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ABSTRACT

HEURISTIC SOLUTION MODELS FOR THE 
SINGLE ITEM, UNCAPACITATED 
LOT-SIZING PROBLEMS

Demet Çapan 
M.B.A. In Management 

Supervisor ; Assist. Prof. Erdal Erel 
January 1990, 79 pages

Single item, deterministic, periodic review, 
uncapacitated production/inventory models are especially 
important because of their applications in material 
requirements planning (MRP) systems. In this thesis, the 
relevant literature is reviewed and the performance of 
EOQl, E0Q2, POQ, LUC, PPB, SM and GMC heuristic models are 
compared and discussed in the context of experimentation.
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ÖZET

ENVANTER BÜYÜKLÜĞÜ TESBIT PROBLEMLERİNDE KULLANILABİLECEK 
TEK ÜRÜNLÜ, SINIRSIZ, SEZGİSEL ÇÖZÜM YÖNTEMLERİ

Demet Çapan
İŞ idaresi Yüksek Lisans 

Tez Yönetmeni : Yrd. Doç. Dr. Erdal Erel 
Ocak 1990, 79 sayfa.

Tek ürünlü, deterministik, periodik inceleme ve sı­
nırsız ürün/envanter modelleri malzeme ihtiyaç planlaması 
sistemlerinde yaygın uygulama alanına sahip olmaları açı­
sından, özellikle önemlidirler. Bu tez çalışmasında, konu­
ya ilişkin literatür özetle gözden geçirilmiş, E0Q1, E0Q2, 
P0Q, LUC, PPB, SM and GMC isimli sezgisel yöntemlerin 
performansları deneylerle karşılaştınlmıştır.
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CHAPTER I
1 .1 . INTRODUCTION
The production/inventory process can be characterized 

by the flow of items into and out of storage points. The 
inflow of items is governed by the production or purchase 
acquisition, whereas the outflow of items is induced by 
demand associated with either customer orders or production 
orders. It may be impossible or uneconomical to balance 
exactly the inflow with the outflow, and consequently 
inventory is created at the storage points.

The production/inventory models which represent this 
process can be defined in terms of variables and their 
interactions. Some of the variables such as demand, cost 
and technology are uncontrollable, i.e., they are the 
parameters of the model. On the other hand, other variables 
such as production and inventory levels are controllable 
variables. Interactions can be represented in various forms 
such as, inventory balance equations and capacity
constraints.

1.2. CLASSIFICATION OF PRODUCTION/INVENTORY MODELS
The production/inventory models can be classified into 

two groups Continuous review refers to the case where 
production (or purchase) decisions can be made at any point 
in time. In Periodic Review, decisions are made at 
discrete, usually equally-spaced points in time (i.e., the

beginning of each day, month, etc.).



If the parameters of the model are known exactly, 
then the model is said to be a deterministic one, but if the 
parameters are random variables with known probability 
distributions, then the model is said to be stochastic.

Multi-item models are characterized by the fact that 
there exist cost, demand and resource interactions among the 
items. If there are no such interactions, then it becomes a 
single-item model.

If there exists a restriction on resources then the 
model is called capacitated, otherwise the model is 
considered as uncapacitated.

The models discussed in this study belongs to the 
class of single item, deterministic, uncapacitated, periodic 
review lot-sizing models. The choice is due to the wide, 
spread use of this class of models in MRP setting.

1.3. MODEL CONSTRUCTION

Following are the list of variables used in the
model:

T = Planning horizon.
X^= Production (purchase) quantity at period t, t=l,2,..., T
d^= Demand at period t, t=l, 2, , T
I^= Inventory level at the end of period t, t=l, 2
I = Inventory level at the beginning of the period, o
c = Unit variable production (or purchase) cost, 
h = Unit inventory carrying cost.
S = Set up (or ordering) cost.



The following is the mathematical programming 
formulation of the model:

Min 2 = ^  [ ( S.y^ + c.X^ ) + h.I^ J
t=l 

Subject to

^t ^t-1 ^t ■ *̂ t

^t- « ^t

It ^ 0

Xt ^ 0 , y J  ‘ 
‘ ' 1

If X^>0

0 otherwise

t=l, 2 , . . . , T 

t=l, 2 , . . . , T 

t=l, 2, ..., T

Where M is a large number.

1.2.1. The assumptions of the model:

The model has some important assumptions. These 
assumptions simplify the model and allow for mathematical 
manipulation and computational feasibility. They are listed 
below:
i) Demand is deterministic, i.e., demand quantities are 
known for all periods with certainty.
ii) The ordering, unit variable production and unit 
inventory carrying costs are deterministic and constant.
iii) No shortages are allowed; i.e., for any period, the 
demand can not be satisfied at later periods.



iv) Production (or purchase) decisions are made at the 
beginning of the periods.
v) The unit inventory carrying cost is a linear function 
of the inventory level. Also the unit variable production 
cost is a linear function of the production level; i.e., any 
other function is not allowed, because linearity feature of 
the objective function must be satisfied.
vi) Items are treated as independent items, i.e., there are 
no resource, demand or cost interactions among the items.

Solution of the problem above is usually
computationally infeasible for a realistic T, since the 
number of constraints and variables are mostly affected by 
the size of the problem under consideration. On the other 
hand, the problem can be solved with a dynamic programming 
approach with much less computational requirements. Such a 
formulation was first given by Wagner and Whitin (12). 
Although Wagner and Whitin (WW) model gives optimal
solution, it requires relatively high computational effort 
in MRP environment; i.e., the WW model searches T(T+l)/2 
alternative solution procedures. For that reason, several 
lot-sizing heuristic models are proposed in the literature. 
Their computational requirements are relatively less but 
they do not ensure optimality. In this study, it is 
examined seven heuristic models and apply them to 35 test 
data(developed by Kaimann [5]) to find out which of these 
seven heuristic models most closely approximates the optimal 
solutions found by the WW.



1.3.2. IMPLICATIONS OF THE ASSUMPTIONS

The meaning and importance of the assumptions and the 
implications of relaxing them are briefly discussed below:

(i) If the demands were not deterministic, then it 
would necessitate the use of probabilistic distribution 
functions for expressing the demand set, in which case a 
linear model could not be used, nor could such a model be 
deterministic.

(ii) In the heuristic models, variables such as 
set-up costs, inventory carrying costs, production costs, 
etc. are assumed to be constants. Relaxing this assumption, 
would invalidate the use of heuristic models and would 
necessitate the use of an optimum finding algorithm such as 
WW model.

(iii) The assumption of "no shortages" : This 
assumption can be relaxed easily, because if it were to be 
relaxed then we would have to introduce another cost term 
into our objective function and make our evaluations 
accordingly, in which case the extra term is the product 
of number of shortages and unit shortages cost.

(iv) Production (purchase) decisions are made at the 
beginning of the periods. In other words, this is the 
"periodic review assumption".

(v) The unit inventory carrying cost is a linear 
function of the inventory level. The relaxation of this 
assumption would render our problem non-linear.



(vi) The assumption of ” single-item Otherwise, 
the problem is multi-item lot-sizing problem. But, 
multi-item, uncapacitated problems are also solved for each 
item by using this model.

1.4. PURPOSE OF THE THESIS
"The single item, deterministic, periodic review and 

uncapacitated production/inventory model" is chosen as a 
subject for the thesis mainly because of applications in MRP 
systems, since the production planning environments are 
generally affected by the decisions to be made on MRP 
systems. This thesis is based on comparison of seven 
heuristic models to solve lot-sizing problems.

1.5. THESIS OUTLINE
In the introduction chapter, a classification of the 

production/inventory models is considered. Chapter I states 
variables which are used in the model considered and the 
mathematical programming formulation of the model is given. 
The assumptions of the model and their implications are also 
presented in Chapter I.

The analysis of the available heuristic models with 
their assumptions and other structural properties are
presented in Chapter II.

In Chapter III, properties of data sets for 
computational comparison of heuristic models are described. 
Evaluation of the results and the comparison of the 
heuristic models are presented. The conclusions and
recommendations are considered in Chapter IV.

6



CHAPTER II 
HEURISTIC MODELS

In the literature, several heuristic models for 
determining lot sizes in single item, deterministic and 
periodic review models, have been outlined. The optimal 
solution to the problem can be obtained by the Wagner and 
Whitin model(12).

The W/W model is a dynamic programming approach
which uses several theorems to simplify the computations. 
The algorithm proceeds in a forward direction to determine 
the minimum cost policy. Although it finds an optimal 
solution, heuristic models are generally used in practice 
since computational requirements are quite large. Such 
that, the computation time of WW algorithm increases
explonantially relative to heuristic models' computation 
times when the size of parameters increases. Thus, various 
heuristic models have been developed since 1968. These 
heuristic models are computationally more attractive, but 
they do not ensure optimality.

The following heuristic models are frequently
referred to in the literature:

1 - Economic Order Quantity (EOQ) (1,6,8 ,9)
2- Period Order Quantity (POQ) (9,10)
3 - Least Unit Cost (LUC) (3,8)
4- Part Period Balancing (PPB) (2,7,8,11)
5- Silver and Meal Heuristic (SM) (9,10,11)
6- Groff Marginal Cost Algorithm (GMC) (4,11)



The first one is demand-rate oriented and the rest are 
discrete lot-sizing procedures. Since the discrete 
lot-sizing procedures generate order quantities which equal 
the sum of demands in an integral number of consecutive 
planning periods, they do not create "remnant" stock; 
i.e., quantities that would be carried in the inventory 
for a length of time without being sufficient to cover 
a future period's demands in full.

In some of these models, the order quantity is 
fixed while the ordering interval varies; EOQ belongs to 
this class. In POQ, on the other hand, the ordering 
interval is fixed and the order quantity varies. The 
rest, including LUC, PPB, SM and GMC allow both ordering 
interval and order quantity to vary. Thus, they have the 
capability of coping with the seasonal variability or 
lumpiness of the demand. For this reason, the last four 
heuristic models are widely used in practice.

In the literature, there are two inventory carrying 
cost criteria: " Average inventory carrying cost (AICC) 
criterion " and " End of period (EOP) criterion ". The 
basic difference between the two criteria can also be 
demonstrated in the following manner:
Let H(n) denote the inventory carrying cost for n periods 
using the end of period criterion. And let H'(n) denote 
the inventory carrying cost for n periods using the average 
inventory carrying cost criterion. It can be expressed as 
follows:



n
H'(n) = h ^  

t = l
t -

n
H'(n) = h

t=i
(t-l) + h

n

t=i
( 2 . 1 )

Whereas
n

H(n) = h ^  (t-l)
t=l

As it can be observed, the end of period criterion 
differs from the average inventory carrying cost criterion 
by the second term of Eq. (2.1). This term has no effect on 
the optimal solution of W/W model since it would 
be added identically to all ordering alternatives for 
each period. Since optimal solution does not change with 
changing the inventory cost criterion, in all heuristic 
models end of period criterion is used.

