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ABSTRACT

A MICROSCOPIC APPROACH TO PHONONIC 
ENERGY TRANSFER IN NANO STRUCTURES

Altug Ozpineci 
M.S. in Physics

Advisor: Prof. Dr. Salim Qiraci 
September, 1999

Understanding of mechanisms for the energy transfer from and/or through 
nano particles in contact with the large samples have become important in 
various biological processes, molecular electronics and friction. In this thesis, 
the phononic heat conductance of an atomic wire between two reservoirs, and 
the vibrational relaxation of an atom adsorbed on a surface is studied. The 
former problem is studied using the Keldysh formalism which yields the steady 
state properties of the system. The dependence of the total conductance on 
temperature, on the number of atoms in the wire and on the coefficient is 
studied. It is found that the conductance shows quantal structure similar to 
the electronic counterpart.

The reduced density matrix is used to study the latter problem. The time 
evolution of the reduced density matrix has been evaluated for an arbitrary 
system coupled to a heat bath. The formalism is then applied to study the 
vibrational relaxation of an atom adsorbed on a surface. The frequency depen­
dence of the relaxation time is also determined.

Keywords and Phrases: Heat Conductance, Keldysh Formalism, Phononic 
Heat Conductance Quantization, Reduced Density Matrix, Vibrational Relax­
ation
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ÖZET

NANO YAPILARDA FONONLARLA ENERJİ 
TAŞINIMINA MİKROSKOPİK BİR YAKLAŞIM

Altuğ Ozpineci 
Fizik Bölümü Yüksek Lisans 

Danışman: Prof. Dr. Salim Çıracı 
Eylül, 1999

Daha büyük cisimlere bağlı nano cisimlerden ve/veya bunların üzerinden enerji 
akışının mekanizmalarini anlamak, pek çok biyolojik , moleküler elektronik ve 
sürtünme ile ilgili olayı anlamak için önemlidir. Bu tezde, iki rezervuara bağlı 
tek boyutlu atomik bir telin fonon kaynaklı ısı iletkenliği ile bir yüzey üzerine 
yapışmış bir atomun salınımının sönümü incelendi, ilk problem, incelenen sis­
temin durağan durumu hakkında bize bilgi veren Keldysh formülasyonu kul­
lanılarak incelendi. Telin toplam ısı iletkenliğinin sıcaklığa, atom sayısına ve 

katsayısına bağlılığı hesaplandı. Isı iletkenliğinin de, elektrik iletkenliği 
gibi kuvantal bir karakter gösterdiği bulundu.

ikinci problemi incelemede indirgenmiş yoğunluk matrisi kullanıldı. Isı 
rezervuarına bağlı herhangi bir sistemin indirgenmiş yoğunluk matrisinin za­
man içinde nasıl geliştiği hesaplandı ve bir yüzey üzerine yapışmış bir atomun 
salınımının sönümü incelendi. Durulma zamanının frekansa bağımlılığı belir­
lendi.

Anahtar Kelimeler ve ifadeler: Isı iletkenliği, Keldysh Formülasyonu, Isı 
iletkenliği Kuvantizasyonu, indirgenmiş Yoğunluk Matrisi, Salınırnsal Sönüm
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C hapter 1

Introduction

Understanding the energy flow through and from substances is essential for 
a fundamental understanding of various processes in nature ranging from the 
reactions in the living organisms to various applications in device physics. In 
itself, controlling the rate of energy flow, being able to increase or decrease it, 
has a great importance for various applications.

In microelectronics, the quality of growth of silicon wafers and SiGe, Al- 
GaAs heterostructures is essential for the operation of the devices. Nowadays, 
significant resources have been allocated to understand the growth mechanisms 
so that conditions can be established to grow defect-free crystals and wafers. 
The growth process involves several complex and stochastic phenomenon tak­
ing place in the atomic scale. An important and fundamental issue one has to 
clarify is how the huge energy emerged from the formation of chemical bonds 
between incoming atoms and surface atoms. The dissipation of this energy is 
essential for the quality of the surface, where the electronic device will be pro­
duced. Clearly the question one has to address here is how the energy released 
from the bond formation dissipates through the sample, what is the time scale 
for the dissipation? Another important issue is how the energy generated in 
an electronic device can dissipate as the size of an electronic device becomes 
smaller and smaller. In fact, this problem seems to be a factor that limits the 
miniaturization of devices.

In solar collectors [1], it is important that the collected energy should be 
transferred into the bulk before it is reemitted to the surrounding. In order to 
make more efficient solar collectors, the rate of energy transport into the bulk
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should be increased. In the case of friction, where two surfaces rub against 
each other, heat is generated. The rate of heat transfer is important for the 
dissipation of the mechanical energy and for the wear of surfaces.

In living organisms, most catalytic activity takes place on surfaces [2], hence 
the reactions can be considered as a set of transitions between various energy 
levels whose understanding requires a deep understanding for the processes at 
the surfaces, especially the processes involving energy transfer.

In recent years, there have been extensive theoretical studies on phonon 
transport and energy relaxations using various methods, including the Kubo 
formula for heat conductance [3, 4, 5, 6], Landauer type phenomenological 
energy flux [7, 8, 9, 10], Golden Rule [11, 12], and Langevin type equations 
[13, 14, 15, 16]. On the experimental side, vibrational relaxations have been 
studied extensively [17, 18, 19, 20, 21], but to the author’s knowledge, there is 
no experimental study on the conduction of ID wires (for a review of the present 
situation see e.g. [22]). The Kubo formula yields just the first order response 
of the system to an external disturbance, and expresses the conductivity tensor 
in terms of the current-current correlation functions in equilibrium [6]:

i  + (1-1)
c — ►0 + , u >—+-0 k q I  V Jo J—oo

where ks is the Boltzman constant, V  is the volume of the system, represents 
the /¿‘̂ -component of the heat current, and (...) denotes the thermal averaging 
in equilibrium. In cases where the considered system cannot be described 
by linear response theory, it is not applicable. But in situations where it is 
applicable, it gives a microscopic description of the phenomenon.

A Landauer-type phenomenological energy flux is given by (for the deriva­
tion see [24]):

•̂  =  E  j ( “  (n .K i* )]  -  »2K(4)D C~(*) (1.2)

where ni(2) are the phonon distributions at the left(right) reservoirs, and C,n{k) 
is the transmission probability for the phonon. Eq. 1.2 gives a macroscopic 
description for the heat transport. In most cases, the transmission probabil- 
itVi (n{k), is assumed to be unity or that it is given by matching continuum 
solutions for the elastic waves at the boundaries. For nanosystems, where the 
discrete atomic nature of the structure becomes pronounced, the use of con­
tinuum theory to determine the transmission coefficients cannot be justified.



Under these circumstances, one has to develop a microscopic theory as done in 
this thesis to calculate the transmission coefficients and conductance. At the 
end of this thesis, we will present a microscopic definition for Cn{k).

The Langevin type equation describes the time evolution of the reduced 
density matrix of the system. They give a microscopic description of the system 
under study. The density matrix theory will be reviewed in the next section. 
A broader discussion on the density matrix theory and its applications can be 
found in eg. [23].

