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ABSTRACT

NON-EQUILIBRIUM STEADY STATE PHASE
TRANSITIONS OF VARIOUS STATISTICAL MODELS

Başak Renklioğlu

Ph.D. in Physics

Supervisor: Prof. Dr. M. Cemal Yalabık

June, 2013

Non-equilibrium phase transitions of a number of systems are investigated by

several methods. These systems are in contact with thermal baths with differ-

ent temperatures and taken to be driven to the non-equilibrium limits by spin

exchange (Kawasaki) dynamics.

First of all, the criticality of the two-finite temperature spin-1/2 Ising model

with a conserved order parameter on a square lattice is studied through a

real space renormalization group transformation. The dynamics of the non-

equilibrium system are characterized by means of different temperatures (Tx and

Ty), and also different time-scale constants, (αx and αy) for spin exchanges in the

x and y directions. Based on the RG flows, the critical surface of the system is

obtained as a function of these exchange parameters. This is the first study in

which the full critical surface displaying various universality classes of this system

is reported.

Secondly, steady state phase transitions of the eight-vertex model, formulated

by two interlaced two-dimensional Ising models on square lattices, are studied

through four independent Monte Carlo simulations, each with 60 × 106 Monte

Carlo steps on N × N lattices with N = 32, 40, 80, 100. To obtain an isotropic

system, the spin exchanges are considered to occur within the sublattices. We

observe non-universal behavior for non-equilibrium transitions around the equi-

librium transitions, and Ising like behavior when one of the bath temperature

becomes very large.

Keywords: Non-Equilibrium Phase Transitions, Renormalization Group Theory,

Monte Carlo Simulations, Critical Point, Critical Exponent, Universality.
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ÖZET

FARKLI İSTATİSTİKSEL MODELLERDE DENGE DIŞI
FAZ GEÇİŞLERİ

Başak Renklioğlu

Fizik, Doktora

Tez Yöneticisi: Prof. Dr. M. Cemal Yalabık

Haziran, 2013

Farklı sistemlerin denge dışı faz geçişleri değişik yollarla incelenmiştir. Bu sis-

temler farklı sıcaklıklı ısı banyoları ile etkileşmekte olup, denge dışı limitlerine

Kawasaki-tipi (spin değişimi) stokastik dinamiği ile erişmektedirler.

İlk olarak, kare örgülü, iki-sıcaklıklı ve korunumlu düzen parametreli spin-1/2

Ising modelinin kritiklik durumu, konum uzayı renormalizasyon grup metodu

kullanılarak incelenmiştir. Denge dışı dinamikler, farklı sıcaklıklar (Tx ve Ty) ve

x ile y yönlerinde gerçekleşen spin değişimleri için farklı zaman ölçek sabitleri (αx

ve αy) ile sağlanmıştır. Bu çalışma ile sisteme ait çok parametreli kritik yüzey

ilk defa sunulmuştur. İlgili kritik üsteller elde edilmiş olup, sürer durumlar için

elde edilen üstellerin denge dışı faz geçişlerinin farklı evrensellik sınıfı özelliğini

gösterdiği tespit edilmiştir.

Ayrıca, iki-boyutlu kare örgülü iç içe geçmiş iki adet Ising modelinden oluşan

sekiz-köşe modelinin sürer durum faz geçişleri Monte Carlo simülasyonu yolu

ile çalışılmıştır. Birbirinden bağımsız dört farklı 60 × 106 Monte Carlo adımı

içeren simülasyonlardan yararlanılmıştır. Sistem dinamiklerini oluşturan spin

değişimleri alt örgüler içerisinde gerçekleşmektedir. Denge durumu faz geçiş nok-

taları etrafında incelenen denge dışı faz geçişlerinin evrensellik özelliği taşımadığı

gözlenmiştir. Ayrıca ısı banyolarından birinin sıcaklığı çok büyük olduğunda faz

geçişlerinin denge durumu Ising benzeri bir davranış sergilediği görülmektedir.

Anahtar sözcükler : Dengede Olmayan Faz Geçişleri, Renormalizasyon Grup

Teorisi, Monte Carlo Simülasyonu, Kritik Nokta, Kritik Üstel, Evrensellik.
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Chapter 1

Introduction

To understand the physical process of our world, studies on non-equilibrium sys-

tems play an important role. It is a well-known fact that nature consists of

mainly non-equilibrium systems. There are few, if any, substantial equilibrium

systems in nature. Research on equilibrium systems gives scientists an extensive

knowledge. Moreover, the theoretical and analytical studies on the universality

property of the equilibrium systems is quite well-established. Although in most

cases structural changes in the systems of the nature occur at non-equilibrium

limits, today physicists do not have enough information and comprehension on

non-equilibrium systems. The studies on the power law correlations suggest that

there is a certain relation between the static and dynamic critical phenomena. In

addition, it is considered that the principles of the universality feature can be also

applied to the non-equilibrium systems. Because of all these reasons, it is worthy

of study and expand our knowledge on the non-equilibrium critical phenomena.

After the great contributions of Boltzmann and Gibbs [6], most of the sys-

tem observable are defined by the terms of the stationary probability distribution

exp(−H/kBT ), where kB is the Boltzmann constant, H is the Hamiltonian and

T is the temperature of the system. As a consequence of this, for equilibrium

systems, the corresponding macroscopic quantities can be identified and com-

puted from the microscopic rules. The most significant and distinctive difference

between the non-equilibrium systems and the equilibrium ones is that there is
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an existence of a “current” in some physical quantity such as energy, particles,

mass, etc of the non-equilibrium system. Non-equilibrium steady states (NESS)

form the basis of the studies on the dynamic critical phenomena. When the

system is in NESS, the probability distributions do not change over time. In

other words, initial conditions are not remembered any more so that the system

is time-translation invariant.

1.1 Master Equation

The master equation is one of the most essential methods, utilized in the de-

termination of the probability distribution of a stochastic process. In general,

the system can be described by all the possible configurations of the particles m.

Based on the rapid transitions m → n with certain rates ωm→n ≥ 0, the system

changes in time. Here, the unit of the transition rate ωm→n is [time]−1. Hereby,

the stochastic process is identified by the initial state, the transition rates and

the set of all configurations of the system.

Theoretically, although the configuration of the system transforms unpre-

dictably in time because of the stochastic process, the change in the probability

of finding the system in a state m at a certain time t, defined as Pt(m) can be

obtained from a linear set of differential equations. Note that, the normalization

condition implies that
∑

m Pt(m) = 1. This set of equations is known in literature

as “master equation”. We have the general relation

∂Pt(m)

∂t
= gain− loss, (1.1)

where “gain” and “loss” include all transitions n → m and m → n respectively,

defined as

gain =
∑
n

ωn→m Pt(n), (1.2)

loss =
∑
n

ωm→n Pt(m). (1.3)

Putting these equations into the equation 1.1, and noting that ωm→m = 0, we

2



obtain
∂Pt(m)

∂t
=

∑
n

ωn→m Pt(n)−
∑
n

ωm→n Pt(m), (1.4)

which describes the current of the probability between different configurations.

As time progresses, the gain and loss in the probability distribution compensates

each other so the conservation of the probability holds. The master equation is

also rewritten as
∂P⃗t

∂t
= LP⃗t, (1.5)

where P⃗t is the vector of all probabilities Pt(m) and L is the Liouville operator

given by

Lm,n = ωm→n − δm,n

∑
k

ωm→k. (1.6)

The dimension of the Liouville operator matrix is equal to the total number of all

configurations of the system. General solution of the master equation 1.5 which

consists of a set of linear first-order differential equations is given by

P (t) = eLtP (0), (1.7)

where the initial probability distribution is defined as P (0) =
∑

m amϕm. Ac-

cording to this general solution, another relation is also defined

Lϕm = λmϕm, (1.8)

where λm and ϕm represent the eigenvalues and the eigenvectors of the Liouville

operator matrix, respectively. These relations lead to

P (t) =
∑
m

ame
λmtϕm. (1.9)

One of the most important properties of the Liouville operator used in this

section is being an “intensity matrix” in which its diagonal elements have negative

and real values while the off-diagonal elements are positive [7]. This is a result of

the balance between the gain and loss terms in the master equation. Thus, the

sum of each column of the Liouville operator matrix is equal to zero,
∑

i Lij = 0.

This means that the probability is conserved.
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The eigenvalues and the eigenvectors obtained from equation 1.8, defines the

stochastic process of the system. Although the eigenvalues of the operator ma-

trix can be complex as a result of the system oscillations, the real parts are

always nonnegative. In addition to this, condition of the probability conserva-

tion (
∑

i Lij = 0) leads to linearly dependent rows for the Liouville matrix. This

means that detL = 0. Based on this property, the product of the eigenvalues

of the Liouville matrix must be zero,
∏

i λi = 0. Consequently, at least one zero

mode (LP⃗eq = 0) which corresponds to the stationary probability distribution,

must be obtained in order to implement the conservation of the probability distri-

bution of the system [7]. This indicates that for equilibrium λ0 = 0 and ϕ0 = Pss.

In addition the “relaxational eigenmodes” of the system are determined by the re-

maining eigenvalues of the Liouville operator, denoted as {(λ1, ϕ1), (λ2, ϕ2), . . .}.
This argument can be easily observed in the relation given by

P (t) = ϕ0 + a1e
λ1tϕ1 + a2e

λ2tϕ2 + . . . . (1.10)

1.2 Equilibrium Dynamics

Describing a physical system by using an “ensemble” which provides all possible

configurations of the system and the corresponding probabilities, constitutes the

basis of the statistical mechanics. In most of the studies on equilibrium phase

transitions, the system is in thermal equilibrium with its environment. In other

words, as time proceeds, the system reaches a state in which the history of the

system is no longer recognizable and the stochastic process becomes independent

of time. Usually, the stochastic system is considered to be interacting with the

thermal heat bath which changes the energy of the system. The probability of

finding a system at temperature T in a certain state with energy E(m) according

to the Boltzmann distribution is

Peq(m) =
e−Em/kBT∑
i e

−Ei/kBT
=

e−Em/kBT

Z
, (1.11)

where Z is the partition function of the system and T is the temperature of the

heat bath. Here, apart from equation 1.11 which provides only the equilibrium

4



probability distribution, this canonical ensemble does not give any information

about the relaxational eigenmodes of the system. Due to the fact that the corre-

sponding system has many possible dynamics, and all of these dynamics provide

the same state of equilibrium, a unique solution cannot be obtained for the system.

Because of this reason, a dynamical rule must be chosen in order to determine

the remaining modes of the system. For instance, different dynamics such as heat

bath, Metropolis, Glauber, etc. are carried out to the well-known Ising model.

For all of these dynamics, the relaxation of the system leads to a stationary state

which is equivalent to canonical ensemble of the model.

All systems at thermal equilibrium obey the detailed balance conditions in

which the transition rates of the dynamic process are defined as

P (m) ωm→n = P (n) ωn→m. (1.12)

This indicates that the probability fluxes between the corresponding configura-

tions m and n vanish as shown in Figure 1.1.

Figure 1.1: Detailed balance condition: Case 1: The total change in the proba-
bility current is zero because transitions between the microstates, substantiated
with the convenient rates such as ωm→n and ωn→m, are equilibrated by the cor-
responding reverse process. Case 2: Probability current does not vanish as the
transitions occur only one direction. System is out-of equilibrium, even in its
stationary state. Detailed balance condition is violated.
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1.3 Non-Equilibrium Dynamics

Dynamical systems are driven to out of the equilibrium by violating the detailed

balance condition. The net probability current of the stochastic process can be

nonzero based on the transition rates ω between the microstates. Difference

between an equilibrium system and a non-equilibrium one is the violation of the

detailed balance condition.

Non-equilibrium systems can be grouped into two main categories [3];

(i) Near Equilibrium Systems: Hermitian systems with a stationary state de-

scribed by the appropriate Boltzmann distribution. In the thermodynamic

limit, these systems usually do not relax towards an equilibrium state.

Glasses, spin glasses, phase-ordering systems are some of the examples for

these systems.

(ii) Out of Equilibrium Systems: Non-Hermitian systems introduced by transi-

tions rates in which the detailed balance condition is violated. Although it

is not certain that these systems have a steady state, if it exits, this state

cannot be defined as a Gibbs state. These systems are obtained by cou-

pling more than one energy reservoir. This type of systems are referred to

as “out-of equilibrium” models.

(iii) In addition to these, there are also some systems which violate the detailed

balance condition so severely that even the proper approximations based

on the equilibrium statistical mechanics can no longer be applied. These

systems are referred to as “far from equilibrium” models.

1.4 Critical Exponents

For the theory of critical phenomena, it is essential to determine the critical expo-

nents of a system. Near the critical point, non-analyticity in the thermodynamic

functions such as specific heat, susceptibility, etc., are observed [8, 9, 10]. The
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most interesting point of the critical exponents is that they are used to group

different physical systems into universality classes and they depend on a few

parameters. For instance, in systems with short-range interactions, these param-

eters are related to the symmetries of the system. The dimensionality n of the

order parameter (such as density, magnetization, etc.) and the dimension of the

system d influence the critical exponents.

1.4.1 Critical Exponents of Equilibrium Systems

The well-known critical exponents of equilibrium systems and the scaling laws [11,

12, 8, 10, 13] are defined as (for a ferromagnetic system in an external field H)

for the zero-field specific heat CH :

CH ∝ |t|−α; (1.13)

for the zero-field magnetization M :

M ∝ (−t)β; (for t < 0) (1.14)

and also

M ∝ H1/δ; (for t = 0) (1.15)

for the zero-field isothermal susceptibility χ:

χ ∝ |t|−γ; (1.16)

for the correlation length ξ:

ξ ∝ |t|−ν ; (1.17)

for the two-point correlation function G
(2)
c (r) at the critical temperature:

G(2)
c (r) ∝ r2−d−η. (1.18)

(Note that for t ̸= 0, G
(2)
c (r, t) ∼ e−r/ξ(t).) Here, the reduced temperature t is

given by t = (T − Tc)/Tc. These six critical exponents are not independent, and

are related to one another through “scaling relations”.
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Scaling Theory of Kadanoff

According to the scaling theory of Kadanoff [14], which is based on the prin-

ciple of reducing the effective number of degrees of freedom, the original system

(let us consider the spin-1/2 Ising model with a nearest neighbor interaction J

on a square lattice in an external field H) is rescaled as N ′ = b−dN where N

and N ′ are the numbers of the particles of the original and the rescaled system,

respectively. Here, b is an arbitrary variable and d is the dimension of the original

system. If the original and the rescaled systems are regarded as thermodynami-

cally equivalent, then it means that the free energies of these systems are equal

to each other. Based on this inference, the partition functions of these systems

are also conserved and given by

Z(t,H) = Z ′(t′, H ′). (1.19)

By using the conditions of the up-down symmetry and the property of scale

invariance of the system, the scaling relations between the system parameters are

defined as

t′ = bytt and H ′ = byHH, (1.20)

where yt and yH are the critical exponents of the corresponding scaling fields.

• Generalized Homogeneous Function Forms of Some Quantities:

• Free Energy Based on the conservation of the partition function and us-

ing f = 1
N

lnZ, shown as equation 1.19, the relation between the free energies

can be written as

Nf(t,H) = N ′f(t′, H ′)⇒ Nf(t,H) = b−dNf(t′, H ′). (1.21)

After some simplifications, the generalized homogeneous function form of the free

energy is obtained as

f(t,H) = b−df(bytt, byHH). (1.22)

• Internal Energy The homogeneous function behavior of the internal energy

U(t,H) of the original system is

U(t,H) =
1

N

∂

∂J
lnZ(t,H), (1.23)
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where the redefined reduced temperature is t = Jc−J
Jc

. Again, by using the con-

servation of the partition function and the scaling relations, we can rewrite this

equation as

U(t,H) =
1

N

(
−1

Jc

)
∂

∂t
lnZ = byt−d

[
1

N ′

(
−1

Jc

)
∂

∂t′
lnZ ′

]
= byt−dU(t′, H ′).

(1.24)

Then, the generalized homogeneous function form of the free energy is

U(t,H) = byt−dU(bytt, byHH). (1.25)

• Specific Heat Specific heat is proportional to the second derivative of the free

energy with respect to the temperature Cv ∝ ∂2f
∂t2

, then the generalized homoge-

neous function form of the specific heat is

CH(t,H) = b2yt−dCH(bytt, byHH). (1.26)

As mentioned before, b is an arbitrary variable and it can be chosen as in the

most beneficial way. Here, let us set b = t−1/yt , so this functional relation turns

into

CH(t,H) = t(d−2yt)/ytCH(1, t−yH/ytH). (1.27)

Note that scaling relations of this type imply that the thermodynamic quantity

which is a function of two variables (t and H in this case) “collapses” into a

single function when displayed in the form CH(t,H)/t(d−2yt)/yt as a function of

Ht−yH/yt . At zero external magnetic field, equation 1.27 is rewritten as

CH(t, 0) = t(d−2yt)/ytCH(1, 0). (1.28)

The α-exponent can be obtained from equation 1.13 which indicates the

behavior of the zero-field specific heat of a ferromagnetic system. From equa-

tions 1.13 and 1.27, the α-exponent is obtained as

α =
2yt − d

yt
. (1.29)

• Magnetization Magnetization can be defined according to the following

equation;

M(t,H) =
1

N

∂

∂H
lnZ(t,H). (1.30)

9



The relation of the magnetization between the original and the rescaled systems

are defined as

M(t,H) =
1

N

∂

∂H
lnZ = byH−d 1

N ′
∂

∂H ′ lnZ ′ = byH−dM(t′, H ′). (1.31)

Then, the generalized homogeneous function form of the magnetization is

M(t,H) = byH−dM(bytt, byHH). (1.32)

Here, let us set b = t−1/yt , then equation 1.32 can be rewritten as

M(t,H) = t(d−yH)/ytM(1, t−yH/ytH), (1.33)

and for the zero-external field, it is given by

M(t, 0) = t(d−yH)/ytM(1, 0). (1.34)

Equations 1.14 and 1.34 provides the β-exponent, defined as

β =
(d− yH)

yt
. (1.35)

Similarly, if b is chosen as b = t−1/yH , the scaling form of the magnetization

given by equation 1.32 is restated as

M(t,H) = t(d−yH)/yHM(t−yt/yH t, 1), (1.36)

from equation 1.15, the δ-exponent is given by

δ =
yH

(d− yH)
. (1.37)

• Susceptibility Susceptibility is proportional to the second derivative of

the free energy with respect to the magnetic field χ ∝ ∂2f
∂H2 , then the generalized

homogeneous function form of the susceptibility is

χ(t,H) = b2yH−dχ(bytt, byHH). (1.38)

For b = t−1/yt , the generalized homogeneous function form of the susceptibility

becomes

χ(t,H) = t(d−2yH)/ytχ(1, t−yH/ytH), (1.39)
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and then at zero-magnetic field, the γ-exponent can be obtained from equa-

tions 1.16 and 1.39 as

γ =
2yH − 2

yt
. (1.40)

• Correlation Length Generalized homogeneous function form of the cor-

relation length is

ξ(t,H) = bξ(bytt, byHH). (1.41)

If we set b = t−1/yt at zero-external field (or b = t−1/yH at the critical temperature

as t = 0), then from equations 1.17 and 1.41, the ν-exponent is given by

νt =
1

yt
and νH =

1

yH
. (1.42)

• Correlation Function Correlation function measures the correlation be-

tween random variables of the system. Correlation function can be calculated

by

G(2)
c (r, t,H) =

∂

∂Hn

∂

∂Hm

lnZ = b2yH−2d ∂

∂H ′
n

∂

∂H ′
m

lnZ ′, (1.43)

so the generalized homogeneous function form of the correlation function is

G(2)
c (r, t,H) = b2yH−2dG(2)

c (
r

b
, bytt, byHH). (1.44)

To investigate the η-exponent, the generalized homogeneous function form of the

correlation function is considered for b = r, then the η-exponent is given by

η = 2 + d− yH . (1.45)

The relations between these critical exponents are calculated from equa-

tions 1.29, 1.35, 1.37, 1.40, 1.42 and 1.45 as

α + 2β + γ = 2 (1.46)

α + β(δ + 1) = 2 (1.47)

(2− η)ν = γ (1.48)

α + νd = 2 (1.49)
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1.4.2 Dynamic Critical Exponents

First investigations of the relaxational modes of equilibrium systems [4] and

phase-ordering kinetics [15, 16], non-equilibrium dynamics were taken into con-

sideration. Followed by this, the studies on the power-law time dependencies of

the systems were studied [17]. More recently, considerable work has been carried

out on systems which are driven to the non-equilibrium limits, for example, by

contacting with different thermal baths or being under the effect of different dy-

namics, or external currents. In addition to the equilibrium critical exponents,

new exponents are introduced for non-equilibrium dynamics. For instance, one of

these additional critical exponents is the dynamical exponent z which relates the

correlation length ξ and the divergences of the relaxation time τ to each other by

τ ∝ ξz, (1.50)

as can be obtained from a time dependent version of the scaling relation given

by the equation 1.44

G(r, t) = b2xG(
r

b
, bzt), (1.51)

where the scaling dimension is x = y − d. Here, r and t describe the spatial and

temporal coordinates. A number of other dynamic exponents may be defined in

terms of z.

