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A new dominance rule for the total weighted
tardiness problem

M. SELIM AKTURK and M. BAYRAM YILDIRIM

Keywords scheduling, heuristics, weighted tardiness

Abstract. We present a new dominance rule for the single
machine total weighted tardiness problem with job dependent
penalties. The proposed dominance rule provides a su� cient
condition for local optimality. We show that if any sequence
violates the dominance rule, then switching the violating jobs
either lowers the total weighted tardiness or leaves it
unchanged. We also develop a new algorithm based on the
dominance rule, which is compared to a number of competing
heuristics for a set of randomly generated problems. Our com-
putational results of over 40 000 problems indicate that the
proposed algorithm dominates the competing heuristics in all
runs.

1. Introduction

The buyer± vendor relationship plays an important role
in business. Usually, buyers desire reliable time delivery
for meeting their schedules, so the primary objective

becomes reducing the amount by which the individual
completion times exceed the promised times, i.e. due
dates. Jensen et al. ( 1995) emphasize the importance of
the marketing/manufacturing interface. They state the
fact that ® rms have a variety of customers, some of
which are more important than others. The importance
of a customer can depend on a variety of factors, but it is
important for manufacturing to re¯ ect these priorities in
their scheduling decisions. In addition, in the presence of
job tardiness penalties, it may not be enough to measure
the shop ¯ oor performance by employing unweighted
performance measures alone which treat each job in the
shop as equally important. In this paper, we prove a new
dominance rule as a function of the start time of a job for
the single machine total weighted tardiness problem with
job dependent penalties.

Lawler (1977) shows that the total weighted tardiness
problem, 1 S w iT i, is strongly NP-hard and also gives a
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pseudopolynomial algorithm for the total tardiness prob-
lem, 1 S T i. Various enumerative solution methods have
been proposed for both the weighted and unweighted
cases. Emmons (1969) derives several dominance rules
that restrict the search for an optimal solution to the
1 S T i problem. Rinnooy Kan et al. ( 1975) extended
these results to the weighted tardiness problem.
Rachamadugu (1987) identi® es a condition characteriz-
ing adjacent jobs in an optimal sequence for 1 S w iT i.
The exact approaches used in solving the weighted tardi-
ness problem are tested by Abdul-razaq et al. ( 1990) , and
they use Emmons’ dominance rules to form a precedence
graph for ® nding upper and lower bounds.

Szwarc (1993) proves the existence of a special order-
ing for the single machine earliness± tardiness (E/T)
problem with job independent penalties, where the
arrangement of two adjacent jobs in an optimal schedule
depends on their start time, although the presented
results may no longer be valid if the penalties of the E/T
model are job dependent, as stated by the author. Szwarc
and Liu ( 1993) present a two-stage decomposition
mechanism to the 1 S w iT i problem when tardiness
penalties are proportional to the processing times. As
stated by Jensen et al. ( 1995) , the importance of a custo-
mer can depend on a variety of factors, e.g. the ® rm’s
length of relationship with the customer, how frequently
they provide business to the ® rm, and the potential of a
customer to provide orders in the future. Therefore, we
present a new dominance rule for the most general case of
the total weighted tardiness problem. The proposed rule
provides su� cient condition for local optimality, and it
generates schedules that cannot be improved by adjacent
job interchanges.

The implicit enumerative algorithms for the total
weighted tardiness problem, e.g. the branch and bound
algorithm proposed by Potts and Van Wassenhove
(1985) , guarantee the optimality, but they require con-
siderable computer resources both in terms of computa-
tion times and memory requirements. It is important to
note that the number of local minimums is very high
because of the nature of the scheduling problems.
Currently, even a 50-job case, where the jobs are avail-
able at time zero with known weights, due dates and
processing times, cannot be solved optimally in a reason-
able amount of computation time. Therefore, several
heuristics and dispatching rules have been proposed to
generate good, but not necessarily optimal, solutions.
Two types of methods are widely used for the scheduling
problems, which are construction and interchange
methods.

Construction techniques use dispatching rules to build
a solution by ® xing a job in a position at each step. They
are fast and highly e� cient, but the quality of the sol-
ution is not very good. The dispatching rule might be a

static one, i.e. time independent like the earliest due date
(EDD) rule, or a dynamic one, i.e. time dependent like
the apparent tardiness cost (ATC) rule. Vepsalainen and
Morton (1987) propose the ATC rule and test e� cient
dispatching rules for the weighted tardiness problem with
speci® ed due dates and delay penalties. Caskey and
Storch (1996) tested the ATC rule along with the other
dispatching rules in job and ¯ ow shops, and showed its
e� ectiveness in minimizing the average tardiness. A more
detailed discussion on the heuristics and dispatching rules
can be found in Morton and Pentico (1993) , and Pinedo
(1995) .

