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THE BIGGER PICTURE While risk-gene-discovery algorithms have complemented exome/genome-
sequencing studies of neurodevelopmental disorders, they are not capable of co-analyzingmultiple comor-
bid conditions like autism and intellectual disability. A common approach is analyzing disorders one by one
and comparing the outcomes. With this approach, the method does not utilize cross-disorder interactions
and is bound by limited evidence per disorder. We address this gap with a technique, Deep Neurodevelop-
mental Disorders (DeepND), that usesmultitask learning to co-analyze data frommultiple disorders to learn
shared and disorder-specific patterns. DeepND includes graph convolutional neural networks that process
gene-interaction information frommultiple networks. DeepND also learns which networks are important for
disorder etiologies. Based on this, we propose an interpretable risk-gene-discovery algorithm for neuropsy-
chiatric disorders.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Autism spectrum disorder and intellectual disability are comorbid neurodevelopmental disorders with
complex genetic architectures. Despite large-scale sequencing studies, only a fraction of the risk genes
was identified for both. We present a network-based gene risk prioritization algorithm, DeepND, that
performs cross-disorder analysis to improve prediction by exploiting the comorbidity of autism spectrum
disorder (ASD) and intellectual disability (ID) via multitask learning. Our model leverages information from hu-
man brain gene co-expression networks using graph convolutional networks, learning which spatiotemporal
neurodevelopmental windows are important for disorder etiologies and improving the state-of-the-art pre-
diction in single- and cross-disorder settings. DeepND identifies the prefrontal and motor-somatosensory
cortex (PFC-MFC) brain region and periods from early- to mid-fetal and from early childhood to young
adulthood as the highest neurodevelopmental risk windows for ASD and ID. We investigate ASD- and ID-
associated copy-number variation (CNV) regions and report our findings for several susceptibility gene
candidates. DeepND can be generalized to analyze any combinations of comorbid disorders.
INTRODUCTION

Autism spectrum Disorder (ASD) is a common neurodevelop-

mental disorder with a complex genetic architecture in which

around a thousand risk genes have a role.1 Large consortia ef-

forts have been paving the way for understanding the genetic,

functional, and cellular aspects of this complex disorder via

large-scale exome-2–8 and genome-9–14 sequencing studies.

The latest and also most comprehensive study to date
This is an open access article under the CC BY-N
analyzed �36,000 samples (6,430 trios) to pinpoint 102 risk

genes (false discovery rate [FDR] % 0.1).15 Overwhelming evi-

dence suggests that genetic architectures of neuropsychiatric

disorders overlap.16–18 For instance, out of the twenty five

SFARI category I ASD risk genes (i.e., highest risk), only five

are solely associated with ASD. Genes like chromodomain heli-

case DNA-binding protein 8 (CHD2), SCN2A, and ARID1B are

associated with six neurodevelopmental disorders. Intellectual

disability (ID) is one of such comorbid disorders that manifests
Patterns 3, 100524, July 8, 2022 ª 2022 The Author(s). 1
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itself with impaired mental capabilities. Reminiscent of ASD, ID

also has a complex genetic background with hundreds of risk

genes involved and is identified by rare de novo disruptive muta-

tions observed in whole-exome- and genome-sequencing

studies.19–25 ASD and ID are frequently observed together.26 In

2018, the CDC reported that 31% of children with ASD were

also diagnosed with ID and 25% were borderline.27 They also

share a large number of risk genes.28 Despite these similarities,

Robinson et al. also point to differences in genetic architectures

and report that intelligence quotient (IQ) positively correlates with

family history of psychiatric disease and negatively correlates

with de novo disruptive mutations.29 Yet, the shared functional

circuitry behind is mostly unknown.

The current lack of understanding on how comorbid neuropsy-

chiatric disorders relate mostly stems from the incomplete

profiling of individual genetic architectures. Statistical methods

have been used to assess gene risk using excess genetic burden

from case-control and family studies,1 which have recently been

extended toworkwithmultiple traits.30 Yet, these tools workwith

genes with observed disruptive mutations (mainly de novo). It is

often of interest to use these as prior risks and obtain a posterior

gene-interaction-network-adjusted risk that can also assess risk

for genes with no prior signal. Network-based computational

gene risk-prediction methods come in handy for (1) imputing

the insufficient statistical signal and providing a genome-wide

risk ranking and (2) finding out the affected cellular circuitries

such as pathways and networks of genes.1,31–39 While these

methods have helped unravel the underlying mechanisms, they

have several limitations. First, by design, they are limited to

work with a single disorder. In order to compare and contrast co-

morbid disorders such as ASD and ID using these tools, one

approach is to bag the mutational burden observed for each dis-

order, assuming two are the same. However, disorder-specific

features are lost as a consequence.31 The more common

approach is to perform independent analyses per disorder and

intersect the results. Unfortunately, this approach ignores

valuable source of information coming from the shared genetic

architecture and loses prediction power as per-disorder ana-

lyses have less input (i.e., samples, mutation counts) and less

statistical power.15,33,40 Second, current network-based gene-

discovery methods can work with one or two integrated gene-

interaction networks.33,35,38,41,42 This means that numerous

functional interaction networks (e.g., co-expression, protein

interaction, etc.) are disregarded, which limits and biases the

predictions. Gene co-expression networks that model brain

development are a promising source of diverse information

regarding gene risk but currently cannot be fully utilized, as the

signal coming from different networks cannot be deconvoluted.

Usually, investigating such risky neurodevelopmental windows

is an independent downstream analysis.42,43 Should this pro-

cess be integrated within the risk-assessment framework, it

has the potential to provide valuable biological insights and

also to improve the performance of the genome-wide risk

assessment task.

Here, we address these challenges with a cross-disorder

gene-discovery algorithm (Deep Neurodevelopmental Disorders

[DeepND]). For the first time, DeepND analyzes comorbid

neurodevelopmental disorders simultaneously over multiple

gene co-expression networks and explicitly learns the shared
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and disorder-specific features using multitask learning. Thus,

the predictions for the disorders depend on each other’s genetic

architecture.

The proposed DeepND architecture uses graph convolution to

extract associations between genes from gene co-expression

networks. This information is processed by a mixture-of-experts

model that can self learn critical neurodevelopmental time

windows and brain regions for each disorder etiology, which

makes the model interpretable. We provide a genome-wide

risk ranking for each disorder and show that the prediction power

is improved in both single- (single disorder) and multitask set-

tings. DeepND identifies the prefrontal cortex brain region and

from early- to late-mid-fetal and from mid-childhood to young

adulthood periods as the highest neurodevelopmental risk

windows for both disorders.

Finally, we investigate frequent ASD and ID associated copy-

number-variation regions and pinpoint risk genes that are

disregarded by other algorithms. The software has been

released at http://github.com/ciceklab/deepnd. This neural

network architecture can easily be generalized to other disorders

with a shared genetic component and can be used to prioritize

focused functional studies and possible drug targets.

RESULTS

Using a deep-learning framework that combines graph convolu-

tional neural networks with a mixture-of-experts model, we

perform a genome-wide risk assessment for ASD and ID simul-

taneously in a multitask learning setting and detect neurodeve-

lopmental windows that are informative for risk assessment for

each disorder. Our results point to the shared disrupted function-

alities and novel risk genes that provide a road map to re-

searchers who would like to understand the ties between these

two comorbid disorders.