In the rest of this chapter, the basic concepts of 
each of the seven heuristic models will be summarized; the 
solution procedures will be developed and stated and they 
will be applied to a simple set of demand data in lieu of 
an example.

2.1. ECONOMIC ORDER QUANTITY MODEL

This model is widely used because of its simplicity. 
The EOQ is based on the assumption that the demand is 
continuous and it is calculated from the formula (2 .2 ).

9



Since the class of models considered in this study is 
periodic review( i.e., demand occurs at discrete points in 
time), the policy for determining the order point is 
therefore modified.

EOQ = / 2SD
( 2 . 2 )

In all the examples of this chapter, data set given 
in Table 2.1. is used. The computations for ordering and 
carrying costs are also shown. The carrying cost is found 
by adding the ending inventory for all periods and then 
multiplying the sum by the carrying cost per unit time(6 ).

Table 2.1. Data Set for the Examples

period no 1 2 3 4 5 6 7 8 9 10 1 1 12

Demand 10 10 15 20 70 180 250 270 230 40 0 10

S ::TL 300.
h :=TL 2 . per unit per period

10



There are two variations of the EOQ heuristic 
model:E0Q1 and E0Q2.

2.1.1 ECONOMIC ORDER QUANTITY 1 MODEL
This heuristic model places an order whenever the 

quantity on hand is less than current demand. A check 
is made to see if EOQ equals or exceeds current demand. 
If so, the order quantity is the EOQ. If EOQ is less 
than the current demand, then the order quantity is 
increased to meet the current demand. In brief, production 
quantity is set equal to the maximum of EOQ or the 
difference between demand at current period and inventory 
level at previous period(6 ).

If

otherwise, = max { ̂ 0« ■ - ^t- 1  }

stopping rule ^

An example illustrating this heuristic model is given 
Table 2.2. by using EOQl procedure.

11



Table 2.2 EOQl Example

Period no 1 2 3 4 5 6 7 8 9 10 1 1 12

Demand 10 10 15 20 70 180 250 270 230 40 0 10

Production
Quantity

575 0 0 0 0 0 ' 0 575 0 0 0 0

Beginn ing 
Inventory

575 565 555 540 520 450 270 595 325 95 55 55

End Inv. 565 555 540 520 450 270 0 325 95 55 55 45

Total Ordering Cost =: 2x300 =TL 600.

E0Q=> 2SD ' 2x300x1105 L 575 units
h \ 2

Total inventory carrying cost=TL 6990.

12



2.1.1.1 EOQl PROCEDURE

1) Initialization, t = 1 , I^= 0, X^= 0, Vt go to

2 ) X^= max JI ' =>t- It-l I/ go to

3) Let, I t = ^ X K  - I<*k
k=l k=l

go to

4) If I^ > then, go to

else t=t+l go to

5) t=t+l
If t < T then, go to

else go to 6

6) End.

13



2.1.2 ECONOMIC ORDER QUANTITY 2 MODEL
The EOQ2 model is almost the same as the EOQl. The 

only difference is that the E0Q2 is a discrete lot sizing 
model. That is, the order quantity is equal to the
cumulative sum of the demand of consecutive periods. But 
it is not necessarily equal to the EOQ. In this model, 
the ̂ lot-size is determined by comparing the EOQ with the 
cumulative demands at the consecutive periods. The one 
which is closer to the EOQ is chosen as the lot size (1).
The stopping rule of this heuristic model is as follows:

k
EOQ  ̂ ^

t=l< I
When the

k- 1
rule above holds, the order 

k
quantity is taken

to be zt = l d^ or y d^, whichever is 
t=l

closer to the EOQ.

The following are the definition of symbols used in the E0Q2 
procedure :

— p is the current period at which we are making 
decision.

— k is the period at which sum of cumulative demand 
from period p to k just exceeds EOQ.

let, 'pk
t=p

14



else

else

else

B
T

= V  d.P L· 1

If
i=p

d > EOQ then, X = dP P P
If B < EOQ then, X = BP P

If 1 Ap^- EOQ 1 ( 1 EOQ

k- 1
then,

t=p

t=p

As shown in Table 2.3., for example the stopping rule holds
for the first time until period 8 . Then the size of first
lot is taken to be 555. Since the cumulative demands of
first five periods (555) is closer to the EOQ (575) than
the cumulative demand of first eight period (825).

Table 2.3, E0Q2 Example

Period no 1 2 3 4 5 6 7 8 9 10 1 1 12

Demand 10 10 15 20 70 180 250 270 230 40 0 10

Order
Quantity

555 550

Beginning
Inv.

555 545 535 520 500 430 250 550 230 50 10 10

Ending Inv 545 535 520 500 430 250 0 230 50 10 10 0

Ordering Cost = 2(TL 300) =TL 600. 
Inv. carrying cost =TL 6280

15



2.1.2.1 E0Q2 PROCEDURE

1) let, p=l, k=l, X =0  ̂ Vt

2) If k ) T then go to 
else go to

3) If d ) EOQ then, X = d go to P P P
else go to

4) Find ^pk’

5) If / EOQ then, X = B go toP \ P P
else go to

6 ) If I Apĵ  - EOQ I ^ I - EOQ | then.

= I d^ ; p = k+1
t=p

k- 1

else X
t=p

; p = k

go to

7) End

16



2.2. PERIOD ORDER QUANTITY MODEL
Period order quantity model is based on the 

principles of the classic E0Q(9)model. In POQ procedure 
the economic ordering interval (EOI) is computed rather 
than the economic order quantity. Once the EOI is computed, 
the lot-size is taken as the sum of demands during the 
economic ordering interval. This heuristic model is 
equivalent to the simple rule of ordering *’x months'supply", 
but X  is computed rather than determined exogenously.

OPH (Orders per horizon) =
EOQ which is

T
 ̂ = I  "tt=i

EOI( economic order interval) =

=min t+EOQ-1, T |·

OPH

h  --

i=t

If >0) or (d^ =0)
Otherwise

I a I = b, b is the largest integer which is greater than 
or equal to a

17



Using the data given in Table 2.1., the EOI is computed 
as follows:

EOQ = 166
Number of period in a horizon = 12 
Total demand in a horizon =1105 units 

1105
OPH =

EOI =

575 = 1.92 = 2 (order per a horizon)

12 = 6 (economic ordering interval)

Application of the POQ heuristic to the sample problem is 
given in Table 2.4 by using Section 2.2.1.

Table 2.4. Period Order Quantity Example

Period no 1 2 3 4 5 6 7 8 9 10 1 1 12

Demand 10 10 15 20 70 180 250 270 230 40 0 10

Order
Quantity 305 800
Beginning 
Inv. 305 295 285 270 250 180 800 550 280 50 10 10

Ending 
Inv. 295 285 270 250 180 0 550 280 50 10 10 0

Ordering Cost =2(TL 300.) =TL 600, 
Inv. carr. Cost= 2*2180 =TL 4360.

18



2 .2 .1 . POQ PROCEDURE

1) Initialization, t=l, X^=0 Vt , Find EOQ, EOI

2) If d^=0 then, t=t+l

else compute k̂ , go to

3) Set ^“^̂t

4) Set t=K , t=t+l

5) If t=T go to

else go to

6) End

19



2.3. LEAST UNIT COST MODEL

Least Unit Cost model is based on the minimization 
of the "unit cost". In determining the lot-size the LUC 
model probes whether the lot-size should be equal to the 
first period's demand or whether it should be increased to 
cover the demand of the next period and/or the one after 
that, etc. The decision is based on the "unit cost" ( i.e., 
set up plus inventory carrying cost per unit) computed 
for each of the successive order quantities. The one 
with the least unit cost is chosen to be the lot—size.

Derivation of the stopping rule of the LUC heuristic 
is as follows (3): UC(n) is defined as the unit cost of 
replenishment which covers n period's demand.

UC(n) =
n

t=i

n
S + h ^  d^( t-1 ) 

t = l
(2.3)

The basic idea of the LUC heuristic is to evaluate 
Eq.(2.3) for increasing values of n, until the following 
condition is satisfied:

UC(n+l) > UC(n) (2.4)
that is, until unit cost starts to increase.

Using Eq.(2.3) and Eq.(2.4), we can obtain

n+1  

t=i

r ^“*"1 1 ■ ^ \ 1 r n n
S + h ) d.( t-1) ) S + h ) d (t-1)/ it=i -I n t=i J

t=i

20



Last inequality can be expressed as:

S n+1
—  * Z
u t = l >

n+1  

t=i

n
I n

(t-1 )
t = l Zt = l

(2.5)

by defining a counter F(n) as:
F(n) = F(n-l) + (n-l).d^ n= 2,3,...

where
F(l) = and

by substituting F(n) into Eq.(2.5), we can obtain
n+ 1

ZF(n+1) \ t=l
'' / nF(n) ( 2 . 6 )

Z - t
t=i

Finally,

n
n ^  d^ > F(n) 

t = l
(2.7)

The equation (2.7) is the stopping rule of the LUC 
heuristic.

21



In summary, the LUC heuristic determines the lot size 
by evaluating expression Eq.(2.7) for the increasing values 
of n and adding the future demands to the current lot until 
the stopping criterion is satisfied. The same procedure is 
repeated for the remaining periods. Application of this 
heuristic to the sample problem is given in Table 2.5 
by using Section 2.3.1.

Table 2.5. Least Unit Cost Example

Period No. 1 2 3 4 5 6 7 8 9 10 11 12
Demand 10 10 15 20 70 180 250 270 230 40 0 10
Order
Quantity 125 180 250 270 230 50
Beginn ing 
Inventory 125 115 105 90 70 180 250 270 230 50 10 10
Ending
Inventory 115 105 90 70 0 0 0 0 0 10 10 0

Ordering Cost = 6(TL 300. ) =TL 1800.
Inv. carr . cost =TL 800.
Total Cost =TL 2600.

