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SEQUENTIAL PRODUCT OF QUANTUM EFFECTS

AURELIAN GHEONDEA AND STANLEY GUDDER

(Communicated by Joseph A. Ball)

Abstract. Unsharp quantum measurements can be modelled by means of the
class E(H) of positive contractions on a Hilbert space H, in brief, quantum ef-

fects. For A,B ∈ E(H) the operation of sequential product A◦B = A1/2BA1/2

was proposed as a model for sequential quantum measurements. We continue
these investigations on sequential product and answer positively the following
question: the assumption A ◦B ≥ B implies AB = BA = B.

Then we propose a geometric approach of quantum effects and their se-
quential product by means of contractively contained Hilbert spaces and op-
erator ranges. This framework leads us naturally to consider lattice properties
of quantum effects, sums and intersections, and to prove that the sequential
product is left distributive with respect to the intersection.

1. Introduction

Unsharp quantum measurements experiments can be modelled by means of the
class E(H) of positive contractions on a Hilbert space H. For A,B ∈ E(H) the
operation of sequential product A ◦ B = A1/2BA1/2 was proposed as a model for
sequential measurements. A careful investigation of properties of the sequential
product has been carried over in [5] (see also [6]). In that paper it was proved
that, if the underlying Hilbert space H is finite dimensional, then, by preceding
the effect B with another effect A, we cannot amplify the effect B. In terms of
the operator model, this means that if for some A,B ∈ E(H) we have A ◦ B ≥ B,
then AB = BA = B. The question, raised in [5], is whether this is true for
infinite-dimensional Hilbert spaces as well. We answer positively this question in
Theorem 2.6. The idea of our proof is to iterate the inequality A ◦ B ≥ B and
to show that, at the limit, we obtain exactly the condition AB = BA = B. Here
we use the borelian functional calculus for selfadjoint operators, that is, we pass
to the von Neumann algebra generated by the operator A to get at the limit the
orthogonal projection onto Ker(I−A), a common procedure in ergodic theory. The
second section also contains a few other results on the sequential product, especially
concerning comparison.

In the third section we propose a geometric approach of the sequential product
based on the interpretation of quantum effects as contractively contained Hilbert
spaces. This is a particular situation of the theory of continuously contained Hilbert
spaces in quasi-complete locally convex spaces of L. Schwartz [8]. Similar ideas have
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been used in the case of contractively contained Hilbert spaces in the de Branges-
Rovnyak model in quantum scattering [2], and operator ranges; cf. [4] and [7].
This allows us to consider lattice properties, as sums and intersections of the set of
quantum effects, that lead naturally to the parallel sum of quantum effects. The
sequential product is a morphism, in the second variable, with respect to the binary
operation of parallel sum; cf. Theorem 3.10. Rephrased in terms of contractively
contained Hilbert spaces, this means that the sequential product is left distributive
with respect to the intersection.

2. Sequential product

Let H be a Hilbert space. We denote by B(H) the C∗-algebra of linear and
bounded operators on H, B(H)+ = {A ∈ B(H) | A ≥ 0} its positive cone, and
by E(H) we denote the set of quantum effects, or simply, effects, that is, operators
A ∈ B(H) such that 0 ≤ A ≤ I. For two effects A,B ∈ E(H) we denote by
A◦B = A1/2BA1/2 the sequential product of the effects A and B, that is, the effect
obtained by doing the measurements in the order first A and second B. Clearly,
A ◦ B ≤ A and a first question is when A ◦ B ≤ B. A sufficient condition to have
this is the case when A and B are compatible, that is, AB = BA, but we would
like to have a complete characterization. The answer is given by a particular case
of the general majorization theorem (e.g. see [3]).

Theorem 2.1. Let Ti ∈ B(Hi,G) for Hilbert spaces Hi and G, i = 1, 2. Then for
0 ≤ γ <∞ the following conditions are equivalent:

(a) ‖T ∗1 g‖H1 ≤ γ‖T ∗2 g‖H2 for all g ∈ G;
(b) T1T

∗
1 ≤ γT2T

∗
2 ;

(c) T1 = T2S for some operator S ∈ B(H1,H2) with ‖S‖ ≤ γ.
Each of these equivalent conditions implies

(d) Ran(T1) ⊆ Ran(T2).
Conversely, (d) implies all of (a) through (c), for some γ <∞, the operator S can
be chosen such that Ker(T1) ⊆ Ker(S) and Ker(T2) ⊆ Ker(S∗), in which case it is
uniquely determined.