Genome-wide risk prediction for ASD and ID
To have a model of evolving gene interactions throughout brain

development, we extracted 52 gene co-expression networks

from the BrainSpan dataset44,45 using hierarchical clustering of

brain regions and a sliding-window approach.43 These networks

are used to assess the network-adjusted posterior risk for each

gene for which disease agnostic the prior risk features such as

the probability of loss-of-function intolerance (pLI) is given.

Note that one can use disease-specific features such as muta-

tion burden in case-control or family studies. However, current

knowledge on ground-truth risk genes mostly rely on these

data, and using these as features would cause a leak in the

training procedure.

The deep neural network architecture (DeepND) performs a

semi-supervised learning task, which means a set of positively

and negatively labeled genes are required as ground truth per

disorder. As also done in Krishnan et al.,42 we obtained 594

ASD-positive genes (Table S1) from the SFARI dataset (http://

gene.sfari.org),46 which are categorized into three evidence

levels based on the strength of evidence in the literature. For

ID, we curated a ground-truth ID risk-gene set of 580 genes us-

ing landmark review studies on ID gene risk21,47–51 (Table S2).

We generated three evidence level sets similar to the ASD coun-

terpart: E1, E2, and E3 sets where each set includes genes that

http://github.com/ciceklab/deepnd
http://gene.sfari.org
http://gene.sfari.org


Figure 1. System model

System model of the proposed deep-learning architecture for genome-wide cross-disorder risk assessment (DeepND). The algorithm takes the following infor-

mation as inputs: (1) gene-specific features such as pLI, (2) disorder-specific ground-truth genes that are labeled as positive with varying levels of evidence based

on a literature search, and (3) non-psychiatric genes that are labeled as negative. The unique gene identifiers are passed through fully connected multitask layers

that learn shared weights for both disorders and produces a new feature representation affected by both losses. This new representation is then input to the

starting point of the single-task layers. Graph convolutional neural networks (GCNs) each process one of fifty-two gene co-expression networks that represent

different brain regions and neurodevelopmental time windows. The outputs of GCNs are then weighted by the gating network using gene pLIs to learn which

networks are informative for the gene risk assessment (shade of the network indicates importance). Thus, DeepND learns which neurodevelopmental windows

confer more risk for each disorder’s etiology using the gating network (mixture of experts). The final output is a genome-wide risk-probability ranking per disorder,

which are then used for various downstream analyses to understand the underlying functional mechanisms and to compare/contrast both disorders. The single-

task layers are exclusively trained with the ground-truth genes of the disorder they belong. Thus, they learn only disorder-specific parameters and disorder-spe-

cific networks that implicate risk.

ll
OPEN ACCESSArticle
are recurrently indicated in multiple studies. As for the negatively

labeled genes, we used 1,074 non-mental-health-related genes

for both disorders, which were curated by Krishnan et al., after

discarding 181 of them that are shown to be related to other neu-

rodevelopmental disorders, such as epilepsy, schizophrenia, or

bipolar disorder (Table S1).

DeepND uses the multitask-learning paradigm where multiple

tasks are solved concurrently (i.e., genome wide risk assessment

for ASD and ID). Thus, the network learns a shared set of weights

for both disorders and also disorder-specific set of weights (Fig-

ure 1). First, the model inputs pLI for each gene and, using fully

connected layers, produces an embedded feature set per gene.

The set of weights learned in these layers are affected by the

ground-truth labels for both disorders and, thus, are shared.

Then, the architecture branches out to two single-task layers,

with one per disorder (Figure 1, blue for ASD and yellow for ID).

For each single-task branch, these embeddings are input to 52
graph convolutional neural networks (GCNs). Each GCN pro-

cesses a co-expression network that represents a neurodevelop-

mental window and extracts network-adjusted gene risk signa-

tures (i.e., embeddings)15,37 (experimental procedures). Finally,

these embeddings are fed into a fully connected gating network

along with the prior risk features. The gating network assigns a

weight to each GCN that is proportional to the informativeness

of the embedding coming from each neurodevelopmental win-

dow. Thus, the model also learns which windows are important

for prediction of ASD/ID risk genes. This also means that they

are important in the etiology of the disorder. In the end, each dis-

order-specific subnetwork produces a genome-wide ranking of

genes being associated with that disorder along with risk proba-

bilities. To quantify the contribution of the co-analyzing comorbid

disorders (i.e., multitask) as opposed to individual analysis (i.e.,

single task), we also present our results of DeepND when it is

run on a single-task mode (DeepND-ST). In this mode, the fully
Patterns 3, 100524, July 8, 2022 3
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Figure 2. Evaluation of DeepND genome-wide risk assessment for ASD and ID

(A and B) The AUC distributions of Krishnan et al., DeepND, and DeepND-ST for ASD and ID genome-wide risk assessments. Every point corresponds to the

performance on a test fold in the repeated cross validation setting (B). The AUPR curve distributions are for the same methods as in (A). Center line: median;

box limits: upper and lower quartiles; whiskers: 1.53 interquartile range; points: outliers.

(C) Matthews correlation coefficient (MCC) between the rankings of each method and the ground-truth genes are shown for varying rank-percentage-threshold

values (x axis). This ranking threshold p sets the top p% of a ranking as positive predictions. Methods compared are DeepND, DeepND - ST, evidence-weighted

SVM of Krishnan et al., DAWN (only compared for ASD due to low intersection ratio with ground-truth gene set of ID), DAMAGES score of Zhang and Shen,

and random-forest-based method of Duda et al. Results for ASD and ID shown when (1) E1 genes are used as the true risk genes and (2) E1 + E2 genes are

considered as the true risk genes.

(D) PR curves to compare the same set of methods in (C).
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connected layers that generate embeddings are removed, and the

feature (i.e., pLI) is directly fed into the GCNs (experimental pro-

cedures). We show that the genome-wide risk assessment of

DeepND is robust, precise, and sensitive and substantially im-

proves the state of the art both in terms of performance and inter-

pretability of the predictions.

We benchmark the performances of DeepND and other gene-

discovery algorithms for neurodevelopmental disorders. Note

that these tools are mainly designed for ASD. However, to the

best of our knowledge, there are no such algorithms designed

for ID or for other neurodevelopmental disorders. Thus, we

compare them against DeepND in terms of both ASD and ID.

However, one can primarily focus on their ASD performance.

First, we compare DeepND and the state-of-the-art algorithm

by Krishnan et al. using their experimental settings. Evaluating

performances of the algorithms using E1 genes through 5-fold
4 Patterns 3, 100524, July 8, 2022
cross shows that DeepND achieves a median area under

receiver operating curve (AUC) of 94% and a median area under

the precision recall (AUPR) of 83% for ASD, which correspond to

4% and 47% improvements over the evidence-weighted sup-

port vector machine (SVM) algorithm of Krishnan et al., respec-

tively (Figures 2A and 2B). Similarly for ID, DeepND achieves a

median AUC of 87% and a median AUPR of 57%, which corre-

spond to improvements of 15% and 41%, respectively. We

observe that even the single-task mode DeepND-ST performs

better than Krishnan et al.’s algorithm in all settings other than

ID’s AUPR. As expected, the multitask setting of DeepND per-

forms better than DeepND-ST and leads to an improved AUC

(up to 13%) and AUPR (up to 20%) for both disorders.

