution Tenure
(5,2,3,4,4) 5
(5,3,3,3,4) 4
(4,3,3,3,3) 3
(4,4,3,3,3) 2
(3,4,4,3,4) 1

 The solution (5,2,3,4,4) is tabu and following 5 iterations the search cannot

move into this solution. But there are no restrictions for the variables in the solution.

For example, the solution (5,2,3,4,3) is not tabu. The last variable of the solution

 35

prevents it from being tabu. This kind of tabu classification is less restrictive than the

former one.

 Tabu status of a solution can be overridden according to some criterion. This is

called aspiration criterion. There are several types of aspiration criterion. For

example, if the objective function value of the tabu solution is better than the best

solution encountered by the search so far then the tabu status of the solution is

overridden. If all solutions in the neigbourhood are tabu then tabu status of the best

solution is overridden.

 Another important issue in TS is the generation of the neighbourhood set. The

efficiency of the search can be improved by implementing clever neighbourhood

generation algorithms that make use of memory. By utilizing memory better search

directions can be found, and neighbourhood generation algorithm may focus on these

directions.

3.1.1.1. Tabu Algorithm

 Here is the Tabu Search algorithm.

Step1 : Start with an initial Xx ∈ and let xxbest = . Set the iteration counter, 0=c ,

and empty the tabu list, ∅=T .

Step2 : If stopping criteria is satisfied, i.e., simple iteration count or a certain

improvement has been made etc., then stop and return bestx .

Step3 : Generate)(xN , neighbourhood set to the current solution. Evaluate the

neighbours and select the best, newx , if it is not classified as tabu, i.e., it is not in the

tabu list, Txnew ∉ . If it is in the tabu list, but satisfies aspiration criterion,

)()(bestnew xfxf > (in a maximization problem), then still select the solution as the

new current solution. Otherwise select the second best solution as the new current

solution.

Step4 : If)()(bestnew xfxf > then set newbest xx = .

Step5 : Increase iteration count, update tabu list, T, by adding newx to the list, and

decreasing the tabu tenures of the solutions in the tabu list. If tabu tenure of a

solution is zero then remove the solution from the list. Goto Step2.

x denotes solution vector,

X denotes solution space,

 36

T denotes tabu list,

bestx denotes best solution so far,

)(xf denotes objective function, and

)(xN denotes neighbourhood set of x .

 One can refer to Glover (1989) and Glover and Laguna (2002) for better

understanding of TS.

3.1.2. The Fully Sequential Procedure (FSP)

 The Fully Sequential Procedure (FSP) is a sequential, indifference-zone

Ranking and Selection (R&S) algorithm proposed by Kim and Nelson (2000). It is

designed to reduce computational effort by eliminating clearly inferior alternatives at

the early stages of the experimentation. The procedure only assumes normally

distributed data. It can handle unknown and unequal variances, and dependence

across systems. Actually it is shown that employing Common Random Numbers

(CRN) increases the efficiency of the procedure.

3.1.2.1. The Fully Sequential Algorithm (Kim and Nelson (2000))

 The algorithm is directly excerpted from Kim and Nelson (2000).

Setup: Select confidence level α−1 , indifference zone δ and first stage sample size

20 ≥n . Calculate c and η as described below.

Initialization: Let { }kI ,...,2,1= be the set of systems still in contention, and let

)1(2 0
2 −×= nch η .

Obtain 0n observations 0,...,2,1 , njX ij = from each system ki ,...,2,1= .

For all li ≠ compute

[]()
2

1
00

0

2
0

)()(
1

1 ∑
=

−−−
−

=
n

j
liljijil nXnXXX

n
S

the sample variance of the difference between systems i and l.

Where ∑
=

=
0

10
0

1)(
n

j
iji X

n
nX , ijX denotes the jth independent observation from the

system i. Let

 37









= 2

22

δ
il

il
Sh

N

where  ⋅ indicates truncation of any fractional part, and let

ilili NN
≠

= max

Here 1+Ni is the maximum number of observations that can be taken from system i.

If ii Nn max0 > then stop and select the system with the largest)(0nX i as the best.

Otherwise set the observation counter 0nr = and go to Screening.

Screening: Set II old = . Let

{ }ilIlrWrXrXIiiI old
illi

old ≠∈∀−≥∈= ,),()()(and :

where





















−= r

Sh
cr

rW il
il 2

22

2
,0max)(

δ
δ

Notice that)(rWil , which determines how far the sample mean from system i can

drop below the sample means of the other systems without being eliminated,

decreases monotonically as the number of replications r increases.

Stopping Rule: If 1=I , then stop and select the system whose index is in I as the

best. Otherwise, take one additional observation 1, +riX from each system Ii ∈ and

set 1+= rr .

If 1max += ii Nr , then stop and select the system whose index is in I and has the

largest)(rX i as the best. Otherwise go to Screening.

(Notice that the stopping rule can also be 1>= mI if it is desired to find a subset

containing the best, rather than the single best.)

Constants: The constant c may be any nonnegative integer, with standard choices

being 2,1=c ; these values are standard in the sense that they were used by

Hartmann (1991), and that η is easy to compute when 2or 1=c . We evaluate

different choices later in the paper and argue that 1=c is typically the best choice.

The constant η is the solution to the equation

1
)2(21)(

2
11)1()(

2/)1(

1

1
0

−
=






 −

+





 =Ι−−≡

−−

=

+∑ kc
llcclg

nc

l

l αηη

 38

where I is the indicator function. In the special case that 1=c we have the closed-

form solution












−








−
=

−−

1
1

2
2
1)1/(2 0n

k
αη .

 At screening process each alternative is compared to the remaining alternatives

in the set. If it is inferior to any of the other alternative then it is eliminated from the

set. If it survives from the comparisons it stays in the set for further inspection.

Comparisons are done in the following manner (in a maximization problem). If a

system’s sample mean is bigger than or equal to the any other system’s sample mean

minus a function value called xyW then this system passes the comparison. Otherwise

it is eliminated. For example, let 20)(=rX i be the sample mean of system i, and let

22)(=rX j be the sample mean of system j, and 3)(=rWij . If

)()()(rWrXrX ijji −≥ then the system i passes the test, and it is compared with

other systems in the same manner. If it passes all the tests then it stays in the set for

further inspection. Since 1932220 =−> system i passes the test. If 1)(=rWij then

the system i could not pass the test, and it would be eliminated by system j.

)(rWij function, which is used in pairwise comparisons, monotonically

decreases as the number of replications r increases. This function can be thought as a

range (or window). The length of the range decreases with every additional iteration,

and it becomes difficult for a system, which is not the true best, to stay in the set.

When the length of the range reaches zero, if there are more than one alternative in

the set then the alternative with the largest sample mean selected as the best.

Statistically there is no difference between the alternatives in the set and any of them

can be the true best. But, in most cases, the best is found before the length of the

range ()(rWij) reaches zero. Following figure illustrates the graph of)(rWij :

 r

)(rWij

Figure 3.1. The graph of)(rWij

 39

 It can be seen that the)(rWij quickly decreases in the early stages to eliminate

the clearly inferior systems. Towards the end it slowly decreases to get rid of the

possibility of wrong decision. The alternatives those survive towards the end of the

stages should be carefully compared.

 The validity of the procedure has been proven in the paper. Design of the

procedure including choice of c, whether or not to use CRN, and the effect of the

batch size is examined. The results of the experimental study performed to compare

FSP to two other R&S algorithms namely Rinott’s (1978) procedure and 2SP

proposed by Nelson et. al. (2000), are illustrated in the paper.

3.2. Experimental Settings

3.2.1. Manufacturing Problem

 Our first problem is a production problem that is introduced by Law and

McComas (2002). Since this problem is a test problem in simulation optimization

area, we decided to start implementing our methodology with this problem.

Following figure illustrates the outline of the production facility.

 As seen in the Figure 3.2. the production facility consists of four work stations

and three buffers located between workstations. The machines at a specific

workstation are identical. The number of machines at each workstation may be

different from others. The processing times of the machines at each workstation are

exponentially distributed with means (0.3333, 0.5, 0.2, 0.25) respectively. There is an

infinite supply in front of the first workstation. The parts enter system from

workstation 1 and leave from workstation 4.

Machines Buffer Positions

WS1 WS2 WS3 WS4

Buffer 1 Buffer 2 Buffer 3

Infinite
Supply

Figure 3.2. The outline of the production facility.

 40

 A part enters the system as soon as if there is an available machine at

workstation 1. When a part completes its processing, it is transferred to succeeding

buffer if there is enough room (position) for the part. Otherwise it blocks the

machine. The machine remains blocked until the part moves. A part that is waiting in

the buffer moves the succeeding workstation if there is an available machine at that

workstation. If not then the part waits in the buffer until a machine at succeeding

workstation becomes available. The transfer times are negligible.

 The objective is to maximize the profit where each machine costs $250 and

each buffer costs $10. We earn $2 per finished part. The objective (profit) function is

formed as the following:

P=finished parts*2 - total number of machines*250 - total number of buffer positions*10

 The decision variables are the number of machines at each station and the

number of buffer positions in each buffer. Let),,,,,,(7654321 xxxxxxxx = denotes a

solution. The odd numbered variables 7531 and ,,, xxxx represent the number of

machines at workstations 1, 2, 3, and 4 respectively. And the even numbered

variables 642 and ,, xxx represent the number of buffer positions in buffer 1, 2, and 3.

The objective function then can be formulated as follows:

10)(250)(2parts finished)(6424321 ⋅++−⋅+++−⋅= xxxxxxxxP

 Although there are no limitations on the machine number at any workstation or

the number of buffer positions in any buffer we put upper bounds on these variables

for practical reasons. The maximum number of machines at any workstation will be

3 and the maximum number of buffer positions in any buffer will be 8. These

numbers are based on direct observations from Law and McComas (2002).

 We developed a simulation model of the above problem to estimate the

objective function. The model takes decision variables 7,..,2,1 , =ixi as an input and

gives the total profit. Model parameters are represented in Table 3.1:

Parameter Value
Run length (Hours) 920

Warm-up period
(Hours) 240

WS1 WS2 WS3 WS4 Mean Processing Times
(Hours) 0.3333 0.5 0.2 0.25

Table 3.1. Model parameters of the production problem.

 41

 Although this simulation model can evaluate the solutions and give the output

for a specific solution, it has nothing to do with optimization. It has to be used in

conjunction with an optimization algorithm. TS can use this model as an evaluator in

optimizing the objective function. At each iteration of TS, alternative solutions

(neighbours) are evaluated using this model and the best solution is selected

according to the simulation output.