The interchange methods require an initial sequence.
If the change yields a better solution, it is kept, otherwise
it is discarded. In descent methods, the change still might
be kept if there is no improvement, i.e. the objective value
remains the same. The interchanges are continued until a
solution that cannot be improved is obtained which is a
local minimum. When randomization is applied to an
interchange method, the improvements might lead to
the global minimum, but this requires a considerable
computational e� ort compared to the dispatching rules
and heuristics. Potts and Van Wassenhove (1991) com-
pare several heuristics for the 1 S w iT i problem ranging
from simple dispatching rules to more sophisticated
algorithms exploiting problem structure. Their computa-
tional results indicate that the pairwise interchange
methods perform very well for this problem.

In this study, we also propose an algorithm to demon-
strate how the proposed dominance rule can be used to
improve a sequence given by a dispatching rule. We show
that if any sequence violates the proposed dominance
rule, then switching the violating jobs either lowers the
total weighted tardiness or leaves it unchanged. The
remainder of this paper is organized as follows. In the
following section, we discuss the underlying assumptions
and give a list of de® nitions used throughout the paper.
We discuss the proposed dominance rule in section 3
along with the transitivity properties. The proposed
algorithm is described in section 4. Computational analy-
sis is reported in section 5. Finally, some concluding
remarks are provided in section 6.

2. Problem de® nition and notation

The single machine total weighted tardiness problem,
1 S w iT i, may be stated as follows. A set of jobs (num-
bered 1, . . . ,n is to be processed without interruption on
a single machine that can handle only one job at a time.
All jobs become available for processing at time zero. Job
i has an integer processing time pi, a due date di and a
positive weight w i. For convenience, the jobs are
arranged in an EDD indexing convention such that
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di < dj or di dj then pi < p j, or di dj and pi pj then
w i w j for all i and j, such that i < j. Furthermore, a
weighted tardiness penalty is incurred for each time unit
if job i is completed after its due date di. The problem can
be formally stated as: ® nd a schedule S that minimizes
f S S n

i 1w iT i. To introduce the dominance rule, con-
sider schedules S 1 Q 1ijQ 2 and S 2 Q 1jiQ 2 where Q 1
and Q 2 are two disjoint subsequences of the remaining
n 2 jobs. Let t S k Q 1pk be the completion time of Q 1.
De® ne T i t as the total weighted tardiness of job i if
scheduled at time t, and let T ij t be the total weighted
tardiness of jobs i and j if i precedes j and their processing
starts at time t. Then, T i t w i max 0, t pi di and
T ij t w i max 0, t pi di w j max 0, t pi pj dj .

The following interchange function, D ij t , is used to
specify the new dominance properties, which gives the
cost of interchanging adjacent jobs i and j whose pro-
cessing starts at time t.

D ij t T ji t T ij t w j max 0, t pj dj

w i max 0, t pi pj di

w i max 0, t pi di

w j max 0, t pi pj dj

Note that this cost D ij t does not depend on how the jobs
are arranged in Q 1 and Q 2 , but depends on start time t

of the pair, and:

� if D ij t > 0, then i should precede j at time t;
� if D ij t < 0, then j should precede i at time t;
� if D ij t 0, then it is indi� erent to schedule i or j

® rst.

Throughout the paper, we also use the following de® -
nitions. A b̀reakpoint’ is a critical start time for each pair
of adjacent jobs after which the ordering changes direc-
tion such that if t breakpoint then i precedes j ( or j

precedes i) , else j precedes i ( or i precedes j) . i g̀lobally’
precedes j, i j if it implies the existence of an optimal
sequence in which job i precedes job j is guaranteed. i

`unconditionally’ precedes j , i j if the ordering does
not change, i.e. i always precedes j when they are adja-
cent, but it does not imply that an optimal sequence
exists in which i precedes j. i c̀onditionally’ precedes j,
i j if there is at least one breakpoint between the pair

of jobs, then the order of jobs depends on the start time of
this pair and changes in two sides of that breakpoint.

3. Dominance rule

The proposed dominance rule is based on the adjacent
pairwise interchange method, which can be used to
improve the total weighted tardiness criterion of a

given sequence. We will show that if any sequence vio-
lates the proposed dominance rule, then switching the
violating jobs either lowers the total weighted tardiness
or leaves it unchanged. The proposed rule provides a
su� cient condition for local optimality, and it generates
schedules that cannot be improved by adjacent job inter-
changes.

After giving the intuition behind the adjacent job
interchange, there are 16 cases of pi versus pj , w i versus.
w j , dj di versus pj and di pi versus dj pj to be con-
sidered, as shown below.