We also compare the ranking performance DeepND with

the following methods from the literature using a rank-percent-

age-threshold-based method: Krishnan et al.,42 DAWN,41
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DAMAGES score,52 and the random forest-based method of

Duda et al.39 That is, we obtain the final ranking of each method

and mark p% of the top genes predicted as risk genes. We

calculate the Matthews correlation coefficient of these marked

lists with the ground truth. We vary p by 1% and obtain the plots

in Figure 2C. Results show that for varying threshold levels, the

DeepND curve always dominates all others, indicating that it

achieves the highest correlation with the ground truth both

when we use E1 and E1 + E2 genes as positive ground truth.

Comparing the precision-recall performance of the same set of

methods shows that the PR curve of DeepND dominates all

others in all settings and for both disorders (Figure 2D).

Finally, we compare DeepND with an ensemble learner, fore-

cASD.38 This method uses the outputs of other methods

including the ones we compared above and learns to predict

ASD/ID risk genes in a semi-supervised setting. However, labels

used by forecASD are also used by the voter methods whose

outputs are used as features, which suggests information

leakage during the training process and that the performance

might be overly optimistic. Comparing DeepND and forecASD

shows that despite this advantage of forecASD, DeepND per-

forms slightly worse or on par with respect to rank-percent-

age-threshold curve and PR curve comparisons in ASD (see

Figure S1). DeepND performs better than forecASD in all settings

for ID. We also considered adding DeepND as an additional

voter into the ensemble of forecASD to check if it benefits the

final performance. For both disorders and in all settings, fore-

cASD that uses DeepND as a voter outperforms both DeepND

and original forecASD. This shows the informativeness of

DeepND predictions.

Critical neurodevelopmental windows for ASD and
ID risk
We observe that the top percentile genes in the DeepND ASD

and ID rankings have a high overlap with a Jaccard index of

65%. The top 3 deciles also have relatively high overlapwith Jac-

card indices 0.66, 0:71; and 0.69, respectively (Figure S2).

To further investigate the shared genetic component, we focus

on the spatiotemporal neurodevelopmental windows that are

deemed important by DeepND for an accurate ranking of risk

genes for both disorders. The neural network analyzes co-

expression networks that represent 13 neurodevelopmental

time windows (from embryonic period to late adulthood;

Figures 3A and 4) and brain-region clusters (prefrontal and mo-

tor-somatosensory cortex [PFC-MSC]; mediodorsal nucleus of

the thalamus and cerebellar cortex [MDCBC]; primary visual

and superior temporal cortex [V1C-STC]; striatum, hippocam-

pus, amygdala [SHA]) generated using Brainspan RNA-Seq

dataset45 in accordance with Willsey et al.43 (experimental

procedures; Figure 3B).

We investigate which neurodevelopmental windows more

confidently distinguish disorder risk genes. Figure 3C shows

normalized average probabilities assigned to top-percentile

risk genes (experimental procedures). We observe that the

networks of the PFC-MSC brain region, spanning several

time windows from early- to mid-fetal periods and from early

childhood to young adulthood periods consistently are better

predictors for ASD and ID risk. The periods 3–5 and 4–6 were

also previously indicated as two of the highest risk regions
and were subject to network analyses for ASD gene discov-

ery.41,43 DeepND also captures strong signals from these win-

dows, in addition to period 11–13, for both ASD and ID. We

see that V1C-STC brain regions are second to PFC-MSC

and MDCBC regions, providing the most subtle signal. We

assess the empirical of significance of these findings via a

permutation test. That is, we run DeepND in the exact same

settings but shuffle the labels of the risk genes, keeping the

same number of positively and negatively labeled genes. For

each of the squares in Figure 3C, we obtain a distribution of

average probabilities (background distribution) and check if

the actual informativeness of that window is higher than the

average background value. See these distributions in

Figures S4 and S5 for ASD and ID, respectively. We observe

that informativeness of PFC-MSC windows are the most

significant compared with other brain regions and that MD-

CBC results are consistently insignificant. Overall, we observe

that not only earlier time windows but also later time windows

are important for both etiologies. Figure S3 shows the heat-

maps of DeepND-ST for ASD and ID.

The weakest source of information is theMDCBC 2-4 network.

We observe roughly 12,500 links between top-percentile ASD

and ID genes. The network contains close to 37.5 m links. On

the other hand, PFC-MSC 4–6 contains close to 785,000 edges.

Yet, there exists close to 13,000 links between top-percentile

ASD and ID genes, which is the reason behind DeepND focusing

on this window as its top predictor. Visualization of the top 30

genes for each disorder in the PFC-MSC 4–6 network with

only very high co-expression links (r2 > 0:80) is provided in

Figure 4A.

Enrichment analysis of the predicted risk genes
In addition to the prediction performance benchmark above, we

also evaluate the enrichment of our ASD and ID gene risk rank-

ings in gene lists, which are shown to be related to these disor-

ders. That is, while these gene sets are not ground-truth sets,

they have been implicated as being associated with the etiology

of either disorder. Thus, enrichment of members of these sets in

the higher deciles of the genome-wide risk ranking of DeepND is

an indication of the wellness of the ranking and also provides a

means of comparing and contrasting the disrupted circuitries

affected by ASD and ID. These lists are (1) targets of transcription

regulators like CHD8,54 FMRP,2,55,56 RBFOX,2,57,58 and TOP1,59

(2) susceptibility pathways like WNT signaling60 and MAPK

signaling,61 and (3) affected biological processes and molecular

functions like post-synaptic density complex62,63 and histone

modification.2,64

The first decile of ASD risk genes has the highest enrichment in

all categories. All enrichments are significant with respect to

Binomial test (Figure 5; experimental procedures). We observe

the same trend for ID that the top decile of the genome-wide

risk ranking is the most enriched in most categories but

the p values are more subtle. CHD8 is the highest ASD risk

gene known to date with the highest mutation burden in large

ASD cohorts2,15 and with downstream functional analysis.54

Accordingly, DeepND ranks CHD8 as the 37th top risk gene

whereas Krishnan et al. ranks it 1,943th genome wide. While it

has a solid association to ASD etiology, its ties to ID are not

well established. Bernier et al. reports that 9 out of 15 ASD
Patterns 3, 100524, July 8, 2022 5



Figure 3. Spatiotemporal brain regions and heatmaps for the probabilities assigned to each spatiotemporal window by DeepND

The BrainSpan dataset, which models the spatiotemporal gene expression of human neurodevelopment,45 is used to obtain gene co-expression networks. This

dataset contains samples from 12 brain regions and spans 15 time points from early fetal period to late adulthood.