22



2.3.1 LUC PROCEDURE

1) let, p=l, F(0) =0, X^=0 Vt

2) n = l. Since, F(l) =-

If p=T then go to

else go to

3) If dp < F(l) then, go to

else go to

4) Set Xp = dp and p = p+1 go to I 2

5) If p+n-1 = T then, 

else n=n+l go to

X
t=P

go to

P+n-1
6) Compute cost = n ^  d^ , F(n) = F(n-l) + (n-l)dp^^ ĵ

t=p

7) If Cost i F(n) go to

else go to

p+n-1
8) Set, Xp = ^  dt , 

t=p
P = n+1 go to

9) End

23



2.4. PART PERIOD BALANCING MODEL
PPB heuristic has the objective of minimizing the 

sum of set up and inventory carrying cost. It attempts to 
reach this objective by trying to equate the total cost 
of ordering to the total cost of carrying inventory. This
can be written as follows:

n
S ^ h \  ( t~l)

t^it=i
dividing both sides by h, we obtain

n

t = l ^ (t-1) (2 .8 )

In the literature(7), S/h is called "The Derived Part
Period Value” and some authors call it" The Economic Part
Period (EPP)". It is the inventory quantity which, if
carried in the inventory for one period, would result in
a carrying cost equal to the set up cost. The RHS term, 
n

I'd^ (t-1), is known as "The Generated Part Period Value", 
t = lor as some authors call it, "The Part Period Cost". It is 
the number of items held in the inventory for a certain 
period of time.

The PPB heuristic selects the order quantity such 
that The Part Period Cost ( Generated Part Period Value) is 
close to the EPP (Derived Part Period Value). The stopping 

rule of this heuristic is as follows (2):
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n
< Y. d (t-1)t = l ^ (2.9)

that is, when the generated part period value is first 
greater than derived part period value, new order should 
be placed. To determine reorder period and the order 
quantity, the generated part period values of the current 
and the previous periods are compared with derived part 
period value. Reorder period is the successor of the 
period at which the derived and the generated part period 
values are the closest. Then, the order quantity equals the 
cumulative demands up to the preceding period This can 
be presented as follows:

cWhen the stopping rule holds ( i.e.,
n h

y  d,(t-l> -

n
1 ) )

t=i
Let DIF

and
DIFn-1

n-1
- t = l

1 )

then, the first lot—size will be

=

n
It=i
n-1

t = l

If DIF < DIF , n n-1

If DIF > DIF , n n-1
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and the reorder period ( or period at which new order is 
placed) will be :

JJ =
n+1 if DIFn < DIF , n-1
n if DIFn > DIF , n-1

To put the stopping rule in a form which is compatible with 
that of LUC, the following algebraic manipulation can be 
made:

2S
h

n

t = l ^ (2 .1 0 )

by defining a counter F(n) as

F(n) = F(n-l) + (n-l)dn n=2,3,...
where

F(l)

and substituting these into Eq.(2.10), we can obtain the 
stopping rule of PPB heuristic in the following form:

2S < F(n) ( 2 . 1 1 )

Application of the PPB heuristic to the sample problem is 
illustrated in Table 2.6 by using Section 2.4.1.
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Table 2.6. Part Period Balancing Example

Period No. 1 2 3 4 5 6 7 8 9 10 11 12
Demand 10 10 15 20 70 180 250 270 230 40 0 10
Order
Quantity 55 250 520 280
Beginning
Inventory 55 45 35 20 250 180 520 270 280 50 10 10
Ending
Inventory 45 35 20 0 180 0 270 0 50 10 10 0

Ordering Cost = 4(TL 300.) =TL 1200. 
Inv.carr. Cost = 2(TL 620.) =TL 1240. 
Total Cost =TL 2440.
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2.4.1. PPB PROCEDURE

1) Let, j = l, t = l, X = 0 Vt, F(l) = -^, CST =
h h

2S

2) If t=T or j=T then, X . = d go toJ / . P
P=j

else t=t+l go to

3) Set k=t-j+l
F(k) = F(k-l) + (k-l)d,

4) If F(k) < CST then, go to

else go to

5) DIF^ dp (p-j) - F(l)
P=J

t-1
DIF^_^ = F(l) - ^  dp (p-j)

P=j

6) If DIF^ < DIF^_ĵ then, X. =

t-1
else Xj= ^  dp , j=t 

P=j

go to

7) End

y dp ; j=t+l
P=j t=t+l
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2.5. SILVER AND MEAL HEURISTIC MODEL
The basic idea of the heuristic is based on the 

minimization of the total cost per unit time. It selects 
the order quantity in such a way that the total cost per 
unit time is minimized (9). Total cost per unit time can be 
expressed as:

TCUT(n) ( S + hn

11

I 1 ) ) (2 .1 2 )
t = l

where TCUT(n) is total cost per unit time, n=l,2,3...etc. 
is the decision variable duration that replenishment 
quantity is to last.

The model of the heuristic evaluates TCUT(n) for 
increasing values of n until the following condition is 
satisf ied:

TCUT(n+l) > TCUT(n) (2.13)

that is, until total cost per unit time starts to increase. 
When this happens, n is selected as the number of periods 
that the replenishment will cover. The stopping rule of the 
SM heuristic is obtained as follows:

From Eq.(2.12) and Eq.(2.13), we can write

n+1 n

n+1
( S + h (t -D) > (S + h

t=l n t=i
(t-D)

By dividing both sides of above inequality by h and 
rearranging terms, we can obtain
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I
t=i

n+1
(t-l)

>n
(t-l)

t = l

n+1
n (2.14)

Since F(n) = F(n-l) + (n-l)d^ and F(l) =

inequality Eq.(2.14) becomes

F(n+1)

or

F(n)
n+1

F(n) + ndn+1

F(n) > n+1
n

(2.15)

By rearranging the terms of Eq.(2.15), we can obtain the 
stopping rule in the following form (10):

> F<n) (2.16)

The application of this heuristic to the sample problem 
is given in Table 2.7 by using SM procedure.
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Table 2.7. Silver and Meal Example

Period No 1 2  3 4 5 6 7 8 9 10 11 12
Demand 10 10 15 20 70 180 250 270 230 40 0 10
Order
Quantity 55 70 180 250 270 280
Beginn ing
Inventory 55 45 35 20 70 180 250 270 280 50 10 10
End ing
Inventory 45 35 20 0 0 0 0 0 50 10 10 0

Ordering 1Cost = 6(TL 300. ) =TL 1800.
Inventory carr. cost = 2(TL 170. ) =TL 340.
Total cost : 1800 + 340 ::TL 2140.
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2.5.1. SM PROCEDURE

1) Let, j = l, t = l, X,- = 0 Vt, F(l) =

2) Set k=t-j+l
F(k) = F(k-l) + (k-l)d^ go to

3) If t=T then, ^  dp go to
P=j

else go to

4) If F(k) ^ k  d̂ ĵ̂  then, go to

else go to

5) If t=T or j=T then, ^
P=j

d go to 8P __

else t=t+l go to

6) Set X.= У d , j=t+l, t=t+l go to 
J P

p=j

7) If t=T or j=T then, X.= V d go to0 / P
P=J

else go to

8 ) End.
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2.6. GROFF MARGINAL COST MODEL

This heuristic is based on the marginal costs rather 
than the total costs. The traditional EOQ rule is 
established by increasing the lot-size as long as the 
marginal savings in the ordering cost is greater than the 
marginal cost increase in the inventory holding cost. Thus, 
the optimal lot-size is reached when the marginal 
increase in ordering cost equals to the marginal increase 
in inventory holding cost. By using the same analogy, 
this heuristic adds the future demands to the lot-size as 
long as the marginal increase in inventory holding cost 
for the period is less than the marginal decrease in 
ordering cost (11).

The marginal cost decrease for adding n+lst. period's 
demand to the lot is the decrease in ordering cost per 
period, or

n n+1 n(n+l)
(2.17)

Groff's model approximates the discrete inventory depletion 
to the uniform inventory depletion. Inventory holding 
cost for a horizon of n periods and n+1 periods can be 
determined as follows:

H(
n n

" '7' h.n h
^ t = l  ̂ t=l
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and

n+1
H(n+1)= —  ( —  (n+1)

n+1 2 • ' I  ''t
t=i

n+1

t=i

then, the marginal cost increase from adding n+lst. period's 
demand to the lot is

n+1 n
H(n+1) - H(n) = —  h ( ^  d^ - ̂  d^) = ~

2 t^l t^l ^
h (2.18)

Therefore, the stopping rule of Groff's model will be

(n+l)n h dn+1 (2.19)

i.e., the marginal decrease in ordering cost is less than or 
equal to the marginal increase in inventory holding cost(4). 
The inequality (2.19) can be simplified and presented in the 
following form:

2S i n(n+l)dn+1 ( 2 . 20 )

Application of the heuristic to the example problem is given 
in Table 2.8 by using GMC procedure.
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Table 2.8. Groff Marginal Cost Model Example

Period No 1 2 3 4 5 6 7 8 9 10 11 12
Demand
Order

10 10 15 20 70 180 250 270 230 40 0 10
Quantity
Beginning

55 70 180 250 270 280
Inventory 
End ing

55 45 35 20 70 180 250 270 280 50 10 10
Inventory 45 35 20 0 0 0 0 0 50 10 10 0

Ordering Cost = 6(TL 300.) =TL 1800. 
Inv. carr. cost =TL 340.
Total cost =TL 2140.
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2.6.1. GMC PROCEDURE

1) Let, j=l , t=l ,
T

2) If t=T then, = Σ  dp go to
P=0

else go to

3) Set, k:::t-j + l 
1 h CST .

k(k+l)

4) If CST > f then, go to 
else go to

5) If t=T or j=T then, X̂  =
P=j
dp go to

else t = t4-l go to

6) Set, Xj - ^  
P=J

dp and j=t+l go to

7) End .
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CHAPTER III
3.1. COMPUTATIONAL DATA SETS FOR COMPARISON OF THE HEURISTIC

MODELS

In general, there are two criteria to compare these 
heuristic models:(1) total cost of set-up and carrying 
inventory. (2) Computation time of heuristic model 
procedure. The second measure is a measure of the effort to 
find solutions. For the first criterion, the comparison
is made in order to find the deviation of their total costs 
from the optimal solution. In other words, W/W model is 
used as a benchmark to measure the cost performance of the 
heuristic models. As the performances of the heuristic
models are different under different data sets, it is
hard to measure their performances exactly. The difficulty 
lies in the fact that the performances of the heuristic
models vary, depending upon the variability of demand.

However, Kaimann (5) has prepared data sets which 
reduce this difficulty. These data sets which are given in 
Table 3.1 and 3.2 (in the Appendix A) have been prepared by 
using five different sets of cost data and seven different 
sets of demand data. As it can be seen from Figure 
3.1., the demand data represents a variety of possible 
demand patterns that will encompass a wide range of the
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possible demand situations. Each of these demand patterns 
have the same total demand for the year, namely 1105 units.