Case pi pj w i < w j dj di pj di pi dj pj Section Ordering

1 Y Y Y Y ( 3.1) Theorem 1
2 Y Y Y N ( 3.2) Theorem 2
3 Y Y N Y ( 3.3) Lemma 1
4 Y Y N N Inconsistent
5 Y N Y Y ( 3.4) i j

6 Y N Y N ( 3.4) i j

7 Y N N Y ( 3.4) i j

8 Y N N N Inconsistent
9 N Y Y Y ( 3.5) Theorem 1

10 N Y Y N Inconsistent
11 N Y N Y ( 3.5) Lemma 3
12 N Y N N Inconsistent
13 N N Y Y ( 3.5) Lemma 4
14 N N Y N Inconsistent
15 N N N Y ( 3.5) Lemma 1
16 N N N N Inconsistent

Cases 4 and 8 are ruled out, since di dj , pi p j

and dj di > pj , then inequalities di pi < dj pj and
di pi > dj pj are inconsistent. Cases 10, 12, 14 and
16 are also ruled out, since di dj and pi > pj , then
inequalities di pi < dj pj and di pi > dj p j are
inconsistent. When we analyse the interchange function
D ij t for each possible case, it can be seen that there are
at most three possible breakpoints as shown below.

t
1
ij

w idi w jdj

w i w j

pi pj 1

t
2
ij dj pi p j 1 w i /w j 2

t
3
ij di pj pi 1 w j /w i 3

The breakpoints will be valid if they are in their speci® ed
intervals as follows:

� t
1
ij will be valid if dj pi pj t

1
ij di pi;

� t
2
ij will be valid if max di pi , dj pi pj

t
2
ij < dj pj ;

� t
3
ij will be valid if dj pj t

3
ij < di pi.
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3.1. di dj , pi p j , w i < w j , dj di pj , di pi dj pj

We will ® rst investigate how D ij t changes in this case.
As can be seen from ® gure 1, there are ® ve regions to
examine:

( 1) In region A t di pi p j no tardiness occurs,
so it is indi� erent to schedule either i or j ® rst.

(2) In region B di pi pj < t < dj pi pj , i is
tardy if not scheduled ® rst. Here, D ij t

w i t pi pj di . Since di pi pj < t,
D ij t > 0, so i j.

( 3) In region C dj pi pj t di pi , either i or
j is tardy if not scheduled ® rst. Here, D ij t

w i w j t pi pj w i w j w idi w jdj . The
breakpoint t

1
ij w idi w jdj /w i w j pi p j

is de® ned in this region. I f the processing of this
pair starts up to t t

1
ij then i j, and j i if the

processing begins after t
1
ij .

( 4) In region D di pi < t < dj pj , i is always tardy
but j is not tardy if scheduled ® rst. Here,
D ij t w ip j w j t w j pi pj dj . There is a
new breakpoint t

2
ij dj pi pj 1 w i /w j .

Similar to above, i j for t t
2
ij , and j i after-

wards.
( 5) In region E dj p j t) both jobs are tardy. Here,

D ij t w ip j w jpi. If D ij t 0 then i j , other-
wise j i.

It seems that there is more than one breakpoint, but
actually, as we are going to show below, at most one
breakpoint can be valid, i.e. it is in the speci® ed region
of either C or D for t

1
ij and t

2
ij , respectively, and up to that

breakpoint i j and then j i. If there is no valid break-
point then i unconditionally precedes j, i.e. i j.

Proposition 1. If there is a valid breakpoint then it is
min t

1
ij , t2ij .

Proof: The cost functions T ij t and T ji t are continu-
ous piecewise linear functions, while the breakpoints
occur at the times where a job becomes tardy. The gra-
dient of T ij t is equal to w j from dj pi pj to di pi,
after which it becomes equal to w i w j . The gradient of
T ji t is equal to w i from di pi pj to dj pj , after which
it becomes equal to w i w j . Hence, if the functions inter-

sect then they will not intersect again in this case, as the
gradient of T ij t is at least as large as the gradient of
T ji t after this intersection point. h

The following proposition is useful when both of the
breakpoints are invalid.

Proposition 2. If t
1
ij and t

2
ij are both invalid then i j.

Proof: If we can show that i j in all regions, then
i j. We know that if both of the breakpoints are
invalid then t

1
ij > t

2
ij > dj pj . In region B, we know

that D ij t > 0. So i j. In region C, t
1
ij > di pi since

t
1
ij is invalid, hence dj di pj 1 w i /w j e

1 for

e
1 > 0 D ij t w i w j t pi pj w i w j w idi

w j di pj 1 w i /w j e
1

D ij t w i w j

t di pi w i e
1.

Since w i w j < 0, t di pi 0 and e
1 > 0 then

D ij t > 0. So i j. In region D, since t
1
ij and t

2
ij are

both invalid, t
2
ij > dj pj , hence pj pi w j /w i e

2 for
e

2 > 0.

D ij t w i pi w j /w i e
2

w j t w j pi pj dj

D ij t w i e
2

w j t dj pj .

Since t dj pj < 0, then D ij t > 0. So i j.
Finally, in region E, t

2
ij > dj pj D ij t > 0. So i j.

The result follows, if both t
1
ij and t

2
ij are invalid, then

i j. h

Theorem 1. If di dj , w i < w j , dj di pj and
di pi dj pj , then there can be at most one valid
breakpoint, such that i j for t min t

1
ij, t

2
ij and

j i afterwards, and if they are both invalid then i j.