3.2.2. Inventory Control Problem

 Our second problem is a single item single location continuous control

inventory problem. We wanted to apply our methodology on different kind of system

designs. Since inventory control problems are very common in real life, we decided

to implement our methodology on this problem. It is taken from Yuksel (2000). The

stored items are perishable. This means, after a time period, which is called shelf life,

the items perish and become useless. The shelf life of the goods can be fixed or

random. (s,S) policy is used to decide when to order and how much to order.

 The inventory starts with S amount of goods. When a demand occurs, it is

immediately met if there is enough amount of the item to meet the demand.

Otherwise, the amount that could not be met is backordered. If the inventory level

drops below a certain point s, re-order point, then an order is placed to raise the

inventory level to S, order up to point. The order arrives after a certain time period,

which is called lead-time. The backordered demands are met first when the order

arrives. The items that fill their shelf lives are disposed. The items that are put

inventory at the same time have the common shelf life. On the other hand, this shelf

life could be fixed or random.

 There are four types of cost incurred managing the inventory. The first one is

the ordering cost, which is fixed and occurs when an order is placed. The second one

is the holding cost. There is a unit cost of items during the time they are stored in the

inventory. The third one is the backorder cost. If a demand cannot be met then it

brings a certain amount of cost. Furthermore, it will cause the loss of customers’

goodwill. The backorder cost is time weighted. This means, a unit of backordered

item will bring a certain amount of cost per unit time until it is met. The fourth type

of cost is the perishing cost. When an item in the inventory completes its lifetime

 42

then it becomes useless and is disposed. There is a cost per perished item.

Assumptions of the inventory model are described below:

- Single item single location,

- Fixed or random shelf life (the shelf life of an item could be distributed

exponentially or it could be gamma distributed),

- The shelf life of all items in a batch is same,

- The lead time is positive,

- The FIFO rule applies,

- (s,S) policy is used.

 Inter-demand times are gamma distributed with the shape parameter

04.0=idα and the coefficient of variation parameter 2=idβ . The demand quantities

have a uniform distribution within the range U[0.5,1]. The shelf life of an item is 0.5

time units in fixed case, and it is exponentially distributed with mean 5.0=slµ in

random case. The lead time is 1 time unit. The ordering cost is determined as $50.

The holding cost is taken $1 unit per item. The time weighted backorder cost is set to

$2 units per item. The perishing cost is $5 units per item. The following table

summarizes the parameters of the system:

Parameters Value
Inter-demand times Gamma(0.04,2)
Demand quantities Uniform[0.5,1]

Shelf life 0.5 or
Exponential(0.5)

Lead time 1
Ordering cost ($) 50
Holding cost ($) 1

Backorder cost ($) 2
Perishing cost ($) 5

Simulation run
length

1000 served
customers

Warm-up period 100 served customers

 The objective is to minimize the total cost function. The total cost function is

formed as:

TC=Ordering cost + Holding cost + Backorder cost + Perishing cost.

Table 3.2. The parameters of the inventory control problem.

 43

 The decision variables are re-order point s, and order up to point S. A

simulation model was constructed to estimate the total cost function. We try to

optimize the objective (the cost) function using two different approaches as in the

previous problem. These approaches were STS and TS+FSP respectively. Our aim is

to compare these methods and examine the effects of the FSP on TS.

3.2.3. Job Shop Problem

 Our third problem is a job shop model. The model is taken from Law and

Kelton (2000). Job shop production environments are part of many production

facilities. We thought, it would be appropriate to apply our methodology on a job

shop problem in order to be more realistic. There are five workstations and one

input/output station in the shop. The machines in a particular station are identical.

Jobs are transferred by forklift truck(s) from one station to another. The following

figure illustrates the outline of the shop:

 Jobs enter and leave the system through the station 6. The inter-arrival times of

the jobs are exponentially distributed with mean 151=aµ hours. There are three

types of jobs namely job 1, job 2, and job 3 with probabilities 0.3, 0.5, and 0.2

respectively. The jobs require a number of operations to be done. The number of

operations depends on the type of the job. Each operation must be done at a specified

workstation in a specified order. The routings of the jobs for each job type are

illustrated in the following table:

WS1

WS4 WS3WS2

Input/output station WS5

Machines

Forklift Jobs

Figure 3.3. The outline of the job shop problem.

 44

 Table 3.3. The routings of the jobs.

Job Type Workstations

1 3-1-2-5
2 4-1-3
3 2-5-1-4-3

 According to above table, a job of type 1 has to travel 3rd, 1st, 2nd, and 5th

stations respectively in order to finish its processing and to leave the system. Of

course, since jobs enter the system from station 6, the job first has to be moved to

station 1 from station 6. Likely when the job finishes its processing at station 5, it has

to be moved to station 6 to leave the system. A job is moved from one station to

another by a forklift truck. A forklift truck moves at a constant speed of 5 feet per

second. When a forklift becomes available, if there is more than one jobs waiting to

be moved then the forklift processes the requests in increasing order of the distance

between the forklift and the job. In other words, shortest distance first rule applies.

The distances between stations are given in Table 3.4. When a forklift finishes

moving a job to a station, it stays at that station if there is not any waiting job to be

moved. On the other hand, when a job arrives at a station, if there is no available

machine to process the job then the job joins a single FIFO queue at that station.

Similarly, if there is not any forklift waiting in the 6th station, arriving jobs join a

queue at the 6th station.

Stations 1 2 3 4 5 6
1 0 150 213 336 300 150
2 150 0 150 300 336 213
3 213 150 0 150 213 150
4 336 300 150 0 150 213
5 300 336 213 150 0 150
6 150 213 150 213 150 0

 The processing time of a particular machine is a gamma random variable with

shape parameter of 2 whose mean depends on the job type and the workstation to

which the machine belongs. The mean processing times for each job type and each

operation is given in the following table:

Table 3.4. The distances between the stations (in feet).

 45

Job Type Mean processing time
1 0.25 - 0.15 - 0.10 - 0.30
2 0.15 - 0.20 - 0.3
3 0.15 - 0.10 - 0.35 - 0.20 - 0.20

 When a machine finishes processing a job, it remains blocked until a forklift

removes the job.

 We built a simulation model for this system design to use it as an evaluator in

TS. A simulation run lasts 920 hours where the first 120 hours constitute the warm-

up period.

 The decision variables are the number of machines at the workstations and the

number of forklifts. Let),,,,,(654321 xxxxxxx = denote a solution where

54321 and ,,,, xxxxx represent the number of machines at each workstation

respectively, and 6x represents the number of forklifts. Our objective is to maximize

the total profit function. We consider two cases with regard to the profit function. In

the first case, all finished jobs are treated to be same and each has a common

outcome, which is $2. Similarly each machine’s cost is same and set to $250, where

a forklift truck costs $50. According to this setting the objective function is formed

as:

50250)(2jobs finished 654321 ⋅−⋅++++−⋅= xxxxxxP

 In the second case, however, outcome of each job depends on its type and total

processing time. This means, if the total processing time of a job is bigger than the

other one then the outcome of the first job will be bigger than the second. For

example, the total processing time of a job 3 is 1 hour, where it is 0.8 hours for a job

1. Let the outcome of the job 3 be $2 then the outcome of the job1 will be

0.8·2=$1.6. Additionally, we adjust the machine costs according to the total

processing time at each workstation. We can calculate the total processing time for

each workstation, and then calculate the machine costs according to these times. For

example, the total processing times are 75.02.03.025.0 =++ and

70.035.02.015.0 =++ for workstations 3 and 1 respectively. If we set the cost of a

machine at the workstation 3 equal to $250 then the cost of a machine at workstation

1 will be 33.233$75.0/2507.0 =⋅ . The adjusted profit and cost values for jobs and

machines are given in the following table:

Table 3.5. The mean processing times of the machines.

 46

Job Types Profit ($) Machines at Cost ($)
Job 1 1.6 Workstation 1 233.33
Job 2 1.3 Workstation 2 83.33
Job 3 2 Workstation 3 250

 Workstation 4 116.66
 Workstation 5 133.33

 According to this table the total profit function can be formed as:

50)33.13366.11625033.8333.233(
23s job finished1.32s job finished1.61s job finished

654321 ⋅−⋅+⋅+⋅+⋅+⋅
−⋅+⋅+⋅=
xxxxxx

P

3.2.4. Three-stage Buffer Allocation Problem

 Our fourth problem is very similar to the first problem. It is taken from

Pichitlamken and Nelson (2002). The system consists of three workstations and two

buffers between them. Following figure illustrates outline of the system:

 Each workstation has a single machine, which has an exponentially distributed

processing time with rate 3 and 1,2,i , =iµ . This is the main difference from the first

problem. Apart from that, the two systems operate exactly the same way.

 However, our decision variables and objective function are changed. This time

our objective is to maximize the throughput, which is defined as the average output

of the system per unit time. The decision variables are the service rates and the buffer

sizes. Let),,,,(54321 xxxxxx = denote a solution then the 321 ,, xxx are the service

rates for workstations 1,2, and 3 respectively, where the 54 xand x are the number of

buffer positions in each buffer. There are also some constraints over decision

variables. These are:

Table 3.6. The adjusted profits/costs of jobs/machines.

Single server Buffer Positions

WS1 WS2 WS3

Buffer 1 Buffer 2

Infinite
Supply

Figure 3.4. The outline of the three-stage buffer allocation problem.

 47

+∈

=≤≤
=≤≤
−≤−−

≤+
≤++

Zx

ix
ix

xx
xx
xxx

i

i

i

5,4 ,201
3,2,1 ,201

20
20
20

54

54

321

 The simulation run length is set to 2050 parts are served. The warm-up period

is the first 2000 parts. This means the throughput is calculated over 50 parts.

 The results of the experimental study covering these four systems will be

illustrated in the following chapter.