There are 35 examples, all derived from the seven 
demand patterns and the five ordering costs. Totally 35 
test problems are solved for each heuristic model.

The performances of all the heuristics are measured 
by using these data sets, and by comparing their results 
with those yielded by WW.

3.2. THE RESULT OF EXPERIMENTATION

Several heuristic models for determining the lot-size 
in single—item, deterministic and periodic review models 
have been outlined. These find extensive use in Material 
Requirements Planning systems.

Each of them starts with the current period and 
scans successive periods until the stopping rule is 
satisfied. Then an order is placed to satisfy the total 
requirements up to the stopping period, except for EOQl in 
which the order quantity is equal to EOQ. Then the same 
procedure is repeated for the remaining periods. Although 
the basic idea is the same, the stopping rules which 
characterize the heuristics are different. In this study, 
these stopping rules are also examined and results are 
summarized in Table 3.3. (in the Appendix A).
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Almost all of the lot-sizing heuristics are based on 
the rationale underlying the EOQ, that is, they are 
developed by using one of the properties of the optimal 
solution of the EOQ. These properties may be summarized as 
follows:

- minimization of total costs per unit which is the 
objective of the LUC heuristic.

- minimization of total costs per unit time which 
is the objective of the SM heuristic.

- adding to inventory lot until the marginal 
increase in inventory holding costs is equated to the 
marginal decrease in ordering costs, which is the basic 
idea of GMC model.

- equating the total cost of ordering and the total 
inventory carrying cost which is the basic idea of PPB 
heuristic.

It is possible to conclude that all heuristics are 
developed based on the EOQ, each of them is approximated 
different approach to problems of cost minimization.

In this study, heuristic models for the single item, 
periodic review and deterministic model are compared and 
solutions are obtained in each case using the standard data 
sets available in the literature. In addition, all the 
heuristic models are analyzed with respect to structural 
properties and their stopping rules are summarized.
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Moreover, an interactive package program which 
contains all the lot-sizing models are prepared. If the 
problem is solved by using computer, the user can use the 
interactive package program which is written in TURBO PASCAL 
language. The test problems are solved on a CORONA 
PC / XT-40 personal computer (in the Appendix B).

The results of 35 examples are given in Table 3.4.and 
Table 3.5.(Appendix A): The former exhibits the cost 
performance of the lot-sizing models, and the latter Table 
summarizes cost performance for each heuristic models.

As the Tables clearly indicate, since the WW model 
provides optimal results, it can be used as a yardstick to 
measure the comparative cost performance of the other lot 
sizing models.

The results indicate that the solution yielded by 
WW is best approximated by the by SM and by the GMC models. 
By using these heuristics, processing time can be 
decreased approximately twice. While the average percentage 
deviation of the results of SMH and GMC from the optimal 
solution is about .028%, the average of the said deviation 
for the other five heuristics are 1.523% .

3.2. DISCUSSION OF HEURISTIC MODELS WITH RESPECT TO 
THEIR PROCEDURE

According to the result of 35 test problems, 
SM model outperforms the other procedures. Also, near 
optimal solution is given by GMC model.
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V  It- 1  = 0

It is known that for these type of problems, WW 
model gives the optimal solution, the most important result 
of which can be expressed as below:

(3.1)
The expression (3.1) is stated that if the quantity 

of inventory carried to the next period is positive then the 
production at that period must be zero. Or, if the 
production quantity is greater than zero at any period then 
the carried inventory to this period must be zero. This is 
not the case in other discrete heuristic models. The SM 
heuristic is discrete lot-sizing model. For that reason, 
SM heuristic does not create remnant stock.

One of the features of EOQl and E0Q2 models is 
its consideration of total demand, which can be considered 
a weakness, because in lot-size determination problems the 
crucial variable is not total demand, but rather demand 
variation over the periods.

POQ has the similar property and weakness of 
considering total demand rather than demand variation over 
periods, but it determines an ordering interval. 
However, it makes a simple division without taking into 
consideration demand variation period by period as is the 
case in SM and GMC models, and therefore the former yields 
higher cost results as compared to the latter. And its 
ordering interval can cause the increase in total cost by 
increasing the order (production) cost or inventory carrying 
cost.
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LUC, PPB, GMC and SM heuristics allow both ordering 
interval and order quantity to vary. Thus they have the 
capability of coping with the seasonal variability 
or lumpiness of the demand. Although the basic approach of 
them is same, SM heuristic has a better stopping rule: 
It considers the minimization of total costper unit time.

3.3. ANALYSIS OF RESULTS
The seven heuristics (i.e., EOQl, E0Q2, POQ, LUC, 

PPB, SM and GMC) are tested by solving 35 test problems for 
each. As a result, totally 245 problems are solved by 
using an interactive package program which is written in 
Turbo Pascal Language and the results are depicted in Table
3.4. To facilitate a nalysis of these results. Table 3.6 is 
constructed. This Table presents the ratio of the total 
costs of set-up and inventory carrying found for each 
heuristic model for test problems when compared with WW 
algorithm.

These results are statistically analyzed via the 
one-way analysis of variance(ANOVA) technique. ANOVA method 
is used to examine if there are any significant differences 
between these heuristic models. Thus, the equivalence of 
the seven heuristics' total costs of set-up and inventory 
carrying means are set as a null hypothesis and the 
difference of one of them from the rest is set as an 
alternative hypothesis.
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2̂ ^ 3 "  ^ 4 "  ^ 5 “  ^ 6 “  7̂

: At least one of the heuristics' total costs set-up 
and inventory carrying means differs from the rest.

The result of ANOVA output can be seen Table 3.7 in 
Appendix. As it can be observed from Table 3.7 the 
p-value^ for corresponding to F-ratio = 36.282 and is 
approximately equal to zero. From the Table, we can reject 
or accept the null hypothesis either by looking at the F 
statistic or by looking at p-value. The observed F-test 
ratio is so big and p-value is so small that we can 
conclude that there is sufficient evidence to reject the 
null hypothesis. Thus, it can be concluded that means of 
the heuristics' total costs of set-up and inventory carrying 
significantly differ from each other.

It should also be concluded which heuristic models 
have shown better performances than the others. Then,
the equivalence of the any two pair heuristics' total costs
of set-up and inventory carrying them is set as an
alternative hypothesis. That is.

H : iJ,=0 1 J

«A  ̂ ''j

The results of t-test computations for any two
heuristic-model pairs are given on Table 3.8 , results

^The p-value for a test of hypothesis is the probability
of obtaining a value of the test statistic as extreme or
more extreme than the actual sample value when is true.o
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indicate that there are statistically significant
differences between SM, GMC on one hand,and the other five

2heuristic on the other . It can be concluded that the 
performances of SM and GMC are better than other heuristics 
and a similar conclusion is indicated by confidence interval 
figures which are closer to l(on Table 3.6.) for SM and GMC.

^In doing these comparisons, the family-wise alpha is 
chosen 5% which implies that for each individual comparison, 
the attained p-value is compared with .000125 [=(.05/20)/2].
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CHAPTER IV.

CONCLUSIONS

In this thesis, performances of heuristic models for 
single-item, deterministic, periodic-review lot-sizing
problems are compared with the application to the Material 
Requirement Systems, since the production planning 
environments are generally affected by the decision to be 
made on MRP systems.

The mathematical programming formulation of 
lot-sizing problems are indicated and their assumptions 
are shown. Then the nature, meaning and importance of these 
assumptions and the implications of them are briefly 
d iscussed.

The method which yields an optimal solution for 
single-item, deterministic, periodic review and
uncapacitated lot-sizing problems was developed by Wagner 
and Whitin in 1958, who developed a procedure that 
guarantees an optimal solution in terms of minimizing the 
total cost of replenishment and carrying inventory. However 
the procedure are received exteremely limited acceptance in 
practice, because of the relatively complex nature of its 
algorithm, the considerable computational effort required 
for its use and the possible need for a well-defined ending 
point for the demand pattern.

45



Instead, simpler heuristic models are resorted 
which result in reduced control costs that more than offset 
any extra replenishment or carrying costs that their use 
may incur. A scan is made of the relevant literature 
and seven of the heuristic models which yield best 
results are selected for a test of their performance: 
These are EOQl, E0Q2, POQ, LUC, PPB, SM and GMC.

The basic concepts of each of these heuristic models 
are briefly summarized and a sample problem is solved for 
each.

Since the performances of heuristic models are 
different under different data sets, it is difficult to 
measure their performance exactly, because of the fact that 
the performances of the heuristic models vary depending 
upon the variability of demand. However, Kaimann (5) had 
prepared data sets( Table 3.1 and 3.2 ) which reduced 
this difficulty; and these data sets are used in our study 
for evaluating and comparing the performance of the 
heuristics selected.

A total of 35 test problems are made for each 
heuristic model, they are compared by using the standard 
Kaimann data sets. An interactive package programme 
written in TURBO PASCAL language which contains all the 
lot-sizing procedures are prepared. The results of the 35 
examples (tests) are given in Table 3.4 and Table 3.5, 
which indicate that SM and GMC models outperform the 
others and best approximated the optimal solutions yielded 
by the WW.
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According to the Table 3.7., for F-ratio=36.282 and 
p-value is approximately equal to zero. Thus, the observed 
F-test ratio is so big and p-value is so small. Thus, we 
can conclude that there is sufficient evidence to reject the 
null hypothesis. It can be concluded that the performance 
of the each heuristic differs from each other.

Having shown that the mean of the results obtained 
from 35 test cases are differed for each heuristic, 
t-tests are made for each pair of the seven heuristic 
models examined.

The results of t-tests for any two heuristic-model 
pairs ( Table 3.8) indicate that there are significant 
differences between SM and GMC on the one hand, and the 
other five heuristics on the other.

When the mean of the results obtained from the 
former four heuristics and EOQl ( expressed in terms of 
their ratio to the results obtained from WW algorithm ) are 
compared to the analogue figures yielded by SM and GMC, 
extremely small p-values were obtained, the largest being 
about 0.00015.