This thesis deals with the microscopic aspects of phononic energy transfer 
in nanostructures. Two case are considered are (î) the phononic energy transfer 
and the related thermal conductance through an atomic chain coupled to two 
reservoirs; and (ii) the dissipation of excess vibrational energy from an adsorbed 
atom to the substrate. In both cases the models used to simulate the real 
systems have been simplified in order to reveal the essential features of heat 
transfer, but the approaches and formalism developed can easily be extended to 
more complex systems. On the other hand, in both cases treated in the thesis 
the approaches developed are unique and hence are expected to contribute to 
a better understanding of the related physical problems.

For the first case, the Keldysh’s approach for non-equilibrium but steady 
state is used and the energy current through a finite and uniform atomic chain 
mediated by phonons is calculated. The variations of thermal conductance as 
a function of chain parameters, and temperature are investigated. A quantum 
structure of thermal conductance is revealed. For the second case that has 
a wide range of applicability, in particular it is relevant for the energy dis­
sipation from an adsorbed atom coupled to a substrate through anharmonic 
interactions, the reduced density matrix approach is used. It is found that the 
time of equilibration is rather small and most of the excess energy dissipates 
within 10“ ^̂  sec. The details of the work is given in Chapters 2 and 3, and 
conclusions are summerized in Chapter 4.

1.1 Density Matrix

For systems that can be described by a wave function, the wave function gives 
a complete description. Such systems are said to be in a pure state. Once the



wave function is known, everything about the system, within the limitations of 
Quantum Mechanics, is known. But for most systems, including systems cou­
pled to the environment, description by a single wave function is not possible, 
it is not in a pure state. Such systems are said to be in a mixed state. In such 
cases, the system should be described by the density matrix.

1.2 Definition and Some of the Properties of 
the Density Matrix

For most system, one can at most know the probabilities, p,, that the system 
is in a state described by the wave function |V’i)· In such cases, in order to 
calculate the expectation value of an operator, one should take the statistical 
average besides the quantum average, ie.:

(o) = E p . ( * W i ) .
i

If Eq. 1.3 is rearranged as:

(O) = Y,'^Pi{tl>i\0\n){n\ii}

(1.3)

n I

\ C*|n)

Tr  f x ; p i | V ’.:)(V'i|l O, (1.4)

where {|n)} is an orthonormal basis for the Hilbert space of wave functions, 
the definition of the density matrix easily follows as:

i

and the expectation value of any operator can be written as:

{0) = TrpO.

Note that the wave functions |V>,) need not be orthogonal.

(1.5)

( 1 .6)

Several properties of the density matrix follows immediately from its defi­
nition, Eq. 1.5.



• Trp = J2iPi = 1·

• Trp^ = J2iP^ ^  1, 3,nd the equality sign holds if and only if it is in a 
pure state.

• The density matrix is hermitian, i.e. p̂  = p. Therefore it is always possi­
ble to find a suitable basis in which the density matrix can be represented 
by a diagonal matrix, the diagonal entries being the classical probabil­
ities. If the system is in a pure state, in its diagonal form, all but one 
of the diagonal elements will be zero, and the non-zero diagonal element 
will be 1.

These properties are independent of the representation used for the density 
matrix. Eq. 1.5 is just one of the representation in which it is easy to show 
these properties.

Since the density matrix is written in terms of the wave functions, its time 
evolution is also determined by the time evolution of the wave functions, hence, 
contrary to other operators in Quantum Mechanics, it is time dependent in 
Schroedinger picture, and time independent in Heisenberg picture. Its time 
dependence can be written as:

P(i) = J2Pi\Mi))iMl^)\
I

= Y,P i \M ^))(M ^)\ e»VHt

(1.7)

1.3 Systems Interacting with the Environ­
ment and the Reduced Density Matrix

In general, one does not deal with an isolated system and it is mostly not 
necessary to consider all of the interacting parts, which would require one to 
consider all the universe. In such a case, the density matrix of the whole system 
contains unnecessary information.



Let p be the density matrix of the whole system A + B  where the A  and 
B  subsytems interact with each other (in fact even if they had interacted for a 
short time in the past, they have to be described by densitymatrices). Let Oa 
be the operator corresponding to an observable about the A system. Then its 
expectation value is given by:

{Oa) = T tOaP. ( 1 .8)

The Tr  appearing in Eq. 1.8 can be written in two parts: trace over the degrees 
of freedom of the /l-system, Tr^, and trace over the degrees of freedom of 
the 5-system, T tb- Since, by assumption, Oa does not affect the degrees of 
freedom of the 5-system, it can be taken out of Trs] ie.

TrA T v bO aP

71771
(1.9)

Y^^{n\OA |n)^
Th \ 771 /

(1.10)

T taC a (Ttbp) (1.11)

The quantity in parenthesis contains all the information about the A-system 
and is called the Reduced Density Matrix. It will be denoted by pR. It has 
the same properties listed in the preceding section. Its time dependence is 
determined by the time dependence of the density matrix of the whole system
by

PR{t) = TrBp{t) (1.12)



C hapter 2

K eldysh  Form alism  Approach  
to  H eat C onduction Through  
A tom ic W ires

In studying non-equilibrium systems, in some cases it is more suitable to deal 
with a time independent density matrix, in which case one can use the Heisen­
berg picture, or it can be more suitable to use the time dependent density ma­
trix, i.e. in the Schroedinger picture. In this chapter, heat conduction through 
an atomic wire between two reservoirs will be studied in the Heisenberg pic­
ture, or more precisely the Interaction picture. The formalism employed is the 
Keldysh formalism.

In equilibrium field theory, the interaction is adiabatically turned on at 
t =  —oo and it is adiabatically turned off at i = -foo, and it is assumed 
that the state obtained after this switching on and off of the interaction is the 
initial state upto a possible phase. This assumption can be justified only in the 
case of equilibrium and if the considered state in non-degenerate, but breaks 
down otherwise. In transport, for example, when the interaction is turned 
on, particles are transferred and they do not come back when the interaction 
is adiabatically turned off. In the Keldysh formalism, this assumption is not 
done, the state is first evolved from t = —oo to f = -|-oo and then back to 
t = —oo again so that one does obtain the initial state. Keldysh formalism 
has been applied to the study of electron transport (see eg. [25, 26, 27]), but 
to the authors’ knowledge, it had not been applied to the problem of phonon



The organisation of this chapter is as follows: in Sec. 2.1, a review of the 
Keldysh formalism will be presented (see eg. [28]). In Sec. 2.2, an analytical 
treatment of the heat current through the uniform atomic wire will be carried 
out and the results will be studied in detail in Sec. 2.3. As much as possible, 
the details of the calculations will not be presented in the main body of the 
text but will be given separately at the Appendices at the end of the chapter.

transport.

2.1 Keldysh Formalism

The Keldysh formalism gives a means of calculating the properties of systems 
that are not in equilibrium but are in steady state. In steady state, the expec­
tation value of any operator,(9, can be expressed as:

( O )  = Tr (pO)
Trip)

Tr (po^O (0+)e-^

(2 .1 )

where {O)o = TrpoO. In Eq. 2.1, it is assumed that the system has the 
density matrix po and the Hamiltonian TL̂  dX t = —oo. Then, the interaction, 
described by the Hamiltonian TLinti is turned on and the density matrix of 
the system evolves to the steady state density matrix, p. The time loop, C, 
is defined to be the path that goes from t = —oo to t = +oo and then from 
t = -|-cx) back to i = —oo. The times which are on the upper branch that goes 
from t = —oo to Z =  +00 are labeled by a (''■) and the times which are on the 
lower branch that goes from t = -j-oo back to t =  —oo are labeled by a (“ ). 
The operator Tc which appears in Eq. 2.1 is the path ordering operator which 
orders the operators according to their positions on the time loop. If all the 
times have the label (■*■), the Tc reduces to the time ordering operator and if 
all the times have the label (“ ), then it reduces to anti-time ordering operator. 
Expanding the exponential in Eq. 2.1, yields a perturbation expansion for the 
average of the operator. By the use of Wick’s theorem, the expansion can be 
given a diagrammatic interpretation. In terms of the diagrammatic expansion,

8



Eq. 2.1, can be simplified to;

connected (2.2)

where the subscript connected indicates that only the connected diagrams 
should be considered.