As a consequence, given two operators X,Y ∈ B(H), we have XX∗ ≤ Y Y ∗ if
and only if X = Y T for some T ∈ B(H), ‖T ‖ ≤ 1. In the following, for A ∈ E(H)
we denote by PA the selfadjoint projection onto the closure of Ran(A) (which is
the same with the closure of Ran(A1/2)).

Theorem 2.2. Let A,B ∈ E(H) be effects. Then A ≤ B if and only if there exists
another effect C ∈ E(H) such that A = B ◦ C. In addition, C can be chosen such
that C ≤ PA and in this case it is uniquely determined.

Proof. Clearly, if A = B ◦ C for some effect C ∈ E(H), then A = B ◦ C ≤ B.
Conversely, let us assume that A ≤ B. Then A1/2A1/2 ≤ B1/2B1/2 and hence,

by Theorem 2.1, there exists T ∈ B(H), such that ‖T ‖ ≤ 1 and A1/2 = B1/2T .
Then C = TT ∗ ∈ E(H) and hence A = B1/2TT ∗B1/2 = B ◦ C. The uniqueness
part follows from the uniqueness part of Theorem 2.1. �

Corollary 2.3. Let A,B ∈ E(H). Then A ◦ B ≤ B if and only if there exists
C ∈ E(H) such that A ◦B = B ◦ C.
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Corollary 2.3 says that the effect A ◦ B diminishes the effect B if and only if
there is another effect C such that, performing first the measurement B and then
C, the obtained sequential measurement B ◦ C is the same as A ◦B.

In Theorem 3.2 in [5] it is proved that, given A,B ∈ E(H), we have the associa-
tivity property (A ◦B) ◦C = A ◦ (B ◦C), for all C ∈ E(H), if and only if A and B
are compatible, that is, AB = BA. As a consequence of Theorem 2.2, we have:

Corollary 2.4. If A,B,C ∈ E(H) are effects, then there exists an effect D ∈ E(H)
such that A ◦ (B ◦ C) = (A ◦B) ◦D.

Proof. Since B ◦C ≤ B, we have A ◦ (B ◦C) ≤ A ◦B. Then by Theorem 2.2, there
exists D ∈ E(H) such that A ◦ (B ◦ C) = (A ◦B) ◦D. �

For a fixed A ∈ E(H), the mapping E(H) 3 B 7→ sA(B) = A ◦ B ∈ E(H)
is strongly continuous and affine. We are interested in sections of the sequential
mapping sA. Since A ◦ B ≤ A, it follows that such a section should be defined on
[0, A] = {C ∈ E(H) | C ≤ A}. Recall that PA denotes the selfadjoint projection
onto the closure of Ran(A). By Theorem 2.2, for any B ∈ [0, A] there exists a
unique C ∈ [0, PA] such that B = A◦C. Denote B/A = C and call it the sequential
quotient of B by A. In this way, we can define a mapping

(2.1) fA : [0, A]→ [0, PA], fA(B) = B/A, B ∈ [0, A].

Clearly, fA is a section of sA.
Let us also note that the “segment” [0, A] has a natural sequential product, that

we denote by ×,

(2.2) C ×D = A ◦
(
(C/A) ◦ (D/A)

)
, C,D ∈ [0, A].

Theorem 2.5. For any A ∈ E(H), the mapping fA defined as in (2.1) is an affine
strongly continous homeomorphism, such that

(2.3) fA(C ×D) = fA(C) ◦ fA(D), C,D ∈ [0, A].

Proof. Note first that fA is bijective: its inverse is sA|[0, PA] : [0, PA] → [0, A].
Thus, since sA is affine and [0, A] is convex, sA|[0, PA] is affine, hence fA is affine.
To see that fA is strongly continuous, note that

〈Bx, y〉 = 〈(B/A)A1/2x,A1/2y〉, B ∈ E(H), x, y ∈ H,

and recall that the strong operator topology coincides with the weak operator topol-
ogy on bounded sets of positive operators. Thus, fA is an affine strongly continuous
homeomorphism. The property expressed in (2.3) is just another way of writing
(2.2). �

We are now interested in the question of when A ◦ B ≥ B. In Theorem 2.6
of [5] it is proved that, if H is finite dimensional, by preceding the effect B with
another effect A, we cannot amplify the effect B; more precisely, if A◦B ≥ B, then
AB = BA = B, and it is asked whether this holds for infinite-dimensional spaces
H. In the following theorem we answer this question positively.