Proof: Follows from Propositions 1 and 2. h

3.2. di dj , pi pj , w i < w j , dj di pj , di pi > dj pj

We will start again by investigating how D ij t changes
in the second case. As can be seen from ® gure 2, there are
® ve regions to examine, but regions A, B and E are
identical to the previous case in Section 3.1, so only
regions C and D are examined below.
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( 1) In region C ( dj pi pj t < dj p j ) , D ij t

w i w j t pi pj w i w j w idi w jdj . Similar
to the previous case, we have the breakpoint t

1
ij in

this region. Therefore, i j for t t
1
ij , and j i

afterwards.
(2) In region D ( dj pj t < di pi) , D ij t

w jpi w i t pi p j di . There is a new break-
point t

3
ij di p j pi 1 w j /w i) . If it is a valid

breakpoint, then j i for t t
3
ij , and i j after-

wards.

As shown above, there can be two breakpoints for this
case. The following proposition shows how D ij t changes
if both of the breakpoints are valid.

Proposition 3. If both breakpoints are valid, then i j

for t t
1
ij , j i for t

1
ij < t t

3
ij , and i j for t

3
ij < t.

Proof: The only region that should be examined is
region E, since D ij t remains the same in other regions.
If t

3
ij < di pi, then from equation (3) we know that

piw j < pjw i. Hence, D ij t w ip j w jpi > 0, so i j . h
Furthermore, if t

3
ij is valid, then t

1
ij is also valid. On the

other hand, t
3
ij could be invalid, i.e. t

3
ij > di pi, when t

1
ij is

valid. Therefore, Proposition 4 demonstrates how D ij t

changes if both of the breakpoints are invalid, or t
1
ij is the

only valid breakpoint. Due to space limitations, we will
not include the following proofs but they can be obtained
from the ® rst author.

Proposition 4. If t
1
ij is valid and t

3
ij is invalid, i.e.

t
3
ij > di pi, then i j for t t

1
ij and j i afterwards. If

t
1
ij is invalid, then i j.

Theorem 2. If di dj , pi pj , w i < w j , dj di p j and
di pi > dj pj , then there can be at most two valid
breakpoints, which are t

1
ij and t

3
ij . I f both are valid, then

i j for t t
1
ij , j i for t

1
ij < t t

3
ij , and i j afterwards.

If t
1
ij is the only valid breakpoint, then i j for t t

1
ij , and

j i afterwards. I f there is no valid breakpoint, then
always i j.

Proof: Follows from Propositions 3 and 4. h

3.3. di dj , pi pj , w i < w j , dj di > pj , di pi dj pj

First, let us investigate how D ij t changes. As can be
seen from ® gure 3, there are ® ve regions to examine, but
regions A and E are similar to regions A and E of the case
in section 3.1. Furthermore, there might be only one
valid breakpoint, t

2
ij , in region D as stated below, since

i j in regions B and C.

Lemma 1. If di dj , dj di > pj and di pi dj pj .
then the only breakpoint that can be valid is t

2
ij . If it is

valid, then i j for t t
2
ij , and j i afterwards. If there is

no valid breakpoint then always i j.

3.4. di dj , pi pj , w i w j

In cases 5± 7, it has already been proved by Rinnooy
Kan et al. ( 1975) based on the Emmons’ theorem that
there is a global dominance property between the pair of
jobs i and j as stated below.

Lemma 2. If di dj , pi pj and w i w j then job i glob-
ally precedes job j, i.e. i j.

3.5. di dj , pi > pj , di pi dj pj

Cases 9, 11, 13 and 15 are similar to the previous cases
discussed earlier. For example, in case 9, there can be at
most one valid breakpoint, as shown in section 3.1, and
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up to that breakpoint i j then j i. If there is no valid
breakpoint, then i j. Therefore, Theorem 1 is also
applicable for case 9. On the other hand, case 11 is
similar to case 3 ( ® gure 3) , although the range of break-
point t

2
ij dj pi pj 1 w i /w j is between dj pi pj

< t
2
ij < dj pj , therefore t

2
ij is always valid.

Lemma 3. I f di dj , pi > pj , w i < w j , dj di < pj and
di pi dj pj , then the breakpoint t

2
ij is always valid,

hence i j for t t
2
ij , and j i afterwards.

Case 13 is also similar to case 1 ( ® gure 1) , therefore in
regions C and D, t

1
ij and t

2
ij could be valid breakpoints,

respectively. But w i w j , hence t
1
ij is always invalid.

Lemma 4. I f di dj , pi > pj , w i w j , dj di pj and
di pi dj pj , then only one breakpoint can be valid
which is t

2
ij . If it is valid, then for t < t

2
ij , i j and then

j i.

Case 15 is similar to case 3, and t
2
ij can be a valid

breakpoint for this case as discussed earlier. Therefore,
Lemma 1 given in section 3.3 is also applicable here.