Thus this study reconfirms that the performances of 
SM and GMC are better than those the other heuristics 
tested

Finally, for further research, a better solution 
model can be found by applying a more realistic stopping 
rule to the SM and GMC models, which have approximated the 
optimal results obtained from the WW model in our study.
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Table 3.1. Demand Data Sets
PERIOD

1
2
3
4
5
6
7
8 
9

10

11
12

TOTAL

92
92
92
92
92
92
92
92
92
92
92
93

2 3 4 5 6 7

80 50 10 0 0 80
100 80 10 0 0 100
125 180 15 0 0 125
100 80 20 0 25 100
50 0 70 0 100 270
50 0 180 1105 300 50
100 180 250 0 400 230
125 150 270 0 250 0
125 10 230 0 30 50
100 100 40 0 0 0
50 180 0 0 0 0
100 95 10 0 0 60

105 1105 1105 1105 1105 1105

Standard
Deviation 0.0 27.0 66.1 130 305 136 79.7
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Table 3.2. Cu:.;t Data

Ordering cost 
(TL)

Inventory carrying cost 
per unit per period 

(TL)

(a) 48 2
(b) 92 2
(c) 120 n

(d) 206 2
(e) 300 2
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d(t) d(t)

(a) (b)

d(t) d(t)

(c) (d)

3.1. Schematic Represen tat ion of the Demand P;i 1 L·
(a) Demand data one (e) Demand data tWu
(b) Demand data three (f) Demand data foil r
(c) Demand data six (g) Demand data seV'.Ti
(d) Demand data f ive
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d(t) d(t)

d(t)

Figure 3.1(cont'd)
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Table 3.3. Summary of the Stopping Rules of the 
Heuristics

Name of Model Stopping Rule

EOQl It-1 < ^t

k
E0Q2 EOQ <

t = l

POQ n > EOQ

T
LUC " I d^ > F(n)

t = l

PPB 2S < F(n)
h

SM n d . . n+1 > F(n)

GMC 2S < n(n-H)d^^^
h
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TABLE 3.4.

COST PERFORMANCE OF THE LOT-SIZING MODELS

PROBLEM TYPE

Name of 
Model I testla test2a test3a test4a test5a test6a test7a

WW
TC 576 576 452 484 48 288 480
t 0.07 0.06 0.06 0.06 0.03 0.04 0.06

EOQl
TC 576 704 672 774 48 672 756
t 0.02 0.01 0.02 0.02 0.01 0.02 0.02

E0Q2
TC 576 576 632 576 48 288 480
t 0.02 0.02 0.02 0.02 0.01 0.02 0.02

POQ
TC 576 576 480 528 48 288 480
t 0.02 0.02 0.02 0.02 0.02 0.01 0.01

LUC
TC 576 576 774 492 48 288 480
t 0.03 0.02 0.02 0.02 0.02 0.02 0.02

PPB
TC 576 576 452 524 48 300 480
t 0.03 0.03 0.03 0.03 0.02 0.03 0.02

QM
TC 576 576 452 492 48 288 480

Drl
t 0.02 0.02 0.03 0.02 0.02 0.02 0.03

TC 576 576 452 492 48 288 480
U’rlL·

t 0.02 0.02 0.03 0.02 0.02 0.03 0.02

I: Total Cost (TC) and time (t); TC(TL) and t(sec)
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TABLE 3.4.(cont'd)

PROBLEM TYPE

Name of 
Model I testlb test2b testSb test4b test5b test6b test7b

WW
TC 1104 1104 848 836 92 520 920
t 0.06 0.06 0.06 0.06 0.03 0.04 0.06

EOQl
TC 1104 1810 1496 1550 92 1300 1184
t 0.02 0.01 0.02 0.02 0.01 0.02 0.02

E0Q2
TC 1104 1 112 loot; 1352 02 GOO UUO
t 0.02 0.02 0.02 0.02 0.01 0.02 0.02

POQ
TC 1104 1104 920 1012 92 552 920
t 0.02 0.01 0.01 0.02 0.01 0.02 0.02

LUC
TC 1104 1104 1126 956 92 660 948
t 0.02 0.02 0.02 0.03 0.02 0.02 0.02

PPB
TC 1104 1120 984 904 92 552 996
t 0.03 0.03 0.03 0.03 0.02 0.03 0.03

TC 1104 1104 848 876 92 520 920
Dn

t 0.02 0.03 0.02 0.02 0.02 0.03 0.02

fT-MP TC 1104 1104 848 896 92 520 920
t 0.02 0.02 0.02 0.03 0.02 0.02 0.02
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TABLE 3.4. (cont'd)

PROBLEM TYPE

Name of 
Model I testle test2c testSc test4c test5c test6c test7c

TC 1440 1440 1100 1040 120 660 1180
WW

t 0.06 0.06 0.06 0.06 0.02 0.04 0.06
TC 2506 1980 2170 2000 120 1650 1720

EOQl t 0.02 0.02 0.02 0.02 0.02 0.02 U . 02
TC 1440 1500 1320 1520 120 800 1240

E0Q2
t 0.02 0.02 0.02 0.02 0.02 0.02 0.02

TC 1440 1440 1200 1320 120 720 1200
POQ

t 0.01 0.01 0.02 0.02 0.01 0.02 0.02
TC 1440 1500 1390 1180 120 800 1540

LUC
t 0.02 0.02 0.02 0.02 0.02 0.02 11.02

TC 1826 1740 1250 1100 120 800 1420
PPB

t 0.02 0.03 0.03 0.02 0.02 0.02 U.03
TC 1440 1440 1100 1060 120 660 1180

SM
t 0.03 0.03 0.02 0.02 0.02 0.02 0.02

TC 1440 1440 1100 1120 120 660 1180
GMC

t 0.02 0.02 0.02 0.02 0.02 0.03 0.02
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TABLE 3.4.(cont'd)

PROBLEM TYPE

Name of 
Model I testld test2d test3d test4d test5d testOd test7d

TC 2342 2248 1766 1576 206 1084 1850WH
t 0.06 0.06 0.06 0.06 0.02 0.04 0.06

TC 3232 3768 2642 2694 206 2146 3068
EOQl t 0.01 0.02 0.02 0.01 0.02 0.02 0.02

TC 2362 2248 2008 2036 206 1230 2162
E0Q2 t 0.02 0.02 0.02 0.02 0.02 0.02 0.02

TC 2472 2472 2060 2266 206 1236 2060
POQ

t 0.02 0.02 0.01 0.01 0.01 0.01 0.01
TC 2342 2248 1992 1836 206 1230 2596

LUC
t 0.02 0.03 0.02 0.02 0.02 0.02 0.02

TC 2342 2386 2040 1836 206 1230 1850
PPB

t 0.03 0.03 0.02 0.02 0.02 0.03 O.02
TC 2342 2436 1766 1596 206 1084 1856

SM t 0.02 0.02 0.03 0.02 0.02 0.03 I I. 03
TC 2342 2342 1766 1596 206 1084 1856

GMC t 0.03 0.02 0.02 0.02 0.02 0.02 0.02
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TABLE 3.4.(cont'd)

PROBLEM TYPE

Name of 
Model I testle test2e test3e test4e test5e test6e test7e

WW
TC 2906 2950 2330 2140 300 1460 2320
t 0.06 0.06 0.06 0.06 0.02 0.04 0.06

EOQl
TC 4014 4330 3846 3760 300 2952 3656
t 0.02 0.02 0.01 U.Ol 0.02 0.01 II. 02

E0Q2
TC 2906 3000 2580 2600 300 1700 3280
t 0.02 0.02 0.02 0.01 0.02 0.02 11.02

PflQ
TC 2906 2950 2860 2840 300 1960 2420
t 0.02 0.01 0.02 0.02 0.01 0.02 0.01

LUC
TC 2906 3050 2640 2600 300 2600 2820
t 0.03 0.02 0.03 0.03 0.02 0.02 0.02

P P R
TC 2906 2950 2510 2640 300 1900 2320

IT It D
t 0.03 0.02 0.03 0.03 0.02 0.03 0.02

SM
TC 2906 2950 2350 2140 300 1460 2420
t 0.02 0.02 0.02 0.02 0.02 0.02 0.02

TC 2906 2950 2330 2140 300 14 60 24 60
t 0.03 0.02 0.03 0.02 0.02 0.02 0.02
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SUMMARY OF COST PERFORMANCE OF THE LOT-SIZING MODELS

TABLE 3.5.

Lotsizing
models

average 
obj. func.
value
(TL)

average 
percentage 
cost increase 
over W/W 
algor ithm(%)

average 
total process 
time
(second)

number of 
times a lot 
sizing 
model 
find;: the 
optimum

WW 1164.17 0.000 .052 35
EOQl 1871.37 1.734 .017 7
EOQ2 1318.22 .378 .019 13
POQ 1289.37 .307 .015 lu
LUC 1330.28 .406 .021 ] 5
PPB 1268.00 .255 .026 15
SM 1175.85 .028 .022 27
GMC 1175.82 .029 .022 28
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EOQl/WW EOQ2/WW POQ/WW LUC/WW PPB/WW SM/WW GMC/WW
TABLE 3.6.

Testla 1.000 1.000 1.000 1.000 1.000 1.000 1. ùiJÛ
Test2a 1.222 1.000 1.000 1.000 1.000 1.000 1 . ono
Test3a 1.486 1.398 1.061 1.712 1.000 1.000 l.UOO
Test4a 1. MJ U 1.100 1 . Ü'JÜ 1 . ü 1 6 l.ÜOÜ 1.016 l . I l 1 li
TestSa 1.000 1.000 1.000 1.000 1.000 1.000 1 . ÜÜO
Test6a 2.333 1.000 1.000 1.000 1.041 1.000 1. ÛUO
Test7a 1.575 1.000 1.000 1.000 1.000 1.000 1.000
Testlb 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Test2b 1.639 1.007 1.000 1.000 1.014 1.000 1.000
Test3b 1.764 1.292 1.084 1.327 1.160 1.000 1.000
Test4b 1.854 1.617 1.210 1. 143 1.081 1.047 1.071
TestSb 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Test6b 2.500 1.269 1.061 1.269 1.061 1.000 1.000
TestVb 1.286 1.073 1.000 1.030 1.082 1.000 1. OüO
Testle 1.740 1.000 1.000 1.000 1.268 1.000 1.000
Test2c 1.375 1.041 1.000 1.041 1.208 1.000 1.000
Test3c 1.972 1.200 1.090 1.263 1.136 1.000 1 . OOO
Test4c 1.923 1.461 1.269 1. 134 1.057 1.019 1 . f)76
TestSc 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Test6c 2.500 1.212 1.090 1.212 1.212 1.000 1.000
Test7c 1.457 1.050 1.016 1.305 1.203 1.000 1.000
Testld 1.380 1.008 1.055 1.000 1.000 1.000 1.000
Test2d 1.676 1.000 1.099 1.000 1.061 1.083 1.041
Test3d 1.496 1.137 1.166 1.127 1.155 1.000 1.000
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TABLE 3.6.(cont'd)