 48

CHAPTER 4

EXPERIMENTAL RESULTS

4.1. Manufacturing Problem

4.1.1. The Construction

 We developed a TS algorithm to optimize above problem. A whole solution is

decided to be tabu since it is less restrictive. Tabu list records whole solution instead

of any solution variable. If a solution is in tabu list then it becomes tabu and it is

ignored by the search. We decided tabu tenure to be 5, and the maximum number of

iterations to be 30. If tabu tenure is too small then most probably the search will go

into a cycle. Since a solution that becomes tabu is a very good solution around that

neighbourhood, the search will select that solution as the best after a few iterations

later and it will go into a cycle. On the other hand, if tabu tenure is too large then the

search may be diverted from the neighbourhood of the real best solution. This causes

the search to be delayed, which reduces the efficiency. Thus we intuitively thought 5

would be a good choice considering the maximum number of iterations is 30. We

observed that in most of the experiments the TS algorithm found the best solution far

before the 30th iteration. So there was no reason to keep searching beyond the 30th

iteration. Our stopping criterion is reaching maximum number of iterations. Our

neighbourhood strategy is the following. At first we fix the number of buffer

positions for a certain number (9) of iterations. Our aim is to find a good

combination of the number of machines. At each iteration, the search records the

 49

number of machines 7531 and ,,, xxxx of the best solution. At the end of the ninth

iteration, the most frequent machine numbers are calculated. Since these numbers are

the most frequent they together constitute a good combination of the number of

machines. For the next nine iterations we fix the number of machines and try to find

a good combination of the number of buffer positions in each buffer. For example,

suppose the following table shows the number of machines in the best solutions of

first nine iterations:

Iteration WS1 WS2 WS3 WS4
1 2 2 2 2
2 2 3 2 2
3 3 3 3 2
4 3 3 2 2
5 3 3 2 3
6 3 3 2 2
7 3 3 3 3
8 3 3 2 2
9 3 3 2 2

 The most frequent numbers are 3,3,2,2 for the workstations respectively. For

the following nine iterations this combination will be fixed, and the search will try to

find a good combination of the number of the buffer positions.

 We coded the simulation model in Borland Delphi 6.0 with the accompanying

TS algorithm. There are two versions of the code. One version takes arbitrarily and

pre-specified number of replications to evaluate the alternatives. We call this version

Standard Tabu Search (STS). The other version uses FSP to evaluate the alternatives.

We call this version TS with FSP (TS+FSP).

 The number of replications to evaluate the neighbours (alternatives) was set to

5 in STS. The number of replications for the first stage sampling 0n for FSP was set

to 5. The indifference zone parameterδ was set to $10. If this parameter is too small

then the computational effort increases dramatically. On the other hand, if it is too

large then the probability of the wrong selection increases. Five experiments for each

version with different initial solutions and with different random numbers were

made. CRN was employed in both versions. The experiments were conducted on a

Table 4.1. The number of machines in the best
 solutions of the first nine iterations.

 50

PC that has a Pentium 4 1.7 GHz processor with 256 MB RAM. The operating

system on the computer is Microsoft Windows 2000 5.00.2195.

4.1.2. Results

 Following tables show the results of the STS and TS+FPS, respectively:

STS

Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

Total number
of replications

1 1 1 1 1 1 1 3 8 3 7 2 6 2 5935 161 5 10 1690
3 3 3 4 2 3 2 3 7 3 7 2 6 2 5914 134 5 10 1505
3 6 3 5 2 4 2 3 7 3 7 2 5 2 5945 133 5 10 1505
2 4 2 4 2 4 2 3 8 3 7 2 5 2 5776 161 5 10 1790
3 8 3 8 3 8 3 3 7 3 7 2 4 2 5946 134 5 10 1465

TS+FSP (indifference zone=$10, 50 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional

1 1 1 1 1 1 1 3 7 3 7 2 4 2 5912 205 20 11 1850 851
3 3 3 4 2 3 2 3 8 3 7 2 5 2 5884 188 27 17 2695 1882
3 6 3 5 2 4 2 3 8 3 7 2 4 2 5873 159 26 13 2010 964
2 4 2 4 2 4 2 3 7 3 7 2 5 2 5897 188 27 11 2040 2311
3 8 3 8 3 8 3 3 6 3 7 2 5 2 5889 160 22 15 1710 944

 Best solution column represents the best solution found by the search. Value

column shows the objective function value of the best solution in dollars. Number of

visited solutions column represents the number of distinct solutions that are

encountered by the search. Number of replications column represents the number of

replications that were taken from each alternative to find the best among them. In

TS+FSP this number varies because FSP keeps taking replications one at a time from

each alternative until finding the best. Iteration number column shows the number of

iteration that the best solution updated for the last time. This means after that

iteration the search could not find a better solution. Total number of replications

column represents the total number of replications that were taken up to iteration

number. In TS+FSP table this column is further divided into two columns. The first

column represents the total number of the replications that were taken during the first

Table 4.2. The results of STS method.

Table 4.3. The results of TS+FSP method.

 51

stage sampling, while the second column represents the total number of the

additional replications taken during the screening process.

 When we look at the results we observe similarities in the solutions. The

combination of the number of machines is same ‘3,3,2,2’ in all of the solutions. The

number of buffer positions ‘7’ in buffer 2 is also common. The only difference is in

the number of buffer positions in buffer 1 and 3. Solution values that are found by

STS seem better than TS+FPS’s. Furthermore, when we compare the total number of

replications, STS is much better than TS+FPS concerning computational effort.

Actually total numbers of replications represented in the tables are exaggerated.

Since we use same random numbers within each experiment, objective function

value of a specific solution will not change throughout the search. So there is no need

to evaluate solutions encountered before in STS. This is, record the objective

function value of any solution encountered by the search, if this solution is needed to

evaluate in the next iterations, instead of taking five replications again use the

recorded value. This situation is a little bit different in TS+FSP case. Above

approach can be used in first stage sampling since it has no differences with STS

case. But when it comes to take additional replications, recorded values cannot be

used. One additional replication must actually be taken. The first row of the total

number of replications column then will be at most 805 = 5×161 in STS case. It will

be at most 18618512055 =+× in TS+FSP case.

 When we compare the methods according to the number of visited solutions,

STS is better than the other. It scanned smaller portion of the solution space to end

up with good solutions compared to TS+FSP.

 The methods almost similarly converged to the best solution (near optimal). In

all of the experiments the best solution was found at 10th iteration in STS case. This

number varied in TS+FSP between 10 and 18. The reason that the methods found the

best solutions around 10th iteration lies in our neighbourhood generation algorithm.

The algorithm tries to find a good combination of the number of the machines at the

workstations for the first 9 iterations. After finding the combination, the number of

buffer positions is determined. In a few number of iterations after 9th iteration, the

methods find the best solution. Figure 4.1. and Figure 4.2. show the convergence of

the methods for different initial solutions. We add STS-10 case in which the

evaluations are based on 10 replications into the picture:

 52

Convergence of the Methods
(initial solution 1111111)

1000
1300
1600
1900
2200
2500
2800
3100
3400
3700
4000
4300
4600
4900
5200
5500
5800
6100
6400

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Iteration

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

 The convergences of the methods are almost same. This means, the idea of

using TS+FPS to quickly converge to the best solution is proven wrong for this

problem. The methods jumped to similar solutions at every iteration. But, STS used

only five replications where TS+FSP used much more replications to statistically

ensure the best selection.

Convergence of the Methods
(initial solution 3 6 3 5 2 4 2)

5500

5600

5700

5800

5900

6000

6100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Iteration

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

 The picture is not different for the initial solution 3 6 3 5 2 4 2. This time we

see STS-5 overestimated the best solution. Probably, the random numbers that were

used caused this overestimation. When the number of replications increased i.e., in

STS-10 and in TS+FSP it seems the overestimation was removed.

Figure 4.1. The convergence of the methods when the initial solution is (1111111).

Figure 4.2. The convergence of the methods when the initial solution is (3 6 3 5 2 4 2).

 53

 When we look at the computational times that were spent by the methods, we

observe that the STS method outperformed the TS+FSP. Table 4.4 shows the

computational times in seconds for different experiments:

STS TS+FSP
Initial Solution Simulation

Time
Non-simulation

Time
Simulation

Time
Non-simulation

Time
Screening

Time
1 1 1 1 1 1 1 232.57 0.08 (0.03%) 423.53 0.12 (0.03%) 184.57 (43.5%)
3 3 3 4 2 3 2 231.70 0.06 (0.03%) 473.78 0.08 (0.02%) 210.47 (44.4%)
3 6 3 5 2 4 2 259.05 0.12 (0.05%) 471.85 0.11 (0.02%) 205.76 (43.6%)
2 4 2 4 2 4 2 250.66 0.09 (0.04%) 655.43 0.20 (0.03%) 392.93 (59.9%)
3 8 3 8 3 8 3 273.47 0.08 (0.03%) 556.87 0.17 (0.02%) 282.53 (50.7%)

 The sum of the Simulation Time and the Non-simulation Time columns gives

the total search time. The simulation time represents the time that is spent for

simulation within the search. The non-simulation time represents the time that is

spent for the other operations such as generation of neighbours, comparison of

solutions, and maintaining the tabu list etc. The Screening Time indicates the total

time that is spent for the screening process including the simulation time of

additional replications. For example, in the TS+FSP method, the first experiment

lasted 65.42312.053.423 =+ seconds. The 184.57 seconds of this time were spent

for screening process. Note that the values within parenthesis are the percentages of

related times over total search time.

 When we look at the table, we observe that most of the simulation times were

doubled in the TS+FSP method compared to the STS method. That is an expected

result when we think the results in Table 4.2. and Table 4.3. The TS+FSP method

took much more replications than the other. This caused the search to last much

longer than the STS. Looking closer one can observe the parallelism between these

tables and the Table 4.4. Non-simulation time values seem negligible. On the other

hand, screening times took almost the half of the total search time. The reason behind

this situation is, most probably, that the smallness of the indifference zone parameter.

 Although the above picture clearly shows that STS performed better than

TS+FSP, one more analysis has to be done to be more definite. Since the solutions

found by STS are results of only five replications, the objective function values of

these solutions may be misleading. We took 100 replications of each solution

founded by both methods. The following table represents the results:

Table 4.4. The computational times of the methods.

 54

Solution
(STS) Value ($) Standard

Deviation
Solution

(TS+FPS) Value ($) Standard
Deviation

3 8 3 7 2 6 2 5861 123.4 3 7 3 7 2 4 2 5863 120.86
3 7 3 7 2 6 2 5861 122.93 3 8 3 7 2 5 2 5863 121.27
3 7 3 7 2 5 2 5865 122.39 3 8 3 7 2 4 2 5861 119.74
3 8 3 7 2 5 2 5863 121.27 3 7 3 7 2 5 2 5865 122.39
3 7 3 7 2 4 2 5863 120.86 3 7 3 7 2 6 2 5861 122.93

 The values of the solutions are very close to each other. Although in some

cases solutions found by TS+FPS seem better, the difference between values are

insignificant. In other words, it is not worth additional computational effort.

