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Abstract— This paper demonstrates the stability limits of
a human-in-the-loop closed loop control system, where the
plant to be controlled has redundant actuators with uncertain
dynamics. The human operator is modeled as a general transfer
function, unlike earlier work where specific filters are associated
with human reactions. This helps with developing a more
general stability analysis, and earlier studies can be considered
as special cases of the proposed framework in this paper.
Adaptive control allocation is employed to distribute control
signals among redundant actuators. A sliding mode controller
with a time-varying sliding surface provides desired control
inputs to the control allocator. A flight control task, where the
pilot controls the pitch angle via a pitch rate stick input is
simulated to demonstrate the accuracy of the stability analysis.
The Aerodata Model in Research Environment is used as the
uncertain, over-actuated aircraft model.

I. INTRODUCTION

Humans’ unique skills, such as adaptive behavior in dy-
namic environments, social interaction and moral judgment
capabilities, make them inseparable elements of many con-
trol systems. Investigation of human-in-the-loop dynamics
help develop safe control mechanisms, and provide a better
realization and understanding of human control actions and
limitations [1]–[4].

Many studies in the literature focus on developing human
models that mimic the human behavior in a specific task. The
concept of describing function for human behavior is used
by Tustin [5]. Quasi-linear model, proposed by McRuer and
Krendel [6] consists of a describing function and a remnant
signal accounts for nonlinear behavior. In situations that
require very accurate control commands, the human behavior
is modeled as a pure gain [7]–[9]. The magnitude of the gain
shows human attention level, aggressiveness, or task urgency.
Human models with a gain and a pole (lag filter), which
captures the humans’ limitation of not being able to provide
adequate control inputs at high frequencies, are also used for
stability analysis [3], [10].

Human reaction delay is a prominent factor in developing
human models and a key parameter in stability analysis. The
limitations of, for example, the model reference adaptive con-
trol in the presence of a human operator with reaction time
delay are studied in [1], [11] and [12]. Padé approximation
is a useful tool that transforms the delay term to a transfer
function, which reduces the complexity of the analysis [13].
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In this study, we analyze the stability of human-in-the-
loop control systems with redundant actuators assuming that
the human reactions can be modeled as a general transfer
function.

Actuator redundancy is commonly used in industrial appli-
cations to increase system maneuverability, flexibility, safety,
and fault tolerability. However, actuator redundancies lead to
increased system complexity, which can increase the diffi-
culty of designing appropriate controllers. Control allocators
can be used to distribute control signals among redundant
actuators [9], [14]–[17], while reducing the complexity of
the controller design. Different from the conventional con-
trol allocation methods which require fault identification in
uncertain systems, adaptive control allocation methods pro-
posed by [18] and [19]–[21] do not require an identification
method or assumption on the persistence of excitation of
signals. In this paper, the stability of a human-in-the-loop
closed loop system in the presence of an adaptive control
allocator is analyzed. The plant is assumed to have uncertain
redundant actuators and be controlled by a sliding mode
controller that feeds the adaptive control allocator with a
desired control input vector. Compared to our earlier work
[3] that contained simpler human models, e.g. pure gain and
lag filter with one pole and no zero, this paper contains
a stability analysis with a general transfer function with n̂
poles and m̂ zeros as the human reaction model. To the best
of authors knowledge, human-in-the-loop stability analysis
with a general transfer function as the human model in
the presence of an adaptive control allocator has not been
conducted earlier in the literature.

This paper is organized as follows. Section II presents
the over-actuated system dynamics with uncertain actuator
effectiveness matrix. Control allocation as well as the sliding
mode control design are also presented in this section. Closed
loop dynamics including the uncertain plant, control alloca-
tion and the controller are given in Section III. Human-in-the-
loop stability analysis is provided in Section IV. Simulation
results are presented in Section V, and a summary is given
in Section VI.

II. PROBLEM SETUP

In this section, we first introduce the dynamics of an over-
actuated system in the presence of uncertainty. Then, we
describe the adaptive control allocation method. Finally, we
overview the sliding mode controller with a time-varying
sliding surface to compensate the adaptive control allocation
error [22] (see Figure 1).