Let us define the two point correlation functions of the displacement of the 
atoms of the wire as:

where X{ is the displacement of the wire atom and Q = +, — · 

If one defines the matrices

a . ( t - t ' ) = (
' '  '  s r r ( i - n

s  a - 1' ) = (

(2.3)

(2.4)

(2.5)

where the E’s are the self energies, the Dyson equations can be written in a 
compact form as:

Gij{t ~  =  ^Oij{t — t') +

+ Y ,  f  -  n ^ k 'A t ' "  -  i') (2.6)
j'k'

where ^Gij{t — t') is the unperturbed Greens function. In terms of the Fourier 
transformed Greens function, Eq. 2.6 can be written as:

Q i j { w )  = °  G i j ( w )  +  Y ° Q i j ' { w ) ' S j ' k ' { w ) Q k ' j { w ) .
j 'k'

Diagrammatically, the Dyson equations can be represented by:

(2.7)

< 1 >
I  I I 1

where the thin lines represent the free propagators and the solid lines represent 
the full propagators.

9



Note that not all the Greens functions and the self energies are independent. 
They satisfy:

^ + + _ ^ + - _ ^ - +  = 0 

E++ + E— + E+- + E-+ = 0

Using these relations, the matrices Qij and E,, can be transformed to:

(2.8)
(2.9)

0 O'*

sg ' sg  
sg 0

= ^(1

— ~  ¿<7 y ) E i j ( l  +  i c f y )

( 2. 10)

(2 .1 1 )

where CTy is the second Pauli matrix:

(Ty —
0 - i

1 0

After this transformations, the Dyson equations, Eq. 2.6, become:

S U M  = ° e . » - E ”e5 (''')s .v (» )e i? ,(" ')  (2.12 )
i'j'

= V i ( » ) - E “5;;.(t»)si,,(«,)0'),(·») (2.13)

s5 '(» ) = °e S '(> » )-E °5 .i’(»)s?i(>»)ej),(<»)
i'j'

-  E °S .? ( u.)E?,,(u,)0« (t„) -  j : ”0i,(»)Ei,,(»)S'i).(«.)(2.14)

2.2 Model

Suppose that we have two reservoirs with temperatures Th and T/j and are 
described by the Hamiltonians T-ii, and Tin respectively. Consider a ID, uni­
form atomic wire of N  atoms connecting the two reservoirs described by the 
Hamiltonian:

N „2 N I

ŵ  = E ¿  + E І(-.-- .+ .)^
z=l  ¿=0 ^

(2.1.5)

with fixed boundary conditions xq =  xyv-M = 0· The system is shown in the 
figure below.

10



Figure 2.1: A schematic description of the model used in the present study. 
The balls represent the atoms with mass m.

In this Hamiltonian, we assume N identical masses all of which are connected to 
its nearest neighbours and the ones at the ends connected to the surfaces, which 
are assumed to be rigid, by identical springs. This model is over simplified 
to represent a real physical system quantitatively but we believe that it will 
grasp the qualitative features of heat conduction through atomic wires. The 
interaction between the wire and the reservoirs can be described, at the lowest 
order, by the Hamiltonian:

'Hint =  A l Ul X i + A r Ur Xn  , (2.16)

where u's are the lateral displacements of the reservoir atoms which interact 
with the wire. In this interaction term, it is assumed that only one atom from 
each reservoir is interacting with the wire and only the longitudinal modes 
are considered, generalizations to include other interactions and other modes 
is possible. Due to this interaction, the states of the wire are broadened. If 
the interactions of the wire atoms with other reservoir atoms is also taken into 
account, the broadening will be more pronounced.

At i = —oo, before the interaction is turned on, the initial density matrix 
is given by.

(2.17)

where Z = Tre is the partition function of the whole sys­
tem at time t — —oo. Note that although at i = —oo, the initial density

11



matrix depends on the initial temperature of the wire through /?5 = 
at steady state, no physical quantity should depend on it.

2.2.1 Current Operator

The operator corresponding to the current at the contacts can be obtained 
from the continuity equation written in the form:

(2.18)

where e is the total energy operator of the wire and Jr {l) is the operator for 
the current leaving(entering) the wire at the junction at the B,{L) reservoir. 
Let e =  Tisi then Eq. 2.18 is satisfied by the choices:

r

Jl = ------ulPi ,m

Jr — — w,ßpyv · m

(2.19)

(2 .20)

Note that the current operators are proportional to the velocity, u,· = of the 
corresponding atom. One might argue that there is no a priori reason for the 
choice e — Tis· Our attitude was that the energy of the wire appearing in the 
continuity equation should be a characteristic of the wire only, hence should 
not contain any operators related to its environment. An alternative argument 
could be: the energy of the wire should be the sum of all the terms in the 
Hamiltonian containing the wire operators. Hence it would be he difference 
in the Hamiltonian if the wire was absent. But the two approaches yields the 
same result due to the identity:

A it^ (» i(0 ) j : ,( l '- i ) )

= - M l - ^ { ul{0)x i {1' - t ) )

= -ML-^{uL{t)xi{t'))

M l

m
(tl £,(()?,(i')), (2.21)

where M l and pL are the mass and momentum, respectively, of the left reservoir 
atom which interacts with the wire. In the derivation, we have used the time

12



translational symmetry of the steady state. A similar derivation can be used 
to show:

m (2.22)

where Mr and pR are the mass and momentum, respectively, of the right 
reservoir atom which interacts with the wire. In this work we will concentrate 
on J  = {Jr) and by energy conservation {Jr) = {Jr )·

2.2.2 A nalytical C alculations

Using the Wick theorem, the current, J  can be expressed as (details can be 
found in Appendix B)

J= -  E  f  + S+-(u;)a;+(u,)) , (2.23)
a=l,N·^

where the a summation, in fact, represents a summation over all the contacts. 
In our case there are just two contacts but generalization to the other case is 
possible. With the interaction described by Eq. 2.16, the self energy can be 
calculated exactly:

^ i j { w )  =  E ii{w )6 {i6 ji +  TiRN{w)6iN6jRj

where ^u{w) are the Fourier transforms of

E“ (i -  (') = (-!)<■<■ ,

(2.24)

(2.25)

(2.26)

Here (— = 1 if Cl = C2 and (—1) ’̂^̂  = —1 if Ci C2 Substituting the S 
into Eq. 2.7, one can solve for the exact Greens function, Q. Once they are 
substituted into the expression for the current, the result can be simplified to

J  =  27T dwg’̂ {w)g^{iv) x

hiu det QiNi^)- -{n' {̂w) -  n̂ {w)) (2.27)
2Mrw 2Mrw

where det^i/v(to) = determinant of the 2 x 2  Greens
function matrix and ng^^\u) = (ê M«)'*‘̂  — 1)“  ̂ are the Bose distribution func­
tions at the left(right) reservoirs. The details of the derivation can be found in 
the Appendix C. The determinant can be decomposed as,

det Qin = det + det (2.28)
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where det describes the contribution of balististic phonon transport and 
det describes the phonon tunneling contribution. Hence the total current 
can also be decomposed as the sum of the tunneling current and ballistic cur­
rent.

