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Istanbul University
Department of Electrical-Electronics Engineering
Avcilar 34850, Istanbul, Turkey

Marc Moeneclaey and Nele Noels
Ghent University
TELIN/DIGCOM Department
B9000 Gent, Belgium

Abstract In this paper, based on a sequential Monte Carlo method, a computa-
tionally efficient algorithm is presented for estimating the residual phase
noise, blindly, generated at the output the phase tracking loop employed
in OFDM systems. The basic idea is to treat the transmitted symbols
as “missing data” and draw samples sequentially of them based on
the observed signal samples up to time t. This way, the Bayesian esti-
mates of the phase noise is obtained through these samples, sequentially
drawn,together with their importance weights. The proposed receiver
structure is seen to be ideally suited for high-speed parallel implemen-
tation using VLSI technology.

1. Introduction
One of the main drawbacks of OFDM systems is the phase noise (PN)

caused by the oscillator instabilities [1]. Unfortunately, due to the PN,
the most valuable feature namely orthogonality between the carriers,
is destroyed resulting in a significant degradation of the performance
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of OFDM systems [1]. Random PN causes two effects on OFDM sys-
tems, rotating each symbol by a random phase that is referred to as
the common phase error (CPE) and producing intercarrier interference
(ICI) term that adds to the channel noise due to the lost of orthogonality
between subcarriers [2]. Several methods have been proposed in the liter-
ature for the estimation and compensation of the PN in OFDM systems
[3, 4]. Most of the approaches however only addresses the estimation of
CPE by assuming ICI terms is approximated by a Gaussian distribution
and these techniques are implemented after the DFT process at the re-
ceiver [4]. The main drawback of these approaches is the data dependent
ICI which introduces an additional random noise on top of the additive
Gaussian channel noise causes a significant degradation in the CPE es-
timator performance. In contrast to these approaches, we try to solve
PN estimation problem in the time domain before the DFT process at
the OFDM receiver. As it will be seen next section this approach will
not be faced with ICI effect during the estimation procedure resulting in
more accurate random phase estimation. The method proposed is based
on the sequential monte Carlo techniques. The basic idea is to treat the
transmitted symbols as “missing data” and to sequentially draw samples
of them based on the current observation and computing appropriate im-
portance sampling weights. Based on sequentially drawn samples, the
Kalman filter is used to estimate the unknown phase from a extended
Kalman state-space model of the underlying system. Furthermore, the
tracking the time-varying PN and the data detection are naturally inte-
grated. The algorithm is self-adaptive and no training/pilot symbols or
decision feedback are needed.

2. System Description
We consider an OFDM system with N subcarriers operating over a

frequency selective Rayleigh fading channel. In this paper we assume
that the multipath intensity profile has exponential distribution and the
delay spread Td is less than or equal to the guard interval L. With
the aid of the discrete time channel model [6], the output of the fre-
quency selective channel can be written as yt =

∑L
k=0 hkst−k where the

hk, k = 0, 1, · · · , L denotes the kth tap gain and we assume to have ideal
knowledge of these channel tap gains. Also, assuming perfect frequency
and timing synchronization, the received signal,rt, corrupted by the ad-
ditive Gaussian noise nt and distorted by the time-varying phase noise
θt can be expressed as

rt = yte
jθt + nt, t = 1, · · ·T0 (1)
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where st =
∑N−1

n=0 dne−j 2πtn
N . Here {dn} denotes the independent data

symbols transmitted on the nth subcarrier of an OFDM symbol. We as-
sume that dn’s are M-PSK symbols taking values in the set {e−j 2πr

M , r =
0, 1, · · · ,M −1}. Hence, st is a linear combination of independent, iden-
tically distributed random variables. If the number of subcarriers is suf-
ficiently large, st can be modelled a a complex Gaussian process whose
real and imaginary parts are independent. It has zero mean and variance
σ2

s = E{| st |2} = Es, where Es is the symbol energy per subcarrier. nt

is the complex envelope of the additive white Gaussian noise with vari-
ance σ2

n = E{| nt(k) |2}. θt is the sample of the PN process at the
output of the free-running local oscillator representing the phase noise.
It can be shown that PN can be modelled as a Wiener process defined
as