2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

978-1-6654-5196-3/$31.00 ©2022 AACC 659

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 25,2023 at 20:22:17 UTC from IEEE Xplore.  Restrictions apply. 



A. Over-actuated uncertain plant

Consider the following uncertain over-actuated plant dy-
namics

ẋ = Ax+BuΛu = Ax+BvBΛu, (1)

where x ∈ Rn is the system states vector, u ∈ Rm is the
control input vector, A ∈ Rn×n is the known state matrix
and Bu = BvB ∈ Rn×m is the known rank deficient
control input matrix which is decomposed into the known
matrices Bv ∈ Rn×ℓ and B ∈ Rℓ×m. The actuator loss of
effectiveness is modeled as a diagonal matrix Λ ∈ Rm×m

with unknown positive elements. Throughout the paper, the
over-dot notation will be used for time derivatives only, i.e.
˙(·) = d(·)/dt.

The control allocation objective is to distribute the total
control effort v ∈ Rℓ, produced by an outer loop controller,
to the redundant actuators such that

BΛu = v (2)

is achieved. It is noted that, if this task is achieved perfectly,
the system “seen” by the outer loop controller will have the
form

ẋ = Ax+Bvv. (3)

Remark 1: The focus of this paper is the human-in-the-
loop stability analysis for a control system where control
allocation is employed to distribute the total control effort
among redundant actuators. In this setting, matrix A being
known or not does not effect the development of the control
allocation. As seen from (2), only the uncertainty in the input
matrix effects the control allocation development. Therefore,
to keep the development concise, we will assume that A is
known, although the proofs can be extended for an unknown
A.

B. Adaptive control allocation

One way to achieve (2) is by using the following control
allocation system proposed in [20]

ξ̇ = Amξ +BΛu− v, (4a)

ξ̇m = Amξm, (4b)

θ̇v = ΓθProj
(
θv,−veTPB

)
, (4c)

u = θTv v, (4d)

where ξ ∈ Rr is the output of the virtual dynamics, θv ∈
Rr×m is the adaptive parameter to be updated, ξm ∈ Rr is
the output of the reference model, e = ξ − ξm, (4b) is the
reference model with a Hurwitz matrix Am ∈ Rr×r, (4c) is
the adaptive law where the symmetric positive definite matrix
P satisfies AT

mP + PAm = −Q, Q is a symmetric positive
definite matrix, Γθ = γθIℓ, where γθ is a positive scalar,
and Proj(., .) : Rr×m × Rr×m → Rr×m is the projection
algorithm [23], [24]. It can be shown that, in the absence
of actuator limits, e converges to zero and thus the control
allocation goal (2) is achieved [25].

Fig. 1: Closed loop system including control allocation.

C. Outer loop controller

It is required to employ a controller compensating the
disturbances originating from the transient dynamics of the
control allocation. The sliding mode controller introduced in
[22] has the required properties. For the sake of complete-
ness, the main results of the sliding mode controller design
is summarized in this section.

From an outer loop controller point of view, the system
to be controlled contains the the over-actuated plant (1) and
the control allocation, and can be written as

ẋ = Ax+Bv(I +∆B)v, (5)

where ∆B = BΛθ̃Tv is the effect of the control allocation
error, and θ̃v is the parameter error defined as θ̃v ≡ θv − θ∗v ,
where θ∗v is the ideal adaptive parameter. It is shown in [20]
that the projection algorithm used in the control allocation
can be designed such that ||∆B|| < 1. Assume that the
dynamics (5) can be written as[

ẋ(1)

ẋ(2)

]
=

[
A1,1 A1,2

A2,1 A2,2

] [
x(1)

x(2)

]
+Bv(v + d),

y = C

[
x(1)

x(2)