Note the similarity between this result, Eq. 2.27, and the Landauer type 
expression, Eq. 1.2 which, after a change of variables, can be written as :

J = dwhw{rig{w) -  nQ{w))Tm{w) (2.29)

where Tm{w) is the transmission coefficient for a phonon of frequency w at the 
branch to be transmitted from the left reservoir to the right reservoir. In 

our case, if we allow the reservoirs to have various phonon branches, the total 
density of states appearing in Eq. 2.27 should be replaced by sums over the 
density of states of each branch, in which case, we obtain for the transmission 
coefficient for a phonon of frequency w at the branch of the left reservoir 
to the branch of the right reservoir to be:

= (2̂ ? ( ^ )
SO that

d I  -  n^{w))Tmn{w) .J 27T

(2.30)

(2.31)

Eq. 2.30 is important because, to the authors’ knowledge, it is the first non- 
phenomenological microscopic derivation of the transmission coefficient, and 
contrary to other expressions used in the literature, it takes into account the 
discrete nature of the system.

2.3 Numerical Analysis and Discussion

In all the calculations, both reservoirs are assumed to be identical Debye solids 
except their respective temperatures. Let

J{Tl ,Tb ) — i  dxJ{xLoo,TL,Tfi) 
Jo

(2.32)

J{uj, T) can be considered as the heat current density at the frequency u. Then 
the heat conductance density at the temperature T can be defined as:

J ( ro ,r  + A T ,r )
Kiw/r) = lim'' > A T -*0 AT

(2.33)
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so that the total conductance is given by,

K> = [  dxK{xw[)^ T ) . (2.34)

For the numerical data, we used hu>̂  - huj^ = Ulod — 37.6 meV,
Ml = Mr = 56 amu, m = 28 amu, and A l = Ar -  -19  J/m^. The phonon 
density of states is represented by the 3D Debye density of states,

/(^)(-) = -  - )
Wd

(2.35)

where wp is the Debye frequency and 0 is the step function. It should be noted 
that the contribution of the surface phonons are not taken into account.

In Figs. 2.2a, 2.2b and 2.2c, the dependence of the conductance density on 
the frequency, u,  is shown at various temperatures and for = 1, = 5, and
Â  =  10 respectively. The resonances at the eigenfrequencies of the wire and 
their broadening are clear. The heights of the peaks are almost independent of 
the number of atoms in the chain, while they become narrower as N  becomes 
larger. This can be understood in terms of the weakening of the coupling 
constant of each mode to the reservoir modes which is proportional to .

In Figs. 2.3a, 2.3b and 2.3c, the dependence of the total conductance 
on the coefficient is shown. Contrary to the electronic counterpart, the 
steps are clear at high temperatures whereas they are lost at lower temper­
atures. As increases, the eigenfrequencies of the wire increase, and as 
one eigenfrequency crosses the Debye frequency, it no longer contributes to 
the conductance, and hence there is a fast decrease at the total conductance. 
The more separate the eigenfrequencies are, the longer the plateaus. At high 
temperatures, all of the eigenmodes contribute to the conductance, hence there 
are several steps. But as can be seen in Figs. 2.2, at low temperatures, there 
is very few high frequency phonons at the reservoirs, hence the modes corre­
sponding to the higher eigenfrequencies do not contribute; the corresponding 
“channel” is closed at lower temperatures. Following comments related with 
Fig. 2.3 are in order: (i) The step behavior of electrical conductance is ob­
tained by changing the width of the constriction or by stretching the metallic 
wire between two electrodes. In the present case, the step behavior of k can be 
realized to some extent by varying k and m, and also top. Of course top is an 
artificial cut-off due to the Debye model. In a real crystal, the cut-off of o;(k) 
at the zone boundary has to be taken into account. Cut-off frequencies can

15



be modified by applying strong external pressure so that the lattice spacing is 
modified, and the eigenfrequencies of the wire can be modified by stretching 
the wire. According to the present result, if the atoms of the chain are replaced 
by their isotopes, the value of k changes even if all other parameters are kept 
the same, (n) In the case of quantum ballistic conductance of electrons, the 
step heights (or jumps in the electrical conductance, a, are normally integer 
multiples of 2e^/h depending on the degeneracy of the channel. The phononic 
thermal conductance step heights are inversely proportional to N. {in) The 
step structure shown in Fig. 2.3 can be modified if there is surface phonons 
at the gap. It can be argued that the present model and the measurement of 
conductance can be used to investigate the surface phonons, {iv) In calculating 
the step structure, the broadening of the modes of the atom is fully taken into 
account, within our model, which smeared the step. This smearing is more 
pronounced for the first several steps, since the higher eigenmodes are more 
closely spaced, and hence they overlap due to the broadening. If interaction 
with more then one reservoir atom is taken into account, as discussed in the 
text, the extra broadening would further smear out the steps. Therefore it is 
possible the this extra broadening, which is present in realistic systems, might 
cause the steps to disappear completely.(u) The anharmonic coupling which is 
not taken into account here, may modify the step behavior especially for very 
large and for u>i > u>d

In Fig. 2.4, the dependence of the total conductance on temperature is 
shown. In this plot it is assumed that and since at this frequency,
the conductance is almost independent of the number of atoms, it is only shown 
for N  = 5.

In Fig. 2.5, the variation of the total conductance at various temperatures 
as the number of atoms is increased is shown. As is seen from the figures, for 

the total conductance is almost independent of the number of atoms. 
The total conductance for a single atomic wire is less then the total conductance 
for NQ^2. The difference is due to the tail of conductance density which 
extends beyond the Debye frequency as can be seen in Fig. 2.2a. For y ^  = u>d , 
there are fluctuations in the total conductance. This fluctuations are due to 
the fact that in the first case all the modes contribute to the conductance 
since the Debye frequency is greater than all the eigenfrequencies of the wire, 
whereas in the second case, the Debye frequency lies within the spectrum of the 
wire. Hence the ratio of the contributing modes to the total number of modes

16



fluctuates, but the fluctuations diminishes as the number of modes increases.

Finally, it may be interesting to find out how the total thermal conductance 
of the the atomic wire with N >  2 and ^  \s compared with the
universal value of conductance [7, 8, 9] kq — which is proportional
to the temperature T. In out case, if one Taylor expands the conductance 
expression, Eq. 2.34, in terms of the temperature, the first non-zero term is 
proportional to contrary to the results in [7, 8, 9].
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Figure 2.2: The graphs of «(w) at various temperatures for (a)
N=1; (b) N=5; (c) N=10
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Figure 2.3: The graph of the dependence of the total conductance, /c, on ii 
at various temperatures, (a) N=1; (b) N=5; (c) N=10
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Figure 2.4: The graph of the dependence of the total conductance, k, on tem­
perature at ^  for iV = 5

Figure 2.5: The dependence of the total conductance on the number of atoms
at various temperatures and for = y /^  = u;/), and 0  = y ^  —
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C hapter 3

R educed  D ensity M atrix  
A pproach to V ibrational 
Relcixations

In this chapter, a Redfield Theory-like approach is developed(for the derivation 
of the Redfield theory and some of its applications see eg. [33, 34, 23]) for calcu­
lating the time evolution of the reduced density matrix in the Schrôdinger pic­
ture. The result is then applied to study the relaxation of the non-equilibrium 
phonon distribution taking into account the non-equilibrium properties of the 
system and then the method is applied to study the vibrational damping of an 
adsorbed molecule on a surface.