Theorem 2.6. Let A,B ∈ E(H) such that A ◦B ≥ B. Then AB = BA = B and,
consequently, A ◦B = B.
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Proof. In the following we will repeatedly use the following elementary fact: if
C,D ∈ B(H) are selfadjoint such that C ≤ D, then for any X ∈ B(H) we have
X∗CX ≤ X∗DX .

Since B ≤ I, it follows that A1/2BA1/2 ≤ A1/2A1/2 = A. Therefore, by hypoth-
esis we have

(2.4) 0 ≤ B ≤ A1/2BA1/2 ≤ A ≤ I.

By applying A1/2 ·A1/2 to (2.4), it follows that

0 ≤ A1/2BA1/2 ≤ A1/2A1/2BA1/2A1/2 = ABA ≤ A1/2AA1/2 = A2 ≤ A,
and hence, using again (2.4), we have

0 ≤ B ≤ A1/2BA1/2 ≤ A2/2BA2/2 ≤ A2 ≤ A ≤ I.
Performing a similar procedure, we obtain inductively that for all n ≥ 1 we have

(2.5) 0 ≤ B ≤ A1/2BA1/2 ≤ · · · ≤ An/2BAn/2 ≤ An ≤ · · · ≤ A ≤ I.
From (2.5) we keep only

(2.6) 0 ≤ B ≤ An ≤ I, ∀n ≥ 1.

Let us now consider the sequence of functions fn(t) = tn, fn : [0, 1]→ R+. Note
that |fn(t)| ≤ 1 for all n ≥ 1 and that

lim
n→∞

fn(t) = χ{1}(t) =
{

1, t = 1,
0, 0 ≤ t < 1, ∀t ∈ [0, 1];

that is, the sequence of functions tn converges boundedly pointwise, on the compact
interval [0, 1] ⊇ σ(A), to the characteristic function of the set {1}. Thus, by borelian
functional calculus for selfadjoint operators we have

(2.7) so- lim
n→∞

An = so- lim
n→∞

fn(A) = χ{1}(A) = PKer(I−A).

Consequently, letting n→∞ in (2.6), by (2.7) we obtain

(2.8) 0 ≤ B ≤ PKer(I−A).

If we represent the selfadjoint operators A and B with respect to the decomposition

H = Ker(I − A)⊕ (H	Ker(I −A)),

by (2.8) we get

A =
[
I 0
0 A22

]
, B =

[
B11 0
0 0

]
.

Now it is easy to see that AB = BA = B. �

3. Contractively contained Hilbert spaces

Let K and H be Hilbert spaces. We say that K is continuously contained in
H, and we write K ↪→ H, if K ⊆ H and the inclusion mapping ιK : K ↪→ H is
continuous, that is, there exists γ ≥ 0 such that ‖k‖H ≤ γ‖k‖K, for all k ∈ K. K
is contractively contained in H if K ⊆ H and the inclusion mapping ιK : K ↪→ H is
contractive, that is, ‖k‖H ≤ ‖k‖K, for all k ∈ K.

Let K ↪→ H and denote A = ιKι
∗
K ∈ B(H). Then A ≥ 0 and, following

L. Schwartz [8], we call it the kernel of K relative to H.
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In the following we propose a geometric approach to quantum effects and their
sequential product. Let A ∈ B(H), A ≥ 0. Define RA = Ran(A1/2) and the inner
product

(3.1) 〈A1/2x,A1/2y〉RA = 〈PH	Ker(A)x, y〉H, x, y ∈ H.

More precisely, we define a Hilbert space structure on Ran(A1/2) in such a way
that the operator A1/2 : H → Ran(A1/2) is a co-isometry. Thus, (RA, 〈·, ·〉RA) is a
Hilbert space. We note that

‖A1/2x‖RA = ‖PH	Ker(A)x‖, x ∈ H.
Then

‖A1/2x‖H = ‖A1/2PH	Ker(A)x‖H ≤ ‖A1/2‖ · ‖PH	Ker(A)x‖
= ‖A1/2‖ · ‖A1/2x‖RA , x ∈ H.

Thus, RA ↪→ H and ‖ιRA‖ ≤ ‖A1/2‖; in particular, if A ≤ I, then RA ↪→ H
contractively.