]
, (6)

where A1,1 ∈ R(n−ℓ)×(n−ℓ) is a Hurwitz matrix, A1,2 ∈
R(n−ℓ)×r, A2,1 ∈ Rℓ×(n−ℓ), A2,2 ∈ Rℓ×ℓ, x(1) ∈ R(n−ℓ),
x(2) ∈ Rℓ, y ∈ Rℓ, C = [0ℓ×(n−ℓ) Iℓ], d = ∆Bv, and
Bv ∈ Rn×ℓ is in the form [0ℓ×(n−ℓ) Iℓ]

T . It is noted that
this assumption holds for a large class of open loop unstable
aircraft dynamics, and will be shown to hold for the Aerodata
Model in Research Environment (ADMIRE) [26] later in the
paper in the simulations section.

The sliding surface is given as

s
(
x(2)(t), x(2)(t0), t

)
= x(2)(t)− x(2)(t0)e

−λ̄(t−t0)

− 2

π
z(t)tan−1

(
λ̄(t− t0)

)
= 0, (7)

where λ̄ > 0 is a scalar parameter, x(1) ∈ R(n−ℓ) and x(2) ∈
Rℓ are defined in (6), s ∈ Rℓ is the sliding surface, and
z(t) ∈ Rℓ is the reference to be tracked. It is proved in [22]
that when x(2)(t) is on the sliding surface (7), x(1)(t) and
x(2)(t) are bounded for all t ≥ t0 and limt→∞ y(t) = z(t).

Definition 1: signv(a), where a is a column vector, is
a diagonal matrix whose elements are the signs of the
elements of the vector a. For example, signv([a1 a2]

T ) =
diag(sign(a1), sign(a2)), where a1 and a2 are scalars.

Consider the dynamics given by (6), and the sliding
surface (7). It can be shown that the trajectories of x(2)
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start, at t = t0, on the sliding surface (7), and stay there
if the control law

v(t) =−A2,1x
(1)(t)−A2,2x

(2)(t)− λ̄x(2)(0)e−λ̄t

+
2

π
ż(t)tan−1(λ̄t) +

2

π
z(t)

λ̄

1 + λ̄2t2

− signv

(
s(x(2)(t), x(2)(0), t)

)
ρ, (8)

is implemented, where ρ ∈ Rℓ contains the upper bounds on
the absolute values of the elements of the disturbance vector
d and signv(.) : Rn → Rn×n is defined in Definition 1.
Note that the trajectories of x(2) are on the sliding surface
(7) at t = t0. Thus, by omitting the reaching phase, the
trajectories are always in the sliding phase, which guarantees
the robustness of the controller.

The closed loop system including the over-actuated plant,
adaptive control allocation and the sliding mode controller is
introduced in this section (see Figure 1). In the sequel, the
effect of human dynamics on the stability of the closed loop
system is analyzed.

III. HUMAN OPERATOR POINT OF VIEW:
NONLINEAR TIME-VARYING DYNAMICS

The system to be controlled by the human operator
contains the uncertain over-actuated plant, adaptive control
allocation and the sliding mode controller introduced in
Section II. Although the plant is linear time invariant, the
existence of the adaptive control allocator and the sliding
mode controller leads to a nonlinear time-varying closed loop
system.

Substituting (8) into (6), the nonlinear time-varying system
dynamics can be obtained as



ẋ(1)(t) = A1,1x
(1)(t) +A1,2x

(2)(t),

ẋ(2)(t) = −λ̄x(2)(0)e−λ̄t + 2
π ż(t)tan−1(λ̄t) + d(t)

+ 2
π z(t)

λ̄
1+λ̄2t2

− signv

(
s
(
x(2)(t), x(2)(0), t

))
ρ,

y(t) = x(2)(t).