 We know that if we increase the first stage sampling size 0n , FSP performs

better. So we decided to increase 0n to 10 to see if TS+FSP could find better

solutions. The following table shows the results of the five experiments:

TS+FSP (indifference zone=$10, 100 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number of
visited

solutions

Number of
Replications

Iteration
Number

0n Additional

1 1 1 1 1 1 1 3 8 3 7 2 5 2 5908 152 13 14 4501 51
3 3 3 4 2 3 2 3 7 3 7 2 5 2 5887 134 10 10 3210 77
3 6 3 5 2 4 2 3 7 3 7 2 5 2 5891 158 10 10 3210 123
2 4 2 4 2 4 2 3 8 3 7 2 4 2 5893 187 11 13 4590 152
3 8 3 8 3 8 3 3 7 3 7 2 4 2 5896 160 10 10 3130 185

 The picture is not different than the previous one. Only required additional

computation dramatically reduced at the cost of doubling 0n . Decreasing the

indifference zone parameter can further increase the efficiency of the FSP. This also

will increase the computational effort. But, since STS already found very good

solutions, this approach seems meaningless.

 Another point that should be stressed out is, as we said before, due to

stochasticity one cannot be a hundred percent sure if a solution is optimal or not. It is

clear from the tables that different random numbers direct us different solutions.

Fortunately, these solutions are very close to each other and one of them can be

selected as the best. Of course one can further inspect these solutions to find the real

best among them, but most probably the gain will be insignificant considering the

additional computation.

Table 4.5. The performances of the solutions based on 100 replications.

Table 4.6. The results of TS+FSP method when 100 =n

 55

 As a conclusion TS+FSP did not perform better than STS contrary to our

expectation. We thought simplicity of the problem caused that result. Even five

replications are enough to distinguish good solutions from others. Only source of

variability of the system is processing times of the machines. We thought if we could

increase the system variability then this might have made it difficult to distinguish

good systems taking small number of replications. First we decided to increase the

processing time variability. We doubled the mean processing times of the machines

at each workstation. The following tables illustrates the results:

STS

Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

Total number
of replications

1 1 1 1 1 1 1 3 7 3 7 2 4 2 1630 161 5 10 1750
3 3 3 4 2 3 2 3 6 3 7 2 4 2 1620 160 5 10 1605
3 6 3 5 2 4 2 3 6 3 7 2 4 2 1591 133 5 10 1755
2 4 2 4 2 4 2 3 6 3 5 2 4 2 1583 187 5 30 5040
3 8 3 8 3 8 3 3 6 3 5 2 4 2 1574 134 5 10 1265

TS+FSP (indifference zone=$10, 50 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional

1 1 1 1 1 1 1 3 6 3 7 2 4 2 1603 178 14 10 1715 323
3 3 3 4 2 3 2 3 6 3 6 2 4 2 1605 160 18 12 1875 510
3 6 3 5 2 4 2 3 6 3 5 2 4 2 1629 158 5 >30 - -
2 4 2 4 2 4 2 3 7 3 5 2 5 2 1606 179 55 28 4955 4101
3 8 3 8 3 8 3 3 6 3 7 2 4 2 1603 134 12 10 1715 1537

 When we doubled the processing times the objective function values are

reduced as expected. The solutions found by both methods still seem very close to

each other. But, TS+FSP method requires much more replications to come up with

these solutions. In the third experiment, TS+FSP method could not find a better

solution from the initial. There may be two explanations for this situation. The first

one is the initial solution is actually a very good solution. And the second one is, the

FSP takes additional replications (more than 5) causing the sample means of the

solutions are reduced to their real levels. Since the initial solution is evaluated based

on 5 replications, the sample mean of the initial solution will be greater than the

Table 4.7. The results of STS method with doubled processing times.

Table 4.8. The results of TS+FSP method with doubled processing times.

 56

other solutions that are evaluated during the search. This situation causes the search

could not find a better solution.

 The results make us to conclude that there is no need to take more than five

replications to distinguish the best system thus the FSP becomes useless again.

Another way to increase the system variability is to add breakdowns for the

machines. We added breakdowns to the machines in the following manner.

 Since this system is a conceptual system, there is no available information

about the distributions of the machine up times and down times. We used busy time

approach described in Law and Kelton (2000) to model the machine breakdowns.

According to this approach “the amount of the machine busy time before a failure

has a gamma distribution with shape parameter 7.0=Bα and the scale parameter

Bβ to be specified. The machine down time (or repair time) has a gamma

distribution with shape parameter 4.1=Dα and a scale parameter Dβ to be

determined.” Bβ and Dβ are calculated as the following:

)1(7.0 e
e D

B −
⋅

=
µ

β
4.1
D

D
µ

β =

where “the efficiency e is defined to be the long run proportion of potential

processing time (i.e., parts present and machine not blocked) during which the

machine actually processing parts.” It is calculated as:

DB

Be
µµ

µ
+

=

where)B(EB =µ mean amount of machine busy time before a failure and

)D(ED =µ is estimate of machine down time.

 We calculated these parameters by taking five replications of the model. We

used the solution (3 8 3 7 2 4 2) as an input for the model. Because it is one of the

good (near best) solutions and it is more appropriate than any unrealistic solution as

(1 1 1 1 1 1 1). The following table shows the Bβ and Dβ for each machine:

 57

Machine Efficiency Bβ Dβ
WS1 Machine1 0.685 5,180 1,190
WS1 Machine2 0.679 5,040 1,190
WS1 Machine3 0.680 5,072 1,190
WS2 Machine1 0.991 394,107 1,785
WS2 Machine2 0.990 366,007 1,785
WS2 Machine3 0.989 323,990 1,785
WS3 Machine1 0.658 2,757 0,714
WS3 Machine2 0.542 1,691 0,714
WS4 Machine1 0.789 6,709 0,892
WS4 Machine2 0.692 4,015 0,892

 Except for the machines at workstation 2, obtained results are not realistic.

Machines up times before a failure are too small which is not the case in real life.

Only for the machines at workstation 2 the parameters seem logical. So we added

breakdowns for the machines at workstation 2. After a second thought we decided to

add breakdowns for the machines at workstation 1 with the same parameters that

were for the machines at workstation 2. It is logical because the parts enter the

system from workstation 1, breakdowns at this station may affect the system

variability.

 We performed same experiments in previous case but this time with

breakdowns. The following tables illustrate the results of STS and TS+FSP

respectively:

STS (with breakdowns)

Initial
solution Best Solution Value

($)

Number of
visited

solutions

Number of
Replications

Iteration
Number

Total number of
replications

1 1 1 1 1 1 1 3 8 3 7 2 5 2 5799 161 5 10 1690
3 3 3 4 2 3 2 3 8 3 7 2 4 2 5818 134 5 10 1510
3 6 3 5 2 4 2 3 7 3 7 2 5 2 5804 133 5 10 1510
2 4 2 4 2 4 2 3 7 3 7 2 5 2 5842 161 5 10 1790
3 8 3 8 3 8 3 3 6 3 7 2 6 2 5796 134 5 10 1415

Table 4.9. The values of Bβ and Dβ parameters of related machines.

Table 4.10. The results of STS method with breakdowns.

 58

TS+FSP (indifference zone=$10, 50 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional
1 1 1 1 1 1 1 3 8 3 7 2 4 2 5845 206 37 17 2120 3882
3 3 3 4 2 3 2 3 8 3 6 2 5 2 5832 161 37 12 1875 1296
3 6 3 5 2 4 2 3 7 3 7 2 4 2 5837 186 29 17 2550 2443
2 4 2 4 2 4 2 3 7 3 7 2 6 2 5845 188 22 13 2295 2891
3 8 3 8 3 8 3 3 7 3 7 2 5 2 5871 161 23 11 1700 1586

 As it is seen from the tables, solutions are very close to each other as in the

previous case. Concerning computational effort we can clearly say STS is better than

TS+FPS. It is understood from the results that adding breakdowns did change the

variability of the system. Because, the additional computational effort was increased

according to the previous case. The FSP needed to take much more additional

replications to select the best solution. This situation is echoed in the computational

times table. Table 4.12. shows the computational times for this case:

STS TS+FSP
Initial Solution Simulation

Time
Non-simulation

Time
Simulation

Time
Non-simulation

Time
Screening

Time
1 1 1 1 1 1 1 301.98 0.12 (0.04%) 691.28 0.18 (0.03%) 385.4 (55.7%)
3 3 3 4 2 3 2 307.36 0.03 (0.01%) 622.71 0.33 (0.05%) 309.7 (49.7%)
3 6 3 5 2 4 2 318.04 0.06 (0.02%) 782.29 0.23 (0.03%) 461.1 (58.9%)
2 4 2 4 2 4 2 324.89 0.03 (0.01%) 1065.46 0.34 (0.03%) 737.6 (69.2%)
3 8 3 8 3 8 3 316.81 0.03 (0.01%) 950.58 0.25 (0.03%) 610.7 (64.2%)

 The screening times increased compared to the case without breakdowns. This

is a direct result of increasing system variability by adding breakdowns to the

machines. The long run performances of the best solutions found by both methods

are shown below:

Solution
(STS) Value ($) Standard

Deviation
Solution

(TS+FPS) Value ($) Standard
Deviation

3 8 3 7 2 5 2 5779 133.93 3 8 3 7 2 4 2 5779 132.42
3 8 3 7 2 4 2 5779 132.42 3 8 3 6 2 5 2 5773 133.45
3 7 3 7 2 5 2 5779 133.68 3 7 3 7 2 4 2 5778 132.73
3 7 3 7 2 5 2 5779 133.68 3 7 3 7 2 6 2 5777 133.94
3 6 3 7 2 6 2 5770 134.95 3 7 3 7 2 5 2 5779 133.68

Table 4.11. The results of TS+FSP method with breakdowns.

Table 4.13. The long run performances of the best solutions found by both methods.

Table 4.12. The computational times of the methods.

 59

 The convergence of the methods was similar with previous case. Figure 4.3.

shows the convergence of the methods for a specific initial solution:

Convergence of the Methods
(initial solution 2 4 2 4 2 4 2)

3000
3500
4000
4500
5000
5500
6000
6500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Iteration

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

 It seems all three methods converged to the best solution in same precision.

Again TS+FSP needed to take much more replications than the others.

 In sum, we conclude that STS performed better than TS+FPS and our claim is

failed for this problem.