Considering an atom adsorbed on the surface of a sample, with vibration 
frequency i), in general there are two possible decay modes, i) it can create 
electronic excitations in the metal, eg. create electron-hole pairs, or ii) it 
can create phononic excitations. In this article our interest will be on the 
phononic dissipation. If ii ~  n Wo where tvo is the maximum phonon frequency 
of the sample(for a Debye solid it is the Debye frequency wo), the excitations 
can decay only by the creation of n phonons in the sample [19]. hbr large 
n, this contribution is in general negligible. For systems such as the Cu-CO 
stretch vibration, Î2 ~  1.5 lUo and decay by creating two phonons might be an 
important mechanism for the vibrational damping of the molecule.

In [12] two and three phonon contribution to the dissipation of the Cu-CO
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stretch vibrations is studied using Golden Rule formula. In this work we will 
study the same system using the Redfield theory-like approach for various Q’s 
to understand the dependence of the dissipation rate on the coupling between 
the sample and the adsorbed atom. The organization of the paper is as follows: 
In Sec. 3.1, we calculate the time evolution of the reduced density matrix which 
allows one to take into account all non-equilibrium properties of a system 
and also takes into account possible coherence and incoherence effects (for the 
properties of density matrices see eg [23]). Possible limitations on the obtained 
evolution is also discussed. In Sec. 3.2 a model system is proposed which is 
analyzed and solved in Sec. 3.3.

3.1 Evolution of the Reduced Density Matrix

In studying the dynamics of systems coupled to the environment, it is most 
natural to use the Reduced Density Matrix (RDM) formalism. The time de­
pendence of the RDM of the system can be obtained from Eq. 1.12. Let

7̂  = 'his + 'hCr + 'hiint 1 (3-1)

where 'Ks·, 'Hr are the system and reservoir Hamiltonians, respectively, and 
Hint describes the interaction between them. We will assume, without loss of 
generality, that

Hint = Y,QsFs  (3.2)
s

where Qs{Fs) acts only on the system (reservoir) degrees of freedom. The time 
evolution of the components of the RDM is given by

Pap{i) = Pa/3(0)e~“̂ “'̂ ‘ + ^  ; (3.3)
a'P'

where hu>ap =  e« — and the tensor Raa'-,pp'{i) is defined as:

= E  P(£i)(a>|5(i)|a'ji){*|5*(i)l/3>) -  (3-4)
ij

where the scattering matrix, S{t), is defined as:

S{t) =

= 1 -  7 /  dt'Hint{t')
n JO

+ J  ^^1 ^  dt2Hint{t\)Hint{t2) ■■■ (' •̂5)

24



Here, Ho is defined to be Ho = H t -\· H s- Also Hint{t) = , and
\l j )  = I7 ) ® li) with,

'Ksh) = £717) 
K l i )  =  Ej\j). (3.6)

In the following Greek (Latin) letters will denote the system (reservoir) degrees 
of freedom. In deriving this result it is assumed that the bath is always in 
equilibrium so that the density matrix of the whole system could be factorized
as:

(7jX0I<^^) =  X  PR'yS P{Ej) (3.7)

where the diagonal density matrix elements of the reservoir are defined as

P{E,) = (3.8)

Here Z  =  J2j £ ■

Until this point, the only assumption made is that the density matrix of 
the whole system is factorizable which resulted in a linear equation for the 
components of the RDM. The applicability of this approximation should be 
studied carefully. This assumption is valid only if there exists a Aveak coupling 
between the system and the reservoir so that the tensor product states |o;j) 
can be considered as almost the eigenstates of the whole system. If there is 
a strong coupling between the system and the reservoir, or if the “reservoir” 
is a finite one, the density matrix of the whole system in general cannot be 
factorized and one has to do without this simplifying approximation.

Now, the main task is to find a suitable approximation for the tensor 
Raa'-,pp'{t), once it is known, the time evolution of the RDM can be calcu­
lated.

Unfortunately, the expression obtained by straightforward application of 
the second order expansion of the S  matrix yields a result which is valid only 
if the time t is short enough. To overcome this difficulty we used an iterative 
scheme in which we calculated the initial RDM and then evolved it one step 
in time, and then taking the evolved RDM as the initial RDM, we evolved 
it one step further. At each step, the evolution was for a short enough time. 
Since energy is not conserved for finite times, one has to impose the energy
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conservation by hand. For this reason, the matrix elements of Hint coupling 
states of different energies are neglected. The calculations are similar to the 
ones done in scattering theory with the result

\ ss'

 ̂ 5S' 7

 ̂ 5.s' 7 /

kj

(3.10)

(3.11)

where the prime on the summation in Eq. 3.11 indicates that the sum should 
be carried out over states for which hu> =  Ejk-

3.2 The Model Hamiltonian

Consider an atom adsorbed on a surface. Let M  be the mass of a reservoir 
atom and m  be the mass of the adsorbed atom. Assume that the adsorbed 
atom is bonded to a single atom of the sample and the interaction between the 
sample atom and the adsorbed atom is described by the Morse potential:

U{u - v )  = E„ -  2e-”··-''·} , (3.12)

where u and v are the vertical displacements of the adsorbed atom and the 
sample atom respectively. Eq is the binding energy of the adsorbed atom and 
a  can be related to the vibration frequency, fl, of the adsorbed atom through

( n r .
(3.13)

where m  is its mass. Expanding the potential and retaining the lowest order 
terms, we get

Hint = + Buv^ (3.14)
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where

A = -2Eoa^ (3.15)

B  =  -3Eoa^ (3.16)

For Q > cvq, the uu-term has no contribution since it does not conserve en­
ergy. If a localized phonon at the adsorbed atom makes a virtual energy
non-conserving transition into the reservoir, or vice versa, due to this term, 
the only possibility for its fate is that it has to go back in order to conserve 
energy. Hence it would not contribute to dissipation. Note that in the atomic 
wire case of the preceding chapter, even if a phonon localized at one of the 
reservoirs makes a virtual transition to the wire, it can then go to the other 
reservoir and conserve energy, hence in this case, such energy non-conserving 
transition do contribute to the heat current.

In our case, though, we only have the uv^-term. For the other case ii < ojq, 
in general, compared to the uv term, the uv^ term is negligible. The decay 
of the vibrational excitation in this case for the harmonic coupling have been 
studied by exact diagonalization of the Hamiltonian [35]. The calculated value 
for the decay rate is two orders greater then the value we have calculated in 
Sec. 3.3. In this article, this term is omitted even in this case, and only the 
effects of the uv^ term are studied. Then the full phononic Hamiltonian of the 
system becomes:

7i = nQb^b + J2fiuj]^^bl^bi;^  ̂ + Buv^,  (3.17)
k(7

where are the frequencies of the sample phonons with wave vector k and 
polarisation vector e<j, b and are the annihilation operators for the phonons 
at the adsorbed atom and the phonons in the sample, respectively.