Let x, y ∈ H be arbitrary. Then

〈ιRAy,A1/2x〉RA = 〈y,A1/2x〉H = 〈A1/2y, x〉H
= 〈PH	Ker(A)A

1/2y, x〉H = 〈A1/2A1/2y,A1/2x〉RA ,
that is,

ιRAy = A1/2A1/2y = PH	Ker(A)Ay, y ∈ H,
and hence ιRA ι∗RA = A. Thus A is the kernel of RA relative to H. In particular, if
RA ↪→ H contractively, then A ≤ I.

LetK be another Hilbert space continuously contained inH and such that ιKι∗K =
A. Then Ran(A) = Ran(ι∗K) is dense in K. For arbitray x, y ∈ H we have

〈Ax,Ay〉RA = 〈A1/2x,A1/2y〉H = 〈Ax, y〉H = 〈ιKι∗Kx, y〉H
= 〈ι∗Kx, ι∗Ky〉K = 〈Ax,Ay〉K,

that is, 〈·, ·〉RA coincide with 〈·, ·〉K on a dense linear manifold, hence RA = K as
Hilbert spaces.

Thus we have proved the following theorem, which is a particular case of results
in [8] (see also [2] and [4]).

Theorem 3.1. Let A ∈ B(H)+. Then there exists uniquely a Hilbert space RA ↪→
H such that A is the kernel of RA relative to H. In addition, RA ↪→ H contractively
if and only if A ∈ E(H).

Recall that for a Hilbert space H we denote E(H) = {A ∈ B(H) | 0 ≤ A ≤ I},
identified with the set of quantum effects on H, and by P(H) = {P ∈ B(H) | P =
P ∗ = P 2} the set of orthogonal projections, identified with the set of sharp effects.
As a consequence of Theorem 3.1, it follows that the mapping A 7→ RA induces a
bijection between E(H) and the class of Hilbert spaces contractively contained inH.
This extends the bijective correspondence of P(H) with the class of subspaces of H;
a Hilbert space K contractively contained in H is a subspace of H if and only if the
inclusion is isometric, and in this case ιKι∗K is the orthogonal projection of H onto
K. Note that, in this correspondence, subspace means that 〈·, ·〉K coincides with
the restriction of 〈·, ·〉H; if we impose only the condition that the strong topology
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of K is inherited from H, we get the class of kernels with closed range. We make
this precise in our context.

Corollary 3.2. Let A,B ∈ B(H)+. The following assertions are equivalent:
(i) RA ⊆ RB (set inclusion).
(ii) RA ↪→RB .
(iii) There exists γ ≥ 0 such that A ≤ γB.

In addition, denoting ι : RA ↪→ RB , the optimal constant γ in (iii) is ‖ι‖. In
particular, RA ↪→ RB contractively if and only if A ≤ B.

Proof. Consequence of Theorem 2.1 and Theorem 3.1. �

Corollary 3.3. Let A,B ∈ B(H)+. The following assertions are equivalent:
(i) RA = RB (equality of sets).
(ii) RA = RB (equality of sets) and the norms are equivalent.
(iii) There exists γ > 0 such that 1

γB ≤ A ≤ γB.

As a consequence of Corollary 3.3, two Hilbert spaces H1 and H2, continuously
contained in the Hilbert space H, coincide as sets if and only if they coincide
topologically, that is, their strong topologies coincide.

On the grounds of Theorem 3.1 we can define an operation of sequential prod-
uct for contractively contained Hilbert spaces. Let H1 and H2 be two Hilbert
spaces contractively contained in H, and let A,B ∈ E(H) be their kernels, that
is, H1 = RA and H2 = RB. Then A ◦ B = A1/2BA1/2 ∈ E(H) and we define
H1 ◦H2 = RA◦B ↪→ H contractively. Of course, this definition can be extended for
continuously contained Hilbert spaces, but in this more general case we have only
that H1 ◦H2 is continuosly contained in H, unless H1 is contractively contained in
H. The next corollary says that the sequential product is natural for the study of
contractively contained Hilbert spaces (compare with Theorem 2.2).

Corollary 3.4. Let H1 ↪→ H contractively. Then, for any Hilbert space H2 ↪→ H1

contractively, there exists H3 ↪→ H contractively, such that H2 = H1 ◦ H3.

Proof. Consequence of Theorem 2.2 and Corollary 3.2. �

Another consequence of Theorem 3.1 is that we can define a “sequential quo-
tient” for contractively contained Hilbert spaces as the “inverse” of the operation
in Corollary 3.4: if the Hilbert space H2 ↪→ H1 contractively, then H2/H1 is the
unique Hilbert space H3 ↪→ H contractively, such that H2 = H1 ◦ H3.