(9)

ADMIRE [26], which is an over-actuated aircraft model,
is utilized as the plant to be controlled. The model can be
written in the form of (6), with x(1) = [α β]T and x(2) =
[p q r]T , where α, β, p, q and r are the angle of attack,
sideslip angle, roll rate, pitch rate and yaw rate, respectively.
Also, the reference signal, z(t), is taken as z = [pd, qd, rd]

T ,
where pd, qd and rd are the desired roll, pitch and yaw rates,

Fig. 2: The evolution of states considering different human
operator models.

respectively. Therefore, (9) can be written as[
α̇(t)

β̇(t)

]
= A1,1

[
α(t)
β(t)

]
+A1,2

p(t)q(t)
r(t)

 , (10)

ṗ(t)q̇(t)
ṙ(t)

 = −λ̄e−λ̄t

p(0)q(0)
r(0)

+
2

π
tan−1(λ̄t)

ṗd(t)q̇d(t)
ṙd(t)


+

2

π

λ̄

1 + λ̄2t2

pd(t)qd(t)
rd(t)

− signv(s)ρ+ d(t), (11)

y(t) = [p(t) q(t) r(t)]T , (12)

where the arguments of s (x(2)(t);x(2)(t); t) are dropped
for clarity.

IV. HUMAN-IN-THE-LOOP STABILITY ANALYSIS

In Section II, it is shown that the control signal (8) keeps
the trajectories of p(t), q(t) and r(t) on the sliding surface
(7) for all t ≥ t0. Furthermore, on the sliding surface (7),
p(t), q(t) and r(t) remain bounded and track their references
pd(t), qd(t) and rd(t), assuming that the references are
bounded. Therefore, using (10) it can be concluded that α(t)
and β(t) remain bounded, given that p(t), q(t) and r(t) are
bounded. In this section, we integrate the pilot in the control
system and analyze the stability of the overall human-in-the-
loop closed loop dynamics. The resulting control structure is
shown in Figure 2.

Remark 2: It is noted that in the following analysis,
although the references pd(t) and rd(t) are assumed to be
bounded, it will not be assumed that qd(t) is also bounded.
Therefore, the boundedness of q(t), α(t) and β(t) need to
be shown.

Consider the transfer function

qd(s)

θd(s)− θ(s)
=

bmsm̂ + bm−1s
m̂−1 + ...+ b0

sn̂ + an−1sn̂−1 + ...+ a0
, (13)

as the human operator model, where m̂ and n̂ are integers
such that n̂ > 0, m̂ ≥ 0 and m̂ ≤ n̂, and ai and bj for
i = 0, ..., n̂ − 1 and j = 0, ..., m̂, are real constants. The
transfer function (13) can be represented in the minimal state
space form as

ẋh(t) = Ahxh(t) +Bh (θd(t)− θ(t)) , (14)
qd(t) = Chxh(t) +Dh (θd(t)− θ(t)) , (15)

where xh ∈ Rn̂ is the vector containing the states of the
human model, Ah ∈ Rn̂×n̂, Bh ∈ Rn̂, Ch ∈ R1×n̂ and
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Dh ∈ R are constant matrices, qd ∈ R is the output of
the human model and also the pitch rate reference for the
controller (see Figure 2), θd ∈ R is the desired pitch angle
and θ ∈ R is the measured pitch angle.

Using (7), where x(2) = [p q r]T , the trajectory of
q(t) on the sliding surface can be found. Considering small
angles, we have θ̇(t) = q(t), and using (15), the pitch angle
dynamics can be written as

θ̇(t) = q(0)e−λ̄t +
2

π
tan−1(λ̄t)Chxh(t)

+
2

π
tan−1(λ̄t)Dh (θd(t)− θ(t)) . (16)

Augmenting the dynamics of general human model (14) and
pitch angle (16), we have[

θ̇(t)
ẋh(t)

]
=

[
− 2

π tan
−1(λ̄t)Dh

2
π tan

−1(λ̄t)Ch

−Bh Ah

]
︸ ︷︷ ︸

Ā(t)

[
θ(t)
xh(t)

]
︸ ︷︷ ︸

x̄(t)

+

[
2
π tan

−1(λ̄t)Dh

Bh

]
︸ ︷︷ ︸

B̄

θd(t) +

[
q(0)e−λ̄t

0

]
︸ ︷︷ ︸

ω(t)

. (17)

By defining x̄(t) = [θ(t) xT
h (t)]

T , (17) can be written in the
following compact form

˙̄x(t) = Ā(t)x̄(t) + B̄θd(t) + ω(t). (18)

In the following, the stability of (18) is investigated.
At first, we analyze the stability of ˙̄x(t) = Ā(t)x̄(t) and
then explore the conditions for the stability of (18), which
concludes the stability of human-in-the-loop closed loop
system.