Test4d 1.709 1.291 1.437 1 . 1 6 4 1.164 1.012 1 . 0 1 2

TestSd 1.000 1.000 1.000 1.000 1.000 1.000 1 . 0 0 0

Test6d 1.979 1.134 1 . 140 1 .  1 3 4 1.134 1.000 1 .  Q U O

Test7d 1.658 1.168 1.113 1 . 4 0 3 1.000 1.003 1 . 0 0 3

Testle 1.381 1.000 1.000 1 . 0 0 0 1.000 1.000 1 . 0 0 0

Test2e 1.467 1.016 1.000 1 . 0 3 3 1.000 1.000 1 . 0 0 0

Test3e 1.650 1.107 1.227 1 .  1 3 3 1.077 1.008 1 . 0 0 0

Test4e 1.757 1.214 1.327 1.214 1.233 1.000 1 . 0 0 0

TestSe 1.000 1.000 1.000 1 . 0 0 0 1.000 1.000 1 . 0 0 0

Test6e 2.021 1.164 1.342 1 . 7 8 0 1.301 1.000 1 . 0 0 0

Test7e 1.575 1.413 1.043 1 . 2 1 5 1.000 1.043 1 . 0 0 0

Average 1.570 1.127 1.083 1 .  1 3 3 1.078 1.007 1 . 0 0 8

Min 1.222 1.007 1.016 1 . 0 1 6 1.014 1.003 1 . 0 0 3

Max 2.500 1.617 1.437 1 . 7 8 0 1.301 1.047 1 . 0 7 6

Std(o-.) .4138 . 1605 . 1154 . 1 9 2 4 .0915 .0174 . 0 2 0 5

99% Confidence Interval 95% Confidence Inter
EOQl/WW (1.3900, 1.7500) (1.4330, 1.7000)
EOQ2/WW (1.0570, 1.1960) (1.0740, 1.1800;
POQ/WW (1.0320, 1.1330) (1.0447 , 1.1212;
LUC/WW (1.0491 , 1.2168) (1.0693 , 1.1967)
PPB/WW (1.0381 , 1.1178) (1.0476 , 1.1083)
SM/WW (1.0070, 1.0130) (1.0010, 1.0110)
GMC/WW (1.0070, 1.0160) (1.0020, 1.0140)
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TABLE 3.7.

ANALYSIS OF VARIANCE

ONE-WAY ANOVA

GROUP
EOQl
EOQ2
POQ
LUC
PPB
SM
GMC

GRAND MEAN

MEAN
1.571
1.127
1.083
1.033
1.078
1.007
1.008 
1.144

N
35
35
35
35
35
35
35

245

VARIABLE 1:C0ST

SOURCE SUM OF SQUARES D.F, 
BETWEEN 7.975 6
WITHIN 8.719 238
TOTAL 16.694 244

MEAN SQUARE F RATIO PKOB. 
1.329 36.282 .GOOE-00
.037
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The Comparison of Difference Between any Two Group Means
TABLE 3.8.

two neu. t-test D.F. p-values conclusionmethod statistic

POQ 6.701 68 2.35E-09
There are

LUC 5.674 1.56E-07 sign i rie.ml. 
differencesEOQl PPB 6.877 1.18E-09 btw
EOQl and

SM 8.057 8.66E-12 other heu.
GMC 8.034 '' 9.47E-12

POQ 1.312 .05 No diff.
LUC -.130 .44

E0Q2 PPB 1.585 ·· .05 ··
SM 4.431 1.75E-05 Signif. diff.
GMC 4.370 2.17E-05 "

LUC -1.307 1 1 . 09 No diff.
PPB .218 ·· .41 ■·

POQ
SM 3.894 ·· 1.13E-04 Signif. diff.
GMC 3.808 * · 1.51E-04

PPB 1.527 ·· .06 No diff.
LUC SM 3.871 ·· 1.22E-04 Signif. d iff.

GMC 3.823 " 1.44E-04 **

SM 4.535 ■■ 1.20E-05 Signif. diff.
PPB

GMC 4.418 ·· 1.83-E05 ■■

SM GMC -.302 " .38 No diff.
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APPENDIX B
LISTING OF THE COMPUTER
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VARIABLES DESCRIPTION

D®»».................... The array of demands for any period.
d ..................... " " ■■ cumulative demands.
I ....................... " " ■' inventory costs.
apk ................... " " ■' set-up costs.
X ....................... " " " production quantities.
HD .................... " " " total demands ammig

any periods.
V ..................... " " " total production at

each node.
R ..................... " " " cumulative production.
f ..................... " " ’■ total cost
FC..................... " ” " cost at each node

Infl and oufl are text files
inf and ouf are strings and indicates name of files, 

integer variables:
per................ number of periods.
dwrk, ss, lot...... indices for some summations.
t» J» k, p ........ indices for time periods.

real variables:
sec, seel, 2, 3, 4...represents time
ave................. " average of any dimensions
considered.
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PROCEDURES DESCRIPTION

Procedure readchoice

Procedure EOQl.

Procedure EOQ2.

used to write and select 
the options which are 
seven heuristic models 
and WW algorithm.

used to calculate order (or product ion)quanti I Ies 
for EOQl model and (he 
total cost. In tills 
procedure, EOQLOT finds 
the order quantities.

Procedure GRMC

used to find produci:ion 
quantities for E0Q2 model 
and the total cost. In 
this procedure, EO(̂ iLOT 
finds order quantities
used to find production 
(or purchase) quantities 
which is based on I he 
marginal costs and also 
to calculate total cost.

Procedure LUC used to find production 
(or purchase) quantities 
which is based on (lie 
minimization of the unit 
cost and to calculate 
total cost.

Procedure SMH used to find production 
(or purchase) quantiti'is 
in considered periods 
which is based on i lie 
minimization of the tol.al 
cost per unit time and 
also to calculate tol.al 
cost.

Procedure WW used to find production 
(or purchase) quantities 
which is based on WW 
algorithm and also to 
calculate total cost.

Procedure Getdata

Fuction.

used to read 
input file.

datas from

used to find time in 
ocouring each seven li> u . 
procedure and WW algorithm
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LIST OF PROGRAM
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difit;
uses d o s ; 
c o n s t  

b i g = 1 . 0 E 9 i  
t y p e

i^ d ifT if a r r a y  C 0 . . 3 6 S ]  o f jiM-.oge:,; 
r l d i i n = a r r a y  C O . . 3653 ;

Siiial l i n t - 1 . .  9 ; 
v a r

x , d e n i s d , I , x K , a p k j H D , R , Y ;  j . i d i o ;  
f ,F C i r l d .i i T i ;  
i n f  I j O L i f l :  t e x t ;  
i n f  , Q u f  ; 5 t r i n g C 2 r j ] ;  
t , p e r , j , k , d w r k , l o t , p r 5 S i : . h C 0 g e c ;  
a v e , c o s t , s , h , c s t , sec  ̂s e e l , - ec2  ̂s e c 3 , s e c 4 ¡ r e a l ;  

chcace:sri!a; l . i n t ;
proce d u r e  R E A O C n O IC E ( v a r  u ^ O I C h i S i l A L L I N T ) ; 
ya r

T E h P C H O I C E i l N T E G E R ;  
p r oce dur e  PR IN Ti iE NU; 
be gin

WRITE LMi  ̂ AN O P T I O N * *
WRITEi.N(  ̂ ■it'it'fr*v-itii i < trrir-tt-^xt  ̂ ^
W R I T E L N i '  D W s g n e r  W r a t i o
W R IT E LN i
W R 1 T E L N ( '  2) EcDnom ic o r d e r  C ju a n t it y  o n e ( £ 0 0 ‘..i ' ) ;
W R IT E L N ;
W R I T E L f K '  3)EconDiriic o ro i- r  q u a r t i t y  t , w o ( E 0 Q 2 ! ' ) ;
WRITEL.N;
W R I T E L N i '  t ) P e r i o d  o r d e r  q u f l n t . r t y ( P O Q ) ' ) ;
W R IT E L N ;
W R I T E L N i '  S I L e a s t  u n i t  c o r t i L U C ) ' ) ;
W R IT E LN i
W R I T E L N i '  6 ) P a r t  p e r i o d  Ldlan..; .u-,gtPPB.)
W R IT E LN i
W R I T E L N i '  7 ) S i l y e r  and ileal h e u r i B t i c i S M H )  ' ) ;
W R IT E LN i
W R I T E L N i '  8 ) 6 r o f f  a a r g i d n i  cost, a lg o r i t h f l i ( 6 R f i ? i ' . . ‘ ; 
w r i t e l n i
W R I T E L N i '  9 ) E X I T ' ) i  

e n d ; 
be gin  

PRINTMENUi 
r e p e a t

W R I T E i ' S e l e c t  an c p t i o n i l  t h r o u g h  9 ) : ' ) i  
REA D LNiTEM PC H O IC E ) 

u n t i l  TEM PChOICE i n  L I . . 93:
C HOICE:= TE M PC HOIC e

endi

pcnceriiire E O Q L O T ;  
be gin
d w r k : = 0 ;  d C 0 3 := 0 i  de mr03 :=D; I [ C 3 ; = D i K C 0 ] : = 0 ;  
f o r  t ; - l  t o  pe r do 

be gin
dwrk:=dwrk+de(nr.t3;
d C t 3 : = d w r k i
e n d ;
a v e : = d r p e r ] / p e r ;  
l o t ; = r o u n d ( s q r t ( ( 2 » 5 * a v e ) / h ) ) ;
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end;
p raced !j re  E 0 Q 2 ; 
v a r

i i i i n l , i n \ n 2 , 5 b ; i n t e g e r ;
be gin

E O Q L O T ;
p ; = l ;  f o r  t i = l  bo per no begin x . ^ ] ; = C ;  a p k ' . t ] ; - J ;  end;
r e p e a t
k : = p ;