(A) We generate 13 neurodevelopmental time windows using a sliding window of length 3, which provides sufficient data in each window as was also done by

Willsey et al.43

(B) We obtain 4 brain-region clusters based on transcriptional similarity during fetal development that also reflect topographical closeness and functional

segregation. The brain regions considered are as follows. HIP, hippocampal anlage (for (1)–(2)), hippocampus (for (3)–(15)); OFC, orbital prefrontal cortex; DFC,

dorsal prefrontal cortex; VFC, ventral prefrontal cortex; MFC, medial prefrontal cortex; M1C, primary motor cortex; S1C, primary somatosensory cortex; IPC,

posterior inferior parietal cortex; A1C, primary auditory cortex; STC, superior temporal cortex; ITC, inferior temporal cortex; V1C, primary visual cortex; AMY,

amygdala; STR, striatum; MD, mediodorsal nucleus of the thalamus; CBC, cerebellar cortex.

(C) Heatmaps show which spatiotemporal windows lead to assignment of higher risk probabilities to top-percentile genes for ASD (left) and ID (right). The

numbers in boxes are softmaxed outputs of each respective GCN, averaged for top-percentile genes and then normalized. The weights assigned to each co-

expression network by the MoE lets each GCN learn to make a better prediction.
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probands with mutations in CHD8 also have ID. In accordance,

DeepND places CHD8 as the 53rd highest risk gene for ID.

We also perform an untargeted enrichment analysis of the

top-percentile predictions using the Enrichr system.65,66 Unsur-

prisingly, we find that for both disorders, nervous system devel-

opment is the top enriched Biological Process GO term (Fisher

exact test, p = 1.48 3 10-12 for ASD and p – 3.95 3 10-14 for

ID), which indicates that it is a shared function that is disrupted

in the etiology of both disorders (Table S3). As for the GO Mo-

lecular Function enrichment, two disorders overall have similar

terms, but their top terms are different. The top function

affected for ASD is histone-lysine N-methyltransferase activity,

indicating a disruption in the transcription-factor activity,

whereas for ID, the top affected function is voltage-gated

cation channel activity, which indicates a disruption in synaptic

activity.

As transcription-factor activity is highly affected in both dis-

orders, we further investigate if there are any master transcrip-
6 Patterns 3, 100524, July 8, 2022
tion regulators upstream that regulate the high-risk genes

for ASD and ID in the ChEA database.67 We find that

SMARCD1 is the top transcription factor, with 82 of its targets

coinciding with the top-percentile DeepND-predicted ASD risk

genes (Fisher’s exact test, p = 1.14 3 10-20) and 99 of its tar-

gets coinciding with the top-percentile DeepND-predicted ID

risk genes (Fisher’s exact test, p = 7.18 3 10-18). Sixty-two

targets are shared among ASD and ID. Note that 204 genes

overlap in top-percentile ASD and ID risk genes. This means

that 30% of the shared set of genes among two disorders

are targeted by SMARCD1 (Table S3). When the union set of

the top-percentile genes for ASD and ID are considered (312

genes), we find that the top transcription factor targeting

these is again SMARCD1 (82 out of 2,071 targets; Fisher’s

exact test, p = 1.24 3 10-21). These results indicate that

SMARCD1 might be playing a role in the convergent etiologies

of these comorbid disorders as a shared upstream chromatin

modeler.
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Figure 4. Network analyses of the risk genes

(A) The co-expression relationships between top 30 ASD and ID risk genes in PFC-MSC 4–6 region. This is found as the informative co-expression network for

DeepND and is also indicated in the literature as an important window for ASD.43 Only links for at least 0.95 absolute correlation and genes with at least one

connection are shown.

(B) The protein-protein interactions between the top-percentile risk genes are shown. The protein-protein interactions (PPIs) are obtained from the tissue-specific

PPI network of frontal cortex in the DifferentialNet database.53 Only interactions between the top-percentile risk genes are shown.
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Other interactions between ASD and ID genes
We further investigate the protein-protein interactions (PPIs)

between the top-percentile risk genes in tissue-specific PPI

networks for frontal cortex obtained from the DifferentialNet data-

base53 using the NetworkAnalyst system.68 This analysis reveals

several hub proteins such as HECW2, EP300, and CREBBP1,

as shown in Figure 4B. In this list, the HECW2 gene stands out

as it has the highest degree in this network and has very low prior

risk for bothASD (TADAp=0.95) and ID (extTADAQ=0.97). Yet, it

is in the top percentile for ID risk. Note that DeepND did not use

any PPI network information in its reasoning and yet was able to

identify this hub protein, which has been linked with ASD3 and

ID69 via de novo disruptive mutations in simplex families.

Evaluation of novel predictions and identification of
candidates within ASD- and ID-associated CNV regions
Recurrent copy-number variations in several regions of the

genome are associated with ASD and ID etiology. However,

these are large regions, and it is not clear which genes in particular

are driver genes.We investigate the DeepND risk ranking of genes

within (1) six regions that frequently harbor ASD-related copy-

number variations (CNVs) (16p11.2, 15q11-13, 15q13.3, 1q21.1,

and 22q11)42 and (2) six regions that were reported to harbor

mental-retardation-related CNVs (16p11.2, 1q21.1, 22q11.21,

22q11.22, 16p13, and 17p11.2).70 Note that these CNVs in these

regions might confer risk for both disorders (Table S4).

DeepND highly ranks several candidate genes for ASD and ID

that (1) are within these CNV regions, (2) have low prior risk (e.g.,

E2 or lower, low TADA p value, etc.), and (3) low posterior risk as-

signed by other algorithms (Table S4). We discuss some of

them below.

NIPA2 is an ASD E3-E4 gene that encodes a magnesium

transporter and is located on 15q11-13. It does not participate

in any of the relevant gene sets (e.g., risk pathways), and it has

a low TADA (p = 0.768). Although it is ranked in the 5th decile

for ASD, it is listed in the top decile by DeepND for ID. Its linkage

to Prader-Willi syndrome by Goytain et al.71 also suggests that

NIPA2 might is an important candidate for ID.
DeepND links MICAL3, which is in the 22q11.21–22 CNV re-

gion, to ASD and ID. It is a gene related to actin and Rab GTPase

binding, ranked as the 191st for ASD risk and 147th for ID risk

despite having ASD-TADA Q = 0:77 and not being in relevant

risk-gene groups. Krishnan et al. rank it 11,665th, and

DAMAGES score ranks it 1,916th. DAWN provides no ranking

as it is not co-expressed with other networks of interest for

DAWN. While disruption in the Rab GTPase cycle was shown

to cause ID,72 there are no established ties between MICAL3

and ASD/ID. Moreover, MICAL family genes are related to cyto-

skeletal organization, which recently has been deemed an

important molecular function in ASD etiology.15,34

It is also an important task to pinpoint genes that might seem

related to a neurodevelopmental disorder but actually are not.

This also corresponds to untangling the genetic architectures

of comorbid disorders. One example that DeepND pinpoints is

ZBTB20. Although ZBTB20 is not located within investigated

CNV regions, it is regarded as an important risk gene for ASD.

It is a CHD8 target and is listed as an E1 gene for ASD with

TADA Q = 0:17. DAWN and Krishnan et al. rank it as �500th

ASD risk gene. However, DeepND consistently ranks it in the

last decile with 0.252 probability of being an ASD risk gene.

DeepND predicts that there is somewhat a higher chance for

ZBTB20 to be a candidate risk gene for ID, though it is still in

the 5th decile. This gene acts as a transcriptional repressor;

it plays a role in various processes such as postnatal growth.