4.2. Inventory Control Problem

4.2.1. The Construction

 We used similar TS algorithm to the one that was used in the previous problem.

The only difference is the neighbourhood generation algorithm. In this case, we

properly decreased and then increased one of the decision variables while remaining

the other fixed to generate neighbours around the current solution. In other words,

the decision variables were made to vary in a range with respect to each other. The

number of neighbours was set to 81. Adjusting the length of the range this number

can be changed. For example, let the current solution be (-5,10) and range equal to 4.

To generate the neighbours to this solution, first the algorithm fixes 5−=s then S is

increased and decreased as a multiple of 0.25 in the range

25.041025.0410 ⋅+≤≤⋅− S . The neighbours of the solution (-5,10) according to

this setting are (-5,9), (-5,9.25), (-5,9.5), (-5,9.75), (-5,10), (-5,10.25), (-5,10.5),

Figure 4.3. The convergence of the methods when the initial solution is (2 4 2 4 2 4 2).

 60

(-5,10.75), (-5,11). In the following steps s is varied within the range

25.04525.045 ⋅+−≤≤⋅−− s and above process is repeated for every s. The

following table shows the neighbours of the solution (-5,10):

s S
-6 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11

-5.75 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11
-5.5 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11

-5.25 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11
-5 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11

-4.75 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11
-4.5 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11

-4.25 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11
-4 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11

 We chose the whole solution to be tabu. The tabu tenure was set to 5 iterations.

The simulation model and TS algorithm was coded in Borland Delphi 6.0. We

applied the methods for both fixed and random shelf lives. The CRN was employed.

The indifference zone was set to $200. This time we set the indifference zone

parameter value relatively high to avoid the unnecessary computational effort. The

confidence level was set to %95. The procedures were applied for 5 different initial

solutions each with different random numbers.

4.2.2. The Results

 The following tables show the results of the first set of experiments where the

shelf life was fixed to 0.5 time unit and the lead time was set to 1 time unit:

STS
Initial

solution Best Solution Value
($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

Total number of
replications

2 , 15 -10.25, 24 2791 840 5 16 6160
2 , 10 -10 , 23.5 2767 910 5 17 6545
2 , 5 -10.25 , 23.75 2779 1187 5 23 8855
4 , 5 -10 , 23.75 2773 1219 5 26 10010
-1 , 5 -10.25 , 24.25 2793 1180 5 22 8020

Table 4.15. The results of STS method.

Table 4.14. The neighbours of the solution (-5,10).

 61

TS+FSP (indifference zone=$200, 50 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional

2 , 15 -10.25 , 23.75 2784 868 5 19 7315 60
2 , 10 -10 , 23.5 2781 928 6 16 6160 90
2 , 5 -9.25 , 23 2774 1189 6 23 8855 7631
4 , 5 -10 , 24.25 2777 1242 5 28 10780 7190
-1 , 5 -9.75 , 24.25 2785 1123 5 27 10395 7585

 The results of the procedures are very close to each other. The objective

function values of related solutions are almost same. The difference between them is

insignificant. It can be observed from Table 4.16. that the required number of

replications that must be taken to distinguish the best system is 5 in most of the

cases, and it is 6 in the remaining. This means, FSP did not need to take additional

replications to select the best. This result may be interpreted as taking 5 replications

is enough to find out the best system among the alternatives, and there is no need for

further inspection. In this case, additional computational effort that is spent by FSP

(e.g., calculating variances of the differences of the systems, screening process etc.),

becomes useless. Why to spend time and money where one can select the best

alternative by simply taking 5 replications.

 When we look at the additional column under the total number of replications

header, we observe the number of additional replications in the first two rows are

very small when compared to remaining three rows. The initial solutions of these

experiments caused this huge difference. Since the initial solutions are far from the

best solution, their cost function values are incredibly high. For example, the total

cost is $72490 for the solution (5,2). At the early stages of the search (e.g., first two

or three iterations) the costs are still too high because the solutions at these iterations

are in the neighbourhood of the initial solution. Since indifference zone 200$=δ is

too small compared to these high costs, FSP requires much more additional

replication to select the best among these high cost valued solutions. When the cost

values become reasonable ranges at the later iterations of the search, the required

number of additional replications is reduced to zero. In fact 7559 out of 7631

additional replications were taken in the first six iterations of the third experiment.

This situation leads us to the following conclusion. If the initial solution is relatively

close to the best solution then the computational effort is incredibly reduced.

Table 4.16. The results of TS+FSP method.

 62

 The numbers of visited solutions are close for both methods. This can be

interpreted as at each iteration both methods selected the similar or same solutions as

the current solution. Since neighbours were formed according to these solutions, the

procedures span the similar portions of the solution space.

 When we compare the total number of replications, STS seems performed

better than TS+FSP. Except one case (the second experiment), TS+FSP requires

much more replications than STS. As for the computational times, the picture did not

chance much according to the previous problem. Table 4.17. shows the

computational times for both methods:

STS TS+FSP
Initial Solution Simulation

Time
Non-simulation

Time
Simulation

Time
Non-simulation

Time
Screening

Time
2 , 15 49.1 2.87 (5.53%) 49.3 3.32 (6.31%) 0.06 (0.12%)
2 , 10 49.2 2.90 (5.57%) 49.3 3.48 (6.59%) 0.09 (0.17%)
2 , 5 53.4 2.95 (5.23%) 111.7 3.58 (3.16%) 57.78 (50.15%)
4 , 5 53.4 2.93 (5.21%) 87.8 3.57 (3.91%) 33.67 (36.84%)
-1 , 5 53.4 2.99 (5.31%) 93.5 3.59 (3.70%) 39.57 (40.74%)

 Note that the resemblance to the Tables 4.15 and 4.16. Different from the

previous problem the non-simulation times were a little increased. The

neighbourhood generation algorithm might cause this situation. The algorithm has

many loops within loops to generate the neighbours. This might have taken a while.

Again we need to look at the long run performances of the solutions to be able to

truly compare the solutions. We took 100 replications of each solution. The

following table shows the performances of the system based on 100 replications:

Solution (STS) Value ($) Standard
Deviation

Solution
(TS+FPS) Value ($) Standard

Deviation
-10.25, 24 2822 54.66 -10.25 , 23.75 2820 51.36
-10 , 23.5 2820 57.23 -10 , 23.5 2820 57.23

-10.25 , 23.75 2820 51.36 -9.25 , 23 2819 57.15
-10 , 23.75 2820 58.30 -10 , 24.25 2821 55.95

-10.25 , 24.25 2819 55.78 -9.75 , 24.25 2834 64.33

 According to these performances the solution (-10 , 23.75) can be selected as

the best (near optimal). But it seems there is no significant difference between the

most of the solutions.

Table 4.18. The performances of the solutions based on 100 replications.

Table 4.17. The computational times of the methods.

 63

 Our results show that the convergences of the methods are almost same. Figure

4.4. and Figure 4.5. show the convergences of the methods for different initial

solutions. Note that STS-10 method, in which evaluations are based on 10

replications, is added to the picture.

Convergence of the Methods
(initial solution 2 ,15)

2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Itereation

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

Convergence of the Methods
(initial solution -1 ,5)

2500
2700
2900
3100
3300
3500
3700
3900
4100
4300
4500
4700
4900

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Itereation

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

 In the first graph the methods starts to converge after 10th iteration, while in the

second they starts to converge after 16th iteration. Considering the different initial

solutions this is an expected result.

Figure 4.4. The convergences of the methods when the initial solution is (2,15).

Figure 4.5. The convergences of the methods when the initial solution is (-1,5).

 64

 It seems FSP procedure could not meet our expectations for this problem

instance either. It is strange that the best solution can be selected based on five

replications. Different from the previous problem FSP did not require additional

replications apart from first stage sampling. This result indicates, indeed, even only

the small number of replications is enough to distinguish the best alternative among

others.

 Before conducting experiments with random shelf life, we wanted to examine

the results when the size of neighbour was increased (doubled). We adjusted our

neighbourhood generation algorithm such that it doubles the size at each iteration

according to the previous case. The following tables illustrates the results:

STS
Initial

solution Best Solution Value
($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

Total number of
replications

2 , 15 -10.25, 24 2791 1214 5 10 8250
2 , 10 -10 , 23.5 2767 1381 5 10 8250
2 , 5 -10.25 , 23.75 2779 1850 5 15 12730
4 , 5 -10 , 23.75 2773 1853 5 15 12730
-1 , 5 -10.25 , 24.25 2793 1781 5 15 12730

TS+FSP (indifference zone=$200, 50 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional

2 , 15 -10.25 , 24.75 2719 1397 6 10 8250 117
2 , 10 -10.25 , 24.25 2724 1530 6 13 10725 94
2 , 5 -10.25 , 24 2726 1784 5 14 11550 11807
4 , 5 -9.75 , 24.5 2725 1929 5 17 14025 10069
-1 , 5 -9.25 , 23.25 2738 1774 5 15 12375 9532

 The solutions found by the STS method are not different than the previous case.

On the other hand, as expected, the numbers of visited solutions are increased since

the search evaluates more solution points. Doubling the number of neighbours made

the search quickly converge to the best according to the previous case. We can

observe from the tables that the search found the best solutions at the earlier

iterations compared to the previous case. This is also an expected result. Since more

number of neighbours are evaluated, the search can find the best solution at the early

iterations. However, the computational effort increases because of the same reason.

Table 4.19. The results of STS method with doubled number of neighbour solutions.

Table 4.20. The results of TS+FSP method with doubled number of neighbour solutions.

 65

Furthermore, doubling the number of neighbours make the search to evaluate clearly

inferior solutions which also increases the computational effort.

 Although the solutions that were found by TS+FSP method are a little different

than the previous case, there is no significant difference between the solutions. Again

the method converged quickly than the previous case at the cost of increased

computational effort. As a result, keeping the number of solutions at a reasonable

level is beneficial considering the computational effort.