After analysing all of the possible cases, we prove that
there are certain time points, called breakpoints, in which
the ordering might change for adjacent jobs. We ® nd
three such breakpoints and show that at most one break-
point can be valid, except in case 2, for which both t

1
ij and

t
3
ij can be valid at the same time. For cases 1 and 9, if
there is a valid breakpoint then it is min t

1
ij , t2ij . For cases

3, 13 and 15, only one breakpoint can be valid, that is t
2
ij .

On the other hand, t
2
ij is always valid for case 11. In cases

5± 7, there is a global dominance, i j , as shown by
Rinnooy Kan et al. ( 1975) . Finally, if there is no valid
breakpoint, then always i j.

3.6. T ransitivity

The transitivity property is very crucial for reducing
the number of sequences that have to be considered in an
implicit enumeration technique. Szwarc (1993) shows
that there is a transitivity property for the 1 S T i prob-
lem. The transitivity property does not hold for the
1 S w iT i problem even for the assumption that the
weights are proportional to the processing times, as
shown by Szwarc and Liu ( 1993) . Let J denote the set
of all jobs, V be the set of pairs i, j for which there is a
valid breakpoint t

valid
ij between i and j, and tl be the last

valid breakpoint for any pair of jobs i, j on the time scale,
such that tl max i,j V t

valid
ij . Therefore, we will show

that the transitivity property holds for the proposed dom-
inance rule when t tl , which can be used quite e� ec-

tively to ® nd an optimal sequence for the remaining jobs
on hand after a time point tl .

Lemma 5. If t tl , then the weighted shortest pro-
cessing time (WSPT) rule gives an optimal sequence for
the remaining unscheduled jobs.

Proof: We have already shown that for every job pair
i, j , one of these conditions must hold, either there is a

valid breakpoint or unconditional ordering ( i j) or
globally precedence ( i j) . The WSPT rule holds for
both i j and i j . If there is a valid breakpoint,
then for t > t ij the job having higher w i /pi is scheduled
® rst, so WSPT again holds. For t > t l , consider a job i

which con¯ icts with the WSPT rule, then we can have a
better schedule by making adjacent job interchanges
which either lower the total weighted tardiness value or
leave it unchanged. I f we do the same thing for all of the
remaining jobs, we get the WSPT sequence. h

I t is a well-known result that the WSPT rule gives an
optimal sequence for the 1 S w iT i problem when either
all due dates are zero or all jobs are tardy, i.e.
t > maxi J di pi . The problem reduces to a total
weighted completion time problem which is known to
be solved optimally by the WSPT rule, in which jobs
are sequenced in non increasing order of w i /pi. We
know that tl maxi J di pi , so we enlarge the region
for which the total weighted tardiness problem can be
solved optimally by the WSPT rule.

4. A lgorithm

The 1 S w iT i problem is strongly NP-hard as stated
earlier, hence it is important to develop a heuristic that
provides a reasonably good schedule with reasonable
computational e� ort. The ATC rule is a composite dis-
patching rule that combines the WSPT rule and the
minimum slack rule. Under the ATC rule, jobs are sched-
uled one at a time; i.e. every time the machine becomes
free, a ranking index is computed for each remaining job
i. The job with the highest ranking index is then selected
to be processed next. The ranking index is a function of
the time t at which the machine became free, as well as
the pi, w i and di of the remaining jobs. The index is
de® ned as:

p i t
w i

pi

exp max 0 , di t pi / k p

where we set the look-ahead parameter k to 2, as sug-
gested in Morton and Pentico (1993) , and p is the aver-
age processing time of the remaining unscheduled jobs.
Vepsalainen and Morton (1987) have shown that the
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ATC rule is superior to other sequencing heuristics and
close to optimal for the 1 S w iT i problem. In the follow-
ing example, we will demonstrate how the proposed
dominance rule can be used to improve the weighted
tardiness criterion even for an e� cient rule like ATC.
Consider the two-job problem given in table 1. Since
p 5, the following ranking indexes can be calculated
for each job:

p i t 4
6 exp max 0,30 t 6 / 2 5 < p j t

10
4 exp max 0,40 t 4 / 2 5

Therefore, we can easily show that j i for all t under
the ATC rule. But the dominance rule indicates that t

2
ij is

a valid breakpoint for this pair, and i j for
20 < t 31.6, as shown in ® gure 4. For example, if we
set t 25 then T ij 25 4 and T ji 25 20, therefore i

should precede j if their processing starts in the time
interval [20, 31.6].

Now we will present an algorithm based upon the
dominance rule that can be used to improve the total
weighted tardiness criterion of any sequence S by making
necessary interchanges. We have already shown that if
any sequence violates the proposed dominance rule, then
switching the violating jobs either lowers the total
weighted tardiness or leaves it unchanged. The proposed
heuristic takes into account all of the global, uncondi-
tional and conditional precedence relationships. Let
seq i denote the index of the job in the i-th position in
a given sequence S . The algorithm can be summarized as
follows:

For i 1 to n 1 do
For j i 1 to n do

I f i globally precedes j ( or j i

and seq i > seq j or seq i <
seq j then change the order-
ings of i and j.