Theorem 1: The time-varying system ˙̄x(t) = Ā(t)x̄(t),
where Ā(t) and x̄(t) are given in (17), is uniformly expo-
nentially stable if

λi

([
−Dh Ch

−Bh Ah

])
∈ C−, i = 1, ..., n̂+ 1, (19)

where λi(.) provides ith eigenvalue of the matrix.
Proof: The time-varying matrix Ā(t) can be written as

Ā(t) =

[
−Dh Ch

−Bh Ah

]
︸ ︷︷ ︸

Ā1

+

[(
− 2

π tan
−1(λ̄t) + 1

)
Dh

(
2
π tan

−1(λ̄t)− 1
)
Ch

0 0

]
︸ ︷︷ ︸

Ā2(t)

.

(20)

If all of the eigenvalues of Ā1 are in C−, then the origin
of the differential equation ˙̄x(t) = Ā1x̄(t) is exponentially
stable. Thus, there exist a scalar function V̄ (x) satisfying
[27]

c̄1||x̄||2 ≤ V̄ ≤ c̄2||x̄||2 (21)
dV̄

dx̄
Ā1x̄(t) ≤ −c̄3||x̄||2 (22)

||dV̄
dx̄

|| ≤ c̄4||x̄||, (23)

where c̄1, c̄2, c̄3 and c̄4 are positive constants. Considering
the system ˙̄x(t) = Ā(t)x̄(t) = Ā1x̄(t)+Ā2(t)x̄(t) and using
(21)-(23), an upper bound on the time derivative of V̄ can
be obtained as

˙̄V =
dV̄

dx̄
Ā1x̄(t) +

dV̄

dx̄
Ā2(t)x̄(t)

≤ −c̄3||x̄||2 + c̄4c̄5

∣∣∣∣ 2π tan−1(λ̄t)− 1

∣∣∣∣ ||x̄||2
≤ − c̄3

c̄2
V̄ +

c̄4c̄5
c̄1

∣∣∣∣ 2π tan−1(λ̄t)− 1

∣∣∣∣ V̄
= −

(
c̄3
c̄2

− c̄4c̄5
c̄1

∣∣∣∣ 2π tan−1(λ̄t)− 1

∣∣∣∣) V̄ , (24)

where c̄5 = (||Dh||2 + ||Ch||2)1/2. Using the comparison
lemma [27], we get

V̄ ≤ e−(
c̄3
c̄2

t− c̄4 c̄5
c̄1

∫ t
0
| 2
π tan−1(λ̄τ)−1|dτ)V̄ (x̂(0)). (25)

Using (21), (25) can be written as

||x̄(t)||2 ≤ c̄2
c̄1

e−(
c̄3
c̄2

t− c̄4 c̄5
c̄1

∫ t
0
| 2
π tan−1(λ̄τ)−1|dτ)||x̄(0)||2,

(26)

which leads to

||x̄(t)|| ≤
√

c̄2
c̄1

e−(
c̄3
2c̄2

t− c̄4 c̄5
2c̄1

∫ t
0
| 2
π tan−1(λ̄τ)−1|dτ)||x̄(0)||.

(27)

Let γ(t) = | 2π tan
−1(λ̄t)−1|, it should be noted that γ(t) ≥ 0

and limt→∞ γ(t) = 0. Also, the time derivative of γ(t)
is bounded for ∀t ≥ 0, and d

dtγ(t) = −2λ̄
π(1+λ̄2t2)

< 0.
Therefore, there exist positive constants T̄ and ϵ̄ such that
γ(t) ≤ ϵ̄ < c̄3c̄1

c̄2c̄4c̄5
,∀t ≥ T̄ . Also, from the boundedness of

γ(t) we have
∫ T̄

0
γ(t) = η̄, where η̄ is a positive constant.