5 5 : = d C p f i c ] - c i r p - n ;  
i f  s 5 < l o t  t he n

hngiTi KCp.l:=55’|k:=per+l; enn
e l s e
B E G IN

i f  (d Pi! i[ p3 >lc t)  or- (deffl'pI'-O) th e n  be gin  x u p l i - d e n C p ] ;  
e l s e  

b e g inapkLk3:=dLkj-dLp-lj; 
w h i l e  ( a p k C k ]I= l c jt . :  an<:i ■ .^pr.t .i do 
b e g in  
k:=k+l;
i f  k<=per th e n  a p k [ k 3 : = d L k j - c ' I p - 1 3 ;  

end i

enc

apk r k - 1 3 :  =d C k ■■'13 "d r p - 1 . 1 ;  
minl!=apkCk]-lot5
, i i i n 2 : = a p k r k - i 3 - İ Q i : ;  i f  ü!in2<0 t h e n  iTiiri2:=-Tii' 'V; 
i f  ıııiiTl<=iiıin2 th e n be gin  s Cp3 ’ = d L k 3 - f i [ p - l 3 ;  p ' . = k + l ‘i ena
e l s e be gin  r ;r .p 3 ;“ u C k - 1 3 - c i C p " i J )

end

END
u n t i l  k > p e r ;

c n s t : = D ;  x x C 0 3 := 0 ;  
f o r  t ; = ' l  t o  per do 

be gin
Kx[t3:=xK[t-13+KEiJi
i f  x [ t 3 > 0  th e n  c o s t s ' c o s t i - s j
s s : = x x C t 3 - d L t 3 ;
c o 5 ' c : = c o s t + ( 5 5 .i * h ;
end;

w r i t e !  n (oLif 1 , '  E0Q2 RESUL I ' ) ;  
w r i t e ) n ( o u i l , ' — ■ i ;

f o r  t : - i  t o  pe r do
w r i t e l n i o u f i , '  c Q s t ”  , c j e t : o : 2 ; ;

end;

p r o c e d u r e  G E T O A T A ; 
b e gin

w r i t e  (' i n p u t  f i  1 ' 1; reac 1 n 11 n.t i ; 
a s s i g n ( i n f  1 ,  i n f ) ;  r e s e c i r . i  I .■; 
w r i t e i ' o u t p u t  f i i e = ' ) ; r e e n l n ( c i : f ) ;  
a ss ig n i ,D u f  1 , D u f ) ; { r e w r i t e ' . c c i  1 · ; I  
read ; . n ( i  n i l ,  p e r ) ;
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f o r  t : = l  t o  per do 
r e a d ( i n i l , d e i r i C t j ) ; 

c e a d l n i i n f 1 ) j 
r e a d l n d n f  l , s , h ) ; 

end;

procedure GRilC; 
v a r  f : r e a l ;  
begin

d w r k : = 0 ;  d r n ] : = 0 ;  de is C n ji^ O ; . K [ n ] : = Q ;  
f o r  t , : - l  t o  per do 

b e g in
dwfk:=dwrk+de(DCt]; 
d C t3 := d w rk ; K C t j : = Q ;  
end;

j : = l ;  t : - l ;  
repe at 

k : = t - j + l ;
f : - l / 2 * h * d B ( n C t + i ] ;
C 5 t : = 5 / ( k * ( k + ' l ) ) ;
i f  C5t<=f then 

begin 
riwrki=0;
f o r  p : = j  t o  t  do dwrk:=dwrk}deiri[p.]; 
x C j ] ! = d w r k ;  
j : = t + l ;  

end; 
t ; = t + i ;

u n t i l  (t= p e r) ;

i f  (f\ C & T ) or (p\per.'' thei'i 
begin 
dw rk:= 0;
f o r  p : = j  t o  per do dyrk:-dwrr.i-ieiTirp];
x C j T : = d u r k ;
end;

c o s t : = 0 ;  XHr.Q]:=C; 
f o r  t : - l  t o  per do 

beginKK[t]:=Kxrt-l]+xyt3;
i f  KCt3>0 then coat!=coot-i-5;
5 5 := x x ( ! t 3 - d [ t 3 ;
C 0 5 t := C Q 5 t+ (5 5 ) *h ;
end;

w r i t e l n i o i i f  1 , ' G R M C  F.ESIj L T '  ) ;
w r i t e l n ( o u f l / -------------------
f o r  t : = l  t o  per do u r . i t e ( o u i i , x 1 t ] ; 5 ) ;  
w r i t e l n i o u f  1 , '  c o e t - '  i C 0 5 t:S :; :; . i ;  

end;

p r o c e d u r e  PPB; 
v a r  d i f t , d i f t l : r e a i ;  
z : i n t e g e r ;
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begin
dwrk:=0; dr03:=0; defnCO] 
fu r t ; = l  to per do 

begin
dwrk;=dwrk+fieiriCtj;
G Lt]:=dw rkj KCt3i” 0;
end;
z:=0;
repeat
2 j=7+'l;
u n t i l  deirir.23>n;

¡=n;

ji-2j ti-2j cet;--\i.!ii’S/h;
repeat 
t;=t+l;
i f  (demCT,]=0) and ( t = p s r - i )  r,nsn -iBgin

t : = t + l ; i f  t - p s r  t n s n  j : = j + l ;  k : = t - j - K ;  
i i : k ] ! = f C k - l ] + ( ( k - l ) i d i ? ( n [ t ] ) ‘
I f  i r k ] > C S T  t h w  

begin 
d w r k := 0 j
f o r  p ; = t  downto j  do d w f K : = : ,w r h - ! - d e i n [ p ] i K p - j ) ; 
d i f t : = d w r k - ( s / h . i ;

dw rk:= 0;
f o r  p : = t - 1  downto j  do d w £ v ;; = d w fk + r ie in r p ]*(p -j . i ;  
d i f t l ! = ( s / h ) - d w r k ;

i f  d i f t f d i f t l  then 
begin 
dwrk:=0j
fo r  p != j  to t  do dwrki=dwrk+deinCp]; 
xCj] :=dw rki j : = t + i ;  
end 

else 
begin 
riwrk:=0;
fo r  p ; = j  to t - 1  do dwrk;“ i‘ wrkvdt:,n[p]; 
xCj] ;=dwrkj j i = t ;  
end; 

end
else x[j3:=deiri[j.l;

{ end}
u n t il  (t=per) or ( j= p e r) ;

i f  (f[k3<=CST) or (p<per) then 
begin 
dwrk:=0;
fo r  p : = j  to per do dwrk:=d«rk+de(nrp3;
xCj3:=dwrk;
end;

r o s t != 0 ;  xxI103:=n; 
fo r  t ! - l  to per do 

begin
x x C t 3 ; = x x r t - l 3 + x [ t . l ;
i f  x C t D O  then cost;=coF,t+s;
5 5 : = x x C t ] - d C t 3 ; 73



co st : =0051+(5?/.J * h ;
and;

w r i t e l n (oui 1 ,  ' PPB Rr.SüL i ' ) ;
w n t e l n ( o u i l , ' ------------------- ’’ ч
i n r  t?=1 t o  per do w r i : e ( D i . i i l , : i L L , ] i : j ' ; 
w r . i t e l n ( o u f l /  co5t=^ , c : o 5 t : 6 : 2 ) ;  

end ;

procedure SHH; 
begin

dwrk*.=D; d [ 0 ] ; = 0 ;  deiriCGJi=0; κ Γ Ί .ϋ - . .· ; 
f o r  t : = ‘l t o  per do 

begin
dwrk Ϊ =dwrk+deiTiCtl ; 
d i t 3 := d w r k ;  x C t ] i = 0 ;  
end;

j ; = l ;  t î = l ;  f C 1 3 ;= 5 / h ;  
repeat 

k : = t - j + l ;
if k=i then fr.l]!=b/h
e lse  f [ k 3 : = i r k - l ] + ( ( k ' ' 1 )+ d a fîi[t]) ;
c5tî=k*k̂ d̂eiiiCt+l3;

' if cst>iCk3 then 
begin 
dwrk;=0;
f o r  p : = j  t o  t  do гідгк:=п..гк+г1а!ііГр.1; 
K [ j ] ; = d w r k ;  
j ; = t + l ;  t : = t + l ;

end
e lse  t ; = t + l

i i n t i l  ( j = p e r)  or f t = p 5 r ) ;

i f  (fC k3>=cst) or (p(pe r) then
begin
dwrk;=0;for p:=j to per do dwrk:=dwrk+d0mr.p3;
KCj3;=dwrk;
end;

cQst;=C; χκΓ.03;=ϋ; 
for t¡=l to per do 
begin
x x [ t 3 : = x x r t “ l ] + x C t ] ;  
i f  xCt3>0 then co sti=costv^.;  
5 5 ;= x x C t3 “ dC t3 ; 
c o s t ï = c o s t + ( s s J * h ;
end ;

w rite ln C o u f 1 ,  ‘ SilH RbiiLi ! ' ;
w r i t e l n ( o u f  1 / ------------------- ' · ί
f o r  t ; = l  t o  per do w:it¿-'-.üLÍ 1 ^/.-13:5.» ;
wr i  t e  1 n ( ou{1 /  ■- ‘  " “· - ’ ^ · ·" ' '

end;

74



p r o c e d u r e  www; 
v a r  X X ¡ r e a l ;

l , z : i n t e g e r ;
B E G IN

d w r k ; = 0 ;  d C 0 3 := 0 ; HDCCG :=0;
f o r  t : = l  t o  per do
be gin

dwrk :=riwrX+ de,' i)[tj ;  
d r t l : = d w r i ; ;  r f . t 3 : = ^ ;
H D C T ]:= H D r .T -l ]-- c [t 3 ;

e n d ;
f o r  J : = 0  t o  per do
RC.n!=0;

t : = p e r + l ;
r e p e a t

t ! = t , - l |
u n t i l  riemCt3)0;

F C C 0 3 : = 0 ;  
l o r  K : - l  t o  t  do 

b e gin
I F  DEMCK3=0 THEN B EG IN  F C [ K 3 ; = F C [ K - n ;  Y l K ] ; = K - I ;  
E L S E  B E G IN
F C [ K 3 ; = b i g ;  l i f  deir,Ck3>0 t h e n  i : = l  e l s e  ! ; < : ; }  
f o r  J : = 0  t o  K - 1  do 

be ginXX:=FCCJ3<-B{*l)}Th<t(drrLJi:3ri"I)i-ri*(HDrK'-::-:L:iV
i f  XXCFCCK3 then 

B E G IN  F C [ K 3 : = X X ;  Y [ K 3 : ^ J ;  E N D ; 
e n d ;

END
e n d ;

c o 5 t : = F C C t 3 ;

{ K : = p e r ;
YTC]i=-l;

r e p e a t
R [ Y L X 3 + l ] : = d [ K 3 - d [ / [ K 3 . : |  
K : = Y [ K 3 ;  

u n t i l  K = - i ; }

k : = t ;
r e p e a t

l : = y C k 3 ; .
r C l + 1 3 : = d [ k 3 - d C 1 3 ;
f o r  j : = l + 2  t o  k do r C j 3 : - - Q ;
k : = l ;

u n t i l  1 = 0 ;
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writelnCoLif  ] /Wl^C RESULT' )

w r i t e l n ( o i i i l , ' -------------------- T t

f o r  t ; = l  t o  per do w r i t e ( o i i i  ] 5 R [ t ] ; S ) ; 
w r i t e  1 n (cjuf 1 , '  CG?;t=' 5 c a r - t ; o i 2 ) ;