These additional exponents θl and θg associated with the probability of finding

the (local θl or global θg ) order parameter of the system conserve its sign in time,

were presented by Derida [18]. The corresponding exponents may be described

as

P (t) ∝ t−θ. (1.52)

The general relation between the non-equilibrium critical exponents is given

by [18]

zθg = 1− d + λ− η

2
. (1.53)

12



1.5 Universality: “Out of-Equilibrium” Classes

In this section, we will mainly focus on the out of-equilibrium systems with non-

Hermitian Hamiltonian, namely dynamic Ising model, which violates the detailed

balance condition and relaxes to a non-equilibrium state. As mentioned before,

these systems are substantiated by the way of using different dynamics such as

being in contact to heat baths at different temperatures, or being under the

influence of external currents. The studies on systems which have non-conserved

order parameter, (referred to as model-A [4, 5]) show that the critical behavior of

the system remains stable despite the implementation of competing dynamics [19]

and even if these dynamics break the symmetry of the system, the criticality is

still unchanged [20]. In contrast, when the competing dynamics are applied to the

model-B systems [4, 5] (with conserved order parameter) by an external field [21]

or a local process which conserves the order parameter [2, 22, 23, 24], in the steady

state angular dependence is observed in the obtained long-range correlations.

1.5.1 Dynamical Ising Classes

The well-known Ising model in equilibrium was presented by Lenz and Ising [25,

26] with a scaled Hamiltonian defined as

H = −J
∑
i,j

sisj −B
∑
i

si, (1.54)

where B is the external field and J is the energy interaction constant between

the spins of the system. Here, spin variables si can take values ±1. Ising model

with this Hamiltonian contains an up-down symmetry (Z2) of the spin variables.

There is an exact solution of this model in one and two dimensions, introduced

by Onsager [1]. This solution indicates that in one dimension, Ising model goes

under a first-order phase transition at T = 0 while a second-order phase transition

occurs at kBTc

J
= 2.269 in two dimensions. In Table 1.1, the critical exponents

are shown for different dimensions of the Ising model [3].

13



Critical Exponents d=2 d=3 d=4 (Mean Field)

α 0 (log divergence) 0.1097(6) 0

ν 1 0.6301(2) 1/2

γ 7/4 1.3272(3) 1

β 1/8 0.3265(7) 1/2

Table 1.1: Equilibrium critical exponents of the Ising model for different dimen-

sions d

1.5.2 Kinetic Ising Model - Near Equilibrium

In the studies on the relaxational evolution of the systems near the equilibrium,

kinetic Ising models which include the spin-flip (Glauber [27]) dynamics or the

spin-exchange (Kawasaki [28]) dynamics were introduced. To satisfy the detailed

balance condition and obtain the Gibbs state at the equilibrium limit, the transi-

tion rates ωI→J and the probability distributions P (I) are chosen as to obey the

detailed balance relation given as,

P (I) ωI→J = P (J) ωJ→I . (1.55)

As the system reaches its equilibrium, the probability distribution of the Gibbs

state (Peq(I) ∝ exp[−H(I)/kBT ]) must be obtained from this condition. We then

have
ωI→J

ωJ→I

= exp[−∆HIJ/kBT ]. (1.56)

At this point, we would like to give detailed explanations on the principles of

these dynamics.

The Glauber dynamics indicate a system in which the individual spins can

change their states randomly with time under the effect of an external agency

(e.g., a thermal bath). These are also known as spin-flip dynamics in lit-

erature as illustrated in Figure 1.2. The coupling between the spins of this

Ising model system is assumed by considering that the transition probability

wI(si) of the particular spin depends on its neighboring spins, formulated by
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wI(si) = 1 + si tanh(J
∑

i′ si′) where si′ indicates the nearest neighbor spins of

the particular si and J is the energy interaction constant between these near-

est neighbor spins [27]. By this assumption, the detailed balance condition in

equilibrium was implemented to the system by

wI(si)

wJ(−si)
=

1− si tanh(J
∑

i′ si′)

1 + si tanh(J
∑

i′ si′)
. (1.57)

Figure 1.2: An illustration for Glauber dynamics. System evolution depends
on the individual spins si which change their states randomly with a transition
probability wI(si). Possible states of these spins are indicated by  and #.

At first in literature, Kawasaki introduced a diffusive time-dependent Ising

system in which spin exchanges occur with certain temperature-dependent transi-

tion probabilities wI→J [28]. The system in the corresponding study of Kawasaki

is equivalent to the binary mixture systems with molecular diffusion when the

quantum effect of the Heisenberg system is ignored. Being in contact with dif-

ferent thermal baths can trigger to obtain such diffusive dynamics in a system.

Again in this study, certain transition probabilities of spin exchanges are used

to determine the coupling between the spins of the system. In this isothermal

process, the transition probabilities of that spin exchanges between si and sj were

defined as

wI→J =
1

2
αΠm(1 + βsmsj)Πn(1 + βsnsi), (1.58)

where β = tanh(J /kBT ) and sn (sm) indicate the nearest neighbor spins of the

particular si (sj), respectively. Please note that in these products, the terms of
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sjsi (sisj) are ignored. Here α is the time scale constant and also independent of

{si}. In equilibrium, system obeys the detailed balance condition by

wI→J

wJ→I

=
Πm(coshK + sjsm sinhK)Πn(coshK + sisn sinhK)

Πm(coshK + sism sinhK)Πn(coshK + sjsn sinhK)
, (1.59)

where K = J
kBT

. Kawasaki (spin exchanges) dynamics in a lattice system are

illustrated in Figure 1.3. Transformation obtained from the spin exchange dy-

namics is only considerable for the case of sj = −si.

Figure 1.3: An illustration for Kawasaki dynamics. Based on an exchange be-
tween the spin pairs si and sj with a transition rate wI→J , the energy of the
system changes. Here,  and # denote different states of the spins of the system.
The energy interaction constants used in equation (1.58) are represented by solid
lines.

For one dimensional d = 1 kinetic Ising model with Glauber dynamics (model-

A), a first order transition occurs at T = 0. The dynamic critical exponents of this

system[27, 29] are determined as zd=1
Glauber = 2 and θd=1

g,Glauber = 1/4. However for

the same system with the Kawasaki dynamics (model-B), although phase transi-

tion is still observed at Tc = 0, Zwerger obtained a different dynamical exponent

zd=1
Kawasaki = 5 [30]. These systems can be exactly solved and the obtained results

indicate a new dynamic Ising universality class in which the static critical expo-

nents are same while the dynamical ones are quite different. Research on different

dimensions d = 1, 2, 3, 4 of the kinetic Ising model [30, 31, 32, 33, 34, 35, 36] have

resulted in various values for dynamical critical exponents of the system. The

results of these studies are shown in Table1.2 [3].
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z λ θg

d = 1
A 2 1 1/4

B 5

d = 2
A 2.165(10) 0.737(1) 0.225(10)

B 3.75 0.667(8)

d = 3 A 2.032(4) 1.362(19) 0.41(2)

d = 4
A 2 4 1/2

B 4

Table 1.2: Dynamical critical exponents of the Ising model for different dimen-

sions d. “A” and “B” denote the model-A and model-B [3]. Note that for the

model-B in d = 2, the value of the dynamical critical exponent z is corrected with

regard to the references [4, 5].

1.5.3 Kinetic Ising Model - Out of-Equilibrium

As mentioned before, kinetic Ising model relaxes to its non-equilibrium steady

state as a result of competing dynamics of the system. Because of the fact that

the dynamical Ising fixed point is stable in d = 4 − ϵ dimensions as a result

of the consistency of the spin inversion and the lattice symmetries, Grinstein

claimed that the universality class of the kinetic Ising model should also include

the stochastic systems (with Glauber dynamics) which have two states in each site

and the Z2 symmetry [19]. There are numerous studies that confirm this theory

such as Monte Carlo simulations [37, 38, 39, 40, 41] and theoretical analysis [42,

43, 44]. In particular, these studies are analyzed for the Ising model in contact

with different heat baths, with Glauber dynamics [37, 42, 44, 45] or a combination

of Glauber and Kawasaki dynamics [46] and the systems which hold majority

rule [39, 41]. Note that in all of these studies model-A system is considered.
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ν⊥ β γ η

0.62(3) 0.33(2) 1.16(6) 0.13(4)

Table 1.3: Critical exponents of the two-dimensional randomly driven lattice-

gas [3]

The critical behavior of Model-B systems (in which order parameters, lo-

cal and anisotropic, are conserved), are consistent with the kinetic Ising model

with dipolar interaction. Præstgaard et. al. obtained the critical expo-

nents of the two-dimensional models through simulations and field-theoretical

results [47, 48]. Randomly driven lattice-gas system, the two-temperature

model [49], the “Anisotropic Lattice Gas Automaton” (ALGA) model [50], and

the infinitely fast driven lattice-gas model [51] belong to this universality class.

The critical dimension is dc = 3. The critical exponents of this universality class

is indicated in Table1.3 [3]

The rest of the thesis is organized as follows:

The second chapter discusses the previous studies on the steady state phase

transitions of the non-equilibrium systems with spin exchange or spin flip dy-

namics. A comprehensive literature review on the criticality properties of these

non-equilibrium systems as they are in contact with thermal baths or driven by

an external field will be presented in this chapter.

In chapter 3, we will introduce the global phase diagram of the two-finite

temperature spin-1/2 Ising model on a square lattice with Kawasaki dynamics

studied through the real space renormalization group method. General concepts

of the renormalization group theory and the form of the transformation used will

be explained. To compare the obtained results, the same analysis is carried out

for this model near the equilibrium critical point with Glauber dynamics as shown

in Appendix A. For the c-code used in this study the reader can review Appendix

C.
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In chapter 4 non-equilibrium phase transitions of the eight-vertex model with

Kawasaki dynamics in contact with different heat baths (one of them at infinite

temperature) will be analyzed through the Monte Carlo simulations. Universality

property of this model for its non-equilibrium limits will be also investigated.

The procedure used to obtain an error measure for the data collapse achieved

by the finite size scaling is described in Appendix B. The c-codes of the Monte

Carlo simulations and the finite-size scaling are presented in Appendices D and

E, respectively.

Finally, the ongoing work related to the criticality of the two-finite tempera-

ture eight-vertex model near its equilibrium critical points is discussed in chapter

5.
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Chapter 2

Literature Review

In recent years, a rich variety of knowledge about the general analytical frame-

work for non-equilibrium systems have been acquired from the studies in the

field of non-equilibrium critical phenomena [52]. To comprehend the nature of

non-equilibrium phenomena is of paramount importance because non-equilibrium

systems can be detected in many different areas of science. Due to this reason,

non-equilibrium systems are taken into serious consideration in many studies from

different domains such as physics, chemistry, biology [53, 54, 55]. Real systems in

nature can be characterized by using simplified models. For instance the charac-

terization of a ferromagnetic system in equilibrium is presented by Lenz and Ising

through the well-known Ising model [25, 26]. Similarly, for non-equilibrium phe-

nomena, Katz, Lebowitz and Spohn successfully analyzed the critical behaviors

of fast ionic conductors [56] by introducing a driven lattice-gas model [57, 58].

Researchers of this field have shown extensive interest to the studies on the

steady state phase transitions of non-equilibrium systems [17, 52]. Zia and

Schmittmann proposed an approach of general classification of non-equilibrium

steady states and their various properties for different limits and applica-

tions [17, 52, 59, 60]. Considerable understanding of the field of non-equilibrium

steady state phase transitions is achieved by using the two temperature Ising

model or (uniformly/nonuniformly) driven lattices. Firstly, a non-equilibrium

model in an applied external field with particle-conserving hopping dynamics,
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known as “driven lattice model” was introduced by Katz et al. [57, 58]. Starting

with this work, the driven lattice models are regarded as a basis for different

studies on non-equilibrium systems. To examine the characteristics of the cor-

responding model, there are many studies achieved by different methods such

as Monte Carlo simulations (in two [57, 58, 61, 62, 63, 64, 65] and three [66]

dimensions), mean-field solutions [67, 68] and field theoretic renormalization

analysis [69, 70, 71].

In addition, research on systems with an anisotropic conserved dynamics in-

dicates that these systems have distinct long-range correlations and different uni-

versality behaviors. For these models, long-range correlations are observed at all

temperatures above the critical temperature (T > Tc), and also the universal-

ity properties of these systems point out a new universality class other than the

well-known Ising universality class. Studies on the long-range correlations with

conserved anisotropic dynamics were carried out for driven lattices [49, 72, 73]

and for the two temperature Ising model [48, 74]) by using field-theoretic analysis.

Furthermore, the corresponding results of these studies were verified by Monte

Carlo simulations as well (for driven lattices [72, 73] and for the two temperature

Ising model [48, 74]).

The two temperature Ising model with conserved anisotropic dynamics has

been widely used in the fields of non-equilibrium steady state phase transitions.

Especially, there has been considerable interest in the two temperature Ising

model with Kawasaki (exchange) dynamics, driven to non-equilibrium steady

states by being coupled to two thermal baths (one of the baths has infinite tem-

perature) [47, 48, 67, 68, 74, 75]. These studies show that the second-order phase

transition of the corresponding model occurs at higher temperatures in com-

parison with the equilibrium critical temperature. This is another remarkable

characteristic of these systems.

For the two temperature Ising model with anisotropic exchange dynamics, and

in contact with two different thermal baths (one of them has infinite T ), Cheng

et al. showed that the long-range correlations occur at Tc ≈ 1.33To [74]. Here,

the Onsager critical temperature is To
∼= 2.2692J/kB. Besides it is also found
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by the Monte Carlo simulations that the critical temperature of this system is

Tc ≈ 1.36To [47, 76]. We would like to point out that for the driven lattice

system, random spin exchanges along the field direction occur as the external

field approaches to infinity. In this case, this system is equivalent to the two

temperature Ising model with one of the temperatures infinite. Therefore at

this limit, Monte Carlo simulations indicate that the critical temperatures of the

driven lattice [76] and the two temperature Ising model [47] are equal to each

other, as expected. The corresponding critical behavior of a non-equilibrium

version of the time dependent Landau-Ginzburg model is also investigated by

Præstgaard et al. through renormalization group (RG) analysis [48]. In their

study, an ϵ-expansion is obtained from field-theoretic approach. Based on their

study and as well as numerous others, it is shown that non-equilibrium systems

have new universality classes [3, 47, 48, 76].

Last but not least, distinct universality properties of non-equilibrium systems

are also an interesting feature of the non-equilibrium phenomena, and these sys-

tems are categorized into different universality classes [3]. Although, in some

cases, research on the criticality of the driven lattice-gas model (reviewed in de-

tail by Schmittmann [77]) and the two temperature Ising model [3, 47, 48, 76]

indicates a non-Ising critical behavior, numerous other studies have shown that

the models with the Glauber spin-flip dynamics [27] or a spin exchange Kawasaki

dynamics [28] are associated with the same universality class as their counterpart

models in equilibrium [45, 46, 37, 65, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87].

Non-equilibrium phase transitions were also analyzed for two coupled two-

dimensional Ising models, each in contact with different heat baths, for several

types of system dynamics. The critical behavior of this model with nearest neigh-

bor interactions was investigated by using Monte Carlo simulations as the system

is taken to be driven by spin flip dynamics [37, 85]. Blöte et al. observed an en-

ergy flux between the sublattices of the corresponding system [85]. In their subse-

quent work, Blöte et al. also considered a difference between the bond-strengths

on the sublattices of this system [37]. In this mentioned study, the corresponding

system is analogue of the model with inhomogeneous interactions and temper-

ature. These studies indicated that the critical exponents of this model with
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non-conserved (Glauber) dynamics were consistent with the universality class of

the equilibrium Ising model.

In addition, the aforementioned system was also examined by Garrido et al.

with competing dynamics through an analytical method and a numerical analysis

(Monte Carlo simulations) [87]. In their study, each spin of the system was in

contact with both thermal baths (with different spin dynamics) but with different

probabilities. In other words, the probabilities of spin-flip and spin exchange at-

tempts constitute the non-equilibrium dynamics of the system and also this model

is equivalent to a system in contact with thermal heat baths with different tem-

peratures. Based on this study, one can observe that still there is no observable

deviation from the Ising universality class. Furthermore, there are other studies

on this model achieved by introducing different combinations of the Glauber and

Kawasaki dynamics [45, 49, 86]. The corresponding papers indicate that the crit-

icality of the system shows an equilibrium Ising-like behavior for small values of

the probability of the Kawasaki dynamics (pexchange ≤ 0.80) and the second-order

phase transition turns into first-order as the corresponding probability increases

(pexchange > 0.85). As a result of this situation, a tricritical point is observed at

pexchange ≃ 0.83.
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Chapter 3

Global Phase Diagram of the

Two-Temperature Ising Model

with Kawasaki Dynamics from

Real Space Renormalization

Group Theory

The two-finite temperature Ising model with conserved anisotropic dynamics on

a square lattice is analyzed through a real space renormalization group (RSRG)

transformation. Dynamics of the non-equilibrium system is characterized by dif-

ferent heat baths with finite temperatures Tx and Ty and also different time-scale

constants αx and αy for spin exchanges in the x and y directions. For the first time

in literature, global phase diagram and the critical surface of the two-temperature

Ising model is obtained for all the critical points of the system, studied separately

previously: the steady state, the equilibrium, and some certain limits at which one

of the temperatures and/or exchange rates is infinite. This study was published

in the European Physical Journal B, volume 85, 398 (2012).
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3.1 The Model

We investigate the phase transitions of the spin-1/2 Ising model on a square

lattice in contact with two-finite temperature thermal baths by means of a real-

space renormalization group (RSRG) transformation. The energy of the system

is defined as

E = −
∑
⟨ij⟩

Jsisj , (3.1)

where J is the interaction energy constant, and ⟨ij⟩ indicates a sum over nearest-

neighbor pairs of sites. Spin variables si can take values ±1. Spin exchanges occur

between the nearest-neighbor pairs in the x and y directions. In this process, as

spin exchanges appear in different directions, the system is regarded as under the

influence of different thermal baths; for the x (or y) direction, the effective heat

bath has the finite temperature Tx (or Ty), respectively. Thus, the dynamics of

a non-equilibrium system is carried out by this mechanism. We would like to

point out that the system turns into its equilibrium state (for our system, the

equilibrium of the spin-1/2 Ising model) as the corresponding temperatures are

equal, Tx = Ty.

In this process, for two different neighboring spins, an exchange may arise in

the x direction with the transition rate

wx = αx[1− tanh(∆E/2kBTx)] , (3.2)

and

wy = αy[1− tanh(∆E/2kBTy)] , (3.3)

in the y direction, where kB is the Boltzmann constant. Here, the change in the

energy of the system, observed because of the spin exchanges, is indicated by

∆E. The unitless interaction constants between the nearest-neighbor spins Kx

and Ky are used in place of Tx and Ty, defined as

Kx =
J

kBTx

and Ky =
J

kBTy

. (3.4)

Here, αx and αy represent the timescale constants for exchanges along the x and

y directions, respectively. Studied system with the corresponding parameters is

shown schematically in Figure 3.1.

25



Figure 3.1: The original 4 × 4 system is in contact with heat baths at different
finite temperatures Tx and Ty. Up (down) spin variables are indicated by  and#, respectively. Spin exchanges occur along the x (y) direction under the effect
of the temperature Tx (Ty) with the transition rate ωx (ωy).

To observe the second-order phase transition of the system, the total magneti-

zation of the system must be zero so the system is designed as the total numbers

of the ±1 spins are equal.

Our renormalization group (RG) method which is a tool for the transformation

of a 4×4 system with periodic boundary conditions and with zero magnetization

to a scaled 2×2 system again with a zero magnetization, will be explained in the

next section with all its details.

3.2 The RG Transformation

3.2.1 The Concepts of Renormalization Group Theory

Renormalization group theory is established upon increasing the minimal length

(in other words a change length scale) as a→ a′ = ba such that ξ → ξ′ = ξ/b of

the system, in order to reduce the number of degrees of freedom. RG approach
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yields and explains the scaling laws, all the critical exponents, universality prop-

erty and the determinants of the universality classes.