The following two cases should be considered: (1) For t ≤ T̄ ,∫ t

0
γ(τ)dτ ≤ η̄. Thus, using (27), an upper bound for ||x̄||

can be obtained as

||x̄(t)|| ≤
√

c̄2
c̄1

κ̄e−(
c̄3
2c̄2

t)||x̄(0)||, (28)

where κ̄ = e
c̄4 c̄5
2c̄1

η̄ . (2) For t > T̄ ,
∫ t

0
γ(τ)dτ =

∫ T̄

0
γ(τ)dτ+∫ t

T̄
γ(τ)dτ ≤ ϵ̄t+ η̄. Substituting this result in (27), an upper

bound for ||x̄|| can be obtained as

||x̄(t)|| ≤
√

c̄2
c̄1

κ̄e−(
c̄3
2c̄2

t− c̄4 c̄5
2c̄1

ϵ̄t)||x̄(0)|| (29)

Since ϵ̄ < c̄3c̄1
c̄2c̄4c̄5

, the origin of ˙̄x(t) = Ā(t)x̄(t) is exponen-
tially stable.

Theorem 2: The solution of the linear time-varying sys-
tem (18), where Ā(t), B̄, ω(t) and x̄(t) are given in (17), is
bounded if

λi

([
−Dh Ch

−Bh Ah

])
∈ C−, i = 1, ..., n̂+ 1. (30)

Proof: The solution of the system (18) is

x̄(t) = Φ̄(t, t0)x̄(t0) +

∫ t

t0

Φ̄(t, τ)(B̄θd(τ) + ω(τ)), (31)

662

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 25,2023 at 20:22:17 UTC from IEEE Xplore.  Restrictions apply. 



where Φ̄(t, t0) is the state transition matrix. By using the
definitions of B̄ and ω(t) given in (17), it can be obtained
that sup0≤τ≤t ||B̄θd(τ)+ω(τ)|| = ||B̄||θdmax+|q(0)|. Also,
it is proved in Theorem 1 that if λi(Ā1) ∈ C−, i =
1, ..., n̂ + 1, the origin of ˙̄x(t) = Ā(t)x̄(t) is exponentially
stable, that is, there exist finite positive constants k̄1 and k̄2
such that ||Φ̄(t, t0)|| ≤ k̄1e

−k̄2(t−t0), for ∀t ≥ t0. Therefore,
considering t0 = 0, an upper bound on ||x̄(t)|| can be
obtained as

||x̄(t)|| ≤ k̄1e
−k̄2t|x̄(0)|+ k̄1(||B̄||θdmax + |q(0)|)

×
∫ t

0

e−k̄2(t−τ)dτ

= k̄1e
−k̄2t|x̄(0)|+ k̄1

k̄2
(||B̄||θdmax

+ |q(0)|)

× (1− e−k̄2t)

≤ k̄1|x̄(0)|+
k̄1
k̄2

(||B̄||θdmax
+ |q(0)|). (32)

Therefore, θ(t) and xh(t) are bounded. Assuming that θd(t)
is bounded, the boundedness of θ(t) proves that eθ(t) =
θd(t)− θ(t) is bounded as well.

Remark 3: In addition to the stability, performance of
the closed loop system can also be analyzed. One of the
performance metrics is the upper bound of the norm of the
tracking error eθ(t) = θd(t)−θ(t). Using (32), we can obtain
this bound as

||eθ(t)|| = ||θd(t)− θ(t)||
≤ ||θd(t)||+ ||θ(t)||
≤ ||θd(t)||+ ||x̄(t)||

= ||θd(t)||+ k̄1|x̄(0)|+
k̄1
k̄2

(||B̄||θdmax
+ |q(0)|).