Its shown relation to Primrose syndrome, which is specifically

characterized by ID rather than other symptoms of ASD,73,74

also suggests that ZBTB20 has a closer relation to ID. Yet,

more mutational evidence is required for a more concrete

assessment.

Finally, DeepND ranks LMTK2 as the 2nd and 7th highest risk

gene for ASD and ID, respectively, while other algorithms do

not even list it in the top 1,000 (Table S1). It has very low TADA

Q values for both disorders. However, it is a target of CHD8

and FMRP and is also a post-synaptic gene. It is a gene that

plays a role in nerve growth factor (NGF)-TrkA signaling and in

spermatogenesis. With this background in the literature, we think
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Figure 5. The enrichment of our ASD and ID gene risk rankings in various disease-related gene lists

The enrichment of our ASD and ID gene risk rankings in various disease-related gene lists (i.e., each panel) are shown: (1) ASD- and/or ID-related transcription

regulators, (2) ASD- and/or ID-related pathways, and (3) ASD- and/or ID-related biological functions or protein complexes. While these do not fully contain

ground-truth genes, they have been indicated in the literature as being enrichedwith risk genes for either disorder. Percentage of genes in the corresponding gene

set (x axis) that occurred within each decile of the genome-wide risk ranking per ASD (blue) and ID (yellow) are shown. The gene sets used are as follows: (1)

targets of RBFOX (splice); (2) targets of RBFOX (splice target); (3) targets of FMRP (all peak); (4) targets of CHD8; (5) targets of TOP1; (6) WNT pathway; (7) MAPK

signaling pathway; (8) GTPase regulator activity; (9) post-synaptic density complex genes; (10) synaptic genes; and (11) histone-modifier genes.
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this could be a novel new candidate for both disorders identified

by DeepND.

Generalization of DeepND’s performance for other dis-
eases and disorders
We investigated whether DeepND generalizes to conditions

other than ASD and ID. We investigate whether gene prediction

performance increases in the multitask setting. That is, for the

disease/disorder pairs mentioned below, we compared the

genome-wide gene risk assessment performance of DeepND

(1) in the single-task setting (DeepND-ST—separately for each

disease/disorder type) and (2) in the multitask setting (DeepND).

First, we co-analyzed ID and attention-deficit/hyperactivity

disorder (ADHD). As stated by Faraone et al., in contrast to the

rich literature on familial co-transmission of ADHD and several

other disorders, such is lacking for ID and ADHD.75 Only a few
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studies suggest comorbidity: an increased risk of ADHD for

people with ID, and lower IQs in people with ADHD.76–78 We

use the exact same setup we used to co-analyze ASD and ID

for this analysis, as described in the experimental procedures.

The sole difference is the positive ground-truth risk genes of

ADHD, which is compiled from the following review.75 We find

32 3 101 genes (see Table S6). We observe that in the multitask

setting, the median AUC and AUPR values increase by 15% and

0.2% for ADHD, respectively. While the median AUPR for ID in-

creases substantially by 17%, the median AUC slightly de-

creases by 5%. Thus, we see improvement in three out of four

metrics (see Table S7). The consistent improvements in ADHD

results are important, as the number of known risk genes for

ADHD is relatively small. DeepND bringing the median AUC

value from close to random 0.49 up to 0.64 is a leap forward in

gene risk assessment of ADHD.
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Second, we investigated whether DeepND can be useful

outside the domain of neurodevelopmental disorders. We co-

analyzed breast and ovarian cancers. In addition to the risk

created by the environmental factors, both breast and ovarian

cancers are known to be hereditary with a large number of com-

mon risk genes/factors.79 The positive ground-truth gene sets

for each cancer are curated from the following sources.80–82

We ended up with 142 and 58 positive risk genes (E1) for breast

and ovarian cancers, respectively. We selected 300 random

genes to generate a common negative risk gene set. The lists

of these genes are given in Table S5. We used the following

PPI networks: Human Protein Reference Database (HPRD),83

BioGRID,84 and DifferentialNet.53 All other settings (e.g., early

stop condition, features, learning rates) are same as in the

ASD-ID analysis (see learning and the cross-validation setting

of DeepND). We observed that the results of DeepND improved

the median DeepND-ST performance by �20% in terms of AUC

and �12% in terms of AUPR for both cancer types, as shown in

Table S6’s AUC and AUPR distributions. See Table S5 for gene-

wise risk scores. These results show that DeepND can work with

diseases/disorders other than neurodevelopmental disorders. It

was able to capture the information from the overlapping genetic

risk architecture and improve the gene risk prediction for both

cancers.

DISCUSSION

Neurodevelopmental disorders have been challenging geneti-

cists and neuroscientists for decades with complex genetic ar-

chitectures harboring hundreds of risk genes. Tracing inherited

rare and de novo variation burdens has been the main driver of

risk-gene discovery. However, overlapping genetic compo-

nents and confounding clinical phenotypes make it hard to

pinpoint disorder-specific susceptible genes and to understand

differences. For instance, Satterstrom et al. pinpoint 102 ASD

risk genes with FDR <10% with the largest ASD cohort to

date covering nearly 6,500 trios.15 Yet, they still need to manu-

ally segregate these risk genes into two groups: (1) 53 ASD pre-

dominant risk genes that are distributed across a spectrum of

ASD phenotypes and (2) 49 neurodevelopmental delay risk

genes causing impaired cognitive, social, and motor skills.

Thus, comorbidity is a further obstacle to be reckoned with in

addition to identifying individual susceptible genes. Neverthe-

less, the shared risk genes and biological pathways offer

opportunities for computational risk-assessment methods that

were not explored before. So far, only disorder-specific ana-

lyses were possible by design of the network-based gene-dis-

covery algorithms. These are limited in power due to distinct

datasets that lead to limited cohort sizes. Here, we proposed

a novel approach that can co-analyze comorbid neurodevelop-

mental disorders for gene risk assessment. The method is able

to leverage the shared information using a multitask learning

paradigm for the first time for this task. DeepND learns both

a shared and a disorder-specific set of weights to calculate

the genome-wide risk for each disorder. DeepND is a multitask

deep learner that uses state-of-the-art techniques such as

graph convolution and mixture of experts to learn non-linear

relationships of genes on 52 brain co-expression networks.

The model is also interpretable, as it is able to learn which
neurodevelopmental windows (i.e., networks) provide more in-

formation for distinguishing high-risk genes and thus are impor-

tant for understanding disease etiology. Our benchmarks show

these techniques enable DeepND to outperform existing gene-

discovery methods.

We focus on ASD and ID in this study and identify similarities

such as shared affected pathways and neurodevelopmental win-

dows and differences such as regulatory relationships and novel

risk genes. We think the findings in this paper will help guiding

neuroscientists researching ASD and ID in prioritizing down-

stream functional studies. DeepND is not an algorithm specific

to these disorders, though. It can easily be extended to consider

other comorbid disorders such as schizophrenia and epilepsy by

adding similar single-task layers for each disorder. It can also be

used for other comorbid disorders that are not related to

neurodevelopment at all.

We demonstrated the advantage of being able to employ

multiple co-expression networks and pointed to cases where,

for instance, DAWN was not able to capture relationships be-

tween genes as they are limited with a single co-expression

network. For the clarity of discussion and interpretability, we

focused on only networks produced from the BrainSpan dataset.