3.3 Numerical Analysis and Discussion

We carry out numerical calculations on the model system presented in Fig. 
3.1.
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sample-I

c V II

I

Figure 3.1: An adsorbed atom between the surfaces of two samples, one of 
which move with a velocity v. (a) There is no interaction between the sample- 
11 and the rest of the system, (b) the adatom is squeezed, absorbing some 
of the translational energy of sample-II. (c) the adatom is suddenly released 
causing it to oscillate and the interaction between the sample-II and the rest 
of the system is again neglected.
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In order to construct the initial density matrix, consider the following situ­
ation: assume that two samples, sample-I and sample-II, are moving on top of 
one another with an adsorbed layer on the bottom one, and there is no direct 
interaction between the samples as described in Fig. 3.1. Consider the case 
when the coverage of the adsorbed layer is so low that the interactions between 
the adsorbed atoms can be neglected, in which case one can treat each adsorbed 
atom independently. During the motion of the sample-II, the atom adsorbed 
on the sample-I will be pushed and released, eg if there is a step dislocation 
on the bottom surface of the sample-II, the atom will be adiabatically pushed 
down, due to the wedge shape of the surface, displacing it from its equilibrium 
position and storing energy in it. And then it is suddenly released. After its 
release there is no interaction of the adsorbed atom with sample-II. This model 
is relevant for the energy dissipation through phonons in dry sliding friction or 
lubrication, and also in the vibration of the adsorbed species. The character 
of contribution of such a mechanism to the friction between the bodies would 
depend on the rate of relaxation of this non-equilibrium situation.

Initially, the density matrix of the system plus reservoir is the equilibrium 
density matrix:

OIJ

(3.18)

(3.19)

where Z  =  Y^aj a  denotes the number of phonons at the atom and
j  is a multiple index describing the number of phonons in each mode, k<r of 
the sample.

Adiabatically displacing the atom would not cause the atom to go off- 
equilibrium, the density matrix will still be diagonal with the same diagonal 
elements but in the displaced basis:

/- = E
j-p(ea+Ej)

\a'j){c'j\ (3.20)
aj

with the same Z and the displaced harmonic oscillator states, ja'), are defined
as

|o') = ’'!«) = E
e

(3.21)

where s is the displacement of the oscillator and p is the momentum operator 
of the adsorbate. When the adsorbate is suddenly released, the density matrix
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does not change, but now, in the absence of the external force due to sample-II, 
the density matrix is not diagonal in the energy eigenstates, and the adsorbate 
is off-equilibrium. Denoting the RDM of the system right after it is released 
by />(0·*·), we have

p{0*) =  T n i : ---- g---- W iH a 'il
OiJ

Pi
(3.22)

where = Z

Following [12], take

h \2
u

-  (2mfi (¡-+6*),

" S ' \ 2 M ^ N , (i>k<r + &L)z-ek<T

(3.23)

(3.24)

where M  and N  are the mass and the total number of the sample-1 atoms, 
eidCT is the polarization vector of the mode k<j. As is pointed out in [12], this 
expression for v does not account for the surface which might reflect bulk 
phonons, and also does not take into account any surface phonons. With these 
definitions and choosing

F, = г;^

Q\ = Bu,

(3.25)

(3.26)

we obtain:

-Uj)
(u)' — U))

+

(3.27)

where the integration region in each integration is the region where the density 
of states is nonzero and a;' is positive. In this result we have assumed the ther­
modynamic limit and neglected 0{j j)  terms. In this study, ^(o;) is represented
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by the Debye density of states:

9І<̂ ) = ^ ^ ( 1  -  — )LO'D (jJD
(3.28)

where u>d is the Debye frequency and hence Wq — wd. In order to obtain Eq. 
3.27 from Eq. 3.11, the summations over states are converted to integrations 
over energies and the integration region is chosen so that only a small energy 
violation, Ao;,is allowed, which is assumed to satisfy A u A t  = 1 from the 
energy-time uncertainty relation. If one compares Eq. 3.27 with similar results 
found in the literature (eg. [33]), there is an extra factor of tt which arises 
because of the assumption that At  is large enough so that one can take the 
limit i ^  oo in certain integrals. This factor is not related with the formalism 
but is just related with the evaluation of Eq. 3.11.

The final result can be compared with the results in [12]. In [12] it is 
assumed from the beginning that only the diagonal element of the density 
matrix corresponding to the first excited state, pu, is non-zero. In which case, 
the contribution of the other elements of the density matrix can be neglected 
in the evolution of pn, and we obtain:

Pii{t -t- At) — pn{i) + 7?ii;ii(Ai)pii, (3.29)

D
which yileds a decay r a t e ----which is nothing but the result derived in
[12] using the Golden Rule formula (there is an overall factor of тг which is 
discussed earlier). This feature is quite general in the sense that as long as just 
the first few elements of the density matrix is important, and for sufficiently 
low temperatures, the results obtained using this formalism and those obtained 
by the Golden Rule are almost identical.

For the numerical data, we have used the following values: Iuod = 
37.6 meV; M  = 28amu; m = 28amu; Шо = 46meV; Eq = 1.8 eV; F  = 
10“ io N and T — 300 K. Here F  is the maximum vertical force applied to the 
adsorbed atom and is related to the vertical displacement, s, through

s = (3.30)

i) is changed from 0.2Do up to 1.52iio, and the iteration step is chosen to be 
A t  = In Fig. 3.2, we have plotted the decay profiles, for various
values Cl. In each case the range of the time axis corresponds to 300 iterations, 
each iteration corresponding to a time of The exponential character
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is obvious. For the numerical calculations, we used only a finite, 16 x 16, 
part of the infinite density matrix. This caused the matrix elements at the 
edges to evolve incorrectly. But as long as they are negligible compared to 
the matrix element corresponding to the first few excited states, this does not 
affect the general profile of the time dependency of the energy which is mainly 
determined by the evolution of the first few diagonal elements of the density 
matrix. In most cases after 300 iterations the matrix elements at the edge 
become nonnegligible. In all cases, we found that the excess energy can be fit 
almost perfectly into the expression:

AE{t) = AE{0)e-r

Here, T is the decay time constant (or the relaxation time)

(3.31)

In Fig. 3.3, the dependence of r  on 0  is shown. In the graph, the frequencies 
are given in units of iio· We see that both for large il and small ii, r  diverges. 
For large i) limit, the reason is due to the phase space factors; the two phonons 
created or absorbed has to be in a band of width 2u}d — H which goes to zero as 
ii —> 2o;/5. For n  > 2u)o, the adsorbed atom can not decay through the emission 
of two phonons and one has to consider three or more phonon processes. In 
the small i) limit, the coupling constant B  becomes very small and the system 
behaves almost as if it is isolated, and can not decay. In Fig. 3.3, one also 
sees that in the region fl ~  tup there is a change in r. For i2 < uq there is a 
contribution to the decay process whereby the adsorbate absorbs a low energy 
phonon from the sample and at the same time emits a high energy phonon into 
the sample. This process is absent in the ii > lod case which causes a sharp 
change.