In the historical background of this theory, at first in 1966 an explanation for

all the concepts of rescaling was presented by Kadanoff with a real understanding

of the physical meaning of this technique [14]. Scaling laws of Kadanoff theory

are described in chapter 1. However, this theory could not provide a way to

calculate the critical points and the corresponding exponents. The second-order

phase transitions of the investigated system could not be matched into the correct

universality class of the model [9]. In addition,a valid recursion relation arising

from the rescaling of the system, could not be derived in any way [9]. After that

with the contributions of Kenneth G. Wilson in 1971, the missing concepts of this

theory was completed. After this revolution, Kenneth G. Wilson was awarded

the Nobel Prize in 1982 for his theory for critical phenomena in connection with

the theory of phase transitions [88].

Again the scaling rules of the Kadanoff theory, as mentioned in chapter 1,

are still valid for the RG formalization. Although the length scale of the system

changes (so the number of the degrees of freedom of the system alters), at some

points during the rescaling process, the criticality of the original system remains

same. These points are called “fixed points”.

Association between the parameters of the original and the rescaled systems

are given by recursion relations. For instance the relationship between the Hamil-

tonian of the original system H and the Hamiltonian of the rescaled system H ′

is given by the recursion relation as [8]

H ′ = R[H]. (3.5)

The relation between the unitless energy coupling constants [8] is given by

K⃗ ′ = R[K⃗]. (3.6)

Here we denote the numerous parameters (the “coupling constants”) that define

the scaled Hamiltonian with the vector K⃗. To calculate system parameters of

the rescaled system numerically, the recursion relation is regarded as an iteration
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function. As mentioned before, fixed points are described as the points at which

the critical behaviors of the original and the rescaled systems remain invariant

so that to calculate the fixed points, recursion relation function is iterated many

times until an input (initial) point repeats itself as the outcome again and again.

This situation can be described as [8]

K⃗∗ = R[K⃗∗]. (3.7)

Also, the new correlation length is found as

ξ′ =
ξ

b
, (3.8)

and at the critical points

ξ′(K⃗∗) =
ξ(K⃗∗)

b
⇒ ξ(K⃗∗) =

{
0 T = 0 or ∞
∞ critical fixed point

(3.9)

A schematic RG strategy for a two dimensional system on a square lattice is

presented by Figure 3.2.

As mentioned, this theory gives a method to obtain the critical points of the

system in interest. Let us assume that the energy interaction coupling constant

of the original system, K is close enough to the value of the critical point Kc.

Then, repeated applications of the RG transformation will bring the coupling

constants K⃗ close to K⃗∗. In this case, the energy interaction coupling constant

of the renormalized system, K⃗ ′ obtained from the recursion relation equation 3.6,

may be express in terms of a linearized recursion relation given by

K⃗ ′ = R[K⃗] = K⃗∗ +
dR

dK
(K⃗ − K⃗∗) + · · · , (3.10)

where M ≡ dR
dK

represents a linearization of the transformation through a matrix

whose elements are
dK′

i

dKj
|K⃗∗ = Bij. Based on the eigenvalues and the eigenvectors

of this matrix, MUi = λiUi, the linear scaling fields Ui for i = 1, 2, . . . , n are

obtained in terms of which the singular part of the free energy is expressed as

fs(U1, U2, . . . , Un) = b−dfs(b
y1U1, b

y2U2, . . . , b
ynUn). (3.11)

This is the most general form of the free energy given by the equation (1.22). The

eigenvalues of this matrix λi are related to the stability of the fixed point and are
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Figure 3.2: A b = 2 renormalization scheme: The original lattice is split into two
groups of spins denoted by • and ◦. The dark circles • indicate the spins that are
eliminated by the transformation while the open circles ◦ represent the remaining
spins after the RG process. In the renormalized lattice, the remaining spins lie
on square lattice with the nearest-neighbor distance increased by a factor of 2.
The emergent next nearest neighbors links are denoted by dashed lines.

related to the critical exponents through λi = byi . (Note that the composition

law of the RG transformation (λi(b)λi(b) = λi(b
2)) requires that λi = byi with yi

independent of scaling factor b used in the transformation.) From the linearization

of the recursion relation, relevant quantities such as the critical exponents can be

obtained.

The behavior of Ui under the repeated action of the linear RG recursion

relations is determined by the corresponding exponent yi. The scaling field Ui of

the system depends on the exponent yi as

if yi > 0 ⇒ Ui is called relevant,

if yi = 0 ⇒ Ui is called marginal,

if yi < 0 ⇒ Ui is called irrelevant.

If the scaling field is relevant then the linear recursion relations will lead
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the RG flows away from the critical point. On the other hand, for an irrelevant

scaling field the RG flows extend toward the critical point. Consequently, one can

not observe the relevant quantities in the second order phase transitions because

they vanish. An illustration is presented in Figure 3.3 for the RG flows of a

two-dimensional Ising model with different energy interaction constants Jx and

Jy along the x and y directions, respectively.

Figure 3.3: RG flows for the Ising model in high dimensional parameter space. C

represents the unstable (relevant) critical fixed point while F1 and F2 indicate

the stable (irrelevant) fixed points of the system. Kx and Ky are the unitless

interaction constants along the the x and y directions, respectively. For the case

of Kx = Ky, Onsager introduced an exact solution for this system [1]

3.2.2 General Remarks

In comparison to the field theoretical renormalization group theory, real space

renormalization group (RSRG) transformation is much more convenient because

of working directly on the lattice model of interest. However explicitly classifying

of the systems according to their universality classes and being able to use the

series expansion method for the critical exponents of the systems (although at
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some dimensionality not too close to that of the studied system) are the main

advantages of the field theoretical RG theory. In contrast, RSRG transformation

is more functional for achieving the phase diagram of the system. In order to list

the main disadvantages of the RSRG transformation, losing some the systematic

nature of the approximation and the inaccuracies that normally need be intro-

duced due to the truncations of the infinite lattice into finite, the uncorrelated

pieces, and due to the truncations of the interaction energies at some level of

complexity can be considered.

A “block spin transformation” which depends on the system parameters of the

original lattice model, is introduced for the equilibrium RSRG transformation in

order to construct a scaled version of the system. The equilibrium probabilities

of the original system and the scaled (renormalized) system are associated with

each other. In addition, these probabilities are produced from the renormalized

versions of the interaction constants of the original system. In order to obtain a

“fit” to the probabilities of the states of the renormalized system, new interaction

constants may be needed to taken into account. In fact, for the more practical way

it is important to truncate the number of interaction constants. The limitation

in the number of renormalized interaction constants that may be used is also the

result of the limited number of distinctly different probabilities of the states of

the renormalized system.

3.2.3 Previous Work on RSRG Transformation

In this section, previous studies on the dynamical RSRG methods, that have been

applied to systems mostly with Glauber dynamics in equilibrium are presented.

In order to obtain the equilibrium dynamical critical exponent z, the dynamical

version of the RSRG method was considered in different ways: in the first place,

Monte Carlo simulations were used to obtain the parameters of the renormalized

dynamical equations in position-space. Ma [89] presented a study on the dynam-

ics of block spins constructed out of spins driven by a Monte Carlo simulation

for Glauber dynamics. It was the first attempt to use this approach. After that,

Swendsen [90] and Tobochnik et al. [91] considerably contributed to the Monte
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Carlo approaches of the problem. In addition, it was argued by Yalabik and Gun-

ton [92] that the parametrization of the renormalized state of the system may be

accomplished by using the relaxation times of various types of correlations. Note

that they investigated the two dimensional Ising model with Kawasaki dynamics

in their work [92].

Additionally as an alternative to the Monte Carlo approach of the problem,

another method was using a renormalization method which transforms the tran-

sition rates in the master equation of the original system to those of the rescaled

system in a similar form of the original master equation. The dynamical critical

exponent was also obtained from the ratio of the constants (that define the time

scales at the fixed point) in these equations. This technique was used in many

studies [93, 94, 95].

The most important characteristic point of these dynamical RG approaches

is same: reducing the number of the dynamical degrees of freedom as well as

the spatial correlations of the system. Block-spin transformation is a conven-

tional method in which the blocks of n × n spins of the original system can be

substituted by single spins with the orientation prescribed by the majority rule.

According to this rule, block spin up if the majority of the spins in the block is up,

and vice versa. In general, for the block-spin transformation, the dynamics of the

original system conserve in the block spins. Relaxation of the probability func-

tions associated with the original system consists of the N time constants related

to the eigenvalues of the N×N Liouville operator. Due to the fact that the prob-

abilities of the renormalized system are constituted from the linear combinations

of those of the original system, the relaxation of the renormalized system occurs

with the same time constants. Actually, the rate of change of block-spin proba-

bilities to their higher order derivatives plays an important role to conserve the

same eigenvalue structure. In this process, Markovian dynamics no longer exist

because now the system has a “memory”: Based on the marginal majority rule,

the probability of the transition of a block-spin per unit time becomes too large

to let the system turns into its initial state. The transition rate of the state of

the block-spin reduces to a smaller value as the corresponding state goes beyond

this “infant-mortality” stage. As a result for the smaller time-scale dynamics one
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can observe the non-Markovian effects. However for the larger time-constants

dynamics contain the Markovian effects. Note that for the field-theoretic RG

method, a similar approach is assumed for the separation of the time scales [48].

Detailed balance in the renormalized system cannot be declared because of the

complexity of the probability flow among states. In some Monte Carlo RG studies,

in which appropriate time dependent correlation functions in the original and

scaled systems are to be obtained, the complexity of the dynamics of the system

may be resumed to some degree [89, 92, 96, 97]. In general, research indicates that

only the large time-constant modes in the scaled system is considered [92, 95, 98].

From the point of view of these studies, one can claim that a Markovian master

equation for the renormalized system will be sufficient to describe its long-time

behavior [92, 95, 98]. In particular Zheng [97] has pointed out that as the two

dimensional Ising Model relaxes from a random initial state, short-time scaling

in the exchange dynamics are no longer observed.

Studies on the scaling of the equilibrium critical dynamics do not constitute

a comprehensive understanding for the steady state cases of this work.

Finally, studies on non-equilibrium systems, achieved by relaxation type of RG

method, are also reported, for example systems with continuous growth mecha-

nisms [99].

3.3 Our RG Transformation

Our transformation is based on a RSRG scheme to a non-equilibrium system at

a steady state. The original system is regarded as a 4 × 4 lattice with periodic

boundary conditions in order to obtain its probabilities and relaxation rates. By

choosing only the configurations with zero magnetization, the total number of

the possible configurations of the system is reduced to N = 12870 in our calcula-

tions. The original system is transferred into a 2× 2 lattice, again with periodic

boundary conditions. In addition, we assume that for the possible states of the

rescaled system, the total magnetization is also zero. So that this leads to 6

33



renormalized states with zero magnetization. Because of the fact that the block-

spins are constituted from the spins of the original system, the probabilities of the

possible states of these block variables are obtained from the steady state prob-

abilities of the original variables. This condition is also valid for the equilibrium

implementations. Accordingly, the interaction constants of the renormalized lat-

tice are determined in such a way that these probabilities can be produced. The

block-spin transformation used in the RSRG analysis is schematically shown in

Figure 3.4.

Figure 3.4: Block-spin transformation utilized in this study.  and # indicate
the ±1 spins of the two dimensional spin-1/2 Ising model. The parameters of the
original system are transformed into the ones of the rescaled system. Transfer
matrix is denoted by T .

At this point, it is assumed that the renormalized system too obeys Markovian

dynamics as the original one. As shown in Figure 3.5, based on the symmetry

of the 2 × 2 lattice in the presence of the x − y anisotropy, there are only 3

distinct steady-state probability values for the 6 renormalized states. Out of

these 6 configurations of the rescaled system, only 4 distinct values are considered

because of this symmetry. Note that although in the renormalized lattice there

can be next-nearest neighbor and four spin coupling interactions, in our particular

34



Figure 3.5: Possible 6 rescaled states of the renormalized 2 × 2 system with
M ′ = 0. Spin exchange can be accepted only for a single direction for the first
four ordered states. The allowed exchange in (a) and (b) can occur along the
y direction. Similarly, in (c) and (d) exchange can be seen along the x direc-
tion. However, spin exchange along both directions can be observed in (e) and
(f).(Reproduced with kind permission of The European Physical Journal (EPJ)
and Springer Science and Business Media) Copyright c⃝ Springer 2012

case the symmetries of the system do not allow for higher order interactions in a

2× 2 lattice. By means of the detailed balance condition, the form of the steady-

state probabilities which is dependent on the ratio of a pair of such rates may

be defined. Therefore it may be asserted that the renormalized system, together

with the Markovian assumption, is equivalent to a system with exchange dynamics

driven at two different temperatures (defined through detailed balance) in the two

orthogonal directions with isotropic nearest neighbor coupling. As a result of the

fact that the detailed balance condition may be achieved by a variety of spin-

exchange rates, the coupling constants are determined with some arbitrariness

in spite of all the assumptions carried on this procedure. However, one of the

argument on the set of coupling constants obtained by this method is that it

can be considered that the set of coupling constants obtained by this method

corresponds to the result of the re-parametrization of the spin-exchange rates in

terms of the two coupling constants. By using time-constants of the two slowest

decaying modes of the system, the constants that define the time-scales of the

renormalized dynamics are calculated. As a result, some justification is added to

the assumption of Markovian dynamics.

If the corresponding assumptions are omitted and non-Markovian dynamics
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and/or more complicated spin-exchange processes for the block-spins are consid-

ered, then there will be more parameters to the dynamics of the system. However

this is the main condition on the detailed balance if one decides to ignore the de-

tailed balance assumption for the renormalized dynamics. Actually, two more

independent coupling constants and an additional time scale to the dynamics

would also be needed for the designation of additional of eigenvectors (and cor-

responding eigenvalues) of the original system. In order to obtain the recursion

relations between the original and the renormalized systems, this dynamics must

be considered for the original system. However, our studies indicate that these

additional parameters in the dynamics of the system cause a more complex model

and they do not entail any important corrections in our results. It would be dif-

ficult to calculate the faster processes in the original and the scaled systems and

identify the corresponding modes in the those systems. In addition, Zheng in-

dicates that for conserved dynamics in equilibrium, shorter time-scale processes

may best be treated separately for dynamical scaling[97]. In any case, by the

assumption that the form displayed in equations 3.2 and 3.3 are valid for the

renormalized system as well, the complexity in the dynamics is truncated.

RSRG procedure:

First of all, in order to carry out the block spin transformation, a transfor-

mation matrix T with a size 6 × 12870 is constructed. The probabilities of the

states of the original system turns into those of the rescaled system by using the

transfer matrix as

P ′(i) =
∑
j

TijP (j). (3.12)

The original square lattice of 4×4 sites is divided into 4 individual blocks. The

new spin on a site of the rescaled square lattice is produced from each block. The

possible states of the rescaled spins are determined by the sign of the sum of spins

in their conjugated block. In case the sum is equal to zero, the sign of the rescaled

spin is determined based on the constraint that the total magnetization of the

rescaled system is zero. In case of having more than one such possibility, equal
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distribution of the corresponding probability is considered between these possible

states. (This transformation is only valid for the value of the energy coupling

constant J is positive, otherwise this leads to an antiferromagnetic system so

the symmetry of the ordered states cannot be protected.) Conservation of the

probability implies ∑
i

Tij = 1 , (3.13)

for all j. On the other hand, it is expected that a totally random original system

(with equal probabilities P (i)) should map to a totally random renormalized

state. As a result of this situation,
∑

j Tij should be independent of i. This is the

second condition on the constructed transfer matrix. Although in our procedure

the constituted transfer matrix exactly provides the first condition given in the

equation (3.13), the second condition is satisfied approximately, within 0.5%.

The scaled interaction constants, K ′
x and K ′

y and the scaled transition rates

α′
x and α′

y are obtained from the transformation process between the original

system to the rescaled system, in terms of the original values Kx, Ky, αx and αy.

The 2× 2 renormalized system can be calculated easily because of its simple

dynamics. By using the sequence of the states as shown in Figure 3.5, the Liouville

matrix of the renormalized system is defined as

 L′ =



−2Ωy 0 0 0 ωy ωy

0 −2Ωy 0 0 ωy ωy

0 0 −2Ωx 0 ωx ωx

0 0 0 −2Ωx ωx ωx

Ωy Ωy Ωx Ωx −2(ωx + ωy) 0

Ωy Ωy Ωx Ωx 0 −2(ωx + ωy)


(3.14)

where the transition rates may be described in terms of the detailed-balance

condition:
ωx

Ωx

= exp(8K ′
x) and

ωy

Ωy

= exp(8K ′
y). (3.15)

Here the assumption of the periodic boundary conditions in both directions results

in the factor 8.
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In order to achieve the scaled interaction constants, K ′
x and K ′

y, and the ratio

of the scaled transition rates α′
x/α′

y, it is needed to calculate the three largest

eigenvalues and corresponding eigenvectors of the Liouville matrix. The steady

state is determined by the largest eigenvalue λmax = 0. It is possible to obtain

the corresponding eigenvector from the steady state probabilities. The form of

this eigenvector is consistent with the symmetries of the system and defined as

Ψ(0) =



a

a

b

b

c

c


(3.16)

with (
b

c

)
=

(
ωx

Ωx

)
= exp(8K ′

x) (3.17)

and (a
c

)
=

(
ωy

Ωy

)
= exp(8K ′

y). (3.18)

In addition, below the eigenvalues and the eigenvectors corresponding to slowest

relaxation with the same symmetry are defined:

λ1 = −2Ωy with Ψ(1) =



1

−1

0

0

0

0


(3.19)

and

λ2 = −2Ωx with Ψ(2) =



0

0

1

−1

0

0


(3.20)
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Relaxation of magnetization waves in y and x directions are associated with

Ψ(1) and Ψ(2), respectively. By assuming that the transition rates of the rescaled

system obey the form given by equations (3.2) and (3.3), the rescaled parameters

can be calculated from the steady state probabilities and relaxation time which

are to be obtained from the scaling of the 4 × 4 system. Then the rescaled

parameters are defined

K ′
x =

1

8
ln

(
b

c

)
(3.21)

K ′
y =

1

8
ln
(a
c

)
(3.22)

α′
x = −λ2

4

(
b

c
+ 1

)
(3.23)

α′
y = −λ1

4

(a
c

+ 1
)
. (3.24)

Our RG procedure is then as follows: At first the 12870 × 12870 Liouville

operator  L is constructed for the 4 × 4 original system. The eigenvalues λ and

the corresponding eigenvectors Φ of the original system can be computed as

 LΦ(i) = λiΦ
(i). (3.25)

Only three of the eigenmodes (the one corresponding to the steady state proba-

bilities, Φ(0), and those corresponding to the slowest relaxation of the system with

symmetries given in equations (3.19) and (3.20), Φ(1) and Φ(2)) are need to be

calculated. The transfer matrix, T converts the eigenvectors of the original sys-

tem to the ones of the rescaled system as the 12870 states of the original system

transforms into the 6 possible states of the renormalized system. The relation

which converts the steady state probabilities to their rescaled version is given by

Ψ
(0)
i =

∑
j

TijΦ
(0)
j . (3.26)

Note that the parameters used in equations (3.23) and (3.24) include the

eigenvalues λ1 and λ2. All the necessary quantities to get the rescaled parameters

as in equations (3.21)- (3.24) are obtained by this formulation.
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3.4 Results and Conclusion

The critical behavior of the two-temperature spin-1/2 Ising model on a square

lattice is obtained through the RG flows in the space of interaction parameters.

RG flows occurs when the parameters of the original system transform into those

of the renormalized system. RG flows drift into the critical fixed points so the

critical surface is analyzed through the RG flows of the system.

The critical surface and the critical points obtained from the RG flows are

schematically presented in Figure 3.6. The critical surface is designed as a func-

tion of the parameters Kx, Ky, and r, where r = (αx−αy)/(αx + αy). Note that

in order to determine the steady states of the system, the ratio αx/αy must be

considered because time can be scaled arbitrarily. By choosing these parameter

space, one obtains a symmetric system with respect to the simultaneous trans-

formation Kx ←→ Ky and r ←→ −r. In Figure 3.6, only one side of the critical

surface in which the relation between the energy interaction constants are defined

as Kx > Ky, with the corresponding RG flows are shown. Special case r = ±1:

If one of the rates α equals to zero, spin exchanges in the corresponding direction

are obstructed. It means that the total magnetization along the other direction is

conserved. Furthermore in this case, the steady state properties become depen-

dent on the initial condition. At this point, it is assumed that this case may be

substantiated while spin exchanges in both directions occur with finite transition

rates, and while one of them becomes very large, the other stays finite. In this

way, one can avoid the ergodicity problems.