 We performed same experiments with random shelf life. The following tables

illustrate the results:

STS
Initial

solution Best Solution Value
($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

Total number of
replications

2 , 15 -10.25 , 24 2993 1090 5 18 7110
2 , 10 -11.75 , 24.25 2984 1045 5 20 7900
2 , 5 -10.25 , 23.25 3022 1171 5 30 11850
4 , 5 -11.25 , 24.25 2985 1368 5 28 11060
-1 , 5 -11 , 24 2994 1251 5 23 9085

TS+FSP (indifference zone=$200, 50 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional

2 , 15 -11.75 , 24.5 3016 1019 15 23 9085 4537
2 , 10 -11 , 24.25 3004 1029 13 18 7110 2945
2 , 5 -12.25 , 25 3004 1292 14 29 10455 15521
4 , 5 -11.25 , 24.75 2982 1347 20 30 11850 11757
-1 , 5 -11.75 , 25.5 3005 1181 21 25 9875 14709

 The solutions that were found by either method seem close to each other. The

objective function values were a little raised according to the previous case. The

computational effort was increased in TS+FSP method with regard to fixed shelf life

case. This can be explained by additional variability that was added by introducing

random shelf lives. As expected, FSP procedure required more replications to

distinguish the best system. But the picture was not change. STS still ended up with

good solutions in spite of the increased variability. It is confusing that one needs to

Table 4.21. The results of STS method with random shelf lives.

Table 4.22. The results of TS+FSP method with random shelf lives.

 66

take huge number of replications in order to statistically ensure the best selection,

where actually taking five replications is quite enough to select the best alternative.

 One can claim that the main reason behind this situation is utilizing TS. But,

since we used same random numbers within each experiment, it is not different

gathering for example, 1090 solutions (the number of visited solutions by STS

method in the first experiment) in to a pool and to evaluate them based on 5

replications to select the best solution among them. In this point of view FSP or any

other R&S procedure become meaningless. Of course, we cannot generalize this

statement but the two problems that we examined so far make us to come this

conclusion.

 To be fair we again looked the long run performances of the solutions and the

convergences of the methods. Table 4.23. shows the long run performances of the

solutions and the following graphs illustrate the convergences of the methods:

Solution (STS) Value ($) Standard
Deviation

Solution
(TS+FPS) Value ($) Standard

Deviation
-10.25 , 24 3079 104.70 -11.75 , 24.5 3058 82.55

-11.75 , 24.25 3045 71.39 -11 , 24.25 3061 95.34
-10.25 , 23.25 3064 90.41 -12.25 , 25 3052 64.19
-11.25 , 24.25 30.51 94.57 -11.25 , 24.75 3060 101.74

-11 , 24 30.54 83.21 -11.75 , 25.5 3071 95.52

 As it can be observed the long run performances of the solutions are close to

each other. The solution (-11.25,24.25) seems a little better than the others. Thus, it

can be selected as the best solution. Figure 4.6. and Figure 4.7. illustrates the

convergence of the methods for different initial solutions:

Table 4.23. The performances of the solutions based on 100 replications.

 67

Convergence of the Methods
(initial solution 2 ,10)

2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Itereation

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

 The convergences of the methods are almost same. After 12th iteration methods

starts to converge to the best solution.

Convergence of the Methods
(initial solution 4 ,5)

2500
2700
2900
3100
3300
3500
3700
3900
4100
4300
4500
4700
4900

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Itereation

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

 In this sample, the methods start to converge to the best solution at the late

iterations of the search. The distance of the initial solution from the best (near

optimal) solution can explain this situation. Although the methods converge

similarly, this figure does not have the smoothness of the other examples.

Figure 4.6. The convergences of the methods when the initial solution is (2,10).

Figure 4.7. The convergences of the methods when the initial solution is (4,5).

 68

4.3. Job Shop Problem

4.3.1. The Construction

 Similar TS algorithm was used to optimize the problem. At each iterartion, the

neighbourhood generation algorithm generates 64 neighbours. The algorithm is

based on decreasing and increasing solution variables by 1, respectively. For

example, let (2 2 2 2 2 2) be a solution. The two neighbours of this solution are (1 1 1

1 1 1) and (1 1 1 1 1 3). As it seen, the last solution variable is increased and

decreased by 1 while the others are decreased by 1. If we continue, (1 1 1 1 3 1) and

(1 1 1 1 3 3) are other two neighbours. At final step, the neighbours will be (3 3 3 3 3

1) and (3 3 3 3 3 3). This can be thought as a loop in loop. We chose the whole

solution to be tabu. The tabu tenure was set to 5 iterations.

 The simulation model and TS algorithm was coded in Borland Delphi 6.0. We

applied the methods for both fixed and random shelf lives. The CRN was employed.

The indifference zone was set to $200. The confidence level was set to %95. The

procedures were applied for 5 different initial solutions each with different random

numbers.

4.3.2. The Results

 As we stated in the third chapter, there are two cases with regard to the

objective function. Following tables show the results of the first case where the

profits of the jobs equal to each other and the costs of the machines at different

workstations are the same:

STS
Initial

solution Best Solution Value
($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

Total number of
replications

4 1 4 2 2 2 7 2 9 6 5 3 16569 806 5 5 1585
6 3 6 4 6 5 7 2 9 6 5 2 16660 748 5 3 955
2 2 2 2 2 2 7 3 9 6 5 3 16552 886 5 7 2220
3 2 4 3 2 1 7 2 8 6 4 3 16851 764 5 4 1270
8 6 8 6 8 5 7 3 9 6 5 4 16447 748 5 3 955

Table 4.24. The results of STS method.

 69

TS+FSP (indifference zone=$150, 50 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional

4 1 4 2 2 2 7 2 9 6 5 3 16552 646 5 5 1815 0
6 3 6 4 6 5 7 2 9 6 5 2 16678 584 5 3 955 0
2 2 2 2 2 2 7 3 9 6 5 3 16531 926 5 7 2215 0
3 2 4 3 2 1 7 2 8 6 4 5 16918 836 5 4 1270 0
8 6 8 6 8 5 7 3 9 6 5 4 16434 784 5 3 955 0

 The solutions found by both methods are almost same. The only difference is in

the fourth experiment. But the difference is only in the number of forklifts. The

numbers of machines are same. When we look at the values they are close to each

other as a result. Note that the two procedures found the best solution at the same

iterations. The numbers of replications are same for all experiments. Another point

is, the FSP did not require to take additional replications. Since we selected the

indifference zone parameter as $150, the FSP could distinguish the best system from

the first stage sampling and at screening process inferior solutions were eliminated at

once. If we had selected the indifference zone parameter as a smaller amount than the

above one then the FSP would have required to take additional replications.

 It seems taking five replications is enough to select the best system for this

problem instance too. Employing FSP did not help to improve either the solution

quality or convergence to the best. The computational times are still favourable to the

STS method. Table 4.26. shows the computational times:

STS TS+FSP
Initial Solution Simulation

Time
Non-simulation

Time
Simulation

Time
Non-simulation

Time
Screening

Time
4 1 4 2 2 2 13079.8 6.89 (0.05%) 16372.6 492.8 (2.92%) 543.5 (3.22%)
6 3 6 4 6 5 11662 6.43 (0.05%) 17396.4 449.6 (2.63%) 467.2 (2.61%)
2 2 2 2 2 2 17010.3 2.82 (0.02%) 19977.5 494.6 (2.41%) 513.6 (2.50%)
3 2 4 3 2 1 13994.8 7.74 (0.05%) 18752.1 437.7 (2.28%) 436.4 (2.27%)
8 6 8 6 8 5 10338.9 2.93 (0.03%) 13358.7 595.8 (4.26%) 606.4 (4.34%)

 Simulation time of this problem is much longer than the others. Thus, it has the

longest total search time. Strangely, the non-simulation time in the TS+FSP method

was incredibly increased compare to STS. The following table shows the long run

performances of the solutions found by both methods:

Table 4.25. The results of TS+FSP method.

Table 4.26. The computational times of the methods.

 70

Solution
(STS) Value ($) Standard

Deviation
Solution

(TS+FPS) Value ($) Standard
Deviation

7 2 9 6 5 3 16598 221.23 7 2 9 6 5 3 16598 221.23
7 2 9 6 5 2 16645 215.39 7 2 9 6 5 2 16645 215.39
7 3 9 6 5 3 16348 223.81 7 3 9 6 5 3 16348 223.81
7 2 8 6 4 3 16850 165.37 7 2 8 6 4 5 16837 168.34
7 3 9 6 5 4 16298 225.84 7 3 9 6 5 4 16298 225.84

 The solution (7 2 8 6 4 3) can be selected as the best solution since it has a

better objective function value with lower standard deviation. Figure 4.8. and Figure

4.9 show the convergences of the methods for different initial solutions:

Convergence of the Methods
(initial solution: 4 1 4 2 2 2)

6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Iteration

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

 The methods converge exactly in the same fashion. After three or four iteration

all methods seem to reach the best solution. This is an expected result since STS and

TS+FSP took same number of replications.

Table 4.27. The performances of the solutions based on 100 replications.

Figure 4.8. The convergences of the methods when the initial solution is (4 1 4 2 2 2).

 71

Convergence of the Methods
(initial solution: 2 2 2 2 2 2)

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Iteration

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-5 STS-10 TS+FSP

 The figure is not change for this instance either. Only the methods converged a

little late according to the previous one. The distance between the initial solution and

the best solution caused this situation.

 The following tables show the results of the second case where the profits of

the finished jobs and the costs of the machines calculated based on the total

processing times:

STS
Initial

solution Best Solution Value
($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

Total number of
replications

4 1 4 2 2 2 7 2 9 6 5 3 12788 1086 5 5 1585
6 3 6 4 6 5 7 2 9 6 5 2 12848 1036 5 3 955
2 2 2 2 2 2 7 3 9 6 5 3 12862 888 5 7 2215
3 2 4 3 2 1 7 2 8 6 4 3 12991 1120 5 4 1270
8 6 8 6 8 5 7 3 9 6 5 2 12871 1032 5 3 955

TS+FSP (indifference zone=150$, 50 =n)
Total number of

replications Initial
solution Best Solution Value

($)

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional

4 1 4 2 2 2 7 2 9 6 5 3 12834 806 5 25 12815 0
6 3 6 4 6 5 7 2 9 6 5 2 12860 704 5 3 955 0
2 2 2 2 2 2 7 3 9 6 5 3 12845 776 5 7 2215 0
3 2 4 3 2 1 7 2 8 6 4 3 13036 844 5 4 1370 0
8 6 8 6 8 5 7 3 9 6 5 2 12830 816 5 3 955 0

Table 4.28. The results of STS method.

Table 4.29. The results of TS+FSP method.

Figure 4.9. The convergences of the methods when the initial solution is (2 2 2 2 2 2).

 72

 Both methods found same solutions. Again taking five replications is enough to

select the best system. Except from the first experiment, the best solutions were

found at the same iterations. The random numbers might have caused this situation.