Now let K be a Hilbert space contractively contained in H. For any Hilbert
spaces H1 and H2 contractively contained in K, a natural “sequential product”
denoted by × can be defined as

(3.2) H1 ×H2 = K ◦ ((H1/K) ◦ (H2/K)),

by analogy with (2.2). Then the sequential quotient is left distributive with respect
to these sequential products, which is just another way of writing (3.2), by analogy
with (2.3).

Corollary 3.5. Let K be a Hilbert space contractively contained in H. For any
Hilbert spaces H1 and H2 contractively contained in K, we have

(H1 ×H2)/K = (H1/K) ◦ (H2/K).
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The geometric approach of quantum effects allows us to consider the lattice prop-
erties of E(H), especially those in connection with “addition” and “intersection”
of continuously contained Hilbert spaces. The addition of continously contained
Hilbert spaces should correspond to addition of the kernels; cf. [8]. Here is a direct
argument; cf. [4].

Let A,B ∈ B(H)+ be such that H1 = RA and H2 = RB . We consider the
bounded operator T =

[
A1/2 −B1/2

]
∈ B(H⊕H,H). Then

RA +RB = Ran(A1/2) + Ran(B1/2) = Ran(T ) = Ran((TT ∗)1/2)

= Ran((A+B)1/2) = RA+B ,

where we took into account that, by polar decomposition, T = |T ∗|V , where |T ∗| =
(TT ∗)1/2 and V is a partial isometry. Consequently, we have

Theorem 3.6 (e.g. see [8] and [4]). Let H1 and H2 be two Hilbert spaces continu-
ously contained in H. Then the algebraic sum H1 +H2 can be naturally organized
as a Hilbert space continuously contained in H; more precisely, if A,B ∈ B(H)+

are the kernels of H1 and respectively H2, that is, H1 = RA and H2 = RB , then
RA +RB = RA+B as sets.

The intersection of continuously contained Hilbert spaces is a much more subtle
operation that requires the definition of parallel sum of kernels, as introduced for
the finite-dimenensional case in [1], and in general in [4] (cf. [7] for a further study).
Let A,B ∈ B(H)+. Since A ≤ A + B, by Theorem 2.1 there exists a unique
contraction X ∈ B(H) such that

(3.3) A1/2 = (A+B)1/2X, Ker(X∗) ⊇ Ker(A+B).

Similarly, since B ≤ A+B, there exists a unique contraction Y ∈ B(H) such that

(3.4) B1/2 = (A+B)1/2Y, Ker(Y ∗) ⊇ Ker(A+B).

The parallel sum of A and B is defined as

(3.5) A :B = A1/2X∗Y B1/2.

Theorem 3.7 ([4] and [7])). Let A,B ∈ B(H)+. Then:
(i) 0 ≤ A :B ≤ A,B.
(ii) A :B = B :A.
(iii) Ran((A :B)1/2) = Ran(A1/2) ∩ Ran(B1/2).
(iv) If A1, B1 ∈ B(H)+ are such that A ≤ A1 and B ≤ B1, then A :B ≤ A1 :B1.
(v) If A,B 6= 0, then ‖A :B‖ ≤ (‖A‖−1 + ‖B‖−1)−1.
(vi) 〈(A : B)h, h〉 = inf{〈Aa, a〉+ 〈Bb, b〉 | h = a+ b}, for all h ∈ H.
(vii) If An ↘ A and Bn ↘ B strongly, then An : Bn ↘ A : B strongly.

According to (iii) we can give an interpretation of the binary operation of “in-
tersection” for continuously contained Hilbert spaces as follows:

Theorem 3.8. Let H1 and H2 be two Hilbert spaces continuously contained in the
Hilbert space H. Then the vector space H1 ∩ H2 can be naturally organized as a
Hilbert space continuously contained in H; more precisely, letting H1 = RA and
H2 = R2 for A,B ∈ B(H)+, identify H1 ∩H2 with RA:B. If either of Hi, i = 1, 2,
is contractively contained in H, that is, its kernel is a quantum effect, then H1∩H2

is contractively contained in H.
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Another simple consequence of Theorem 3.7 is the stability of the set of quantum
effects under the operation of parallel sum, even with the factor 2.

Corollary 3.9. Let A,B ∈ E(H). Then 2(A :B) ∈ E(H).