θt = θt−1 + ut where θ0 ∼ uniform(−π, π) (2)

where ut is zero-mean Gaussian random variable with variance σ2
u =

2πBTs where Ts is the sampling period of the OFDM receiver A/D
converter and BT refers to the PN rate, where T = Ts(N + L). It is
assumed that ut and nt are independent of each other. Defining the vec-
tors Rt = [r0, r1, · · · , rt]T , St = [s0, s1, · · · st]T , st = [st, st−1, · · · st−L]T ,
and ht = [h0, h1, · · · , hL]T , combining (1), (2) and taking into account
the structure of st, we obtain the following dynamic state-space repre-
sentation of the communication system,

θt = θt−1 + ut, st = Fst−1 + vt, rt = hT ste
iθt + nt (3)

where

F =

⎡⎢⎢⎣
0 0 · · · 0
0 1 · · · 0
. . · · · .
0 0 · · · 1

⎤⎥⎥⎦ (4)

is a (L+1)×(L+1) shifting matrix, and vt = [st, 0, · · · , 0] is a (L+1)×1
perturbation vector that contains the new symbol st.

Since we are interested in estimating the the phase noise θt blindly
at time t based on the observation Rt, the Bayes solution requires the
posterior distribution

p(θt|Rt) =
∫

p(θt|Rt,St)p(St|Rt)dSt. (5)

Note that with a given St, the nonlinear (Kalman filter) model (3) can
be converted into a linear model by linearizing the observation equation
(1) as follows [7]:

θt = θt−1 + ut, and rt = hT st (Vtθt + Qt) + nt (6)
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with Wt =
∑

w
(j)
t . The pair (S(j)

t , w
(j)
t ), j = 1, 2, · · · ,m is called a

properly weighted sample with respect to distribution p(St|Rt).
Specifically, it was shown in [8] that a suitable choice for the trial

distribution is of the form q(st|Rt,S
(j)
t−1) = p(st|Rt,S

(j)
t−1). For this trial

sampling distribution, it is shown in [8] that the importance weight is
updated according to

w
(j)
t = w

(j)
t−1p(rt|Rt−1, S

(j)
t−1), t = 1, 2, · · · (11)

The optimal trial distribution in (11) can be computed as follows:

p(st|Rt,S
(j)
t−1) = p(rt|Rt−1,S

(j)
t−1, st)P (st|Rt−1, S

(j)
t−1) (12)

Furthermore, it can be shown from the state and observation equations
in (3) that p(rt|Rt−1,S

(j)
t−1, st) ∼ N (µ(j)

rt , σ
2(j)
rt ) with mean and variance

given by

µ(j)
rt

= E{rt|Rt−1,S
(j)
t−1, st} = hT st(Vtθ̂

(j)
t|t−1 + Qt) (13)

σ2(j)
rt

= Var{rt|Rt−1,S
(j)
t−1, st} = |hT st|2M (j)

t|t−1 + σ2
n

where the quantities θ̂
(j)
t|t−1 and M

(j)
t|t−1 in (13) can be computed recur-

sively for the Extended Kalman equations given in (7), (8). Also since
st is independent of St−1 and Rt−1, the second term in (12) can be
written as p(st|Rt−1,S

(j)
t−1) = p(st) where it was pointed out earlier that

p(st) ∼ N (0, σ2
s).

Note that dependency of the σ
2(j)
rt in (13) to st precludes combining

the product of Gaussian densities in (12) into a single Gaussian, hence
This problem can be cir-

cumvented by approximating the σ
2(j)
rt as follows. From (3), we can use

the approximation st ≈ Fst−1 in (13) to obtain

σ2(j)
rt

∼= |hT Fs
(j)
t−1|2M (j)

t|t−1 + σ2
n . (14)

Similarly using (9) in (13), the mean µ
(j)
rt can be expressed as µ

(j)
rt =

(hT Fs
(j)
t−1 + h0st)G

(j)
t where G

(j)
t

	
= Vtθ̂

(j)
t|t−1 + Qt. Then, the true trial

sampling distribution p(st|Rt, S
(j)
t−1) in (12) can be expressed as follow:

p(st|Rt, S
(j)
t−1) ∼ N (µ(j)

st
, σ2(j)

st
) (15)

obtaining a tractable sampling distribution.
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Figure 1. Tracking Performance
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