32



E(t)

E(0)

0

E(t)

E(0)

1 0 0 200 300 400

Figure 3.2: Calculated decay profiles, for the energy of the vibrating atom 
for various i l ’s.
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Figure 3.3: Dependence of the relaxation time, r, on the vibrational frequency, 
fi, of the adsorbate.
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C hapter 4

C onclusion

We have attacked two different problems using two different methods. In the 
first chapter, we have used the Keldysh formalism to study the steady state 
heat current through a ID atomic wire. Its dependence on temperature and 
the number of atoms is studied. It is found that most of the current is carried 
by phonons at the eigenfrequencies of the wire. The total thermal conductance 
is found to be independent of the total number of atoms. However the con­
ductance is smaller for single atom and for N  — 2. For > 2, k is stabilized. 
Note also that we have not considered unharmonic terms within the wires. It is 
expected that if one allows for phonon scattering within the wire, the current 
would decrease as one increases the length of the wire, which we expect from 
our everyday experience. We also observed step in the total conductance as 
one makes changes in the structure of the reservoir, similar to the steps seen in 
the electronic counterpart. Hence although one cannot talk about the universal 
heat quantum as a fundamental constant, heat conductance still shows some 
kind of a quantized nature. In view of the recent developments, such as the 
realization of a linear chain between two electrodes consisting of eight atoms, 
also fabrication of suspended dielectric bridges with nanometer dimensions and 
also confining a single molecule between two electrodes, put not only academic 
interest but also the present results will be used in near future, and may con­
tribute to a rapidly developing field, nanoscience. The formalism developed 
here can be extended to include multiple contacts and in particular to complex 
molecules between two electrodes.

In the chapter, we studied the dissipation of excess energy, AF^(O), of
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an adsorbed atom on a surface and developed a Redfield-Theory like formalism 
based on the reduced density matrix. We showed that in all cases, the time 
variation of the excess energy can be fit almost perfectly into the expression 
AE{t)  =  Д£^(0)е“ т̂  at Г =  300/i". We calculated the decay rate profiles 
and the corresponding relaxation times for various frequencies. Our results are 
relevant to various theoretical and applied fields including tribology, molecular 
biology, molecular electronics, and crystal growth.

As regard to the differences in the methodologies in treating these two 
problems, the Keldysh formalism only gave the steady state properties of the 
system. It did not yield information about the transient period, i.e. what 
happens right after we bring the systems into contact. It is not suitable in 
studying such systems. On the other hand, the Redfield-like approach gave us 
information about the transient period. The main fundamental reason for this 
difference is that, in the Keldysh formalism, one directly attacks the calcula­
tion of the expectation value of the operators. But the expectation value of 
the operators does not specify the state of the system completely. Hence the 
expectation value of an operator at some time does not give information about 
it value at following instants. But, in the Redfield theory like approach, the 
density matrix of the whole system is calculated. As it contains all the infor­
mation about a system, the density matrix at some moment in time determines 
its value at a further moment, hence it was possible to use an iterative scheme 
to obtain its evolution for large enough times.
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Appendix A

Eq. 2.1

Let O be an operator whose expectation value is to be calculated at time t. 
Let the system be described by po at time to (later on the limit to —>■ —oo will 
be considered). Using the Heisenberg equation of motion

TrpoO(t)
{0{t)) =

Trpo

(A.l)

where the denominator is substituted for future convenience. Let us consider 
the numerator only and let (...)o =  Trpo·... Then:

where we have seperated the total Hamiltonian as = Tfo + 'Hint- If the 
operator is differentiated with respect to i, the resultant
differential equation can formally be integrated using the boundary condition 
at i = to- From the uniqueness of the solution, it can be shown that:

where T  is the time ordering operator and is defined as:

Similarly:
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where T  is the anti-time ordering operator. Hence we get: 

where

Oi{t) = (A.7)

The path ordering operator Tc is defined as the operator which orders the 
operators in its argument so that if one goes along the time loop shown in the 
figure below, the operator to the right will be reached later then the operator 
to the left.

oo

Figure A.l: The time loop along which the operator Tc orders its arguments.

Note that path ordering reduces to time ordering if all the times are on the 
upper branch and reduces to the anti-time ordering if all the times are on the 
lower branch. The times on the upper and lower branches will be distinguished 
by (+) and (“ ) superscripts respectively. Then, Eq. A.6 can be re-written in 
terms of the path ordering operator as:

(eK«(‘-'o)o(i„)e-K«(‘- ‘o))o = (Tcc"' '̂o

(A.8)

where we have inserted the identity operator Tee* )
to the left of the operator O. Note that if the time of the operator Oi{t) is 
assigned the label (+), all the operators in Eq. A.8 are already path ordered. 
Hence all of them can be written as the argument of a single path ordering 
operator. Since we can regroup operators within the path ordering operator, 
we get:
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In order to obtain the denominator in Eq. A.l, it is sufficient to replace the 
operator O in Eq. A.9 with the identity operator. For finite to, the system is 
not time translation invariant, to fixes a reference time. But this is in general 
not convenient for calculational purposes. Hence the limit to —oo will 
be considered. This limit only yields the steady state results. Putting the 
numerator and the denominator together we obtain Eq. 2.1.
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Appendix B

Eq. 2.23

First, note that:

m

dw .·
-oo

/ 00 ^7/1
— , (B.l)

- O O  io T T

where {uL{t)xi{t'))w is the time Fourier transform of (u£,(i)x](F)) =  («¿(i — 
F)xi(O)). Hence if we can calculate this Fourier transform, the current is given 
by:

Jl =  limJL(i)

=  - A l [  ^{-iw){uL{t)Xi{t ') )^  .
J —00 ioTT

(B.2)

Note that although in Eq. B.l, we used J l(/) to denote the function, it is not 
the current at time t.

I will not go into the details of the diagrammatic expansion of correla­
tion functions, and the wick theorem. The diagrammatic expansion for non­
equilibrium systems is identical to the equilibrium case, we only have the 
additional labels ('^) and (“ ) which should be summed over also (see eg. 
[29, 30, 31, 32]). For concreteness and simplicity, I will only consider the har­
monic interaction, Eq. 2.16. The Feynman Diagrams will consist of wavy lines,
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representing the free Greens function of the reservoir, straight lines, represent­
ing the free Greens functions of the wire, and squares, representing interaction 
vertices. Each end of a line is labeled: for wavy lines, the label of both ends 
should be identical, and it is either ul or un. For straight lines, each end 
should be labeled by an Xi,i = The vertices would carry the labels
(■̂ ) or (“ ) and they will connect the ends of a wavy and a straight line if the 
labels of the ends are u/, and x\ or ur and xj^ respectively. In order to calcu­
late {ui{t^)x\{t''^))wconnected·, the Diagrams should start with a ur and end at 
x\. As regard to the time labels, it should start and end at (■*■). Two of the 
contributing diagrams are shown in the figure below.

^ \ r \ / \ r m -
“l *1 Xj Ui Uj Xi

The contribution of these diagrams can be written as:

0M+

+ Or̂ +Ci ·/-  ̂ 0̂ ClC2 i  1/■ O/7C2C3 (  :/■  ̂0/̂ C3 +
I yu il (B.3)

V y V

where (i = + , - , i  = T (l), R{2), and all ( ’s and Vs are summed over.