However, DeepND can also employ any combination of other

types of gene-interaction networks such as protein-interaction

networks, as also explained in generalization of DeepND’s

performance for other diseases and disorders.

While theBrainSpandataset and co-expression network-based

analyses have been frequently used to understand the relation-

ships between genes in the context of ASD,33–36,38,41,43,43,85–87

the dataset has several limitations: it contains post-mortem tissue

samples from distinct individuals of different ages. The time inter-

valsweuse to generate the co-expression networks are not equal,

and there is an inherent sample variability. Moreover, these sam-

ples belong to neurotypical individuals and do not convey the

biology (i.e., gene relationships) of an individualwith autism. These

factors potentially limit the prediction power of DeepND. Yet, as of

today,BrainSpan is one of themost useful resourceswithwhich to

base our analyses. One alternative to BrainSpan is the BrainVar

dataset. This dataset also contains healthy samples from various

timepoints in the neurodevelopment. Yet, it contains only samples

from the dorsolateral prefrontal cortex region. We foresee that

with the ongoing interest in single-cell RNA sequencing (RNA-

seq) studies, we are going to have access to better models of

gene interactions during neurodevelopmentwith autismand other

comorbid disorders in the near future.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, A. Ercument Cicek (cicek@cs.bilkent.edu.tr).

Materials availability

This study did not generate any new unique materials.

Data and code availability

All datasets, which are referenced in the relevant experimental procedures

subsections, used in this study are publicly available. The processed data

that were used to obtain results presented in this paper are also publicly avail-

able at Zenodo: https://doi.org/10.5281/zenodo.3892979. All data supporting

the key findings such as gene risk evidence levels and gene risk predictions are

available within the article and corresponding supplemental tables.
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DeepND has been implemented and released at http://github.com/ciceklab/

deepnd (Zenodo: https://doi.org/10.5281/zenodo.6501496). We provide the

environment, which contains all dependencies for an easy setup.Wegive a small

example to train and test both DeepND-ST/DeepNDmodels. Finally, we provide

the code and links to the full set of datasets to reproduce the results (genome-

wide risk rankings and data for heatmaps) presented in this manuscript for

ASD and ID.

Ground-truth risk-gene sets

Our genome-wide gene risk-prediction algorithm is based on a semi-super-

vised learning framework inwhich some of the samples (i.e., genes) are labeled

(as ASD/ID risk gene or not) and are used to learn a ranking for the unlabeled

samples.

We obtain the labels for ASD from SFARI dataset.46 These genes are

classified into three evidence levels indicating the quality of the evidence

(E1–E3, E1 indicating the highest risk). The list contains 185 E1 genes (from

SFARI category I), 200 E2 genes (from SFARI category II), and 470 E3 genes

(from SFARI category III) as positively labeled ASD risk genes. We also obtain

893 non-mental-health-related genes from OMIM and Krishnan et al. as nega-

tively labeled genes. The list and corresponding evidence levels are listed in

Table S1. In the loss calculations during training of the model, genes in these

categories are assigned the following weights: E1 (1.0), E2 (0.50), E3/E4 (0.25)

and negative (1.0) genes. The performance is evaluated only on E1 genes for

the sake of compatibility with other methods.

For ID, we rely on review studies from the literature that provide in-depth

analyses and lists of ID risk genes. We considered the known-gene lists from

2 landmark review studies as our base ground-truth ID risk-gene list.21,47 We

divide this set into 3 parts (i.e., E1, E2, and E3) with respect to evidence ob-

tained from 4 other studies.48–51 The genes that are indicated by 5 or more

studies are assigned to the highest-risk class, E1, and the genes that are

indicated by 4 studies are assigned to the second-highest-risk class, E2.

The remaining genes are assigned to the third risk-gene class, E3. See

Table S2 for a detailed breakdown of evidence for each gene. We use the

same set of negative genes as ASD, which are non-mental-health-related

genes. Consequently, we have 123 3 101, 224 3 102, and 232 3 103 genes

and 893 negative genes for ID. See Table S1 for a complete list of ground-

truth genes for both disorders. The weights we use per gene class are as fol-

lows: E1 (1.0), E2 (0.50), E3 (0.25), and negative (1.0) genes. For the sake of

consistency, we also report the performance of the model on E1 genes

for ID.

Gene risk features

The only gene risk feature we use is the gene pLI, for both disorders. See

Table S1 for the pLI of each gene obtained from Satterstrom et al.15 Note

that neurodevelopmental risk genes are known to be conserved15 and that

pLI has been used to quantify autism risk in the literature.52 Yet, the ground-

truth labels described in ground-truth risk-gene sets are assigned indepen-

dently and have no ties to this information.

Gene co-expression networks

We used the BrainSpan dataset of the Allen Brain Atlas44,45 in order to

model gene interactions through neurodevelopment and generated a

spatiotemporal system of gene co-expression networks. This dataset con-

tains 57 post-mortem brains (16 regions) that span 15 consecutive neuro-

developmental periods from 8 post-conception weeks to 40 years. To

partition the dataset into developmental periods and clusters of brain re-

gions, we follow the practice in Willsey et al.43 and refer the reader to

this paper for details. Note that this is the same grouping also employed

by Norman and Cicek34 and Liu et al.41,85 Brain regions were hierarchically

clustered according to their transcriptional similarity, and four clusters

were obtained (Figure 3B): (1) V1C-STC, (2) PFC-MSC, (3) SHA, and (4)

MDCBC. In the temporal dimension, 13 neurodevelopmental windows

(Figure 3A) were obtained using a sliding-window approach (i.e., [1–3],

[3–5], /, [13–15]). A spatiotemporal window of neurodevelopment and its

corresponding co-expression network are denoted by the abbreviation

for its brain-region cluster followed by the time window of interest, e.g.

‘‘PFC-MSC(1–3)’’ represents interactions among genes in the region

PFC-MSC during the time interval [1–3].
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Using the above-mentioned partitioning, we obtained 52 spatiotemporal

gene co-expression networks, each of which contain 25,825 nodes represent-

ing genes. An undirected unweighted edge between two nodes is created if

their absolute Pearson correlation coefficient jrj is greater than or equal to

0.8 in the related partition of BrainSpan data.

The reason for picking 0.8 as our threshold is as follows: we observed that,

overall, a lower threshold results in an AUC and AUPR performance increase,

and we found out that 0.7 and 0.8 had very close median performances and

that 0.8 was the smallest threshold that let us fit all 52 gene co-expression net-

works into the eight graphics processing units (GPUs) we used (total memory

of 114 GB).