It seems at the early iterations of the search, a solution’s expected value was

estimated high due to random numbers, and it was selected as the best solution. After

that it took a while that the search to find the best solution. We need to look at long

run performances of the solutions to distinguish the real best. The following table

shows the performances of the solutions based on 100 replications:

Solution
(STS) Value ($) Standard

Deviation
Solution

(TS+FPS) Value ($) Standard
Deviation

7 2 9 6 5 3 12796 166.55 7 2 9 6 5 3 12796 166.55
7 2 9 6 5 2 12843 160.99 7 2 9 6 5 2 12843 160.99
7 3 9 6 5 3 12712 169.90 7 3 9 6 5 3 12712 169.90
7 2 8 6 4 3 12989 134.22 7 2 8 6 4 3 12989 134.22
7 3 9 6 5 2 12764 165.54 7 3 9 6 5 2 12764 165.54

 The solution (7 2 8 6 4 3) is proven to be the best since it has the highest

performance and the lowest standard deviation.

4.4. Three-stage Buffer Allocation Problem

4.4.1. The Construction

 We used similar TS algorithm with the previous problem. The neighbour

generation algorithm is also same. Of course, the neighbours that do not satisfy the

constraints are excluded from the neighbourhood set. The whole solution is chosen to

be tabu as in the previous three problems. The tabu tenure was set to 5 iterations.

 The simulation model and TS algorithm was coded in Borland Delphi 6.0. The

CRN was employed. The indifference zone was set to 0.5. The confidence level was

set to %90. And the first stage sample size 0n was set to 4. These parameters were

taken from Pichitlamken and Nelson (2002). The procedures were applied for 5

different initial solutions each with different random numbers.

Table 4.30. The performances of the solutions based on 100 replications.

 73

4.4.2. The Results

 The following tables illustrates the results of both methods:

STS

Initial solution Best Solution Value
Number
of visited
solutions

Number of
Replications

Iteration
Number

Total number of
replications

2 2 2 2 18 7 6 7 9 11 6.12 632 4 7 1320
4 5 4 3 17 6 7 7 7 13 6.53 486 4 4 740
10 5 5 8 12 6 7 7 11 9 6.23 468 4 5 664
5 5 10 2 18 6 7 7 10 10 6.25 442 4 8 1060
8 7 5 2 18 6 7 7 11 9 5.68 407 4 3 400

TS+FSP (indifference zone=0.5, 40 =n)
Total number of

replications Initial solution Best
Solution Value

Number
of visited
solutions

Number of
Replications

Iteration
Number

0n Additional

2 2 2 2 18 6 7 7 9 11 6.15 589 10 21 3008 475
4 5 4 3 17 6 7 7 12 8 6.69 518 5 13 1940 1277
10 5 5 8 12 7 6 7 7 13 6.52 474 4 1 132 0
5 5 10 2 18 7 7 6 9 11 6.18 522 9 13 1744 627
8 7 5 2 18 7 6 7 8 12 6.11 416 17 8 1044 365

 Although the best solutions seem close to each other, it is not proper to say that

the solutions are almost same and there is no significant difference between them.

The solutions must be further inspected. As in the previous problems we looked long

run performances of the systems by taking 100 replications of each solution. Table

4.27. illustrates the results. When we look at the iteration columns of both table we

observe that the STS method found the best solution at the earlier iterations of the

search according to the TS+FSP method in most of the experiments. Only in the third

experiment the TS+FSP method performed better than the STS. As for the total

number of replications STS is far superior to the TS+FSP. The FSP requires

additional replications to select the best in most of the experiments except the third

one. It seems the FSP did not work as we expected for this problem instance too.

Although it provides good solutions, these solutions are not superior to the solutions

that are found by taking relatively small number of replications. At this point of view

the FSP as a R&S tool is not worth employing in the way we implement it.

Table 4.31. The results of STS method.

Table 4.32. The results of TS+FSP method.

 74

Solution
(STS) Value Standard

Deviation
Solution

(TS+FPS) Value Standard
Deviation

7 6 7 9 11 5.76 0.64 6 7 7 9 11 5.81 0.68
6 7 7 7 13 5.74 0.67 6 7 7 12 8 5.83 0.66
6 7 7 11 9 5.84 0.67 7 6 7 7 13 5.70 0.63
6 7 7 10 10 5.84 0.68 7 7 6 9 11 5.91 0.69
6 7 7 11 9 5.81 0.68 7 6 7 8 12 5.74 0.63

 The solution (7 7 6 9 11) is the best solution (near optimal) since the objective

function value of the solution is better than the others and standard deviations are

very close to each other. Table 4.34. shows the computational times in seconds:

STS TS+FSP
Initial Solution Simulation

Time
Non-simulation

Time
Simulation

Time
Non-simulation

Time
Screening

Time
2 2 2 2 18 81.99 1.56 (1.87%) 84.14 1.57 (1.83%) 10.53 (12.28%)
4 5 4 3 17 65.44 1.57 (2.35%) 93.31 1.72 (1.81%) 27.97 (29.43%)
10 5 5 8 12 68.07 1.47 (2.11%) 79 1.60 (1.99%) 3.47 (4.30%)
5 5 10 2 18 66.18 1.56 (2.30%) 80.5 1.55 (1.89%) 18.11 (22.06%)
8 7 5 2 18 73.40 1.47 (1.96%) 104.89 1.49 (1.40%) 28.44 (26.73%)

 We observe that the TS+FSP method requires more time than STS to find the

best solution. Since the best solutions are close to each other the method with less

computational effort is preferable. The non-simulation times are higher than the first

(manufacturing) problem. This is again because of the loopy structure of the

neighbourhood generation algorithm. As a final analysis, Figure 4.10. shows the

convergences of the methods for the initial solution (2 2 2 2 18):

Table 4.33. The performances of the solutions based on 100 replications.

Table 4.34. The computational times of the methods.

 75

Convergence of the Methods
(initial solution: 2 2 2 2 18)

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Iteration

Th
e

B
es

t S
ol

ut
io

n
Va

lu
e

STS-4 STS-10 TS+FSP

 We can observe that STS methods converged faster than the TS+FSP. On the

other hand STS-4 and TS+FSP overestimated the best solution, which may be caused

by random numbers. Both methods took less number of replications compared to

STS-10.

Figure 4.10. The convergences of the methods when the initial solution is (2 2 2 2 18).

 76

CHAPTER 5

CONCLUSIONS

 In this study, we combined a simulation optimization methodology with a

ranking and selection procedure. Simulation optimization has become a very active

research area in recent years with the development of metaheuristics. Since many

real life systems could not be represented analytically, classical optimization

methods become inefficient. Fortunately, simulation optimization offers a wide

variety of solutions to this problem using the power of simulation. On the other hand

due to the stochastic nature of the systems, one cannot a hundred percent sure if a

solution is optimal. Instead it is said close to optimal.

 Tabu Search (TS) is one of the most known and most used metaheuristic in the

simulation optimization area. The intensification and diversification strategies made

it a very efficient global search algorithm. Another important feature of TS is its

making use of memory. The short and long termed memory structures prevent the

search from going into cycles and being trapped by local optima.

 Ranking and Selection (R&S) methods are used to compare the alternative

system designs and to select the best design or a subset of alternatives, which

contains the best. They are statistical methods and guarantee the best selection with a

given confidence level. At some point of view, R&S procedures can be thought as a

simulation optimization methodology especially when the size of the solution space

is relatively small. Classical R&S procedures such as Rinott’s two-stage procedure

are very conservative such that they require a huge number of observations to select

 77

the best alternative. On the other hand, newly developed sequential R&S procedures

such as the Fully Sequential Procedure (FSP) are very efficient since they incredibly

reduce the computational effort to distinguish the best.

 We decided to combine these two methodologies, TS and the FSP to further

improve the performance of the search. Our idea is embedding the FSP into TS in the

following manner. At each iteration of TS a neighbourhood set is generated and the

neighbours are evaluated to find out the best among them by taking an arbitrary

number of observations. Instead one can use the FSP to select the best among

neighbours. Our motivation is quickly converge to the best solution utilizing the FSP

hence increasing the efficiency of the search.

 We tested our claim on four different system designs. A manufacturing

problem, an inventory control problem, a job shop problem, and a three-stage buffer

allocation problem. Five different experiments with different initial solutions and

different random numbers were designed and conducted for all of the problem

instances. However, the results showed that employing the FSP did not improve

either solution quality or efficiency of the search.

 In the manufacturing problem, although our methodology found good solutions

its computational effort was much more (about two times) than the standard TS.

Interestingly, STS, which uses only 5 replications, could end up with very good

solutions removing the need for FSP to improve the solution quality. The

convergences of the methods were almost same. Thus employing the FSP did not

increase the efficiency but add further computational efforts. We thought the

simplicity of the problem caused this situation and decided to increase the variability

by increasing processing times and adding breakdowns for the machines. In both

cases, the results did not change. Taking five replications was still sufficient to come

up with good solutions.

 In the inventory control problem, the picture was the same, i.e., employing the

FSP did not bring much concerning the efficiency of the search. Since we decided to

keep the indifference zone parameter relatively large the additional computational

effort was incredibly reduced compared to the manufacturing problem. The FSP did

not require additional replications apart from the first stage sampling, which was

quite enough to select the best solution.

 In the job shop problem, both methods found same solutions except for one

case. The methods took same number of replications and found the best solution at

 78

the same iteration. In other words, there was no difference between the two methods.

Again it was useless to employ the FSP.

 In the three stage buffer allocation problem, TS+FSP method found a good

solution (probably the best) that the STS method could not find. But the

computational effort was too much since the indifference zone parameter was small.

Since the solutions found by both method seemed close to each other there was no

need to employ the FSP.

 It seems our claim is failed for all of the problem instances. Although it is

known that taking small number of replications is not enough to compare the

alternative system designs and to select the best one, our results indicate the contrary.

Even when we increased the variability, 5 replications were enough to select the best

system. This might be caused by the simplicity of the test problems. But the more

complex real life problems are combinations of these relatively small problem

instances. We think, even the complexity of the problem increases, the best solution

can be found with less amount of computational effort than the FSP or any other

R&S procedure would spend.

 Although R&S procedures distinguish the best solution among a set of

alternatives, their computational effort is too high. The FSP is one of the most

efficient R&S procedures since it can find the best alternative with smaller number of

observations compared to conservative R&S methods. This is why we preferred the

FSP to other R&S methods to use in our methodology. However, our results showed

that it is actually inefficient in the way that taking relatively small number of

replications is enough to distinguish the best system. So we think, the presence and

the future of the R&S procedures must be reviewed. Their efficiency must be tested

on very large and complex simulated systems. And instead of comparing them to

other R&S techniques, they must be compared to taking small number of

replications.