At this limit, there are two interesting special cases:

1st case: ((Ti = ∞, αi = ∞) while (Tj = finite, αj = finite)) Having an infinite

temperature associated with the infinitely fast process of spin exchange in one

direction as spin exchanges occur at finite values of the transition rate under the

effect of a finite temperature in the other direction.

In this case, effective random spin exchanges along the corresponding column

or row appear. Consequently, the system can be exactly solved for the finite

exchange rate in the other direction [68, 67, 75]. In addition, for this condition
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mean-field like critical behavior is expected. This case is indicated as R1 in Fig-

ure 3.6.

2nd case: ((Ti = finite, αi = ∞) while (Tj = ∞, αj = finite)) Having a finite

temperature related to the infinitely fast process while in the other direction there

is an infinite temperature associated with the finite process of the spin exchanges.

As a result of this case, the dynamics of the system leads to the well-known

equilibrium Ising model. The slow process acts to randomize the magnetization

of the fast columns or rows. Note that due to the fact that the equilibrium con-

dition is associated with equal magnetization of rows and columns, this posture

is also obtained in the corresponding random process. Consequently at this limit

equilibrium type behavior appears. The critical point for this case is shown as

R2 in Figure 3.6. Note that the RG flow from R2 is conjectured to extend into

the equilibrium fixed point.

According to the limitations of our numerical calculations, the RG transfor-

mation cannot be carried out for very small or very large values of α. However for

the r = ±1 cases, extrapolation method is used for the calculations at r ≈ ±0.82,

for which (αx/αy)
±1 = 0.1.

Before all else, we would like to present the known or previously studied points

about this system. As mentioned, at the limit where the two temperatures Tx

and Ty are equal, system turns into the equilibrium Ising model. Again for this

limit, the critical behavior is independent of αx and αy. The critical coupling

constant of the two-dimensional Ising model in equilibrium was exactly obtained

by Onsager as Ko = J/kBTo = 0.4407... [1].

In addition Præstgaard et al. analyzed this system in the case of αx = αy and

Kx = 0; as a function of Ky [48]. Their study indicates that the corresponding

critical point of this situation, shown as KP in Figure 3.6, was determined by

KP = 0.322 = 0.732Ko.

Moreover Krug et al. investigated this system at the limit in which αx/αy = 0
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Figure 3.6: A schematic drawing of the critical surface of the system. C and E
indicate the fixed points for the steady-state and the equilibrium, respectively.
R1, R2 and P denote the critical points for certain limits. Thick lines indicate the
RG flows. Thin lines refer to the cross sections at certain values of the variable r.
Surface S (at Kx = Ky) corresponds to the first-order phase transition between
the ordered states at low temperatures. (Reproduced with kind permission of
The European Physical Journal (EPJ) and Springer Science and Business Media)
Copyright c⃝ Springer 2012
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Figure 3.7: The phase diagram for various values of the parameter r. P represents
the disordered paramagnetic phase, while O1 and O2 are the two symmetric
ordered phases separated from one another by the first order transition line at
the upper right corner. The inner most phase boundary is the result of Monte
Carlo work reported [2] for r = 0. The diagram and the inset are further explained
in the text. (Reproduced with kind permission of The European Physical Journal
(EPJ) and Springer Science and Business Media) Copyright c⃝ Springer 2012
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and Ky = 0 [68]. Based on this search, for the type of exchange we are using, the

exact value of the critical coupling, defined as KR1 in Figure 3.6, is reported by

Sanli as KR1 = 0.59Ko [75].

As described in detail above, when Ky = 0 and r = 1, for Kx, the critical

coupling value, indicated as KR2 in Figure 3.6, is expected to be equal to the

Onsager critical point Ko.

We would like to remind that our transformation depends on the three largest

eigenvalues and the corresponding eigenvectors of the Liouville matrix. By using

the calculations in the long time scaling regime, the dynamical critical exponent

of the system is obtained in this regime. While the field theoretic RG method

using the ϵ-expansion yields the critical exponents η = (4/243)ϵ2, ν = (1/2) +

(1/12)ϵ + O(ϵ2), dynamical scaling relations imply z = 4 − η for the steady

state fixed point [48]. Furthermore according to a study on the two temperature

lattice gas using Monte Carlo simulation, the findings are consistent with these

theoretical results and the critical exponents are given as ν = 0.60(5), η = 0.20(8),

β = 0.33(6) and γ = 1.08(8) [47]. This suggests that the dynamical critical

exponent is approximately z ≈ 3.80.

We will now presents the results of our calculations: The equilibrium critical

point indicated by E in Figure 3.6 has a value of KE = 0.8789. The reason of

this high value is analyzed and it is found that the conserved order parameter

dynamics cause strong finite size effects. Apart from that, the values of the other

critical points are calculated as KP = 0.73KE, KR1 = 0.68KE and KR2 = 0.83KE.

An illustration of the full RG flow is presented in Figure 3.6. As mentioned in

detail above, the flow has the symmetry (Kx ←→ Ky and r ←→ −r). Although

at the limit in which αx/αy = 1, system reaches its equilibrium state at the

point Kx = Ky = KE, RG flows extend into the steady state fixed point of the

system from the equilibrium state for the αx/αy ̸= 1 limits. The corresponding

steady state fixed point of the non-equilibrium phase transition is indicated as C

in Figure 3.6 with rC = 0.099, KCx = 0.791, KCy = 0.693. The new universality

class of the non-equilibrium transition of the system is a result of this fixed point.

There is a certain difference between this unfamiliar universality class and the
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equilibrium universality class associated with fixed point E. The values of the

correlation length exponent ν is obtained from the eigenvalues of the linearized

transformation around the fixed points for both universality classes. It is also

reported in this study that the values of the exponent λc corresponding to the

critical crossover from the equilibrium to the steady state and the time-scale

exponent z = log2(α/α
′) for these fixed points.

The phase diagram for different values of r are presented in Figure 3.7. We

would like to point out that in Figure 3.7 the coupling constants have been scaled

by the equilibrium critical coupling. The filled points indicate the intersections of

the critical RG trajectories and the planes of the critical surface for a particular r.

(Because of the inaccuracies in estimating the path of the trajectory from recur-

sion points, there are few irregularities at point positions.) The Bezier smoothed

fits to these points are denoted by the corresponding lines. Extrapolations to

values on the axes are given by the dashed extensions to the lines indicated as

the open circles. The inset in Figure 3.7 shows these extrapolated values on the

Ky axis. Estimated critical values of Ky when Kx = 0 at r = −1 and r = +1 are

obtained from this plot and reported in Table 3.1. There is a slight variation in

the phase diagram with respect to the relative exchange time scales in the x and

y directions.

If the results of our method are analyzed, most important flaw will be con-

sidered as the large values of the obtained equilibrium critical point KE and the

corresponding correlation length exponent ν. As mentioned, due to the very

strong finite-size effects associated with conserved dynamics in the original and

the scaled lattices, this flaw occurs. (Especially one can observe the effects of the

conserved dynamics for a 4× 4 system by calculating the point at which specific

heat forms a peak. The exact solution of such a calculation shows that for the

system with conserved order parameter, the peak of the specific heat occurs at

approximately K = 2.6 whereas it appears at approximately K = 1.5 for the

non-conserved system.) It is understood that the dynamical critical exponents,

which are obtained from the ratios of the time scales associated with the original
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Table 3.1: Quantitative results for various phase transition points studied in this
work. Results from other studies are also included for comparison. Critical points
P , R1, and R2 belong to steady state, mean-field, and equilibrium universality
classes respectively. (Reproduced with kind permission of The European Physical
Journal (EPJ) and Springer Science and Business Media) Copyright c⃝ Springer
2012
Phase Point (Kx, Ky, r) Quantity This work Previous Studies

Steady state C:(0.791, 0.693, 0.099)
ν 0.65 0.60(5) [47]
z 3.1 ≈ 3.80 [48, 47]

Equilibrium E:(KE , KE , 1)

KE 0.8789 Ko = 0.4407.. [1]
ν 1.74 1 (exact)
z 3.72 3.75 [4, 5]
λc 0.36 —–

P (KP , 0 , 0 ) KP 0.73KE 0.732Ko [48]

R1 (KR1, 0 , −1) KR1 0.68KE 0.59Ko [75]

R2 (KR2, 0 , 1 ) KR2 0.83KE Ko (our conjecture)

and renormalized lattices, is considerably accurate. The reason for this situation

is the fact that these time scales change very slowly for each of the lattices, and

that the ratio is relatively insensitive to the precise value of the fixed point param-

eters. The finite size effects in our calculations can be regarded as a systematic

inaccuracy because the very atypical phase diagram of the system in Figure 3.7,

obtained when all interactions are scaled by the critical equilibrium coupling,

is a strong evidence of this argument. One can also notice that our results in

Figure 3.7 are very consistent with previous Monte Carlo studies.

In conclusion, global phase diagram of the system is reported with a variety of

the critical points of the system. In addition, the obtained values of these critical

points are presented with the corresponding values of the interrelated previous

studies. It is observed that the crossover of critical behavior from equilibrium

to steady state appears for the values of the temperatures Tx and Ty close to

each other. The value of λc we report can be compared with the ones might be

obtained from Monte Carlo studies in this regime.

Note that in the Appendix A, comparable results of the same system, this

time with non-conserved dynamics, are presented.
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3.5 Discussion on the Suitability of Proposed

Transformation

Since this study is the first work on the full phase diagram of the two-finite tem-

perature Ising model with conserved order parameter and also the first attempt to

use a real space renormalization group transformation for this anisotropic model,

we would like to discuss at this point the validity of the suggested procedure. In

general, it is suitable to use a RSRG method for the isotropic systems. To un-

derstand the nature of using a RSRG method for the non-equilibrium systems of

which the characteristic length scales in the x and y directions scale with different

exponents, a brief discussion of the availability of this technique is presented.

In our transformations, new block-spins which have a distance a factor b = 2

larger than the distance between the original spins are constructed. Furthermore

the probabilities of the possible states of the rescaled system is also determined

in accordance with the steady state probabilities of the original spin configura-

tions. Consequently, the new system precisely harmonizes to one in which the

characteristic distances (such as the correlation lengths) have been reduced by a

factor b = 2. Especially, infinite (or zero) correlation length systems turn again

into infinite (or zero) correlation length systems. It is eventually observed that

the critical points certainly flow into fixed points. So that the phase diagram of

the system can be determined by this method as usual.

However, one can encounter a limitation for the determination of the cor-

relation length exponent. As mentioned in Chapter 1, the scaling relation for

correlation length is defined as ξ(t)/b = ξ(tbλt) and its behavior at the critical

point is given by ξ(t) ∼ t−ν . As a result of these scaling laws, a unique correlation

length exponent is obtained as ν = 1/λt. Here, the variable t indicates the small

deviation from criticality. This exponent is independent of the direction. Because

of this limitation of our method, we cannot report any anisotropy in this expo-

nent. In our study, the value corresponding to 1/λt is presented. In addition, in

spite of using the linearization of the RG transformation, the dynamical critical

exponent z is obtained from the comparison of the time scales of the original and
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renormalized systems at a fixed point.

Keeping a certain aspect ratio for finite lattices may be necessary for data

collapse in studies of finite size scaling, where one is explicitly studying the in-

terplay between the correlation length and the system size. The RG procedure,

on the other hand, uses block sizes which are explicitly less than the correlation

length, especially near critical points where the theory is so successful.

It is true that the fixed point (isotropic or anisotropic) is scale invariant, but

this does not mean that the anisotropic system cannot be analyzed by an RG

transformation that has equal scaling factors for the two directions. Quantita-

tively, for a symmetric transformation such as ours, one has for the correlation

function:

G

(
x

Lx

,
y

Ly

)
transforms to G

(
x

Lx/b
,

y

Ly/b

)
,

with Lx and Ly correlation lengths and b the scaling factor. Quite obviously,

infinite (zero) correlation lengths will scale into infinite (zero) correlation lengths

and therefore critical couplings will transform into critical couplings. The RG

flow on the critical surface will be different from a transformation that would use

unequal scaling factors, but that is to be expected. As long as critical couplings

transform into other critical couplings, the phase diagram may be obtained, and

that is what we claim to do. The anisotropic fixed points are (admittedly im-

portant) special points on the phase diagram, which we discuss below, but the

production of the phase diagram depends solely on the property that critical

couplings transform into critical couplings.

Now, near a fixed point, the correlation lengths scale as

Lx(t)

b
∼ Lx(bλxt) and Ly/b ∼ Ly(bλyt),

equal to
1

btεx
∼ 1

(tbλx)εx
and

1

btεy
∼ 1

(tbλy)εy
,

for a small deviation t (of the relevant variable) from the fixed point; λx and

λy are the corresponding eigenvalues, with εx and εy the unequal, anisotropic

exponents (equal to minus the correlation length exponent “ν”). To preserve the
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scaling form one needs to have

εx = − 1

λx

and εy = − 1

λy

.

Since the transformation in the x and y directions is coupled, one cannot

determine the exponents λx and λy, so that the anisotropic correlation length

exponents εx and εy cannot be determined.

In addition, one may suggest a transformation which accomplishes

Lx, Ly transforms to
Lx

b
,
Ly

bD
,

with D chosen such that

Lx(t)

b
∼ Lx(bλxt) as before, but

Ly(t)

bD
∼ Lx(bλxt)

equal to
1

tεxb
∼ 1

(bλxt)εx
as before, and

1

(bDtεy)
∼ 1

(bλxt)εy
.

This leads to D = λx/λy, as well as εx = −1/λx and εy = −1/λy as before.

This is formally an equivalent, another form of scaling. The eigenvalues λx and λy

are still not accessible, so neither is D, and the procedure cannot be carried out.

This form of scaling may be favored because it leads to single relevant scaling

(bλxt) in both x and y directions. The question is whether this is a requirement.

Our ability to scale the relevant variable by different values (bλx in the x direction

and bλy in the y direction) is a consequence of the group property of scaling

an anisotropic system. Indeed the suggested scaling is also consistent with this

property:

• Suggested form:

Lx(t)

b
,
Ly(t)

bD
⇒ Lx(bλxt) , Ly(b

λyt),

equivalently this form corresponds to

Lx(t)

b1/D
,
Ly(t)

b
⇒ Lx(bλyt) , Ly(b

λyt).

scaling only in x direction:

Lx(t)

b
,
Ly(t)

b0
⇒ Lx(bλxt) , Ly(b

0t).
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• Our scaling:
Lx(t)

b
,
Ly(t)

b
⇒ Lx(bλxt) , Ly(b

λyt).

• General group property:

Lx(t)

bp
,
Ly(t)

bq
⇒ Lx(bpλxt) , Ly(b

qλyt).

So formally, all of these forms of scaling are valid.

We further point out that it should in principle be possible to construct a

position space RG transformation so that the length scaling is carried out first in

one direction, and then in the other, so that the effects of scaling in different di-

rections would be apparent. In particular, the linearization of the transformation

near a fixed point would be the successive application of two linear operations,

each corresponding to the scaling operations in different directions. Eigenvalues of

these operators would then lead to different scaling exponents for the correlations

in different directions.

Briefly, an RG transformation with equal scaling factors in both directions

could even yield the anisotropic correlation function eigenvalues εx and εy, if

scaling in the x and y directions could be uncoupled. Consider the following RG

scheme:

• We first scale in the x direction by a factor b:

(Kx, Ky) transforms to (R(Kx, Ky), Ky),

(Note that Lx transforms to Lx/b , Ly is unchanged.)

• Then scale in the y direction by the same factor b:

(K ′
x, Ky) transforms to (K ′

x, R(Ky, K
′
x)),

(Note that this time Lx is unchanged, Ly transforms to Ly/b.)

This pair is then equivalent to our transformation. Now one can, in principle,

find the exponents εx and εy because λx can be obtained from a linearization of

the first transformation at the fixed point, and λy from the second. So, isotropic
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scaling can, in principle, provide even the anisotropic exponents! Our transfor-

mation, being equivalent to the combination of the above transformations, would

yield upon linearization, the sum of the linearized versions of the above transfor-

mations.

In other words, our transformation corresponds to the product of these two

operations, and our eigenvalues are those of the sum of the above two linearized

operators. Therefore, we cannot extract the eigenvalues corresponding to the

anisotropic exponents. Our RG trajectories nevertheless, follow those of the

combined scaling transformation. Although this two-step RG procedure would

be possible in principle, we feel that the errors that would be introduced through

various approximations in such a procedure might be prohibitive in practice.
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Chapter 4

A Monte Carlo Study on the

Steady State Phase Transitions of

the Eight-Vertex Model with

Conserved Order Dynamics

Non-equilibrium phase transitions of the eight-vertex model is studied through

Monte Carlo simulations. The non-equilibrium eight-vertex model is treated as

a two interlacing two-dimensional spin-1/2 Ising models on square lattices. The

dynamics of the system is taken to be driven by spin exchanges within the sub-

lattices, each in contact with a different thermal bath. In this study, thermal

baths are considered as one of them with infinite temperature while the other has

a finite value. By the means of four independent Monte Carlo simulations, each

with 60 × 106 Monte Carlo steps, the critical behavior of this non-equilibrium

system is investigated.

We would like to point out that it is observed in many studies on the critical

behavior of the non-equilibrium systems with conserved anisotropic dynamics (for

driven lattices [49, 72, 73, 76] and two-temperature Ising model [47, 48, 67, 68, 74])

that for the finite-size scaling, the anisotropic scaling is an important condition.
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In addition, in the first study of this thesis (chapter 4), it is also understood that

this scaling condition plays an essential role on the analysis of a non-equilibrium

system. To avoid the complication related to this condition, it is proposed that

one can consider to choose different dynamics not in different directions but on

different sublattices. For this purpose, one may suggest to choose the eight-vertex

model which is non-universal in equilibrium.

At 1971, R.J. Baxter first introduced the exact solution of the “zero-field”

eight vertex model in equilibrium [100]. This was a very important study in the

field of phase transitions because with this study, the concept of the universality

is considered to gain a completely new perceptive for the critical phenomena. It

is understood by the exact calculations of the free energy of this model that static

critical phenomena does not have universality property [100]. It is observed that

the critical exponents depend on the energy interactions of the system.

It is therefore of interest to investigate the criticality (and hence the uni-

versality) of the non-equilibrium properties of the eight-vertex model near its

non-universal equilibrium critical points.

4.1 The Model

The Hamiltonian of the eight-vertex model on a square lattice with periodic

boundary conditions in equilibrium is defined as

H = − H

kBT
=

L∑
i=1

L∑
j=1

[K(si,jsi+1,j+1 + si+1,jsi,j+1) + Q(si,jsi+1,jsi,j+1si+1,j+1)] ,

(4.1)

where the next-nearest coupling constant and the four-spin coupling constant is

denoted by the energy coefficients K and Q, respectively. Here, spin variables si,j

can take values ±1 and kB is the Boltzmann constant. If the four spin coupling

Q connects the Ising lattices to each other is zero, then the corresponding Ising

lattices of the system separate and become two independent Ising models. The

critical line on the K − Q plane introduced by R. J. Baxter in order to obtain
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the phase transitions of this system defined by

Kc = B(Q) =
1

2
ln[e−2Q +

√
1 + e−4Q]. (4.2)

The non-universal static critical exponents ν and β are defined as a function of

Q,

υ =
π

2µ
and β =

π

16µ
where cosµ = tanh 2Q. (4.3)

In addition, the critical exponent α is associated with the four spin coupling

constant Q as

sin
πα

4(1− α
2
)

= tanh 2Q. (4.4)

In this study, the non-equilibrium critical dynamics of the eight-vertex model

with Kawasaki dynamics is investigated by Monte Carlo simulations. Periodic

boundary conditions were assumed for the system. In general the studied system

is constructed by two interpenetrating spin-1/2 Ising models on square lattices,

each in contact with a heat bath at a different temperature, which are interacting

through an inter-sublattice coupling. Spin exchanges within the sublattices define

the dynamics of the non-equilibrium system. To observe a second order phase

transition, the magnetization of both sublattices are set to zero. Two different

effective temperatures (one of them infinite; T2 =∞) on the system are imposed

to define the dynamics of the system. When a spin exchange occurs in one of

the sublattices, this take place with a dynamics associated with the temperature

related to the corresponding sublattice.