Instead of using binary co-expression networks, we also tested using

weighted co-expression networks where we use the co-expression values

as the edgeweights.We found that binary edges provide slightly bettermedian

performance and opted to use binary co-expression networks.
DeepND model

Problem formulation

Each 52 co-expression network j described in gene co-expression networks is

represented as a graph Gj = ðV ; EjÞ, where the vertex set V = ðv1;/; vnÞ
contains genes in the human genome and Ej ˛ f0; 1gn3n denotes the binary ad-

jacency matrix. Note that n = 25,825. Let XD ˛Rn3d be the feature matrix for

disorder D where each row XD½i� is a list of d features associated with gene

(and node) i;ci˛ ½1;n�. In our application, XD½i� is a one-hot-encoded vector,

uniquely representing the gene i. We also use pLI as a feature that represents

how constrained the gene i is (i.e., pLI½i�) an pLI˛Rn31. Let yASD be an l dimen-

sional vector, where yASD [i] = 1 if the the node i is a risk gene for ASD, and yASD
[i] = 0 if the gene is non-mental-health related,ci˛ ½1;l�, l < n. Note that, in this

semi-supervised learning task, only the first l genes out of n have labels. yID is

defined similarly for ID, using its ground-truth risk and non-risk gene sets. The

goal of the algorithm is to learn a function / p˛Rn32. p½i�½ASD� denotes
pðyASD½i� = 1Þ, and p½i�½ID� denotes pðyID½i� = 1Þ;ci˛ ½1;n�.
GCN model

CNNs have revolutionized the computer-vision field by significantly improving

the state of the art by extracting local patterns on grid-structured data.88

Applying the same principle on arbitrarily structured graph data has also

been a success.89–91 While all these spectral approaches have proven useful,

they are computationally expensive. Kipf and Welling have proposed an

approach (GCN) to approximate the filters as a Chebyshev expansion of the

graph Laplacian92 and let them operate on the 1-hop neighborhood of each

node.93 This fast and scalable approach extracts a network-adjusted feature

vector for each node (i.e., embedding) that incorporates high-dimensional in-

formation about each node’s neighborhood in the network. The convolution

operation of DeepND is based on this method. Given a gene co-expression

network Gj, GCN inputs the normalized adjacency matrix bEj with self loops

(i.e., bEj ½i; i� = 1;ci˛ ½1;n�) and the feature vector XD½i�˛Rn3d , for gene i and

for disorder D. d = 1 in this application and is shared among ASD and ID.

Then, the first layer embedding H1½i� ˛Rd1 produced by GCN is computed us-

ing the following propagation rule: H1½i� = ReLUð bD� 0:5 bE bD� 0:5
XD½i�W0Þ, where

W0 is the weight matrix at the input layer to be learned, ReLU is the rectified

linear unit function, and bD is the normalized version of a diagonal matrix where

bDii =
P
j

bEij . We pick d1 = 4 in this application. Each subsequent layer k is

defined similarly as follows: Hk ½i� = ReLUð bD� 0:5 bE bD� 0:5
Hk� 1½i�Wk� 1Þ. Thus,

the output of a k-layered GCN, for gene i on co-expression network j, is de-

noted as follows: GCNðGj ;XD½i�Þ = Hk ½i�˛Rdk . In this application, we use two

GCN layers and d2 = 1. The final layer is softmax to produce probabilities

for the positive class. That is, the output of a GCN model j, for a gene i, is

GCNðGj ;XD½i�Þ = softmaxðH2½i�Þ = vji ˛R.

Mixture-of-experts model

Mixture-of-experts (MoE)model is an ensemblemachine-learning approach that

aims to find out informative models (experts) among a collection.94 Specifically,

MoE inputs the features and assigns weights to the outputs of the experts. In

DeepND architecture, individual experts are the 52 GCNs that operate on 52

gene co-expression networks, as explained above (G1;/;G52). For every gene

i, MoE also inputs pLI½i�. It produces a weight w! of length 52, which is passed

http://github.com/ciceklab/deepnd
http://github.com/ciceklab/deepnd
https://doi.org/10.5281/zenodo.6501496
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through a softmax layer (i.e.,
P52

h = 1 wi
�! ½h� = 1Þ. The outputs of the GCNs are

weighted by this network, and the weighted sum is used to produce a risk prob-

ability for everygene iusingsoftmax.That is,MoEðpLI½i�Þ = w!i ˛ R52. TheGCNs

produce52vji values (oneperco-expressionnetwork),whichareconcatenated to

produce v!i ˛R52. Finally, the following dot product is used to produce the risk

probability of gene i for disorder D: w!i, v
!

i = p½i�½D�.
Multitask learning model

The above-mentioned GCN and MoE cascade inputs XD½i�, pLI½i�, and the co-

expression networksG1; ::;G52 along with labels for a single disorder to predict

the risk probability for every gene. Thus, it corresponds to the single-task

version of DeepND (i.e., DeepND-ST.) On the other hand, DeepND is designed

to work concurrently with multiple disorders (i.e., ASD and ID.) DeepND em-

ploys one DeepND-ST cascade per disorder and puts a multilayer perceptron

(MLP) as a precursor to two DeepND-ST subnetworks. The weights learned on

these subnetworks are only affected by the back-propagated loss of the cor-

responding disorder, and hence, these are single-task parts of the architec-

ture. On the contrary, the weights learned on the MLP part are affected by

the loss back propagated from both subnetworks. Thus, this part corresponds

to the multitask component of the DeepND architecture. The MLP layer inputs

XD½i�;ci˛ ½1;n� and passes it through a fully connected layer followed by Leaky

ReLU activation (negative slope = -1.5) to learn a weight matrix WMLP and

output a d0 dimensional embedding to be input DeepND-ST instead of XD½i�.
That is, MLPðXDÞ = LRELUðWu

MLP ,ðXDÞ + b
!

MLPÞ.
Learning and the cross-validation setting of DeepND

To evaluate both DeepND-ST and DeepND approaches, we use a 5-fold

cross-validation scheme. All labeled genes are uniformly and randomly distrib-

uted to the folds. At each training iteration, we leave one fold for validation and

one fold for testing. We train the model on the remaining three folds of the

labeled genes. For all the genes in the left-out fold, their feature vectors are

nullified, and their labels are masked and not included in the training loss

calculation when input to training in order to prevent information leakage.

Themodel is trained up to 1,000 epochs with early stop, which is determined

with respect to the loss calculated on the validation fold using only E1 genes as

the positives and all negative genes. Once the model converges, the test per-

formance is reported on the test fold in the same manner as in the validation

fold. The model uses cross-entropy loss (evidence weighted) and ADAM opti-

mizer95 for updating the weights, which are initialized using Xavier initializa-

tion.96 DeepND-ST uses a fixed learning rate of 1 3 10-4 for both disorders.

DeepND uses the learning rates of 7 3 10-4, 1 3 10-4, and 1 3 10-3 for the

shared layer, ASD single-task layer, and ID single-task layer, respectively.

To ensure proper convergence of DeepND, should one of the single-task sub-

networks converge, the learning rate of that subnetwork and the shared layer

are cut down twenty folds. This lets the yet-underfit subnetwork keep learning

until early stop or the epoch limit.

The above-mentioned procedure produces four results as for every left-out

test fold as all remaining 4 folds are used as validation. We repeat this process

10 times with random initialization to obtain a total of 200 results for perfor-

mance comparison (Figure 2). For ASD, positively labeled genes’ weights

equal 1.00 (E1), 0.50 (E2), 0.25 (E3), and 0.25 (E4). For ID, positively labeled

genes’ weights equal 1.00 (E1) and 0.50 (E2). For both disorders, negatively

labeled genes have a weight of 1.00. Note that this procedure is in line with

the setting of Krishnan et al. for fairness of comparison.