 On the other hand, TS has proven to deserve its reputation. It performed very

well and found very good (near optimal) solutions with or without FSP. Using more

intelligent neighbourhodd generation algorithms or more intelligent memory

structures may further increase its efficiency.

 In sum, we understand combining TS and the FSP in the way we did were not a

good idea. But, maybe, the FSP can be used after an exhaustive simulation

optimization search to further inspect the elite solutions that are encountered by the

 79

search similar to our long run performance analysis. Since a number of replications

have already been taken during the search, these observations can be used as a first

stage sampling to the FSP thus reducing the computational effort.

 80

REFERENCES

Abspoel, S. J., Etman, L. F. P., Vervoot, J., Roda, J. E., (2000). Simulation
Optimization of Stochastic Systems with Integer Variables by Sequential
Linearization, Proceedings of the 2000 Winter Simulation Conference, J. A. Joines,
R. R. Barton, K. Kong, and P. A. Fishwick eds.

Ahmed M.A., Alkhamis, T. M., (2002), Simulation-based optimization using
simulated annealing with ranking and selection, Computers & Operations Research,
29, 2002.

Angun, E., Kleijnen, J. P. C., Hertog, D. D., Gurkan, G., (2002). Response Surface
Methodology Revisited, Proceedings of the 2002 Winter Simulation Conference.

Azadivar, P., (1999). Simulation Optimization Methodologies, Proceedings of the
1999 Winter Simulation Conference, P. A. Farrington, H. B. Nembhard, D. T.
Sturrock, and G. W. Ewans eds.

Baretto, M. R. P., Chwif, L., Eldabi, T., Paul, R. J., (1999). Simulation Optimization
with Linear Move and Exchange Move Optimization Algorithm, Proceedings of the
1999 Winter Simulation Conference.

Baesler, F. F., Sepulveda, J. A., (2000). Multi Response Simulation Optimization
Using Genetic Search within a Goal Programming Framework, Proceedings of the
2000 Winter Simulation Conference.

Brady X., McGarvey, Y., (1998). Heuristic Optimization Using Computer
Simulation: A Study of Staffing Levels in a Pharmaceutical Manufacturing
Laboratory, Proceedings of the 1998 Winter Simulation Conference, D. J. Mederios,
E. F. Watson, J. S. Carson, and M. S. Manivannan eds.

Carson, Y., Maria, A., (1997). Simulation Optimization: Methods and Applications,
Proceedings of the 1997 Winter Simulation Conference, S. Andradottir, K.J. Healy,
D.H. Withers, B.L. Nelson eds.

Chen, E. J., Kelton, W. D., (2000). An Enhanced Two-Stage Selection Procedure,
Proceedings of Winter 2000 Simulation Conference.

Chen, E. J., (2001). Using Common Random Numbers for Indifference-Zone
Selection, Proceedings of the 2001 Winter Simulation Conference.

Chen, E. J., (2002). Using Common Random Numbers for Indifference-Zone
Selection, Proceedings of the 2002 Winter Simulation Conference.

Finke D. A., Mederios, D. J., Traband, M. T., (2002). Shop Scheduling Using Tabu
Search and Simulation, Proceedings of the 2002 Winter Simulation Conference.

 81

Fu, M. C., (2001). Simulation Optimization, Proceedings of the 2001 Winter
Simulation Conference, B. A. Peters, J. S. Smith, D. J. Modeiros, and M. W. Rohrer
eds.

Glover F., (1986). Future paths for integer programming and links to artificial
intelligence, Computers & Operations Research, vol. 5.
Glover, F., (1989). Tabu Search Part I, ORSA Journal on Computing, Vol 1 No 3
Summer 1989.

Glover, F., Laguna M., (2002). Handbook of Applied Optimization Tabu Search, P.
M. Pardalos and M. G. C. Resende eds, Oxford Academic 2002.

Goldsman, D., (1983). Ranking and Selection in Simulation, Proceedings of the 1983
Winter Simulation Conference, Roberts, S., Banks, J., Schmeiser, B., eds.

Goldsman, D., Nelson B. L. (1998). Comparing Systems via Simulation, Handbook
of Simulation, Edited by Jerry Banks, John Wiley & Sons, Inc.

Goldsman, D., Nelson, B. L., (1998). Statistical Screening, Selection, and Multiple
Comparison Procedures in Computer Simulation, Proceedings of the 1998 Winter
Simulation Conference, Mederios, D.J., Watson, E. F., Carson, J. S., Manivannan, M.
S., eds.

Goldsman, D., Nelson, B. L., (1999). A Ranking and Selection Project: Experiences
From A University-Industry Collaboration, Proceedings of the 1999 Winter
Simulation Conference, Farrington, P.A., Nembhard, H.B., Sturrock, D. T., Ewans,
G. W., eds.

Goldsman, D., Marshall, W. S., (1999). Selection Procedures With Standardized
Time Series Variance Estimators, Proceedings of the 1999 Winter Simulation
Conference.

Goldsman, D., Marshall, W. S., (2000). Ranking and Selection for Steady-State
Simulation, Proceedings of Winter 2000 Simulation Conference, Joines, J.A., Barton,
R. R., Kang, K., Fishwick, P.A., eds.

Gupta, A. K., Silvakumar, A. I., (2002). Simulation Based Multi Objective Schedule
Optimization in Semiconductor Manufacturing, Proceedings of the 2002 Winter
Simulation Conference.

Haynes, A. M., MacGillivray, H. L.,Mengersen, K.L., (1997). Robustnes of ranking
and selection rules using generalised g-and-k distributions, Journal of Statistical
Planning and Inference, 65 1997.

Hedlund, H. E., Mollaghasemi, M., (2001), A Genetic Algorithm and an
Indifference-Zone Ranking and Selection Framework for Simulation Optimization,
Proceedings of the 2001 Winter Simulation Conference, Peters, B. A., Smith, C. S.,
Mederios, D. J., Rohrer, M.W., eds.

 82

Humprey, D. G., Wilson, J. R., (1998). A Revised Simplex Search Procedure for
Stochastic Simulation Response Surface Optimization, Proceedings of the 2001
Winter Simulation Conference.

Inoue K., Chick, S. E., (1998). Comparison of Bayesian and Frequentist Assessments
of Uncertainty for Selecting the Best System, Proceedings of the 1998 Winter
Simulation Conference.

Joines, J. A., Gupta, D., Gokce, M. A., King. R. E., Kay, M. G., (2002). Supply
Chain Multi Objective Simulation Optimization, Proceedings of the 2001 Winter
Simulation Conference.

Kim, S. H., Nelson, B. L., (2001). A Fully Sequential Procedure for Indifference-
Zone Selection in Simulation, ACM TOMAS, in press.

Law, A. M., McComas, M. G., (2002). Simulation Optimization, Proceedings of the
2002 Winter Simulation Conference.

Lee, Y. H., Park, J. K., Kim, Y. B., (1997). Single Run Optimization Using the
Reverse Simulation Method, Proceedings of the 1997 Winter Simulation Conference.

Lee, Y. H., Park, K. J., Kim, T. G., (1999). An Approach for Finding Discrete
Variable Design Alternatives Using a Simulation Optimization Method, Proceedings
of the 1999 Winter Simulation Conference.

Matejcik, F. J., Nelson B. L., (1993). Simultaneous Ranking, Selection and Multiple
Comparisons for Simulation, Proceedings of the 1993 Winter Simulation Conference,
Ewans, G.W., Mollaghasemi, M., Russel, E. C., Biles, W. E., eds.

Matejcik, F. J., Nelson B. L., (1995). Two-Stage Multiple Comparisons With The
Best For Computer Simulation, Operations Research, Vol. 43, No 4, pp. 633-640.
Morito, S., Lee, K. H., (1997). Efficient Simulation Optimization of Dispatching
Priority with Fake Processing Times, Proceedings of the 1997 Winter Simulation
Conference.

Morrice D. J., Butler, J., Mullarkey, P., Gavirneni, S., (1999). Sensitivity Analysis in
Ranking and Selection for Multiple Performance Measures, Proceedings of the 1999
Winter Simulation Conference.

Neddermeijer, H. G., van Oortmarssen, G. J., Piersma, N., Dekker, R., (2000), A
Framework for Response Surface Methodology for Simulation Optimization,
Proceedings of the 2000 Winter Simulation Conference.

Nelson, B. L., (1993). Robust Multiple Comparisons Under Common Random
Numbers, ACM Transactions on Modeling and Computer Simulation, Vol. 3, No 3.

Olafsson, S., Shi, L., (1998). Stopping Criterion for a Simulation Based Optimization
Method, Proceedings of the 1998 Winter Simulation Conference.

 83

Olafsson, S., (1999). Iterative Ranking and Selection for Large Scale Optimization,
Proceedings of the 1999 Winter Simulation Conference.

Olafsson, S., Shi, L., (1999). Optimization via Adaptive Sampling and Regenerative
Simulation, Proceedings of the 1999 Winter Simulation Conference.

Olafsson, S., Kim, J., (2002). Simulation Optimization, Proceedings of the 2002
Winter Simulation Conference, E. Yucesan, C. –H. Chen, S. L. Snowdon, and J. M.
Charnes eds.

Pichitlamken, J., Nelson, B. L., (2002). A Combined Procedure for Optimization via
Simulation, Proceedings of the 2002 Winter Simulation Conference.

Pichitlamken, J., Nelson, B. L., (2001). Selection-of-the-Best Procedures for
Optimization via Simulation, Proceedings of the 2001 Winter Simulation
Conference.

Rogers, P. (2002). Optimum Seeking Simulation in the Design and Control of
Manufacturing Systems: Experience with OptQuest for Arena, Proceedings of the
2002 Winter Simulation Conference.

Shannon, R.E., (1975). Systems Simulation the art and science, Prentice-Hall, 1975.

Schuruben, L. W., (1997). Simulation Optimization Using Simultaneous Replications
and Event Time Dilation, Proceedings of the 1997 Winter Simulation Conference.

Sivakumar, A. I., (1999). Optimization of Cycle Time and Utilization in
Semiconductor Test Manufacturing Using Simulation Based, On-Line, Near-Real
Time Scheduling System, Proceedings of the 1999 Winter Simulation Conference.

Yuksel, B., (2000). An inventory model for randomly perishing goods,
The Department of Industrial Engineering, Ankara 2000.