Implementation of the detailed balance for exchanges in each sublattice is

achieved by using

H1 = − H

kBT1

= K1

N∑
⟨ij⟩

sisj + Q1

N∑
⟨ijmn⟩

sisjσmσn , (4.5)

for exchanges in the sublattice-1, and

H2 = − H

kBT2

= K2

N∑
⟨ij⟩

σiσj + Q2

N∑
⟨ijmn⟩

sisjσmσn , (4.6)

for exchanges in the sublattice-2, where ⟨ij⟩ and ⟨mn⟩ indicate sums over nearest

neighbor pairs of sites in the two sublattices and ⟨ijmn⟩ denotes sum over all
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Figure 4.1: An illustration for the two spin-1/2 Ising model sublattices connected
to each other with a four spin coupling constant Q shown in the plaquette. The
spin sites denoted by N and ◦ belong to the two sublattices.

spin quads on a plaquette as indicated in Figure 4.1. Here, variables si and σm

represent the spins in the first and second sublattices respectively. The values of

these variables can be ±1. In addition kB is the Boltzmann constant. The nearest

neighbor and the four spin coupling constants are denoted by the coefficients Ki

and Qi. These constants are dependent on the temperature of the heat bath in

contact with that sublattice:

Ki =
J

kBTi

and Qi =
Jq

kBTi

(4.7)

where Jq indicates the inter-sublattice coupling constant and J is the sublattice

nearest neighbor energy interaction constant.

When the effective temperatures of the two sublattices are equal, i.e., T1 = T2,

this leads the coupling constants to be equal, K = K1 = K2 and Q = Q1 = Q2.

Therefore, at this “Baxter” limit, system is in equilibrium and the exact solution

is known [100]. Besides, to consider the value of the temperature T2 as infinite,

indicates that the values of the nearest neighbor coupling constant K2 and the

four spin coupling constant Q2 are zero as well. As a result of this, spin exchanges

occur randomly on the second sublattice.
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4.2 Monte Carlo Simulations

In this study, the system has been investigated for spin exchanges by using the

standard Monte Carlo (MC) simulations (Metropolis [101]) for spin exchanges.

To perform this procedure, a configuration change at a randomly selected site

consistent with the assumed dynamics of the system is chosen. The corresponding

spin exchange is carried out directly if the final configuration of the system has a

lower energy than its initial state (∆Hi > 0). Contrarily, this exchange depends

on a probability exp[−∆Hi] (Metropolis [101]) where ∆Hi is the increase in the

appropriate quantity given in the equations (4.5)or (4.6). Time parameter is

measured by Monte Carlo steps (MCS). N2 spin exchange attempts define one

MCS, so that the time parameter does not depend on the system size N .

To construct the system, the two N × N size sublattices with randomly dis-

tributed spins and zero magnetization are used. The probabilities of the spin

exchanges within the two sublattices are equal (P1 = P2 = 0.5). In addition, as

mentioned before, to observe a second order phase transition, the total magne-

tization of these sublattices are set at zero, m1 = m2 = 0. This leads to equal

number of spins in these sublattices, N1 = N2.

We repeat this procedure for 60× 106 MCS in each independent 4 runs. The

energies E1 and E2 of the two sublattices are accumulated and recorded every

10 MCS after the first 100 MCS. Note that the reason of the 4 independent runs

is to control the system for the possibility of reaching a frozen state. Then, the

“energy” fluctuation per spin corresponds to

Cv

kB
= (⟨E2⟩ − (⟨E⟩)2)/N2. (4.8)

where E is the spin product
∑

⟨ij⟩ sisj for the sublattice-1 at finite temperature.

We would like to point out that the sums that involve the spins σ (which exchange

randomly due to their contact with the infinite temperature heat bath) lead to

correlations consistent with totaly random variables. We will adopt the terminol-

ogy “specific heat” to indicate this fluctuation although this term is mainly used

in equilibrium systems. For different system sizes (N = 32, 40, 80, 100), these

energy fluctuations are measured. In order to investigate the critical exponent
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associated with the correlation length exponent ν, the standard procedure of fi-

nite size scaling (FSS), formulated by Fisher [102, 103, 104], is applied. This

procedure produces a relation given in the equation 1.26 for energy fluctuations

C̃v(t, N) = b2λ−dC̃v(b
λt,

N

b
), (4.9)

where the reduced temperature t is defined as t = (K −Kc)/Kc and λ = 1/ν =

1/yt. Here, for b = N the associated collapse of this scaling relation is determined

by

C̃v(t, N)

N2λ−d
∼ C̃v(N

λt, 1). (4.10)

For this system, the dimension d is equal to 2. In order to calculate the singular

part of the specific heat C̃v in the equation (4.9), a constant term “g” need to be

subtracted from Cv in the equation (4.8). In principle, one expects to observe a

collapse of all data on a single curve near the critical point in a plot of C̃v/N
2λ−d

versus Nλt based on the scaling form given the equation (4.10). It is to say that

this functional relation of the scaling must be independent of system size.

Jq 0 0.1 0.2 0.3 0.4 0.5

Kc 0.44 0.45 0.46 0.49 0.53 0.59

Table 4.1: Critical temperature Kc values for different Jq values.

Second order phase transitions correspond to the peak points of the specific

heat on scaling plots. Collapse of data on these plots are evidence of divergence

of fluctuations as N →∞. This leads to the identification of critical points and

exponents through MC simulations. The corresponding data collapses of our MC

simulations for different values of the inter-sublattice coupling constant Jq of the

system are shown in Figure 4.2. These best collapses correspond to a value of

the critical exponent equal to λ = 1.00 ± 0.03. In Table 4.1, the corresponding

critical points are reported with the related inter-sublattice constants. In this

work, contrary to the model studied by Præstgaard et al. [48], an increase in Tc

is not observed as coupling to the T =∞ lattice becomes stronger.
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Figure 4.2: Finite-size scaling plot of C̃v/N
2λ−d versus Nλt for different val-

ues of Jq. The best collapse obtained from the adjustable parameters Kc, λ
and g are indicated by the solid lines. Symbols are as follows: N =
32(•), 40(�), 80(�), 100(H).
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4.3 Data Collapse

In order to investigate the critical properties of the non-equilibrium eight vertex

model, the obtained data from MC simulations is analyzed through finite-size

scaling. After the FSS process near the critical point one can observe that the

plot of the specific heat shows a data collapse independent of the system size.

Therefore, the critical exponent λ can be determined from the divergence behav-

ior of this rescaled data. As mentioned, there are three adjustable parameters

(Kc, λ, g) for the best collapse of our data. Various collapses can be achieved by

using different values of these parameters. To obtain the best fit of our data, our

procedure is as described below:

• STEP-1: Monte Carlo Simulations:

As mentioned in the previous section, for a particular value of Jq, MC

simulations are carried out for different values of the coupling constant K1

of the sublattice-1 while K2 = 0. The specific heat C̃v of the system with

a particular value of Jq is obtained as function of the coupling constant K1

for different system sizes such as N = 32, 40, 80, 100. (In each plot of the

specific heat there are 20 data points from different values of K1.)

• STEP-2: Error Analysis:

– In order to calculate the possible error of a MC simulation, indepen-

dent samples of the quantity we are calculating (C̃v) are accumulated

from the corresponding Monte Carlo process. The particular MC sim-

ulation is divided into the independent samples of the data sets by

using a time scale much larger than the correlation time of the sys-

tem (t≫ τ). Note that the total number of the independent samples

increases by a factor of 4 since for every value of the coupling con-

stants, 4 independent runs were carried out in this work. The number

of independent samples that can be obtained from the MC simulations

depend on the temperature. For different values of the coupling con-

stant K1 in the plot of C̃v, the correlation times vary from 6000MCS
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to 10000 MCS for higher temperatures (the disordered phase). In con-

trast, for the lowest temperatures in our simulations, our run time of

60 × 106 MCS barely covers the corresponding correlation times. As

a result, there are only 4 independent measurements for the lowest

temperatures. This is a result of the slowing down of the system.

– After the determination of the correlation time of the specific heat C̃v

for each value of K1, numbers of independent samples are obtained as

m = T/t where T = 60× 106 MCS and t≫ τ .

– The error bars of the obtained data points are calculated by dividing

the standard deviation of the corresponding independent samples to

the square root of the total number of those samples, as ∆C̃v√
m

. In

each graph of Figure 4.2, error bars obtained from this analysis are

only presented for N = 100 system size. The error bars for N < 100

lattices are smaller than the sizes of the points in Figure 4.2.

• STEP-3: Spline Interpolation:

An error measurement ε is needed to evaluate the goodness of the data

collapse obtained from the adjustable parameters (Kc, λ, g) in the FSS pro-

cess. For this purpose, spline fitting is used to get the corresponding error

measurement ε to determine the best set of these parameters which pro-

vide the minimum error. The spline curve fitted to all scaled data points is

also drawn in Figure 4.2. Appendix B presents all the details of the spline

interpolation procedure.

In this study, 80 data points (20 spots from each plot of the specific heat

for a particular system size) are obtained from the FSS process. These data

are partitioned into 10 intervals so that there will be 8 data points in each

of them. Due to the fact that the goodness of the finite size scaling depends

on the values near the critical point, out of the 80 data points of the specific

heat only the central 40 of them (contained in the 5 central intervals) are

taken into account.

To calculate the error ε of the FSS process, the mean squared deviation

between the rescaled data-set and the created curve spline is considered. In
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order to obtain the minimum error for each particular value of the param-

eter λ, optimum values of the parameter g are analyzed. These values are

presented in Table 4.2.

It is observed that the scaling Cv/N
2λ−d shows logarithmic behavior (even

though through a non-uniform limit) as Cv/ lnN as λ approaches 1. The change

in parameter g is also consistent with the corresponding behavior as λ → 1, as

shown in Table 4.2. Due to this reason, when a logarithmic scaling is used the

corresponding g value is quite different from the limiting forms when λ ̸= 1. This

situation can be seen in Figure 4.3. Minimum errors corresponding to values of

λ in Table 4.2 reach minimal values at λ = 1, as indicated in Figure 4.4. The

obtained trend line equations for (λ < 1) and (λ > 1) cases, and the intersection

points of these lines are given in Table 4.3. The possible variation in λ-coordinate

of intersection of the trend lines as shown in Figure 4.4 results in an uncertainty

in our calculation of λ. This uncertainty is relatively small. The estimated value

of the critical exponent λ is 1.00± 0.03.

4.4 Results and Conclusion

This study indicates that for all values of Jq, as a result of the finite-size scal-

ing, the best fit of specific heat curves of the system arises at λ = 1.00 ± 0.03.

The resulting curves are presented in Figure 4.2. In addition, a second order

phase transition occurs at lower temperatures as the sublattices of the system

are coupled to each other by a larger inter-sublattice coupling Jq, as presented in

Table 4.1.

However while the phase transitions for different values of Jq occur at dif-

ferent critical temperatures, the corresponding critical exponents are the same.

These results for the non-equilibrium eight-vertex model with Kawasaki dynam-

ics in contact with different heat baths (one of them at infinite temperature) are

consistent with the equilibrium Ising universality class.

In conclusion, to the best of our knowledge, this is the first study that indicates
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a strong evidence of the existence of the universality in the two-temperature eight

vertex model with one temperature is infinite.
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Chapter 5

Further Considerations: Full

Phase Diagram of the

Non-Equilibrium Eight-Vertex

Model with Conserved Order

Dynamics

Our study of the non-equilibrium transitions described in the previous chapter

considered a system in which one of the heat bath temperatures was infinitely

large. This case therefore corresponds to a system quite far from equilibrium.

In this chapter, ongoing research on systems which have small deviations

from the equilibrium Baxter critical points. Since these critical points do not

display universality in exponents, it is an important question whether this non-

universality survives into the nearby non-equilibrium regime. Some of the basic

points mentioned in the previous chapter will be repeated to make this section

self-contained.

Two different non-equilibrium regions around the critical Baxter line were

probed:
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First Case: Changing only the temperature T2 in contact with sublattice-2,

while the other temperature is kept fixed at a Baxter critical value. (Hereafter

referred to as “single temperature variation”.)

Second Case: Changing the temperatures T1 and T2 of both thermal baths

symmetrically with respect to a Baxter critical temperature. (Hereafter referred

to as “two temperature variation”.)

5.1 The Model

Again, non-equilibrium properties of the eight-vertex model, constructed by con-

necting two different Ising lattices with a four spin interaction, are investigated

with Monte Carlo simulations. The system is driven to non-equilibrium steady

states by putting the Ising lattices in contact with two different heat baths. Phase

transitions and the critical exponents are obtained for different temperature lim-

its. Spin exchanges within sublattices occur at different finite temperatures T1

and T2 in the non-equilibrium system. To examine the phase transitions, total

magnetization in each sublattice is taken as zero.

The Hamiltonian of the system is defined as

H = J
N∑
⟨ij⟩

sisj + J
N∑

⟨i′j′⟩

σi′σj′ + Jq

N∑
⟨iji′j′⟩

sisjσi′σj′ , (5.1)

where ⟨ij⟩ and ⟨i′j′⟩ denote sums over nearest neighbor pairs of sites in the two

sublattices and ⟨iji′j′⟩ indicates sum over all spin quads on a unit square as

indicated in the Figure 4.1. Here, kB is the Boltzmann constant and variables si

and σi denote the spins in sublattices 1 and 2 respectively. In this equation, J

is the sublattice energy interaction constant between the nearest neighbors and

Jq is the inter-sublattice coupling constant. Then, the unitless energy parameter

can be written as

Ẽ =
< E >

J
=

N∑
⟨ij⟩

sisj +
N∑

⟨i′j′⟩

σi′σj′ + (
Jq

J
)

N∑
⟨iji′j′⟩

sisjσi′σj′ . (5.2)
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The nearest neighbor and four spin coupling constants of the system are intro-

duced as

Ki =
J

kBTi

and Qi =
Jq

kBTi

(5.3)

where i denotes the corresponding sublattice. In order to decrease the number

of parameters of the system, we need to define a parameter “α” between the

effective temperatures T1 and T2 using

α =
T1

T2

, (5.4)

so that the relations between the coefficients of the system are defined as

K2 = αK1 and Q2 = αQ1. (5.5)

According to these relations, K1, Q1 and α are the parameters of the phase space

of the system.

Again, the fluctuations of the unitless energy parameter Ẽ are considered:

C̃ = (< Ẽ2 > − < Ẽ >2). (5.6)

For an equilibrium system the specific heat would be given by Cv = J2

(kBT 2)
C̃.

As in mentioned in the previous section, energy fluctuations of the system are

obtained by Monte Carlo simulations with the same procedure.

We consider two cases corresponding to possible values of the parameters.

Note that the system is in equilibrium (T1 = T2) at α = 1 and for this limit,

R.J. Baxter [100] determined a critical line as a function of four spin coupling

constant, shown in equation (4.2). We examine the phase space (K1, Q1, α) of

the system for certain conditions.

• Single Temperature Variation: A point is chosen on the critical Baxter

line. The values of the parameters of four spin coupling constant Q1 and energy

interaction constant K1 are determined as Q1 = Qc and K1 = Kc = B(Q1) where

B is the function of the critical Baxter line, given in equation (4.2). Here, Kc

and Qc are the chosen critical point of equilibrium eight-vertex model. Then, the

phase transitions for 0 < α < 2 are investigated as shown in the Figure 5.1. It
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Figure 5.1: An illustration of the phase space of the non-equilibrium eight-vertex
model. In the first case of our study, phase transitions are examined along the
direction of the dotted line F1. The solid line represents the critical Baxter line
(K1 = B(Q1)) in equilibrium and “c” denotes a critical point on this line.

should be remembered that the energy constants K2 and Q2 of the other sublattice

are functions of K1, Q1 and α.

• Two Temperature Variation: In this case, two different points pro-

portional to a critical point on the critical Baxter line are assigned as shown

in the Figure 5.2. Spin exchanges occur at sublattice-1 with energy constants

K1 = δB(Qc) and Q1 = δQc. Similarly for sublattice-2, dynamics of the sys-

tem change with energy constants K2 = B(Qc)/δ and Q2 = Qc/δ. This leads

to K2 = K1/δ
2 and Q2 = Q1/δ

2. Here, the ratio parameter δ is defined as

δ =
√

1/α =
√
T2/T1.

Results of our calculations seem to imply that line F1 is part of the critical

surface, and F2 is perpendicular to it, as shown in Figures 5.1 and 5.2.
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Figure 5.2: An illustration for the second case of our study, phase transitions
are examined along the direction of the dotted line F2, which does not lie on the
α = 1 surface, but crosses it at point “c”. The solid line represents the critical
Baxter line in equilibrium and “c” denotes a critical point on this line.

5.2 Preliminary Results

5.2.1 Single Temperature Variation:

(Q1 = Qc, K1 = B(Q1)) and (Q2 = αQ1, K2 = αK1)

As discussed in the previous section, the energy interaction constant K1 is

determined as K1 = B(Q1) where the corresponding four spin coupling constant

Q1 is equal to Qc. Hence, a particular critical point on the equilibrium Baxter

critical line is chosen. Other parameters (K2 and Q2) can be obtained from the

value of the temperature ratio α. It is shown in Figure 5.3 that the singularity

in the energy fluctuations of the system occurs at non-equilibrium limits (α ̸= 1)

for different system sizes. The solid line in each graph denotes the equilibrium

condition (T1 = T2) of the system.

To investigate the criticality of the system, correction to scaling defined from

the concept of the renormalization group theory is carried out as

Cv(N) ≈ aNλ

[
1 +

b

N

]
. (5.7)
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Figure 5.3: Plot of Ĉ versus α for different four spin coupling constant Q1 = QcB.
Symbols are as follows: N = 32(•), 64(�), 96(�), 128(N). Along the solid line,
equilibrium phase transitions occur.
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α = T1/T2 a b λ
0.1 20.63 0.09 0.003
0.2 21.80 −0.32 −0.003
0.3 23.05 −0.64 −0.008
0.4 22.99 −0.25 −0.001
0.5 23.82 −0.20 0.002
0.6 27.35 −1.15 −0.012
0.7 28.81 −1.03 −0.004
0.8 28.71 −0.41 0.027
0.9 15.86 5.38 0.020
1.0 0.36 62.78 1.108
1.1 2.99 −11.69 1.129
1.2 24.75 −17.22 0.911
1.3 58.21 −17.36 0.772
1.4 27.65 −11.85 0.837
1.5 8.95 0.41 0.964
1.6 0.68 25.30 1.443
1.7 0.26 61.08 1.564
1.8 0.22 61.01 1.600
1.9 1.10 21.04 1.292
2.0 0.28 60.92 1.531

Table 5.1: Correction to scaling results for Q1 = 0.5

At present, the critical exponent λ is obtained for Q1 = 0.5 by using the

correction to scaling method. Note that Ĉ will diverge as N → ∞ at a critical

point (λ > 0), otherwise it will approach a finite value (λ = 0). The corresponding

results are presented in the Table 5.1. These results show that second-order phase

transitions occur at α ≥ 1. This is an evidence for the existence of a critical

surface which contains the Baxter equilibrium critical line and its extension to

α > 1 in Figure 5.1.

The value of the equilibrium critical exponent λ obtained from the exact

Baxter equations (4.3)and (4.4) is λ = 1.10227. This compares favorably with

our result λ = 1.108.

5.2.2 Two Temperature Variation:

(Q1 = δQc , K1 = δB(Qc)) and (Q2 = Qc/δ , K2 = B(Qc)/δ)

As mentioned for this case of the study, the effective energy parameters of the
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dynamics of the system are chosen as proportional to the exact Baxter critical

temperatures. The corresponding energy coupling constants are defined as

Q1 = δQc and K1 = δB(Qc) for sublattice-1,

while

Q2 = Qc/δ and K2 = B(Qc)/δ for sublattice-2,

where δ =
√

1/α =
√
T2/T1.

Fluctuations Ĉ for two lattice sizes N = 20 and N = 64 are given in Figure 5.4.

It is apparent that we need to use larger system sizes to understand the nature

of the criticality.
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Figure 5.4: Plot of Ĉ versus δ for different four spin coupling constant Q1 = QcB.

Symbols are as follows: N = 32(•), 64(�].
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5.3 Discussion

We would like to point out that for the “single temperature variation” case of the

problem, the obtained Monte Carlo data which show that the energy fluctuations

of the system as presented by Figure 5.3, correspond to singularities for different

values of temperature ratios, α = T1

T2
≥ 1. Here T1 refers to the fixed temperature

on the critical Baxter line, while T2 varies.

For the well-known equilibrium limit (α = 1), there is a second-order phase

transition and as the system size increases the fluctuations diverge. The singu-

larity in the energy fluctuations of the system can be observed at this limit. On

the other hand, for the non-equilibrium limits in which α > 1, this singularity is

much more dominant. This means that the second-order phase transition of the

system extends to these temperature ratios. For the temperature ratios α < 1,

there are no observable singularities, and hence no phase transitions.