Set k 1 and t 0.
While k n 1 do begin

Set i seq k and j seq k 1
If i < j then

If t
3
ij is valid, dj pi pj < t and t

1
ij < t t

3
ij

then
t t pseq k 1 , change the orderings of i

and j and k k 1
else if either t

1
ij or t

2
ij is valid and t > t

valid
ij then

t t pseq k 1 , change the orderings of i

and j and k k 1
else t t pi and k= k+ 1.

I f i > j then
If t

3
ji is valid, dj pi pj < t and either

t < t
1
ji or t > t

3
ji then

t t pseq k 1 , change the orderings of i and j

and k k 1
else if either t

1
ji or t

2
ji is valid and t t

valid
ji then

t t pseq k 1 , change the orderings of i and j

and k k 1
else t t pi and k k 1

end.

Let us consider the following 20-job example to explain
the proposed algorithm. The jobs are initially scheduled
by the ATC rule, which is given in ® gure 5, along with
the sequence, S , due date, di, processing time, pi, weight,
w i, starting time, t, and weighted tardiness, W T , of each
job i. The ® nal schedule after implementing the proposed
algorithm on the schedule given by the ATC rule is also
given in ® gure 5. In the matrix of breakpoints, the follow-
ing notation is used: the numbers in cells correspond to
the valid breakpoints, the global precedences ( ) and
unconditional precedences ( ) .

The algorithm works as follows: the global precedences
are tested ® rst, then the unconditional and conditional
precedence relations are examined. Up to t 27, the
sequence generated by the ATC rule does not con¯ ict
with the dominance rule. But job 6 in seq 5 violates
the dominance rule when compared to job 2 in seq 6
at time t 27. From ® gure 5, t

1
2,6 is 35, which is greater

than t 27, that means 2 6 at time t 27, so an inter-
change should be made. As a result, t is set to
27 pseq 4 17 and k k 1 4. So we can check
the dominance rule between the jobs at seq k and
seq k 1 , i.e. jobs 1 and 2. A similar interchange is
made at t 43 between jobs 7 and 9, and we proceed
on. Notice that, after all necessary interchanges per-
formed on the sequence generated by the ATC rule,
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ATC
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J I
J J II

t ij
2 = 31.6= 20

DOMINANCE RULE

p j-ip-id

Figure 4. Dominance properties.

Table 1. Two-job example.

Jobs di pi w i

i 30 6 4
j 40 4 10
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Figure 5. A problem of n 20.



the total weighted tardiness dropped from 85 to 30, giv-
ing an improvement of 85 30 /85 68%. For this
example, the optimum solution is also equal to 30.

5. Computational results

We tested the proposed algorithm on a set of randomly
generated problems on a Sun Ultra Sparc 1 workstation
using Sun Pascal. The algorithm along with a number of
heuristics were tested on problems with 50, 100, 300 and
500 jobs that were generated as follows. For each job i, an
integer processing time pi and integer weight w i were
generated from two uniform distributions [1, 10] and
[1, 100] to create low or high variation, respectively.
The relative range of due dates, RDD and average
tardiness factor, TF were selected from the set
0.1,0.3,0.5,0.7,0.9 . An integer due date di from the

uniform distribution [P 1 T F RD D /2 , P 1 T F

RD D /2 ] was generated for each job i, where P is the
total processing time, n

i 1 pi. As summarized in table 2,
a total of 400 example sets was considered and 100 repli-
cations were taken for each combination resulting in
40000 randomly generated runs.

In order to show the e� ciency of the proposed algor-
ithm, a number of heuristics was implemented on the
same problem sets. These dispatching rules and their
priority indexes are summarized in table 3. The EDD,
LPT, SPT, WSPT and WPD are examples of static
dispatching rules, whereas ATC and COVERT are
dynamic ones. The proposed algorithm can be imple-
mented in two ways, i.e. a forward or backward pro-
cedure. In a forward procedure, we start from the ® rst
job of the given sequence and proceed on, as outlined in
section 4. In a backward procedure, the only di� erence is
that we start from the last job of the given sequence and
proceed backwards towards the ® rst job. Vepsalainen
and Morton (1987) have shown that the ATC rule is
superior to the other rules, therefore we tested both the
forward and backward procedures on the ATC rule, as
denoted by ATC( I ) and ATC( I I ) , respectively.