(33)
Remark 4: Different state space representations of (13) do

not change the analysis provided in Theorems 1 and 2. To
show this, consider the state space representation

ẋh(t) = T−1
x AhTxxh(t) + T−1

x Bh(θd(t)− θ(t)), (34)
qd(t) = ChTxxh(t) +Dh(θd(t)− θ(t)), (35)

where Tx is the linear transformation matrix. Let M =[
−Dh Ch

−Bh Ah

]
and MT =

[
−Dh ChTx

−T−1
x Bh T−1

x AhTx

]
, where

MT can be written as

MT =

[
I 0
0 T−1

x

]
M

[
I 0
0 Tx

]
. (36)

By defining T̄x =

[
I 0
0 Tx

]
, we have

det(sI −MT ) = det(sI − T̄−1
x MT̄x)

= det(T̄−1
x (sI −M)T̄x)

= det(T̄−1
x )det(sI −M)det(T̄x)

= det(sI −M), (37)

where det(.) stands for the determinant of a matrix.

V. APPLICATION EXAMPLE
A. ADMIRE Model

The ADMIRE [26], which is an over-actuated aircraft
model, is utilized for the simulations. The linearized model
at Mach 0.22 and altitude 3000 m is given as

ẋ = Ax+Buu = Ax+Bvv,
v = Bu, Bu = BvB, Bv = [03×2 I3×3]

T ,
x = [α β p q r]T , y = [p q r]T , u = [uc ure ule ur]

T ,
(38)

where the states α, β, p, q and r are the angle of attack,
sideslip angle, roll rate, pitch rate and yaw rate, respectively.
The vector u includes uc, ure, ule and ur, which are
the commanded deflections of the canard wings, right and
left elevons, and the rudder deflection, respectively. The
state and control matrices, A and Bu, can be found in
[26], and omitted here for brevity. To introduce the actuator
effectiveness uncertainty, we modify the model (38) as

ẋ = Ax+BuΛu

= Ax+BvBΛu, (39)

where Λ ∈ R4×4 is a diagonal matrix with uncertain positive
elements. Substituting the allocated signal u given by (4d),
and using θTv = θ∗Tv + θ̃Tv , (39) can be written as

ẋ = Ax+BvBΛθTv v

= Ax+Bv(I +BΛθ̃Tv )v,
(40)

which is in the proper form for the controller design (5).

B. Simulation Results
The closed loop control structure depicted in Figure 2 is

used for the simulations. The reference signals, pd(t), qd(t)
and rd(t) are roll, pitch and yaw rate references, respectively.
The signals pd(t) and rd(t) are provided to the controller
externally, and qd(t) is the human operator command. The
effectiveness of the actuators are reduced by 30% at t = 7s.

The poles of the matrix
[
−Dh Ch

−Bh Ah

]
for the various

human transfer function models, denoted as TF1, ..., TF6,
are provided in Table I. Using Theorem 2 and the results
provided in Table I, it can be predicted that the closed loop
system trajectories will be bounded for transfer functions
TF1, TF2, TF5 and TF6. Figure 3 illustrates the evolution of
the state trajectories. It is seen that the states remain bounded
for TF1, TF2, TF5 and TF6, and unbounded for models TF3
and TF4. These results are consistent with Theorem 2.

VI. SUMMARY
The stability limits of a human-in-the-loop closed loop

control system for a human operator reaction model that is
represented as a general transfer function are analyzed in the
presence of uncertain redundant actuators. A sliding mode
controller is used to guarantee reference tracking and bound-
edness of the states, when the controller receives bounded
references. The adaptive control allocation is employed to
distribute the total control signal vector among the redun-
dant uncertain actuators. The simulations performed using
different operator models agree with the stability analysis.
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TABLE I

Human transfer function λi


−Dh Ch

−Bh Ah




TF1 10
s+10

−1.127,−8.873

TF2 s+1
(s+2)(s+3)

−0.16,−2.4± 0.6j

TF3 s+1
(s−2)(s+3)

1.655, 0.21,−2.86

TF4 s−1
(s+2)(s+3)

0.13,−2.5± 1.04j

TF5 (s+1)(s+2)
(s+3)(s+4)

−0.144,−2.678,−5.177

TF6 (s+1)(s+2)
(s+3)(s+4)(s+5)

−0.03,−2.8,−4.6± 0.96j

Fig. 3: The evolution of states considering different human
operator models.