To understand the divergences of the energy fluctuations, correction to scaling

is used. This yields an exponent which varies with the temperature ratio α as

shown in Table 5.1. As mentioned in section (5.2.1), the obtained value for this

exponent is consistent with the exact equilibrium critical exponent.

In summary, there is a second order phase transition in the system for the

temperature ratios α ≥ 1 (that is T1 ≥ T2) and all the critical fixed points have

different critical exponents.

When we investigate the criticality of the system for the “two temperature

variation” case of the problem, the singularity in the energy fluctuations are

seen only to be at the equilibrium critical point (δ = 1) as shown in Figure 5.4.

However to obtain a comprehensive understanding for this case, further work is

needed.

The preliminary results of the first case, namely “single temperature varia-

tion” indicates that there is a non-universal critical surface for the non-equilibrium

eight-vertex model as shown schematically in Figure 5.5.
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Figure 5.5: An illustration for the critical surface of the non-equilibrium eight
vertex model. Here critical surface intersects the critical Baxter line indicated by
the solid line at the equilibrium limit represented by E where α = 1 (T1 = T2).
Critical exponent varies along the critical surface.
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Chapter 6

Summary and Conclusion

In this thesis, we study the non-equilibrium phase transitions of two different

systems, each of them in contact with two heat baths, by using several meth-

ods. Both of these systems have spin exchange (Kawasaki) dynamics. Global

phase diagrams and the corresponding critical exponents which are related to the

universality features of these systems are obtained.

In chapter 3, the non-equilibrium critical properties of the two-finite tempera-

ture spin-1/2 Ising model with spin exchange dynamics are investigated through

real-space renormalization group transformation (RSRG). We construct a new

block-spin transformation which turns the original 4 × 4 system into the renor-

malized 2 × 2 system. This is the first attempt to use a non-Monte Carlo dy-

namical RSRG method for a non-equilibrium model with conserved dynamics.

Although the RSRG transformation is conveniently applied to isotropic systems,

there is reasonable agreement with the results of the previous studies (obtained

by methods such as Monte Carlo simulations and the ϵ-expansion). An extensive

discussion on the validity of this proposed transformation is provided. For the

first time in literature, the global phase diagram which includes the steady state,

equilibrium and some certain limits of the system is presented. In addition, the

corresponding critical exponents of this system are obtained for phase transitions

at all limits and indicate the different universality class properties of the non-

equilibrium phase transitions. The major flaw of this analysis is the equilibrium
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result. This is because of the strong finite size effects of the system used in this

study. We also provide an detailed explanation on this subject in Appendix A.

For the second work, steady state phase transitions and the universality behav-

ior of the eight-vertex model, first introduced by R.J. Baxter [100] in equilibrium,

is studied through four independent Monte Carlo simulations, each with 60× 106

Monte Carlo steps. The non-equilibrium eight-vertex model is constructed by us-

ing two interpenetrating spin-1/2 Ising models on square lattices, each in contact

with different thermal baths. In order to avoid any anisotropies, spin exchanges

are designed to occur within the sublattices instead of different directions.

In chapter 4, we analyze the limit at which one of the thermal baths coupled

to the sublattices has an infinite temperature while the other one has a finite tem-

perature. Monte Carlo simulations are carried out for the system sizes N = 32,

40, 80, 100. We apply finite size scaling to the Monte Carlo data for different

system sizes. A spline interpolation is applied to the scaled data to obtain an

error measure for the collapses. This study shows that as we increase the coupling

between the corresponding sublattices, phase transitions occur at lower temper-

atures. This is a result of increased coupling of the finite temperature lattice

(in which the transition occurs) to the infinite temperature lattice. At this limit

the critical behavior of the non-equilibrium eight-vertex model is like that of the

well-known equilibrium Ising model.

To obtain the full phase diagram of this model, we also study the finite tem-

perature limits of this system. The system is investigated for two cases. In the

“single temperature variation” case, one of the temperatures is fixed at the critical

Baxter value while the other one varies. Monte Carlo simulations of the energy

fluctuations for this case indicate that when the variable temperature is greater

than or equal to the fixed one, second-order phase transitions occur for all those

temperature values. These critical exponents are not universal, as is the case in

equilibrium.

In the “two temperature variation” case, we analyze the system in contact

with heat baths at finite temperatures displaced symmetrically from the critical

Baxter values. Although further work is needed to reach a precise result, it can
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be claimed that the second order phase transition occurs only when the system

is in equilibrium.

Consequently, the critical surface of the eight-vertex model intersects the crit-

ical Baxter line as given by equation (4.2), and shown schematically in Figure 5.5.

In this surface all the critical points have their own critical exponents. To sum

up, although this system shows Ising-like behavior when one of the temperatures

becomes very large, non-universal properties of the non-equilibrium eight-vertex

model can be observed to extend around the equilibrium Baxter transition. This

is the first study in literature that the non-universality of the non-equilibrium

eight vertex model is reported.
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[18] B. Derrida, A. Bray, and C. Godréche, “Non-trivial exponents in the zero

temperature dynamics of the 1d Ising and Potts model,” Journal of Physics

A, vol. 27, pp. L357–L361, 1994.

[19] G. Grinstein, C. Jayaprakash, and Y. He, “Statistical mechanics of proba-

bilistic cellular automata,” Physical Review Letters, vol. 55, pp. 2527–2530,

1985.

[20] K. E. Bassler and B. Schmittmann, “Critical dynamics of nonconserved

Ising-like systems,” Physical Review Letters, vol. 73, pp. 3343–3346, 1994.

80



[21] B. Schmittman and R. K. P. Zia, Phase Transitions and critical phenomena.

New York: Academic, 1996.

[22] B. Schmittman and R. K. P. Zia, “Critical properties of a randomly driven

diffusive system,” Physical Review Letters, vol. 66, pp. 357–360, 1991.

[23] B. Schmittman, “Fixed-point Hamiltonian for a randomly driven diffusive

system,” Europhysics Letters, vol. 24, pp. 109–114, 1993.
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[85] H. Blöte, J. Heringa, A. Hoogland, and R. Zia, “Critical properties of non-

equilibrium systems without global currents: Ising models at two tempera-

tures,” Journal of Physics A, vol. 23, pp. 3799–3808, 1990.

[86] J.-S. Wang and J. Lebowitz, “Phase transitions and universality in nonequi-

librium steady states of stochastic Ising models,” Journal of Statistical

Physics, vol. 51, pp. 893–906, 1988.

86



[87] P. Garrido, A. Labarta, and J. Marro, “Stationary nonequilibrium states in

the Ising model with locally competing temperatures,” Journal of Statistical

Physics, vol. 49, pp. 551–568, 1987.

[88] K. Wilson, “Renormalization group and critical phenomena. i. renormal-

ization group and the kadanoff scaling picture,” Physical Review B, vol. 4,

pp. 3174–3183, 1971.

[89] S. Ma, “Renormalization group by Monte Carlo methods,” Physical Review

Letters, vol. 37, pp. 461–464, 1976.

[90] R. Swendsen, “Monte Carlo renormalization group,” Physical Review Let-

ters, vol. 42, pp. 859–861, 1979.

[91] J. Tobochnik, S. Sarker, and R. Cordery, “Dynamic Monte Carlo renormal-

ization group,” Physical Review Letters, vol. 46, pp. 1417–1420, 1981.

[92] M. Yalabik and J. Gunton, “Monte Carlo renormalization-group studies of

kinetic Ising models,” Physical Review B, vol. 25, pp. 534–537, 1982.

[93] U. Deker and F. Haake, “Renormalization group transformation for the

master equation of a kinetic Ising chain,” Zeitschrift für Physik B: Con-

densed Matter, vol. 35, pp. 281–285, 1979.

[94] Y. Achiam, “The critical dynamics and the real-space renormalization

group,” Physica A, vol. 120, pp. 279–313, 1983.

[95] G. Mazenko, M. Nolan, and O. Valls, “Real-space dynamic renormalization

group. ii. simple examples,” Physical Review B, vol. 22, pp. 1275–1285,

1980.

[96] N. Jan, L. Moseley, and D. Stauffer, “Dynamic Monte Carlo renormalization

group,” Journal of Statistical Physics, vol. 33, pp. 1–11, 1983.

[97] B. Zheng, “Monte Carlo simulations of critical dynamics with conserved

order parameter,” Physics Letters A, vol. 277, pp. 257–261, 2000.

[98] Y. Achiam and J. Kosterlitz, “Real-space renormalization group for critical

dynamics,” Physical Review Letters, vol. 41, pp. 128–131, 1978.

87



[99] T. Lookman, R. Pandey, N. Jan, D. Stauffer, L. Moseley, and H. Stanley,

“Real-space renormalization group for kinetic gelation,” Physical Review B,

vol. 29, pp. 2805–2807, 1984.

[100] R. Baxter, “Eight-vertex model in lattice statistics,” Physical Review Let-

ters, vol. 26, pp. 832–833, 1971.

[101] N. Metropolis, A. Rosembluth, M. Rosembluth, and A. Teller, “Equation

of state calculations by fast computing machines,” Journal of Chemical

Physics, vol. 21, pp. 1087–1093, 1953.

[102] M. E. Fisher, in Critical Phenomena, Proceedings of the International

School of Physics Enrico Fermi, Course LI, Varenna, Italy, 1970, vol. p.1.

New York: Academic Press.

[103] M. Fisher and M. Barber, “Scaling theory for finite-size effects in the critical

region,” Physical Review Letters, vol. 28, pp. 1516–1519, 1972.

[104] Y. Imry and B. Bergman, “Critical points and scaling laws for finite sys-

tems,” Physical Review A, vol. 3, pp. 1416–1418, 1971.

88



Appendix A

Finite Size and Truncation

Effects for the Non-Conserved

RG Transformation

To investigate the validity of the RSRG method proposed in Chapter 3, the

corresponding procedure is also applied to a system with non-conserved parameter

near the equilibrium limit. All the characteristics of the RSRG transformation

method and the assumptions we made (keeping the periodic boundary conditions

in the original and also the renormalized systems, and having a renormalized

system obeys the Markovian dynamics as well) in the chapter 4 are also considered

in the calculations. Note that although the same transformation of the 4×4 lattice

to a 2 × 2 lattice is obtained, this time, because of the non-conserved dynamics

there are 16 spin configurations of the renormalized lattice (not just the 6 of them

as in the previous study). Due to this situation, considerably large numbers of

interactions may appear in the Hamiltonian of the system.

For various levels of truncations of the interactions in the system, the results

of the corresponding system obtained by the RSRG transformation are presented

in the Table A.1. A progressively lower level of the truncation of interaction
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constants, keeping nearest-neighbor Knn, next-nearest-neighbor Knnn, and four-

spin K4 product terms, is indicated in each line of the Table A.1. Respectively,

the calculated values of the critical nearest neighbor interaction Kc, the fixed

point values of the interaction constants K∗, and the critical exponent for the

correlation length ν are listed in the Table A.1. (Note that Kc flows into the

fixed point under repeated the renormalization steps.) In addition for the fixed

point values of the interaction constants, one can observe the level of truncation.

Consequently based on these calculations, it is understood that for the sys-

tems with non-conserved dynamics in the equilibrium limit, the proposed RSRG

transformation obtains comparably good results as higher order interaction pa-

rameters are considered in the analysis. Especially for the system with the nearest

and the next nearest neighbor interactions, the results are rather good. (However

one can only regard the nearest neighbor interaction for the possible states of

the renormalized systems in which the magnetization is conserved. For the same

level of truncation, the accuracy results of the systems with the conserved and

non-conserved order parameters are comparable.)

Table A.1: Near equilibrium limit, the RSRG results of the Ising model with
non-conserved order parameter obtained through the transformation method pre-
sented in chapter 3. Different type of interactions are considered in each case.

Type of interactions Kc K∗
nn K∗

nnn K∗
4 ν

Nearest neighbor 0.704 0.704 −−− −−− 0.3797
Next nearest neighbor 0.4189 0.2989 0.08657 −−− 0.947
Four spin 0.4184 0.2999 0.08704 −0.001172 0.9256
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Appendix B

Spline Interpolation

Let a,b ∈ R, and define the spline as a piecewise polynomial curve function,

C : [a, b] → R. Then let X0 < X1 < X2 < ... < Xn be an ordering of real

numbers between a and b such that a = X0 and b = Xn. Then one can obtain

n disjoint subintervals, each defined as [Xi, Xi+1] where i = 0 . . . n − 1. In each

of these subintervals, the spline can be formulated by a polynomial function,

Fi : [Xi, Xi+1]→ R. This lead to

C1(X) = F1(X), X0 ≤ X < X1,

C2(X) = F2(X), X1 ≤ X < X2,

...

Cn(X) = Fn(X), Xn−1 ≤ X ≤ Xn.

(B.1)

Note that, the total number of data points are equally distributed to these

subintervals. Since the lengths of these intervals are not necessarily the same, the

splines in our calculations are not uniform. The polynomial function is defined

as,

Fi(Xi) = α0i + α1iXi + α2iX
2
i + α3iX

3
i , (B.2)

91



in each interval.Essential smoothness between these curves depend on some cer-

tain conditions,

i) Continuity of Displacement: At the boundaries there must be intersection

a point between the curve fragment. Thus, polynomial functions must be equal

at border points,

Fi(Xi) = Fi+1(Xi). (B.3)

ii) Continuity of First Derivative of Displacement: The slopes of the curve splines

must be equal at the boundary points. It is to say, the gradient must be contin-

uous,
∂Fi(Xi)

∂Xi

=
∂Fi+1(Xi)

∂Xi

. (B.4)

iii)) Continuity of Second Derivative of Displacement: The splines must have the

same curvatures at the boundaries,

∂2Fi(Xi)

∂X2
i

=
∂2Fi+1(Xi)

∂X2
i

. (B.5)

In general, the error ε of the fit curve is determined by

ε =
N∑
i,j

(α0i + α1iqij + α2iq
2
ij + α3iq

3
ij − dij)

2, (B.6)

where the corresponding subintervals and the data points are denoted by i and j,

respectively. In equation (B.6), the x and y coordinates of the data are defined as

qij and dij. Based on the constraints given in the equations (B.3), (B.4), (B.5),the

minimization of the ε with respect to the parameters of {α} can be carried out.

Therefore the Lagrangian multipliers are needed to be added to the error term

given in the equation B.6. As a result, the quantity turns into

ε =
N∑
i,j

(α0i + α1iqij + α2iq
2
ij + α3iq

3
ij − dij)

2+

N∑
i

(Λ0i(Fi+1(Xi)− Fi(Xi)) + Λ1i(F
′
i+1(Xi)− F ′

i (Xi)) + Λ2i(F
′′
i+1(Xi)− F ′′

i (Xi))),

(B.7)
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where Λi’s are the Lagrange multipliers.

Consequently, ∂ε/∂F is considered for the error analysis. Additional equations

are described in order to minimize the error (for ∂ε/∂F = 0 ) as

∂ε/∂α0i =
∑
i,j

[2E1 + Λ0i] = 0, (B.8)

∂ε/∂α1i =
∑
i,j

[2E1qij + Λ0iXi + Λ1i] = 0, (B.9)

∂ε/∂α2i =
∑
i,j

[2E1q
2
ij + Λ0iX

2
i + 2Λ1iXi + 2Λ2i] = 0, (B.10)

∂ε/∂α3i =
∑
i,j

[2E1q
3
ij + Λ0iX

3
i + 3Λ1iX

2
i + 6Λ2iXi] = 0, (B.11)

where

E1 = (α0i + α1iqij + α2iq
2
ij + α3iq

3
ij − dij), (B.12)

in addition to ∂ε/∂Λi = 0.

The set of these parameters are needed to solve in order to obtain the required

parameters of the curve function,

TX̃ = Y, (B.13)

where X̃ is the vector of all variables, Y is the vector of constants of the right-

hand side of the equations B.9, B.10, B.11, B.11 which correspond to terms that

do not contain factors of α. The solution of this matrix equation gives the sets

of the polynomial coefficients for each interval. Then, by using these parameters,

one can obtain a smooth spline curve.
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Appendix C

Code-1: RSRG Transformation

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <conio.h>

main(nfile,filenames)

int nfile; char *filenames[];

{

int d,r,s,t,i,j,k,n,mb,m,ier,E0,E1,bb[4],kk;

double b[12870][3],c[12870],eig[3],error[3];

double sum,rate,shift,temp,diff;

void sparse_symm_eig_v();

int a[16],y[16],y1[16],y2[16];

static int X[12870][16];

static double rateL[12870][32],dia[12870],rateLtrans[32][12870];

static int index[12870][32],indextrans[32][12870],symm[3][12870];

int num,count,adr,adrt,adrr,xref_state,yref_state;
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int size=16;

int say,temp1,fark;

double oran1=1.0/3.0;

double oran2=1.0/6.0;

double coup16=16;

double coup24=24;

static double energy[12870],T[12870][6],bprime[6][3];

double coup,w,tot_offdia;

double diagonal,ust1,alt1,ust2,alt2;

double col1,col2,col3,col4;

double lin1,lin2,lin3,lin4;

double coupx,coupy,alpha_x,alpha_y,dif,ratio;

int sw[32][2]={

{0,1},{1,8},{8,9},{0,9},{2,3},{3,10},

{10,11},{2,11},{4,5},{5,12},{12,13},

{4,13},{6,7},{7,14},{14,15},{6,15},

{0,2},{2,4},{4,6},{0,6},{1,3},{3,5},

{5,7},{1,7},{8,10},{10,12},{12,14},

{8,14},{9,11},{11,13},{13,15},{9,15}

};

int Xref[8][2]={

{0,9},{2,11},{4,13},{6,15},{1,8},{3,10},{5,12},{7,14}

};

int Yref[8][2]={

{0,6},{1,7},{8,14},{9,15},{2,4},{3,5},{10,12},{11,13}

};

int nsw=32;

95



FILE *pr;

pr=fopen ("indextrans 12870.txt", "w");

n = 12870; // size of operator

m = 6; // no of eigv to be determined

mb=3;

shift = 35.; // eigenvalue shift

coupx = 0.88; // nearest neighbor coupling in x direction

coupy = 0.88; // nearest neighbor coupling in y direction

alpha_x=3;

alpha_y=1;

s=0;

for(j=0;j<65536;j++) {

num=j;

say=0;

for(i=15;i>=0;i--){

int base=pow(2,i);

int remain=num-base;

if(remain>=0){

a[15-i]=1;

num=remain;

}

else{

a[15-i]=-1;

num=remain+base;

}

say=say+a[15-i];

}

if(say==0){

// Energy:
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energy[s]= 0.5*(a[0]*(a[1]+a[2]+a[9]+a[6])+

a[1]*(a[8]+a[7]+a[0]+a[3])+

a[2]*(a[3]+a[0]+a[4]+a[11])+

a[3]*(a[2]+a[1]+a[10]+a[5])+

a[4]*(a[2]+a[5]+a[6]+a[13])+

a[5]*(a[4]+a[3]+a[12]+a[7])+

a[6]*(a[4]+a[7]+a[0]+a[15])+

a[7]*(a[1]+a[5]+a[6]+a[14])+

a[8]*(a[1]+a[10]+a[9]+a[14])+

a[9]*(a[8]+a[0]+a[11]+a[15])+

a[10]*(a[8]+a[12]+a[11]+a[3])+

a[11]*(a[10]+a[2]+a[13]+a[9])+

a[12]*(a[10]+a[14]+a[13]+a[5])+

a[13]*(a[11]+a[12]+a[15]+a[4])+

a[14]*(a[7]+a[12]+a[15]+a[8])+

a[15]*(a[13]+a[14]+a[9]+[6]));

// Construct "T" Transfer matrix:

diagonal=a[0]+a[3]+a[12]+a[15];

ust1=a[0]+a[1]+a[2]+a[3];

alt1=a[4]+a[5]+a[6]+a[7];

ust2=a[8]+a[9]+a[10]+a[11];

alt2=a[12]+a[13]+a[14]+a[15];

col1=a[0]+a[2]+a[4]+a[6];

col2=a[1]+a[3]+a[5]+a[7];

col3=a[8]+a[10]+a[12]+a[14];

col4=a[9]+a[11]+a[13]+a[15];

lin1=a[0]+a[1]+a[8]+a[9];

lin2=a[2]+a[3]+a[10]+a[11];

lin3=a[4]+a[5]+a[12]+a[13];

lin4=a[6]+a[7]+a[14]+a[15];
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/// Certain Cases:

if(diagonal==0){

if(ust1+alt1==8){

T[s][0]=1; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(ust2+alt2==8){

T[s][0]=0; T[s][1]=1; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt1+alt2==8){