The results, which are averaged over 10000 runs for
each heuristic, are tabulated in tables 4± 7 for 50-, 100-,
300- and 500-job cases. For each heuristic, the average
weighted tardiness before and after implementing the
proposed algorithm along with the average improve-
ment, ( improv) , the average real time in centiseconds
used for the heuristic and algorithm, and the average
number of interchanges, ( interch) , are summarized.
Finally, we performed a paired t-test for each run, and
t-test values are reported in the last column. Although the
real time depended on the utilization of the system when
the measurements were taken, it was a good indicator for
the computational requirements, since the cpu times were
so small that we could not measure them accurately. In
general, the actual cpu time is considerably smaller than
the real time. The average improvement for each run is
found as follows: Improv F S

h
F S

D R /F S
h 100,

if F S
h 0, and zero otherwise, where F S

h is the total
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Table 2. Experimental design.

Number of
Factors levels Settings

Number of jobs 4 50, 100, 300, 500
Processing time variability 2 [1,10], [1, 100]
Weight variability 2 [1,10], [1, 100]
Relative range of due dates 5 0.1, 0.3, 0.5, 0.7, 0.9
Average tardiness factor 5 0.1, 0.3, 0.5, 0.7, 0.9

Table 3. Dispatching rules.

Rule De® nition Rank and priority index

ATC Apparent tardiness cost max
w i

pi

exp
max 0, di t pi

kp

COVERT Weighted cost over time max
w i

pi

max 0,1 max 0, di t pi

kpi

WPD Weighted processing due date max
w i

pidi

EDD Earliest due date min di

WSPT Weighted shortest processing time max
w i

pi

SPT Shortest processing time min pi

LPT Longest processing time max pi
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Table 4. Computational results for n 50.

Average tardiness Real time
N 50 T -test
Heuristic Before After Improv Before After Interch value

ATC( I ) 119 721.16 118 570.82 6.38 0.42 1.08 6.70 41.93
ATC( II ) 119 721.16 118 570.96 6.38 0.42 1.08 6.69 41.92
COVERT 127375.29 125862.04 4.02 0.20 1.13 2.48 26.43
WPD 192 907.64 134 280.01 35.32 0.10 1.12 37.58 31.14
EDD 275 662.42 128034.52 39.65 0.08 1.35 179.29 44.85
WSPT 153 793.84 135 811.00 24.09 0.12 1.12 27.21 45.32
SPT 225345.92 213 221.45 10.91 0.17 1.11 20.53 52.77
LPT 538 416.80 153 283.34 81.04 0.12 1.23 64.57 61.53

Table 5. Computational results for n 100.

Average tardiness Real time
N 100 T -test
Heuristic Before After Improv Before After Interch value

ATC( I ) 468 101.05 465 699.16 2.96 1.62 4.42 13.71 44.42
ATC( II ) 468 101.05 465 700.18 2.96 1.62 4.42 13.70 44.41
COVERT 493 596.90 490 617.53 2.04 0.84 4.41 4.91 22.93
WPD 773 667.22 527598.81 33.38 0.26 4.51 126.42 31.54
EDD 1096 719.34 495 660.43 41.07 0.04 5.35 728.29 45.14
WSPT 602 841.83 546 157.72 18.41 0.25 4.43 69.44 45.16
SPT 883 531.62 851 058.31 8.52 0.24 4.43 58.37 58.23
LPT 2 179 428.23 608 737.47 81.78 0.24 4.77 222.14 62.38

Table 6. Computational results for n 300.

Average tardiness Real time
N 300 T -test
Heuristic Before After Improv Before After Interch value

ATC( I ) 4 231 923.39 4 223672.96 0.58 14.66 40.47 44.18 24.49
ATC( II ) 4 231 923.39 4 223673.24 0.58 14.66 40.47 44.09 24.49
COVERT 4318 815.23 4310 217.00 0.67 7.03 40.35 15.45 10.83
WPD 6867 607.28 4729 276.97 27.86 0.62 41.53 880.80 15.39
EDD 9620873.07 4 237 060.61 43.04 0.14 50.56 6504.16 22.59
WSPT 533 7069.51 5084 352.83 11.01 0.61 40.65 248.49 22.26
SPT 8009 572.24 7862 767.57 6.29 0.61 40.82 366.91 36.40
LPT 19 476 678.41 5926122.98 80.68 0.61 42.57 1394.11 31.64

Table 7. Computational results for n 500.

Average tardiness Real time
N 500 T -test
Heuristic Before After Improv Before After Interch value

ATC( I ) 11 907 061.07 11 893 486.77 0.39 40.31 111.54 74.72 24.85
ATC( II ) 11 907 061.07 11 893 488.52 0.39 40.31 111.56 74.68 24.85
COVERT 12 089 858.58 12 075 066.33 0.48 18.93 111.51 24.70 10.51
WPD 19 234 993.63 13 439 006.41 25.64 1.17 114.37 2187.09 15.57
EDD 26798 871.59 12 104 873.48 43.09 0.13 138.04 17 781.58 22.67
WSPT 15 029863.93 14 580 342.57 7.87 1.15 111.9 436.73 23.22
SPT 21986 707.78 21656 919.94 5.72 1.17 112.67 960.38 38.97
LPT 54 596 748.72 17 400 919.52 79.91 1.20 116.24 3074.19 31.82



weighted tardiness value obtained by the heuristic and
F S

DR is the total weighted tardiness obtained by the
algorithm, which takes the sequence generated by the
heuristic as an input. Since there is no signi® cant di� er-
ence between ATC( I ) and ATC( II ) , we only implement
the forward procedure for the other rules.