REFERENCES

[1] T. Yucelen, Y. Yildiz, R. Sipahi, E. Yousefi, and N. Nguyen, “Stability
limit of human-in-the-loop model reference adaptive control architec-
tures,” International Journal of Control, vol. 91, pp. 2314–2331, 2018.

[2] M. Xia, A. Rahnama, S. Wang, and P. J. Antsaklis, “On guaranteeing
passivity and performance with a human controller,” in Mediterranean
Conference on Control and Automation (MED), pp. 722–727, IEEE,
2015.

[3] S. Tohidi and Y. Yildiz, “Adaptive control allocation: A human-in-the-
loop stability analysis,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6321–
6326, 2020.

[4] S. S. Tohidi and Y. Yildiz, “A control theoretical adaptive human pilot
model: Theory and experimental validation,” IEEE Transactions on
Control Systems Technology, accepted for publication, 2022.

[5] A. Tustin, “The nature of the operator response in manual control,
and its implications for controller design,” Journal of the Institution
of Electrical Engineers-Part IIA: Automatic Regulators and Servo
Mechanisms, vol. 94, no. 2, pp. 190–206, 1947.

[6] D. T. McRuer and E. S. Krendel, “Dynamic response of human
operators,” tech. rep., WADC-TR-56-524, 1957.

[7] D. McRuer, D. Klyde, and T. Myers, “Development of a compre-
hensive pio theory,” in Atmospheric Flight Mechanics Conference,
p. 3433, 1996.

[8] D. Klyde and D. Mitchell, “A pio case study-lessons learned through
analysis,” in AIAA Atmospheric Flight Mechanics Conference and
Exhibit, p. 5813, 2005.

[9] Y. Yildiz and I. Kolmanovsky, “Stability properties and cross coupling
performance of the control allocation scheme CAPIO,” Journal of
Guidance, Control, and Dynamics, vol. 34, pp. 1190–1196, 2011.

[10] M. R. Anderson, “Pilot induced oscillations involving multiple nonlin-
earities,” Journal of Guidance, Control, and Dynamics, vol. 21, no. 5,
pp. 786–791, 1998.

[11] E. Yousefi, Y. Yildiz, R. Sipahi, and T. Yucelen, “Stability analysis of
a human-in-the-loop telerobotics system with two independent time-
delays,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 6519–6524, 2017.

[12] E. Arabi, T. Yucelen, R. Sipahi, and Y. Yildiz, “Human-in-the-loop
systems with inner and outer feedback control loops: Adaptation,
stability conditions, and performance constraints,” in AIAA Scitech
Forum, 2019.

[13] S.-C. Tsay, I. LONG WU, and T.-T. Lee, “Optimal control of linear
time-delay systems via general orthogonal polynomials,” 1988.

[14] T. A. Johansen and T. I. Fossen, “Control allocation—a survey,”
Automatica, vol. 49, no. 5, pp. 1087–1103, 2013.

[15] W. C. Durham, “Constrained control allocation,” Journal of Guidance,
Control, and Dynamics, pp. 717–725, 1993.

[16] J. A. M. Petersen and M. Bodson, “Constrained quadratic program-
ming techniques for control allocation,” IEEE Transactions on Control
Systems Technology, vol. 14, no. 1, pp. 91–98, 2006.

[17] S. S. Tohidi, A. Khaki Sedigh, and D. Buzorgnia, “Fault tolerant
control design using adaptive control allocation based on the pseudo
inverse along the null space,” International Journal of Robust and
Nonlinear Control, vol. 26, no. 16, pp. 3541–3557, 2016.
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