T[s][0]=0; T[s][1]=0; T[s][2]=1;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(ust1+ust2==8){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=1; T[s][4]=0; T[s][5]=0;

}

if(col2+col3==8){

T[s][0]=0.5; T[s][1]=0.5; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(col1+col4==8){

T[s][0]=0.5; T[s][1]=0.5; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(lin2+lin3==8){
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T[s][0]=0; T[s][1]=0; T[s][2]=0.5;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0;

}

if(lin1+lin4==8){

T[s][0]=0; T[s][1]=0; T[s][2]=0.5;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0;

}

}

if(ust1+alt2==8){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

}

if(ust2+alt1==8){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

}

///Possible Cases:

if(ust1>0){

if(alt1>0){

T[s][0]=1; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt1<0){

if(ust2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=1; T[s][4]=0; T[s][5]=0;

}

if(ust2<0){
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T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

}

if(ust2==0){

if(alt2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

}

if(alt2<0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=1; T[s][4]=0; T[s][5]=0;

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=1; T[s][4]=0; T[s][5]=0;

} // T4=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

} //T3=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0.5; T[s][4]=0.5; T[s][5]=0;

} //T3=T4=0.5

}

}

}

if(alt1==0){

if(ust2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=1; T[s][4]=0; T[s][5]=0;

}
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if(ust2<0){

if(alt2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

}

if(alt2<0){

T[s][0]=1; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=1; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T4=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

}//T0=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0.5; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0.5; T[s][5]=0;

} //T0=T4=0.5

}

}

if(ust2==0){

if(alt2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

}

if(alt2<0){

T[s][0]=0.5; T[s][1]=0; T[s][2]=0;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0;

}
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if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0.5; T[s][1]=0; T[s][2]=0;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0;

} // T4=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

} //T0=T3=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=oran1; T[s][1]=0; T[s][2]=0;

T[s][3]=oran1; T[s][4]=oran1; T[s][5]=0;

} //T0=T4=T4=0.333333

}

}

}

}

if(ust1<0){

if(alt1>0){

if(ust2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

}

if(ust2<0){

T[s][0]=0; T[s][1]=0; T[s][2]=1;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(ust2==0){

if(alt2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=1;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2<0){
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T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=1;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

} //T2=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0.5;

T[s][3]=0; T[s][4]=0; T[s][5]=0.5;

} //T2=T5=0.5

}

}

}

if(alt1<0){

T[s][0]=0; T[s][1]=1; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt1==0){

if(ust2>0){

if(alt2>0){

T[s][0]=0; T[s][1]=1; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2<0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

}
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if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=1; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T5=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

} //T1=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=0.5; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0.5;

} //T1=T5=0.5

}

}

if(ust2<0){

T[s][0]=0; T[s][1]=0; T[s][2]=1;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(ust2==0){

if(alt2>0){

T[s][0]=0; T[s][1]=0.5; T[s][2]=0.5;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2<0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=0.5; T[s][2]=0.5;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T1=T2=0.5 T5=0
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if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

} //T1=T2=0 T5=1

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=oran1; T[s][2]=oran1;

T[s][3]=0; T[s][4]=0; T[s][5]=oran1;

} //T1=T2=T5=0.333333

}

}

}

}

if(ust1==0){

if(alt1>0){

if(ust2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

}

if(ust2<0){

if(alt2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=1;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2<0){

T[s][0]=1; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2==0){

T[s][0]=0.5; T[s][1]=0; T[s][2]=0.5;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

}

if(ust2==0){
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if(alt2>0){

T[s][0]=0; T[s][1]=0; T[s][2]=1;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2<0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=1; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T5=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

} //T0=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0.5; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0.5;

} //T0=T5=0.5

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0.5; T[s][1]=0; T[s][2]=0.5;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T5=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

} //T0=T2=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=oran1; T[s][1]=0; T[s][2]=oran1;

T[s][3]=0; T[s][4]=0; T[s][5]=oran1;

} //T0=T2=T5=0.333333

}

}
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}

if(alt1<0){

if(ust2>0){

if(alt2>0){

T[s][0]=0; T[s][1]=1; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2<0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=1; T[s][4]=0; T[s][5]=0;

}

if(alt2==0){

T[s][0]=0; T[s][1]=0.5; T[s][2]=0;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0;

}

}

if(ust2<0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

}

if(ust2==0){

if(alt2>0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=1; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T4=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

} //T1=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=0.5; T[s][2]=0;

T[s][3]=0; T[s][4]=0.5; T[s][5]=0;
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} //T1=T4=0.5

}

if(alt2<0){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=1; T[s][4]=0; T[s][5]=0;

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=0.5; T[s][2]=0;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0;

} // T4=0 T1=T3=0.5

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

} //T1=T3=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=oran1; T[s][2]=0;

T[s][3]=oran1; T[s][4]=oran1; T[s][5]=0;

} //T1=T3=T4=0.333333

}

}

}

if(alt1==0){

if(ust2>0){

if(alt2>0){

T[s][0]=0; T[s][1]=1; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2<0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=1; T[s][4]=0; T[s][5]=0;

} // T5=0
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if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

} //T3=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0.5;

} //T3=T5=0.5

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=0.5; T[s][2]=0;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0;

} // T5=0 T1=T3=0.5

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

} //T1=T3=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=oran1; T[s][2]=0;

T[s][3]=oran1; T[s][4]=0; T[s][5]=oran1;

} //T1=T3=T5=0.333333

}

}

if(ust2<0){

if(alt2>0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=1;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T4=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;
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} //T2=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0.5;

T[s][3]=0; T[s][4]=0.5; T[s][5]=0;

} //T2=T4=0.5

}

if(alt2<0){

T[s][0]=1; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0.5; T[s][1]=0; T[s][2]=0.5;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T4=0 T0=T2=0.5

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=1; T[s][5]=0;

} //T0=T2=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=oran1; T[s][1]=0; T[s][2]=oran1;

T[s][3]=0; T[s][4]=oran1; T[s][5]=0;

} //T1=T3=T5=0.333333

}

}

if(ust2==0){

if(alt2>0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0; T[s][1]=0.5; T[s][2]=0.5;

T[s][3]=0; T[s][4]=0; T[s][5]=0;

} // T4=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;
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T[s][3]=0; T[s][4]=1; T[s][5]=0;

} //T2=T1=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=0; T[s][1]=oran1; T[s][2]=oran1;

T[s][3]=0; T[s][4]=oran1; T[s][5]=0;

} //T1=T2=T4=0.333333

}

if(alt2<0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0.5; T[s][1]=0; T[s][2]=0;

T[s][3]=0.5; T[s][4]=0; T[s][5]=0;

} // T5=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0; T[s][5]=1;

} //T0=T3=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=oran1; T[s][1]=0; T[s][2]=0;

T[s][3]=oran1; T[s][4]=0; T[s][5]=oran1;

} //T0=T3=T5=0.333333

}

if(alt2==0){

if(coup16-energy[s]<energy[s]+coup24){

T[s][0]=0.25; T[s][1]=0.25; T[s][2]=0.25;

T[s][3]=0.25; T[s][4]=0; T[s][5]=0;

} // T4=T5=0

if(coup16-energy[s]>energy[s]+coup24){

T[s][0]=0; T[s][1]=0; T[s][2]=0;

T[s][3]=0; T[s][4]=0.5; T[s][5]=0.5;

} //T0=T1=T2=T3=0

if(coup16-energy[s]==energy[s]+coup24){

T[s][0]=oran2; T[s][1]=oran2; T[s][2]=oran2;

T[s][3]=oran2; T[s][4]=oran2; T[s][5]=oran2;
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}

}

}

}

}

// Constructing the X matrix with the size of 70x8

for(i=0;i<size;i++) X[s][i]= (a[i]+1)/2;

s++;

}

}

for(d=0;d<1;d++){

printf("%d th trial",d);

printf("\n");

printf(" Kp_x = %f\n",coupx);

printf(" Kp_y = %f\n",coupy);

printf("Alpha_y= %f\n",alpha_y);

printf("Alpha_x= %f\n",alpha_x);

diff=0;

for(i=0;i<n;i++){

for(j=0;j<32;j++) {

rateL[i][j]=0;

index[i][j]=-1;

rateLtrans[j][i]=0;

indextrans[j][i]=-1;

}

}

for(i=0;i<n;i++){

adrr=0;

adr=0;
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adrt=0;

tot_offdia=0;

/////////////////////////////////////////////////////////////////

for(t=0;t<16;t++) y1[t]=X[i][t];

for(t=0;t<16;t++) y2[t]=X[i][t];

for(r=0;r<8;r++){

temp1=y1[Xref[r][0]];

y1[Xref[r][0]]=y1[Xref[r][1]];

y1[Xref[r][1]]=temp1;

temp1=y2[Yref[r][0]];

y2[Yref[r][0]]=y2[Yref[r][1]];

y2[Yref[r][1]]=temp1;

}

for(t=0;t<n;t++){

say=0;

for(r=0;r<16;r++){

if(y1[r]==X[t][r]) say++;

}

if(say==16) {

xref_state=t;

break;

}

}

symm[0][i] = xref_state;

symm[1][i] = xref_state;

for(t=0;t<n;t++){

say=0;

for(r=0;r<16;r++){
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if(y2[r]==X[t][r]) say++;

}

if(say==16){

yref_state=t;

break;

}

}

symm[2][i] = yref_state;

/////////////////////////////////////////////////////////////////

for(r=0;r<nsw;r++) {

// i_th row of the X matrix transforms into the y_th array

for(t=0;t<16;t++) y[t]=X[i][t];

// f the spins are not same;

if(y[sw[r][0]]!=y[sw[r][1]]){

// spin exchange occurs according to the switch matrix

temp1=y[sw[r][0]];

y[sw[r][0]]=y[sw[r][1]];

y[sw[r][1]]=temp1;

for(j=0;j<n;j++){

adrt=0;

adrr=0;

count=0;

for(t=0;t<16;t++) {

if(y[t]!=X[j][t]) break;

count++;

}

// Constructing the L matrix...
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if(count==16) {

fark=sw[r][0]-sw[r][1];

if(abs(fark)%2==0)

w = alpha_y*(1-tanh((coupy*(energy[i]-energy[j]))/2));

else

w = alpha_x*(1-tanh((coupx*(energy[i]-energy[j]))/2));

if(rateLtrans[adrr][j]==0)

rateLtrans[adrr][j]=w;

else{

for(t=0;t<32;t++){

if(rateLtrans[t][j]==0) break;

adrr++;

}

rateLtrans[adrr][j]=w;

}

if(indextrans[adrt][j]==-1)

indextrans[adrt][j]=i;

else{

for(t=0;t<32;t++){

if(indextrans[t][j]==-1) break;

adrt++;

}

indextrans[adrt][j]=i;

}

rateL[i][adr] = w;

tot_offdia=tot_offdia+w;

index[i][adr]=j;

adr++;

break;

}
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}

}

}

dia[i]=shift-tot_offdia;

}

// initialization:

for(i=0;i<n;i++){

for(j=0;j<mb;j++) b[i][j]=1.;

for(j=1;j<mb;j++){

if(symm[j][i] < i) b[i][j] = -1.;

else if(symm[j][i] == i) b[i][j] = 0.;

}

}

sparse_symm_eig_v(n,mb,32,indextrans,dia,rateLtrans,symm,b,c,eig,error);

/// Prime matrix size of 4x4 from Vec x T

for(i=0;i<m;i++){

for(j=0;j<mb;j++){

bprime[i][j]=0;

for(k=0;k<n;k++){

bprime[i][j]=bprime[i][j]+(T[k][i]*b[k][j]);}

}

}

printf("Olusan b prime matris: ");

printf("\n");

for(i=0;i<m;i++){

for(j=0;j<mb;j++){

printf("%f ",bprime[i][j]);}

printf("\n");

116



}

coupx =0.125*log(bprime[0][0]/bprime[4][0]);

coupy =0.125*log(bprime[2][0]/bprime[4][0]);

alpha_x=((-0.25*(eig[1]-shift))*(1+(bprime[0][0]/bprime[4][0])));

alpha_y=((-0.25*(eig[2]-shift))*(1+(bprime[2][0]/bprime[4][0])));

ratio=(eig[1]-shift)*(bprime[0][0]+bprime[4][0])/

((eig[2]-shift)*(bprime[2][0]+bprime[4][0]));

printf(" Kp_x = %f\n",coupx);

printf(" Kp_y = %f\n",coupy);

printf("Alpha_y= %f\n",alpha_y);

printf("Alpha_x= %f\n",alpha_x);

printf("Ratio: %f\n",ratio);

printf("\n");

printf("\n");

if(alpha_y > alpha_x){

alpha_x/=alpha_y;

alpha_y=1.0;

}

else if(alpha_x >= alpha_y){

alpha_y/=alpha_x;

alpha_x=1.0;

}

}

fclose(pr);

system("pause");

}
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void sparse_symm_eig_v(n,m,q,indextrans,dia,rateLtrans,symm,b,c,eig,error)

int n; int m; int q; int indextrans[32][12870] ; double dia[12870] ;

double rateLtrans[32][12870]; int symm[3][12870]; double b[12870][3];

double c[12870]; double eig[3]; double error[3];

{

/*

This is a routine to find the largest m eigenvalues and the corresponding

right eigenvectors (with defined symmetries) of an n x n sparse matrix

(with n >= m and q non-diagonal elements in addition to diagonal elements).

The symmetric (assumed to be even for 0’th eigenvector and odd for the

remaining ones) elements are given in the array symm.

The method used is repeated

multiplications, where the largest eigenvalue dominates.

This version finds the left as well as right eigenvectors.

Normalization of b is such that sum_i(b[i][]*b[i][])=1

Ld[n] are the diagonal elements // dia[n]

Lwt[q][n] are the non-diagonal elements for transitions to state t

Lit[q][n] are the indices corresponding to the non-diagonal elements

i.e. L_{n, Lit[q][n]} = Lwt[q][n]

symm[m][n] contains the index of the (anti)symmetric element

b[n][m] contains the m right-eigenvectors on return

c[n] is a buffer array

eig[m] contains the m eigenvalues on return

error[m] contains the average absolute error on return

by Cemal Yalabik, Physics Dept, Bilkent University, Ankara, Turkey

yalabik@fen.bilkent.edu.tr

*/

int i,j,ii,jj,kk,mm,m_list;

double projl,projr,sl,sr,err,prod;
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printf("entering eigens loop\n");

for(kk=0;kk<m;kk++){ // for the m eigenvalues to be determined

m_list=1;

for(mm=0;mm<200000;mm++){ // repeated multiplication part

sr = 0.;

for(i=0;i<n;i++){

sr += b[i][kk]*b[i][kk]; // find size

}

sr = sqrt(sr);

for(i=0;i<n;i++){ b[i][kk] /= sr;} // normalize

for(i=0;i<n;i++){ // apply operator

if(kk == 0 && symm[0][i] < i){

c[i] = c[symm[ 0][i]]; continue;}

else if(kk != 0 && symm[kk][i] < i){

c[i] = -c[symm[kk][i]]; continue;}

else if(kk != 0 && symm[kk][i] == i){

c[i] = 0.; continue;}

c[i] = dia[i]*b[i][kk];

for(j=0;j<q;j++){

ii=indextrans[j][i];

if(ii == -1) break;

c[i] += rateLtrans[j][i]*b[ii][kk];

}

}

sr=0.;prod=0.;

// find new size

for(i=0;i<n;i++){sr += c[i]*c[i];prod+=b[i][kk]*c[i];}
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sr = sqrt(sr);

err=0.;

for(i=0;i<n;i++){ // find total absolute error

err += fabs(sr*b[i][kk]-c[i]);

b[i][kk] = c[i]/sr; // normalize

}

// err = err/(n+n);

if(mm == m_list){

m_list = m_list+m_list;

}

if(err < 1e-8){break;}

} // mm-loop

eig[kk] = sr;

error[kk] = err;

printf("found eigens %d in %d iterations: %lf with error %le\n",

kk,mm,eig[kk],error[kk]);

} // kk-loop

return;

}
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Appendix D

Code-2: Monte Carlo Simulations

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<time.h>

#define N 100 // Size of the lattice

int main()

{

int m,n,i,j,a,NN;

int loop,mcs,mcs_begin,size,half,say;

int temp,stp;

int E,q;

int lattice1[N][N],lattice2[N][N];

int im1[N],ip1[N],ip2[N];

int E_K1,E_Q1,near1a,near2a,near4_1a,near4_2a;

int E_K2,E_Q2,near1b,near2b,near4_1b,near4_2b;

int rand(),maxint;

int n_eq,n_sample,n_record,count1;

double E1_avg,E1_2_avg,Egy1;

double E2_avg,E2_2_avg,Egy2;
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double E3_avg,E3_2_avg,Egy3;

double tot1_energy,tot2_energy,tot3_energy;

double cv1,cv2,cv3;

double K1,K2,Jq,Q1,Q2,r;

double rr;

double table1[13][13],table2[13][13];

double R;

FILE *analyze; analyze=fopen("analyze.txt","w");

FILE *stop;

FILE *read; read=fopen("read.txt","r");

FILE *write;

if(read==NULL) {

printf("Error: File can not open\n");

}

else{

fscanf(read,"%lf %lf %lf %lf %d %d %d %d",&r,&K1,&K2,

&Jq,&mcs_begin,&n_eq,&n_sample,&n_record);

if(mcs_begin == 1){

E1_avg=0.; E1_2_avg=0.;

E2_avg=0.; E2_2_avg=0.;

E3_avg=0.; E3_2_avg=0.; count1=0;

}else{

fscanf(read,"%d %lf %lf %lf %lf %lf %lf %d %lf %lf %lf",&NN,

&E1_avg,&E1_2_avg,

&E2_avg,&E2_2_avg,

&E3_avg,&E3_2_avg,

&count1,

&cv1,&cv2,&cv3);

if(N != NN){

printf("incompatible temporary file - stopping!\n");
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exit(1);

}

}

printf("System initialize:\n");

printf("r= %lf\n K1= %lf\n K2= %lf\n Jq= %lf\n mcs_begin= %d\n

n_eq= %d\n n_sample= %d\n n_record= %d\n N= %d\n E1_avg= %lf\n

E1_2_avg= %lf\n E2_avg= %lf\n E2_2_avg= %lf\n E3_avg= %lf\n

E3_2_avg= %lf\n count1= %d\n cv1= %lf\n cv2= %lf\n cv3= %lf\n",

r,K1,K2,Jq,

mcs_begin,n_eq,n_sample,n_record,N,

E1_avg,E1_2_avg,

E2_avg,E2_2_avg,

E3_avg,E3_2_avg,count1,

cv1,cv2,cv3);

}

Q1=Jq*K1; // Four spin coupling

Q2=Jq*K2;

maxint=~(1<<(8*sizeof(int)-1));

R=(1.0-r)/2.0;

size=N*N;

half=size/2;

//tables for exchange dynamics of A_ atoms and B atoms

for(i=0;i<=13;i++)

for(j=0;j<=13;j++){

table1[i][j]=0.0;

table2[i][j]=0.0;
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}

for(i=0;i<13;i=i+2){

E=i-6; // -6 -4 -2 0 2 4 6

for(j=0;j<13;j=j+2){

q=j-6;

table1[i][j]=exp((-2*E)*K1+(-2*q)*Q1);

table2[i][j]=exp((-2*E)*K2+(-2*q)*Q2);

}

}

//borders

for(i=0;i<N;i++){ im1[i]=i-1; ip1[i]=i+1; ip2[i]=i+2; }

im1[0]=N-1; ip1[N-1]=0; ip2[N-2]=0; ip2[N-1]=1;

if(mcs_begin == 1){

// Setting spin_1/2 random lattice1 and lattice2 with zero magnetization

for(i=0;i<N;i++)

for(j=0;j<N;j++) {

lattice1[i][j]=1;

lattice2[i][j]=1; }

for(a=0;a<half;a++){

say=0;

while(say==0){

while( (i=N*(((double)rand())/maxint)) == N ){;}

while( (j=N*(((double)rand())/maxint)) == N ){;}

if(lattice1[i][j]==1){

say=1;

lattice1[i][j]=-1;

}
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}

}

for(a=0;a<half;a++){

say=0;

while(say==0){

while( (i=N*(((double)rand())/maxint)) == N ){;}

while( (j=N*(((double)rand())/maxint)) == N ){;}

if(lattice2[i][j]==1){

say=1;

lattice2[i][j]=-1;