The results of our large scale computational experi-
ments reported in tables 4± 7 are consistent with those
found by Vepsalainen and Morton (1987) . Among the
competing rules, the ATC rule performs better than
others, and the weighted COVERT is overall second.
The EDD and SPT rules perform poorly since they do
not take into account the individual job weights.
Furthermore, the large t-test values on the average
improvement indicate that the proposed algorithm pro-
vides a signi® cant improvement on all rules, and the
amount of improvement is notable at 99.5% con® dence
level for all heuristics. When we analyse the individual
heuristics, the ATC rule is the best-known dispatching
rule, but we can still perform 6.7 pairwise interchanges
on average and improve the results by 6.38% for the 50-
jobs case. On the other hand, the average number of
interchanges increases to 179.29 for the EDD rule with
a 39.65% improvement. The number of interchanges for
EDD is substantially higher than the others because the
dominance rule is constructed upon the EDD indexing
convention. Although the computation time require-
ments for the proposed algorithm are relatively higher
compared to the other dispatching rules, they are mostly
used for evaluating the breakpoints and testing their

validity, which is done only once for each problem.
This can be seen from the n 500 case, the average
number of interchanges for the EDD rule is substantially
higher than others but the computation time only di� ers
by 26.5 centiseconds from the minimum. In a complete
enumeration method, e.g. a branch and bound (B&B)
algorithm, the matrix of breakpoints will be calculated
only once.

The proposed algorithm dominates the competing
rules because the total weighted tardiness value is always
less than or equal to those obtained from the heuristics in
each run as shown above. In tables 8 and 9, we compare
the results of individual runs with the ATC rule, which is
the best one among the competing rules. In table 8, <
represents the number of runs in which the proposed
algorithm gives better results than the ATC rule, whereas

represents the number of runs in which they give the
same total weighted tardiness value out of 10000 ran-
domly generated runs for each job case. These values
indicate that there is a signi® cant improvement in the
upper bound value. In table 9, we compare these two
rules in more detail for each RDD and TF combination
for the the 100-job case as an example. When due dates
are loose, e.g. for RDD 0.5 or 0.7 or 0.9 and TF 0.1
combinations, that means 1200 runs, the total weighted
tardiness value was equal to zero for each run, hence
there was no room for improvement. On the other
hand, the problem becomes more di� cult when due
dates are tight, for which we decrease the upper bound
value in each run. Therefore, we can easily claim that the
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Table 8. The e� ect of the new dominance rule on the ATC rule.

n 50 n 100 n 300 n 500

Criterion < = < = < = < =

w iT i 7043 2957 7150 2850 7400 2600 7390 2610

Table 9. Comparison of the ATC rule with the proposed rule for n 100.

Tardiness factor

RDD value Criterion 0.1 0.3 0.5 0.7 0.9

0.1 < 231 219 318 380 399
= 169 181 82 20 1

0.3 < 54 322 398 400 400
= 346 78 2 0 0

0.5 < 0 322 400 400 400
= 400 78 0 0 0

0.7 < 0 97 400 400 400
= 400 303 0 0 0

0.9 < 0 10 400 400 400
= 400 390 0 0 0



proposed algorithm provides a reasonably good schedule
with reasonable computational e� ort.

6. Concluding remarks

In this paper, we develop a new dominance rule for the
1 S w iT i problem which provides a su� cient condition
for local optimality. Therefore, a sequence generated by
the proposed algorithm, that is based on the dominance
rule, cannot be improved by adjacent job interchanges.
We also enlarge the region for which the 1 S w iT i prob-
lem can be solved optimally by the WSPT rule. The
proposed algorithm is implemented on a set of heuristics
including the ATC rule that is shown to be close to the
optimal solution by Vepsalainen and Morton (1987) .
Our computational experiments over 40000 randomly
generated problems indicate that the amount of improve-
ment is statistically signi® cant for all heuristics, and the
proposed algorithm dominates the competing rules in all
runs. Furthermore, Abdul-razaq et al. ( 1990) tested sev-
eral B&B algorithms by using the Emmons’ dominance
rules in a node elimination procedure. The proposed
dominance rule covers and extends the Emmons’ results
by considering the time-dependent orderings between
each pair of jobs so that tighter upper and lower bounds
can be found as a function of start time of this pair. This
dominance rule can also be used for the in® nite horizon
total weighted tardiness problem. When a job is avail-
able, the breakpoint matrix should be updated and the
proposed algorithm can be applied to the new sequence
generated. For further research, we will look at how the
presented results can be incorporated in a B&B solution
method in conjunction with a branching condition and
lower bounding scheme.
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