EiMD;

p r o c e d u r e  E O Q l ;  
be gin  

E O Q L O T ;
c o 5 t : = 0 ;  K x [ 0 3 ; = n ;  
f o r  t ; = l  t o  per do 

b e gin
i f  ( I C t - l ] > = d e f n L t ] j  th e n  K L t ] ; = G  
e l s e  

be gin
d w r k : = d e f f i C t 3 - l L t “ i J ‘ ; 
i f  d w r k > l o t  th e n  K[t :!;=dw:^k 
e l s e  x C t ] i = l D t ;  
c n s t ; = c o 5 t ^ B ;  

e n d ;
I[L]:=irt-l]txCt]-deiii[t]; cobt :=co5t+(ĥ.I[tj); 

e n d ; { t }
writelnCoLif  1 , ' E O Q l  R E S U i.T ' ; ;
writelnCoLif  1 , ' ------------------- ' ;
f o r  t ; = l  t o  per do w r i t e L o n j  1 5 X L t ] i i S ) ; 
w r i t e l n ( o u f  1 /  CG5t-^ , c j i : ; t ; 6 : 2 j ; 

e n d ;

p r o c e d u r e  POQ; 
vflr  F O I j k t j ? ¡ i n t e g e r ;  
be gin  

e o q l o t ;
d w r k : = n ;  d [ 0 ] : = Q ;  H D r u j ; - D ;  

f o r  t ; = l  t o  per do 
be gindwrk:=dwrk+de/T.Lt];

d C t 3 := riw rk ; x [ t ] : = U ;
e nd;

z : = 0 ;  r e p e a t  z : = z + l ;  u n t i l  de.TiLz.l/'j; 
F 0 I ; = r o u n d ( p e r / ( d C p e r 3 / L 0 T ) ) ;  
t ; = z ;  
r e p e a t

i f  deiRLt3=0 th e n
k t ; = E 0 I + t ~ l ;
i f  p e r < k t  th e n  k t : = p c r ;
x ( : t 3 ! = d C k t 3 - d [ t - 1 3 i
t : = k t M

u n t i l  k t > = p e r ;

c o 5 t ; = 0 |  x x C 0 3 ;= Q ;  
f o r  t : = l  t o  per do 

b e gin
x x C t 3 : = x x r t - 1 3 + x C t 3 ;
i f  xC t3>0 t h e n  c o B t : = c o 5 t r i ;
= i 5 ; = x x [ t 3 - d C t 3 ;
C 0 5 t ; = C 0 5 t + ( 5 S ) * h ;
e n d ;
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w r i t . e l n ( o u f l , ' P O ( }  R ES U i- T ' .) ;  
w r i t f i l n C o u f  1 , ' --------------------- ' ) ;
f o r  t : - l  t o  pe r do w r it i-(D i .· !]  , > ; [ t ] : 3 ) ;  
w r i t e 1 n ( o n f 1 , '  c o t i = ' , c o e t : 6 : 2 ) ;

end I

p r o c e d u r e  L U C ;
v a r  c o p t l , n : i n t e g e r ;
b e g in

dwrlii:=Q; d L u ] : = 0 ;  d e ( r i [ n ] ; < ; ;  . 'r . 0 . 1 : - Q ; > ;C 0 ] := D ;  
f o r  t : = l  t o  p e r  do 

b e g in
d w r k ;= d w r k + d e m t t ] ;
d C t 3 : = d w r k ;
e n d ;

f o r  t : - l  t o  t  do K i t - l i - ' O ;  
p : - l ;  f C n i : = 0 ;

k : = 0 ;

r e p e a t
n : = l ;  f C n ! = 5 / h ;

I F  [ e i C P ] = 0  THEN P : = P + ]
E L S E  B E G IN

i f  p=per th e n  xLpe r] := de !r .C pe r3  
e l s e  

be gin
i f  deiTiCp.DfC'l] th e n b e gin  /:rp.l:=demrp3; p := p -> i;

i f  p + n - l = p e r  t h e n  beg.Vi·, d w r k ; - 0 ;  f o r  k : - ; j  t c  per do d w r k ;=  ...:k· ¡-demCkj; 
>:f p j ; =dwrk; end ; 

end
e l s e

be gin
r e p e a t
n : = n + l ;
C 05 t:= fl ; f o r  k : = p  t o  p < r r l  do C Dst:= CQ5t+ demr: ,';  
c o 5 t ; = c o s t * n ;
f [ n 3 : =f Cn-13+( n - l ) ideiriC p-rn-13; 
u n t i l  (co5t;fCn3) or ( p + n - i = p e r ) ;■
i f  p + n - l = p e r  t h e n  begin .: 'wrk:=0; f o r  k: =p t o  per do dwrk;=cw:inde(n[k3; 

kC p]:=dwrk ; e n d ;
i f  c o s t > f C n 3  t h e n  b e gin  d w r k ; = 0 ;  f o r  k : = p  t o  p T r ,- l  do d w r k ; - ' c , . n - “ deiii[k3; 

x [ p ] : = d u r k ;  p := p + r ,;  e n d ;

end
end

E N D ;
i f  P + N - l = p e r  t h e n  Degin > ! [ p ] ? = d [ p e r 3 - d C p - l 3 ;  k : - l ;  end; 

i f  p - p e r  t h e n  xrp3:=rie(iirperri;
N ; = l ;

u n t i l  ( p > = p e r )  o r  ( k - l ) { ( p + n - i = p e r ) } ;

c o s t : = 0 ;  x x C n 3 := 0 ;  
f o r  t ! = l  t o  pe r do 

be gin
x x C t 3 : = x x C t - 1 3 + x L t 3 ;
i f  xC t3>n t h e n  c o s t : = c o s t t e ;
s s : = x x C t 3 - d C t 3 ;



C 0 B t ;= C 0 £ t + ( 5 5 ) ^ r ij
end;

w n t e l n ( o L i f l , ' L u C  R E S U l . T ' ) ;
w r i t e l n ( o u f  1 , ' --------------------- ' ) ;
f o r  t : = l  t o  pe r do w r i t e ( r . u f i , A [ t ] : 5 ) ;  
w r i t e l n ( o u f  1,' CQ = t= '  , ' : . Q 5 t ; . v , 2 ) ; 

end;
f u n c t i o n  S E C O N D S :R E A L ;  
t y p e

R e g L i s t  = r ec or d  
case i n t e g e r  o i

0 : ( A X ,  B X ,  C X , D X , B P , S I ,  D.1, DS, E S ,  F L A G S i  w o r d ) ;  
•1 5 ( A L ,  A H ,  Bi . ,  Bh-, C L ,  CH,  D L ,  DHi b y t e )  

e n d ; 
v a r

Reg ; R e g i s t e r s ;
H r ,  M i n ,  S e c ,  H u n s b y t e ;  

beg.in
R e g , A X : =  $2CCD;
H s d o s ( R e g ) ;
H r : =  h i ( R e g . C X ) ;  Min ·= l o ( F : e g . C X ) ;
3 e c : =  h i C R e g . D X ) ;  H u n ;=  l a i ' R e g .D X .i ;
SEC OND S: = 360D. 0 frH.rt6C. n* Mirjt Bec+0. 0 1  ^Hun 

e n d ; {SECONDS}

Degin
.for k ; = l  t o  25 do w r i t e l n ;
G E T D A T A ; f o r  k := ; .  t o  IS  dc· w r i t e l n ;  

r e p e a t
r e a d c h o i c e ( c h o i c e ) ; 

case c h o jc e  o f 
1 Î be gin  r e w r i t e ( o u f l ) ;

s e c : = s e c o n d s ;

secl;=5econd5“ sec; . :r i r e l i r ! o L i i l , ' t i i i ! e = ·  ; 7 1 , s ? c : i i 3 : 2 , '  ssc  ̂ ·;
cIo soioLi: 1.5: end;

2 : begin r e w r i t e i o u f 1 ) ;  

sec;=5ecGrii1s;
E O Q l ;

s e e l : =5ernnds-5ec; y r  ·.te ln (o Lif  1 , '  tiii;e=' ; 7 1 ,  s 'c · . ; 3 ; 2 , '  se·:·"
Close(o..:i :  i

3 : begin re w n t e C o u f 1 ) ;  

sec;=sRConds;
E0Q2;

seel;=seconris-sec;  v..t , : t e l n ( oiif 1 , ' t im e ^' ; 7 i , s.sc-.l; 3 5 2 , '  sec'' ‘ ;
c l o s e (n ;, i  i? /1;

A¡b eg in  r e w r i t e l o u f 1 ) ;

sec;=secQnd5;
PCQ;

s e c l := ( 5 P c o n d s -3 e c ) ; w r i te .l n (o u i 1 , '  tiflie=' j 7 1 , seel ; 3 ; 2 ,  ·“ snv
clo se end:

5 : begin r e w r i t e ( o u f 1 ) ;
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L U C ;
5e?c:=5econd‘=i;
5 e d := 5 e c o n d S " B f? c ; w' r i . w? ) n ( o u f l / t i i r i e = ' ; 7 1 , . : 7 : 2 /  r..··,:'

clc ^0(c-al ■ : d]':'!)
6 ;  b e gin  r e w r i t e C o i i f  1 ) ;

s e c ;= s e c o n d 5 ;
PP B;

5e cl: = se cD M d 5 “ Be c;  w r i t H l n i n u f  l , 4 i m e = '  3 : 2 , '  вес'  ̂ ^
clnB0(C'ijf enn;

7 ; b e g in  r e w r i t e ( o u f 1 ) ;

Ж  ; = second ?v|
SMH;

s e c l s = 5 e c o n d 5 -5 e c ; w r : t t e l n ( ouf 1 , ' tiiiiP= ·' ? 7 1 , в 0 c i ? 3 ; 2 , '  вес'
d o R e C o L if  I )  Eiy j ;

f i : b e g i n  r e w r i t e i o u f 1 ) ;{*****îm**if if if irif}
s e c := B e c o n d 5 ;

GRMC;
в е с 1 := 5 е с п п Ь £ -в е с ;  w r i . t e l n f D a f l , 4 i f f . e = d 7 1 j . ; : - ; . !  ; 3 : 2 , '  s e c ’ 

c I o 5 e ( c u f  1.) end;

9 :  w r i t e l n ( ' * # i f i ^  S E E  VOU LA T E R  
end
u n t i l  c h o i c e = 9 ;

{c]o5eCot.if 1 ) ; }  
e n d .
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