}

}

}

}else{

for(i=0;i<N;i++)

for(j=0;j<N;j++)

fscanf(read,"%d %d",&lattice1[i][j],&lattice2[i][j]);

}

fclose(read);

//////////////////////////////MCS PROCEDURE ////////////////////////////

for(mcs=mcs_begin;;mcs++){

/////////////////////////////// Start 1-MCS loop ///////////////////////

for(loop=0;loop<size;loop++){

say=0;

while(say==0){

//Choose the (m,n) site randomly between 0 and N-1

while( (n=N*(((double)rand())/maxint)) == N ){;}

while( (m=N*(((double)rand())/maxint)) == N ){;}
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//Choose a parameter between 0 and 1

// (to determine the type of the current dynamic)

rr=(((double)rand())/maxint);

//Begin procedure

if(rr<R){ //exchange between A atoms

if( 0.5 > (((double)rand())/maxint) ) { //exchange in x direction

if(lattice1[m][n]!=lattice1[m][ip1[n]]){

say=1;

near1a=(lattice1[im1[m]][n]+lattice1[ip1[m]][n]

+lattice1[m][im1[n]]);

near2a=(lattice1[im1[m]][ip1[n]]+lattice1[ip1[m]][ip1[n]]

+lattice1[m][ip2[n]]);

near4_1a=(lattice1[im1[m]][n]*

(lattice2[im1[m]][n]*lattice2[im1[m]][im1[n]])

+lattice1[m][im1[n]]*

(lattice2[im1[m]][im1[n]]*lattice2[m][im1[n]])

+lattice1[ip1[m]][n]*

(lattice2[m][im1[n]]*lattice2[m][n]));

near4_2a=(lattice1[im1[m]][ip1[n]]*

(lattice2[im1[m]][n]*lattice2[im1[m]][ip1[n]])

+lattice1[ip1[m]][ip1[n]]*

(lattice2[m][n]*lattice2[m][ip1[n]])

+lattice1[m][ip2[n]]*

(lattice2[im1[m]][ip1[n]]*lattice2[m][ip1[n]]));

E_K1=lattice1[m][n]*(near1a-near2a);

E_Q1=lattice1[m][n]*(near4_1a-near4_2a);
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if(table1[E_K1+6][E_Q1+6]>=(((double)rand())/maxint)){

temp=lattice1[m][n];

lattice1[m][n]=lattice1[m][ip1[n]];

lattice1[m][ip1[n]]=temp;

}

}

} // 0.5 closed

else{ // exchange in y direction

if(lattice1[m][n]!=lattice1[ip1[m]][n]){

say=1;

near1a=(lattice1[im1[m]][n]+lattice1[m][ip1[n]]

+lattice1[m][im1[n]]);

near2a=(lattice1[ip2[m]][n]+lattice1[ip1[m]][im1[n]]

+lattice1[ip1[m]][ip1[n]]);

near4_1a=(lattice1[im1[m]][n]*

(lattice2[im1[m]][n]*lattice2[im1[m]][im1[n]])

+lattice1[m][im1[n]]*

(lattice2[im1[m]][im1[n]]*lattice2[m][im1[n]])

+lattice1[m][ip1[n]]*

(lattice2[im1[m]][n]*lattice2[m][n]));

near4_2a=(lattice1[ip1[m]][im1[n]]*

(lattice2[m][im1[n]]*lattice2[ip1[m]][im1[n]])

+lattice1[ip2[m]][n]*

(lattice2[ip1[m]][im1[n]]*lattice2[ip1[m]][n])

+lattice1[ip1[m]][ip1[n]]*

(lattice2[m][n]*lattice2[ip1[m]][n]));

E_K1=lattice1[m][n]*(near1a-near2a);

E_Q1=lattice1[m][n]*(near4_1a-near4_2a);

127



if(table1[E_K1+6][E_Q1+6]>=(((double)rand())/maxint)){

temp=lattice1[m][n];

lattice1[m][n]=lattice1[ip1[m]][n];

lattice1[ip1[m]][n]=temp;

}

}

} //else (for y direction) closed

} // if(rr<R) closed

else{ //exchange between B atoms

if( 0.5 > (((double)rand())/maxint) ){ // exchange in x direction

if(lattice2[m][n]!=lattice2[m][ip1[n]]){

say=1;

near1b=(lattice2[im1[m]][n]+lattice2[ip1[m]][n]

+lattice2[m][im1[n]]);

near2b=(lattice2[im1[m]][ip1[n]]+lattice2[ip1[m]][ip1[n]]

+lattice2[m][ip2[n]]);

near4_1b=(lattice2[im1[m]][n]*

(lattice1[m][n]*lattice1[m][ip1[n]])

+lattice2[m][im1[n]]*

(lattice1[m][n]*lattice1[ip1[m]][n])

+lattice2[ip1[m]][n]*

(lattice1[ip1[m]][ip1[n]]*lattice1[ip1[n]][n]));

near4_2b=(lattice2[im1[m]][ip1[n]]*

(lattice1[m][ip1[n]]*lattice1[m][ip2[n]])

+lattice2[ip1[m]][ip1[n]]*

(lattice1[ip1[m]][ip1[n]]*lattice1[ip1[m]][ip2[n]])

+lattice2[m][ip2[n]]*

(lattice1[m][ip2[n]]*lattice1[ip1[m]][ip2[n]]));
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E_K2=lattice2[m][n]*(near1b-near2b);

E_Q2=lattice2[m][n]*(near4_1b-near4_2b);

if(table2[E_K2+6][E_Q2+6]>=(((double)rand())/maxint)){

temp=lattice2[m][n];

lattice2[m][n]=lattice2[m][ip1[n]];

lattice2[m][ip1[n]]=temp;

}

}

} //0.5 closed

else{ // exchange in y direction between B atoms

if(lattice2[m][n]!=lattice2[ip1[m]][n]){

say=1;

near1b=(lattice2[im1[m]][n]+lattice2[m][ip1[n]]

+lattice2[m][im1[n]]);

near2b=(lattice2[ip2[m]][n]+lattice2[ip1[m]][im1[n]]

+lattice2[ip1[m]][ip1[n]]);

near4_1b=(lattice2[im1[m]][n]*

(lattice1[m][n]*lattice1[m][ip1[n]])

+lattice2[m][im1[n]]*

(lattice1[m][n]*lattice1[ip1[m]][n])

+lattice2[m][ip1[n]]*

(lattice1[m][ip1[n]]*lattice1[ip1[m]][ip1[n]]));

near4_2b=(lattice2[ip1[m]][im1[n]]*

(lattice1[ip1[m]][n]*lattice1[ip2[m]][n])

+lattice2[ip2[m]][n]*

(lattice1[ip2[m]][n]*lattice1[ip2[m]][ip1[n]])

+lattice2[ip1[m]][ip1[n]]*

129



(lattice1[ip1[m]][ip1[n]]*lattice1[ip2[m]][ip1[n]]));

E_K2=lattice2[m][n]*(near1b-near2b);

E_Q2=lattice2[m][n]*(near4_1b-near4_2b);

if(table2[E_K2+6][E_Q2+6]>=(((double)rand())/maxint)){

temp=lattice2[m][n];

lattice2[m][n]=lattice2[ip1[m]][n];

lattice2[ip1[m]][n]=temp;

}

}

}// else closed

}// exchange between B atoms "closed"

} // while closed

} //End 1_MCS loop

///////////////////////// End 1-MCS loop ////////////////////////////////

/////////// Compute physical quantities/////////////////

if(mcs >= n_eq){

if((mcs-n_eq)%n_sample==0){

tot1_energy =0.0;

tot2_energy =0.0;

tot3_energy =0.0;

count1=count1+1;

for(i=0;i<N;i++) for(j=0;j<N;j++){

Egy1=lattice1[i][j]*(lattice1[ip1[i]][j]+lattice1[i][ip1[j]]);

Egy2=lattice2[i][j]*(lattice2[ip1[i]][j]+lattice2[i][ip1[j]]);
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Egy3=(lattice1[i][j]*lattice1[im1[i]][j]*

lattice2[im1[i]][im1[j]]*lattice2[im1[i]][j])

+(lattice1[i][j]*lattice1[i][ip1[j]]*

lattice2[im1[i]][j]*lattice2[i][j]);

tot1_energy+=Egy1;

tot2_energy+=Egy2;

tot3_energy+=Egy3;

}

E1_avg+=tot1_energy; E1_2_avg+=tot1_energy*tot1_energy;

E2_avg+=tot2_energy; E2_2_avg+=tot2_energy*tot2_energy;

E3_avg+=tot3_energy; E3_2_avg+=tot3_energy*tot3_energy;

}

//////////////////////End - energy fluctuations////////////////////////////

if((mcs-n_eq)%n_record == 0){

write=fopen("write.txt","w");

cv1 = ( E1_2_avg/count1 - ( (E1_avg/count1)*(E1_avg/count1) ) ) / size;

cv2 = ( E2_2_avg/count1 - ( (E2_avg/count1)*(E2_avg/count1) ) ) / size;

cv3 = ( E3_2_avg/count1 - ( (E3_avg/count1)*(E3_avg/count1) ) ) / size;

fprintf(write,"%lf\n %lf\n %lf\n %lf\n %d\n %d\n %d\n %d\n %d\n %lf\n

%lf\n %lf\n %lf\n %lf\n %lf\n %d\n %lf\n %lf\n %lf\n",

r,K1,K2,Jq,

mcs,n_eq,n_sample,n_record,N,

E1_avg,E1_2_avg,

E2_avg,E2_2_avg,

E3_avg,E3_2_avg,

count1,
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cv1,cv2,cv3);

for(i=0;i<N;i++)

for(j=0;j<N;j++)

fprintf(write,"%d %d ",lattice1[i][j],lattice2[i][j]);

fprintf(write," \n");

fflush(write);

fclose(write);

fprintf(analyze,"%d %f %f %f\n",mcs,cv1,cv2,cv3);

stop=fopen("stop_file.txt","r");

if(stop==NULL) {

printf("Error: stop File can not open\n");

}

else{

fscanf(stop,"%d",&stp);

}

if(stp==1) exit(1);

fclose(stop);

}

if(mcs==40000000) exit(1);

} // End of if mcs>n_eq

////////////////////////////////////////////////////////////////////////

} // End MCS
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////////////////////////// End MCS procedure ///////////////////////////

fflush(analyze);

fclose(analyze);

return;

}
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Appendix E

Code-3: Finite Size Scaling

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<conio.h>

#define N 80 // total number of data points(x,y)

main(nfile,filenames)

int nfile; char *filenames[];

{

FILE *results;

results=fopen("results.txt","r");

FILE *fit;

fit=fopen("FIT.txt","w");

FILE *err;

err=fopen("error.txt","w");

FILE *fss;

fss=fopen("FSS_org.txt","w");

FILE *n100;

n100=fopen("N100.txt","w");
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FILE *n80;

n80=fopen("N80.txt","w");

FILE *n40;

n40=fopen("N40.txt","w");

FILE *n32;

n32=fopen("N32.txt","w");

int i,j,k,a,b,n,count;

int num_points,interval;

int low,high;

int dd,nn,mm,fact,ier;

double ctrl,func,func2,fmax,diff,error,std_dev,jj;

double lambda,gg;

interval=10;

error=0.0;

printf("Please enter gg and lambda values:\n");

scanf("%lf %lf",&gg, &lambda);

printf("gg= %lf lambda=%lf\n",gg,lambda);

num_points=N/interval; // total data point in each interval=16

nn=(7*interval)-3;

mm=1;

double orginal[N][2],data[N][2];

double T[nn][nn];

double Y[nn][1];

double x[interval+1];

double arr[N][2];

void gelg(); void quicksort();

double sum(); double sum_y();
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for(i=0;i<N;i++){

for(j=0;j<2;j++){

fscanf(results,"%lf",&orginal[i][j]);

data[i][j]=0.0;

}

}

/////// Finite-Size Scaling (FSS)/////////////////////////////

for(i=0;i<20;i++){ // N100

data[i][0]=(orginal[i][0]-0.45)*pow(100,lambda);

data[i][1]=(orginal[i][1]-gg)/pow(100,(2.0*lambda-2.0));

fprintf(n100,"%lf %lf\n",data[i][0],data[i][1]);

}

for(i=20;i<40;i++){ // N80

data[i][0]=(orginal[i][0]-0.44)*pow(80,lambda);

data[i][1]=(orginal[i][1]-gg)/pow(80,(2.0*lambda-2.0));

fprintf(n80,"%lf %lf\n",data[i][0],data[i][1]);

}

for(i=40;i<60;i++){ // N40

data[i][0]=(orginal[i][0]-0.43)*pow(40,lambda);

data[i][1]=(orginal[i][1]-gg)/pow(40,(2.0*lambda-2.0));

fprintf(n40,"%lf %lf\n",data[i][0],data[i][1]);

}

for(i=60;i<N;i++){ // N32

data[i][0]=(orginal[i][0]-0.43)*pow(32,lambda);

data[i][1]=(orginal[i][1]-gg)/pow(32,(2.0*lambda-2.0));

fprintf(n32,"%lf %lf\n",data[i][0],data[i][1]);

}

// Sort the data according to the x-axis

quicksort(data,0,(N-1));

for(i=0;i<N;i++){
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for(j=0;j<2;j++){ fprintf(fss,"%lf ",data[i][j]);}

fprintf(fss,"\n");

fflush(fss);

}

////////// END-FSS ////////////////////////////////////////

x[0]=data[0][0];

x[interval]=data[N-1][0];

for(i=1;i<interval;i++){

x[i]=(data[num_points*i][0]+data[(num_points*i)-1][0])/2.0;

}

//for(i=0;i<(interval+1);i++) printf("%lf\n",x[i]);

for(i=0;i<nn;i++){

for(j=0;j<nn;j++){ T[i][j]=0.0; }

}

//////// Symmetric parts - with 5 alpha ///////////////////

a=0;

b=num_points;

for(k=0;k<nn;k=k+7){

for(i=0;i<4;i++){

for(j=0;j<4;j++){

dd=i+j;

T[i+k][j+k]=2.0*sum(a,b,dd,data);

}

}

a=a+num_points;

b=b+num_points;

137



}

/////////////// asymmetric parts://////////////////////////

n=0;

for(k=0;k<(nn-4);k=k+7){

for(i=0;i<4;i++){

T[i+k][4+k]=pow(x[n+1],i);

T[4+k][i+k]=T[i+k][4+k];

T[4+k][i+k+7]= -T[i+k][4+k];

T[i+k+7][4+k]= -T[i+k][4+k];

}

for(i=1;i<4;i++){

T[i+k][5+k]=(i*pow(x[n+1],(i-1)));

T[5+k][i+k]=T[i+k][5+k];

T[5+k][i+k+7]= -T[i+k][5+k];

T[i+k+7][5+k]= -T[i+k][5+k];

}

for(i=2;i<4;i++){

fact=1;

for(j=1;j<=i;j++){ fact*=j; }

T[i+k][6+k]=(fact*pow(x[n+1],(i-2)));

T[6+k][i+k]=T[i+k][6+k];

T[6+k][i+k+7]= -T[i+k][6+k];

T[i+k+7][6+k]= -T[i+k][6+k];

}

n++;

}

////////////////////////////////////////////////////////////////

for(i=0;i<nn;i++){ Y[i][0]=0.0; }

a=0;

b=num_points;

for(k=0;k<nn;k=k+7){

for(i=0;i<4;i++){
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Y[k+i][0]=2.*sum_y(a,b,i,data);

}

a=a+num_points;

b=b+num_points;

}

////////////////////////////////////////////////////////////////

gelg(nn,mm,T,Y,&ier);

//// PLOT & ERROR /////////////////////////////////////////

fmax=0.0;

ctrl=0.0;

k=0;

for(i=0;i<interval;i++){

for(j=0;j<=10;j++){

jj=(x[i]*(10-j)+x[i+1]*j)/10.;

fprintf(fit,"%lf ",jj);

func=Y[k][0]+(Y[k+1][0]*jj)+(Y[k+2][0]*pow(jj,2.0))

+(Y[k+3][0]*pow(jj,3.0));

if(ctrl==0.0){

if(jj >= 0.0){fmax=func; ctrl=jj;}

}

fprintf(fit,"%lf\n",func);

fflush(fit);

}

k=k+7;

}

///// Deviation ///////////////////////////////////////////////

diff=0.0;
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count=0;

k=14; // reason: starting from the 2nd interval

a=16; // reason: starting from the 2nd interval

b=num_points+16; //8 points in each interval

// for(i=0;i<interval;i++){

for(i=2;i<7;i++){ // from the interval2 to the interval7

// (central 5 interval with 40 points)

for(j=a;j<b;j++){

// if(abs(data[j][0]) <= 5.0){

count++;

func2=Y[k][0]+(Y[k+1][0]*data[j][0])+(Y[k+2][0]*pow(data[j][0],2.0))

+(Y[k+3][0]*pow(data[j][0],3.0));

diff += pow( fabs(data[j][1]-func2),2.0);

} // }

a=a+num_points;

b=b+num_points;

k=k+7;

}

std_dev=0.0;

error=0.0;

std_dev = (diff/count);

error=sqrt(std_dev)/fabs(fmax);

printf("diff: %lf\n number_of_points: %d\n std_dev: %lf\n

(x0,f_max): %lf %lf\n ERROR: %lf\n",

diff,count,std_dev,ctrl,fmax,error);

fprintf(err,"diff: %lf\n number_of_points: %d\n std_dev: %lf\n

f_max: %lf\n ERROR: %lf\n",diff,count,std_dev,fmax,error);
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fclose(err);

fclose(fit);

fclose(fss);

fclose(n100);

fclose(n80);

fclose(n40);

fclose(n32);

fclose(results);

getch();

return 0;

}

double sum(int a, int b, int dd, double c[80][2]) // q^dd

{

int i,j;

double top;

top=0.0;

for(i=a;i<b;i++){

top += pow(c[i][0],dd); // sum_Xi

}

return top;

}

double sum_y(int a, int b, int dd, double c[80][2]) // q^dd

{

int i,j;

double top;

top=0.0;

for(i=a;i<b;i++){

top += c[i][1]*pow(c[i][0],dd); // // sum_Xi

}

return top;
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}

void gelg(n,m,a,b,ier)

int n; int m; double a[n][n]; double b[n][m]; int *ier;

{

/*

c

c this is a subroutine to solve a system of linear equations

c a(n,n) is the coefficient matrix (destroyed)

c b(n,m) is the "right hand side" matrix (solution on return)

c ier is returned as a non-zero value if matrix a is ill defined

c by Cemal Yalabik, Physics Dept, Bilkent University, Ankara, Turkey

c yalabik@fen.bilkent.edu.tr

*/

int i,j,k,irow;

double big,raa,aa,tt,fabs();

*ier=0;

for(i=0;i<n;i++){

// find the largest element in this coulumn:

if(i == n-1){

irow=n-1;

big=fabs(a[n-1][n-1]);

}

else{

big=-1.;

for(j=i;j<n;j++){

raa=fabs(a[j][i]);

if(raa <= big){continue;}

big=raa;

irow=j;

}

}

if(big == 0.){

142



*ier=i;

return;

}

// interchange the pivot row

aa=1./a[irow][i];

for(j=i;j<n;j++){

tt=a[irow][j];

a[irow][j]=a[i][j];

a[i][j]=tt*aa;

}

for(j=0;j<m;j++){

tt=b[irow][j];

b[irow][j]=b[i][j];

b[i][j]=tt*aa;

}

// eliminate the remaining elements on this coulumn

for(j=0;j<n;j++){

if(i == j){continue; }

aa=a[j][i];

for(k=i;k<n;k++){

a[j][k]=a[j][k]-aa*a[i][k];

}

for(k=0;k<m;k++){

b[j][k]=b[j][k]-aa*b[i][k];

}

}

}

return;

}

/* sort everything inbetween ‘low’ <-> ‘high’ */

void quicksort(double arr[N][2],int low,int high)

{
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int i = low;

int j = high;

int y = (low+high)/2;

double row = 0.0;

double col = 0.0;

/* compare value */

double z = arr[y][0];

/* partition */

do {

/* find member above ... */

while(arr[i][0] < z) i++;

/* find element below ... */

while(arr[j][0] > z) j--;

if(i <= j) {

/* swap two elements */

row = arr[i][0];

col = arr[i][1];

arr[i][0] = arr[j][0];

arr[i][1] = arr[j][1];

arr[j][0] = row;

arr[j][1] = col;

i++;

j--;

}

} while(i <= j);

/* recurse */

if(low < j)
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quicksort(arr, low, j);

if(i < high)

quicksort(arr, i, high);

}
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