Proof. By Theorem 3.7(i), we have A :B ≥ 0, so it remains to prove that 2(A :B) ≤
I. To see this we use Theorem 3.7(v) and the inequality between the harmonic mean
and the geometric mean to see that

‖2(A :B)‖ ≤ 2‖A‖ ‖B‖
‖A‖+ ‖B‖ ≤

√
‖A‖ ‖B‖ ≤ 1,

and hence 2(A :B) ≤ I. �

We end by proving that the sequential product is a morphism, in the second
variable, with respect to the parallel sum. Recall that for any A ∈ E(H) we denote
[0, A] = {B | 0 ≤ B ≤ A} and PA is the orthogonal projection onto the closure of
Ran(A).

Theorem 3.10. Let A ∈ E(H) and consider the mapping sA : [0, PA] → [0, A],
sA(B) = A ◦B = A1/2BA1/2, for all B ∈ [0, PA]. Then

sA(C : D) = sA(C) : sA(D), C,D ∈ [0, PA].

Proof. Let C,D ∈ [0, PA] and consider the operators X,Y uniquely determined
such that

C1/2 = (C +D)1/2X, Ker(C∗) ⊇ Ker(C +D),

D1/2 = (C +D)1/2Y, Ker(D∗) ⊇ Ker(C +D).

Then, by definition,

C : D = C1/2X∗Y D1/2, sA(C : D) = A1/2C1/2X∗Y D1/2A1/2.

Since sA(C) + sA(D) = A1/2(C + D)A1/2, it follows that there exists a uniquely
determined partial isometry V , with appropriate supports, such that

(sA(C) + sA(D))1/2V = A1/2(C +D)1/2.

Similarly, there exist uniquely determined partial isometries U and W , with appro-
priate supports, such that

sA(C)1/2 = A1/2C1/2U, sA(D)1/2 = A1/2D1/2W.

Therefore,

sA(C)1/2 = A1/2C1/2U = A1/2(C +D)1/2XU = (sA(C) + sA(D))1/2V XU,

sA(D)1/2 = A1/2D1/2U = A1/2(C +D)1/2XW = (sA(C) + sA(D))1/2V XW,

and hence, by the definition of the parallel sum and taking into account that since
C and D are in [0, PA], it follows that multiplication on the left with A1/2 does not
affect the kernels, we have

sA(C) : sA(D) = sA(C)1/2U∗X∗V ∗V YW ∗sA(D)1/2

= A1/2C1/2X∗Y D1/2A1/2 = sA(C : D).

�
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With the definition of “intersection” of continuously contained Hilbert spaces,
as in Theorem 3.8, and the definition of “sequential product” for contractively
contained Hilbert spaces as a consequence of Theorem 3.1, Theorem 3.10 can be
rephrased to say that the sequential product is left distributive with respect to the
intersection.

Theorem 3.11. Let the Hilbert space H0 be contractively contained in the Hilbert
space H. Then, for any Hilbert spaces K and G, contractively contained in H0, the
closure of H0 in H, we have

H0 ◦ (K ∩ G) = (H0 ◦ K) ∩ (H0 ◦ G).

Remark 3.12. Alternatively, Theorem 3.10 can be proved by Theorem 3.7(vi).
Thus, for any quantum effects 0 ≤ C,D ≤ PA and h ∈ H we have

〈sA(C : D)h, h〉 = inf{〈Cx, x〉 + 〈Dy, y〉 | A1/2h = x+ y}.

Both C and D have supports in PAH = Ran(A1/2) and hence

〈sA(C : D))h, h〉
= inf{〈CA1/2c, A1/2c〉+ 〈DA1/2d,A1/2d〉 | A1/2h = A1/2c+A1/2d}
= inf{〈A1/2CA1/2c, c〉+ 〈A1/2DA1/2d, d〉 | h = c+ d}
= 〈sA(C) : sA(D)h, h〉,

where we take into account that, without restricting the generality, we can take all
the vectors h, c, and d in PAH and that on this subspace A1/2 is one-to-one.

Corollary 3.13. Let A ∈ E(H) and consider the function fA as defined in (2.1).
Then,

fA(E : F ) = fA(E) : fA(F ), E, F ∈ [0, A].

Proof. The function fA is the inverse of the function sA as in Theorem 3.10. �

This corollary can be rephrased, in terms of the “sequential quotient” as defined
in (3.2), saying that the “sequential product” of contractively contained Hilbert
spaces is right distributive with respect to “intersection”.

Corollary 3.14. Let K be a Hilbert space contractively contained in H. For any
Hilbert spaces H1 and H2 contractively contained in K, we have

(H1 ∩H2)/K = (H1/K) ∩ (H2/K).
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