Genome-wide risk prediction for ASD and ID and comparison with

other methods

Wecompare the performance of DeepND-ST and DeepNDwith other state-of-

the-art network-based neurodevelopmental disorder gene risk-assessment

methods from the literature that output a genome-wide risk ranking: Krishnan

et al.,42 DAWN,85 DAMAGES score,52 random-forest-based method of Duda

et al.,39 and forecASD.38

We run Krishnan et al.’s approach as described in their manuscript.42 This is

an evidence-weighted SVM classifier that identifies risk genes based on

similarity of network features. They use a human brain-specific functional inter-

action network to generate features as input.97 Note that the ground-truth gene

set is the same as ours as well as the evidence weights for ASD. We perform a

5-fold cross-validation. That is, for each iteration, we train their SVMmodel on

80% of the labeled genes and evaluate the model on E1 genes and all negative

genes in the left-out 20% of the labeled genes as suggested. We repeat this
procedure 10 times. We post-process SVM outputs to produce risk probabil-

ities using isotonic regression, which ensures that the gene ranking is pre-

served. We use the pLI value of each gene as the dependent variable. In a

10-fold cross-validation setting, we detect knots on the left-out fold and fit

another isotonic-regression line to interpolate the knots. We use SVM output

for all genes to produce gene risk-probability values for the corresponding

disorder and produce the genome-wide risk ranking. We compare this method

and DeepND-ST/DeepND with respect to (1) the AUC and AUPR distributions

calculated on the left-out fold at each cross-validation iteration (Figures 2A and

2B) and (2) theMatthews correlation coefficient of the final predictions with the

ground-truth (using a rank percentage threshold; Figures 2C and 2Ciii) PR

curves (Figure 2D).

DAWN isahiddenMarkov-random-field-basedapproach that assignsapos-

terior, network-adjusted disorder risk score to every gene based on the guilt-

by-association principle. It inputs transmission and de novo association

analysis (TADA) p values as prior features along with a partial co-expression

network to assess connectivity. We input the TADA p values to DAWN.15,37

The method also uses partial co-expression networks. We use two networks

that the authors suggest as the most useful for this task in their manuscript.85

These represent prefrontal cortex/mid-fetal period (i.e., PFC-MSC 3–5 and

PFC-MSC 4–6). We generate these networks using the RNA-seq data in the

BrainSpan dataset. Note that DeepNDutilizes the samedataset and uses these

networks and 50 others. Instead of partial co-expression networks, DeepND

uses co-expression networks. The DAMAGES score is a principal-compo-

nent-analysis-based technique that assess the risk of genes based on (1) the

similarity of their expression profiles in 24 specific mouse CNS cell types, (2)

the enrichment of mutations in cases as opposed to controls, and (3) the pLI

score of the gene.Wedirectly obtained the risk ranking fromShenandZhang.52

We also benchmark the random-forest-based method presented by Duda

et al.39 The method inputs a combination of (1) gene-expression data from

several microarray studies, (2) PPIs from multiple databases, (3) a quantitative

physical interaction (PI) score for all protein isoform pairs in mouse, and (4)

phenotype annotations from the Mouse Genome Informatics (MGI) database.

They combine these modalities by a Bayesian network, and the final probabil-

ities of functional interactions between gene pairs are represented with a ma-

trix. Since this method does not support evidence weights for the ground-truth

set, in the experimental setting,weusedour ground-truth gene set forASDafter

discarding the evidence information to obtain results. We compare all above

mentioned methods with respect to (1) the Matthews correlation coefficient

of the final predictions with the ground-truth (using a rank percentage

threshold; Figures 2C and 2Cii) PR curves (Figure 2D).

Apart from the previously mentioned methods, we also consider forecASD,

which is a random-forest-based ensemble method. It inputs features derived

from (1) BrainSpan transcriptome, (2) the STRING PPI network, and (3) the out-

puts of several previously published ASD gene prediction methods: Krishnan

et al.,42 DAWN,85 DAMAGES score,52 and TADA.98 These features are com-

bined in a two-layer architecture. In the first layer, each derived feature set is

used to train a random-forest branch. Then, in the second step, the results

from the first layer are combined and are used to train the final ensemble clas-

sifier. We trained the original forecASD architecture with our ground-truth sets

for ASD and ID and obtained their results. Then, in a separate run, we also

added the final ranking of DeepND as an extra feature and retrained themodel.

We compared these two results with our final ranking using (1) the Matthews

correlation coefficient of the final predictions with the ground-truth (using a

rank percentage threshold) and (2) PR curves (Figure S1).

Enrichment analyses

We evaluate the enrichment of DeepND’s ASD and ID gene risk rankings in

gene lists, which are known to be enriched in disorder risk genes in the litera-

ture. These lists are (1) targets of transcription regulators like CHD8,54

FMRP,55,99 RBFOX1,57,58 and TOP1,59 (2) susceptibility pathways like WNT

signaling60 and MAPK signaling,61 and (3) affected biological processes and

molecular functions like post-synaptic density complex62,63 and histone modi-

fication.2,64 We use the binomial test to determine whether the top decile in the

corresponding ranking significantly deviates from uniform enrichment

(Figure 5).

We perform a Gene Ontology term enrichment analysis of the top-percentile

predictions using the Enrichr system65,66 with respect to Biological Process
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and Molecular Function terms. As both analyses point to transcription-factor

regulation, we investigate the connectivity of the high-risk genes in the ChEA

database,67 which is a large repository that lists experimentally validated tran-

scriptional regulation relationships in various organisms.
Spatiotemporal network analyses

We investigate which GCNs (i.e., neurodevelopmental windows) are better

predictors of gene risk for each disorder. For each gene i, the average risk

probability assigned by the corresponding GCN is calculated over all iterations

such that i is in the test fold. The average values for top-percentile genes for

each disorder are shown in Figure 3.

To check whether obtained average risk probabilities per neurodevelop-

mental window that are assigned by that GCN are empirically significant, we

performed a permutation test. First, we randomly redistribute the labels of

the ground-truth genes while keeping the counts same. We obtain 100 ran-

domized ground-truth sets. Keeping all other settings same, we train 100

DeepND models and obtain 100 ASD and 100 ID risk rankings. Using these

rankings, we calculate the average risk probability assigned by each GCN

and obtain two background distributions for each GCN: one for ASD and

one for ID (Figures S4 and S5). We then compare the original average proba-

bility assigned by that GCN with the corresponding background distribution to

assess significance.
Experimental setup

All DeepND models are trained and tested on a Super-Micro Super-Server

4029GP-TRT with 2 Intel Xeon Gold 6140 Processors (2.3 GHz, 24.75 M

cache), 251 GB RAM, 6 NVIDIA GeForce RTX 2080 Ti (11 GB, 352 bit), and 2

NVIDIA TITAN RTX GPUs (24 GB, 384 bit). For DeepND-ST, we used 32,080

RTX and 1 TITAN RTX cards. For DeepND, we used 5 RTX 2080 and one

TITAN RTX cards.

The running time of DeepND depends on the number, size (number of no-

des), and density (number of edges) of the networks used. Note that the

number of input genes and the features are constant for each condition so

that it is independent of the considered disease. When we used the 3 PPI

networks to co-analyze breast and ovarian cancers, DeepND took approxi-

mately 3 h. When we used the 52 co-expression networks, it took

approximately 16 h.
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