In Eq. B.3, can be factored out. But then the remaining
terms are nothing but the expansion of the full greens function of the wire, 

and the prefactor is proportional to the self energy, Eq.
2.25. Generalization to an arbitrary number of contacts also follows the same 
line of thought. Putting everything together, one obtains Eq. 2.23
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Appendix C

Eq. 2.27

Fortunately, to obtain the result in Eq. 2.27, explicit solution of the Dyson 
equations, Eqs. 2.12, 2.13, 2.14, are not required. For this reason, let us solve 
the problem of a general harmonic sample which makes a single contact with 
the left reservoir, which will be denoted by i =  1, and an arbitrary number of 
contacts with an arbitrary number of reservoirs. And assume that each contact 
is described by the interaction OiXi, where O,· is an operator acting only on 
the reservoir of the contact, and X{ is the displacement of the sample atom 
at that contact.

Consider the first Dyson equation, Eq. 2.12. The terms can be rearranged
as:

Qa'a ~  ^Pa'^a'a
_0 pA— ypa 5 (C.l)

where the matrix U^,p = 6a'p +° Qpp>̂ p>a' have been introduced. Denote the 
matrix elements of the inverse of by superscripts so that:

P

(C.2)

Then the solution of the Dyson equation can formally be written as:

Sig = u r ' ’' g \ , g . (C.3)

By interchanging the labels A  and i?, one obtains the solution of the second 
Dyson equation, Eq. 2.13:

nK   7 ¡cta'QnR^ap —^ n  y a'p , 
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where are the matrix elements of the inverse of the matrix whose
m atrix elements are given by =  8o,ip +° Qfpi'^p>a'· Note that the matrices 

and have singularities at the eigenfrequencies of the sample which goes 
like Hence, their inverses Ua and Ur go to zero at the eigenfrequencies like 
c For the solution of the third Dyson equation, Eq. 2.14, first rearrange it as:

y j A /^K __ O p K Op K ypR p R  ( гл r\
~  Ура ~  У p p '^ р'а 'Уa’a “  Урр'^р'а 'Уа'а  

Multiplying by U^,  and substitution its explicit form on the right, one obtains:

~ ~  ^^PP'^p'a'^^a'6 ■ (^-6)

Hence, we get:

pK  _ у /Сх'Р'у jOlPOpK p A  p H
у  a· a — ^ A  ^ R  Ур'Р ~  Уа'р '^р'бУба  ·

К (C.7)

Note that the first term in Eq. C.7, does not contribute, unless it is multiplied 
by a singular function, since is non-zero only at the eigenfrequencies of 
the sample where it behaves as K But its prefactor behaves as at these 
frequencies. Hence, in our case, we can omit this term altogether, and we are 
left with:

(jK _  _(]A y K  q R Уа̂ а Уа'Р*̂ Р*бУба * (C.8)

The equation obtained by writing the Eqs. 2.10 and 2.11 can be solved to 
yield:

and similarly for the S ’s

g++(u;) = [g^ + g^ + g'^)

^+-(ад) = [g^ -  + g^')

g~+{w) =

g~~{w) = 5<[ - g ^  - g ^  + g^^)

S ’s:

S + + H  =
1
2

E+-(uj) =
1
2

( s ^  -  E"' -b E^')

=
1
2

-p E"‘ -H E^"

Е--(го) =
1
2

(C.9)

(C.IO)
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Note that, these satisfy the (anti) symmetry properties:

g ^{ -w )  =  g^{w)

g^'"{-w) = g^(w)

E ^ ( - w )  = (C .ll)

If Eqs. C.9 and C.IO are substituted into Eq. 2.23, and the result is simplified 
using Eqs. C .ll, the current can be written in the form:

(C.12)

If one substitutes Eqs. C.3, C.4 and C.8 into Eq. C.12 and further assumes 
that Oi oc « 1 , the current becomes:

= ( S i - i S i s )  ■ (C.13)

For systems with just two contacts and harmonic interaction at each contact, 
the self energy, S,j, reduces to the form given in Eq. 2.24. Substituting Eq. 
2.24 into Eq. C.13, one obtains:

dw

~ 2  l-o o  { ~ ^ n i ^ i n )  { ^ l l ' ^ N N  +  ^ u ^ n n )  ■ ( ^ - 1 4 )

Form Eqs. C .ll, the integrand of the first integral in Eq. C.14 is antisymmetric, 
hence this term does not contribute. Note that — — 
det g^N- Substituting the explicit forms of the self energies obtained from Eqs. 
2.25 and 2.26 and Eqs. C.25-C.27 into Eq. C.14, one obtains Eq. 2.27.

For systems with few contacts, once the free Greens’ functions are known, 
the full greens functions can be solved analytically. In the following sections, 
we give the free Greens function that we used in our calculations.

C.0.1 Free G reens Functions o f the W ire

As is seen in Eq. C.13, the current depends only on the greens functions 
and which in turn can be expressed in terms of their free counterparts
and the self energies non of which depends on the initial temperature. To obtain
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the free greens function, one has to diagonalize the Hamiltonian describing the 
isolated system. Let us denote the displacements and momenta of the normal 
modes of the wire by and Pm, and define Sim such that:

so that

(C.15)
m

7 (C.16)

Sim' — ^mm' 7 (C.17)

(  P? mw^
u;+ 2 (C.18)

Then the free greens functions can be expressed as:

n

=  - Y . S i n S ,

^^2mWn (w — ie.y — w\ 
h 2iwn

(C.19)

(C.20)^^2mWn {w + i tY  —

where an infinitesimal e has been inserted to assure the convergence of the 
Fourier transform. At the end of the calculation the limit e O'*" should be 
taken. Note that in this limit, we have the identity:

7----- -----------2 =  t  2̂ ^̂ " 2 ~  27Ttü„í(u;2 -  w l) . (C.21)
£-► 0+ [ w  —  l e ) ^  —  u r  —  u ; ^

Plence the Greens functions of the wire can be written as the sum of a purely real 
part which describes the ballistic transport of phonons and a purely imaginary 
part which describes the phonon tunneling contribution.

For a wire with identical strings and identical masses, the coefficients Sim 
can be evaluated to be

Sim —
2 .

sm
. 7V + 1 2 ’

where a is the spacing between neighbouring atoms and qm =

(C.22)

C .0.2 Free G reens Functions o f th e R eservoirs

The reservoir Greens functions are defined as:

g t ^ ^ i t - t ' )  = {TcUi{Y^)u,{t'<^))o 
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where i = L , R  corresponds to the left and right reservoirs respectively. In order 
to evaluate Eq. C.23, one has to know the expansion of the displacements u, in 
terms of the eigenmodes of the reservoirs. Following [12], we take the expansion:

i^L· +
ka

(C.24)

where is the number of atoms of the Left(Right) reservoir, ek<r is the
polarization vector of the mode ka, z is the outward unit normal to the surface 
of the corresponding reservoir and annihilation(creation)
operator for a phonon with wave vector k and polarization cr at the left (right) 
reservoir. Using this expansion and

(^L^kl)o = («B( î^ka) +  1), (^ka^L)o = ,
(C ^ L )o  =  o, "'kcr‘̂ ka)o -

the free Greens functions for the reservoir can be expressed as:

h i/ 00
dw'g^(w')

-0000
00

2Miw' w — w' — it 
h i

'2Miw' w — w' + it 
h

(C.25)

(C.26)
/ c

d w g \ w )
-00

o g f w  .  (c .27)

where M l(r) is the mass of the atoms of the left(right) reservoir and the density 
of states of the L(R) reservoir,5'^^^^(ii;) has been continued to negative w by
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