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ABSTRACT

PARALLEL SEQUENCE MINING ON DISTRIBUTED-MEMORY

SYSTEMS

Embiya KARAPINAR

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Atilla G�ursoy

February, 2001

Discovering all the frequent sequences in very large databases is a time consuming task.

However, large databases forces to partition the original database into chunks of data to

process in main-memory. Most current algorithms require as many database scans as the

longest frequent sequences. Spade is a fast algorithm which reduces the number of database

scans to three by using lattice-theoretic approach to decompose origional problem into small

pieces(equivalence classes) which can be processed in main-memory independently.

In this thesis work, we present dSpade, a parallel algorithm, based on Spade, for discov-

ering the set of all frequent sequences, targeting distributed-memory systems. In dSpade,

horizontal database partitioning method is used, where each processor stores equal number

of customer transactions.

dSpade is a synchronous algorithm for discovering frequent 1-sequences (F1) and frequent

2-sequences ( F2). Each processor performs the same computation on its local data to get

local support counts and broadcasts the results to other processors to �nd global frequent

sequences during F1 and F2 computation. After discovering all F1 and F2, all frequent

sequences are inserted into lattice to decompose the original problem into equivalence classes.

Equivalence classes are mapped in a greedy heuristic to the least loaded processors in a round-

robin manner. Finally, each processor asynchronously begins to compute Fk on its mapped

equivalence classes to �nd all frequent sequences.

We present results of performance experiments conducted on a 32-node Beowulf Cluster.

Experiments show that dSpade delivers good speedup and scales linearly in the database

size.

Keywords: Lattice, equivalence class,horizontal database partitioning method.
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�OZET

DA�GITIK BELLEKL_I S_ISTEMLERDE PARALEL D_IZ_I

MADENC_IL_I �G_I

Embiya KARAPINAR

Bilgisayar M�uhendisli�gi, Y�uksek Lisans

Tez Y�oneticisi: Yrd. Do�c. Dr. Atilla G�ursoy

S�ubat, 2001

C�ok b�uy�uk veritabanlar�nda t�um s�k dizileri bulmak �cok zaman alan bir g�orevdir. Bununla

birlikte, �cok b�uy�uk veritabanlar� orjinal veritaban�n� birden �cok veri y��g�n�na par�calayarak

ana bellekte i�slemeyi zorunlu k�lar. C�o�gu g�uncel algoritmalar en uzun s�k dizinin uzunlu�gu

adedince veritaban�n� okumay� gerektirir. Spade, kafes-kuram� yakla�s�m�n� kullanarak orjinal

problemi ana haf�zada i�slenebilen k�u�c�uk par�calara ( e�sde�ger s�n�ara) ay�ran ve vertaban�n�

�u�c kere okuyan �cok h�zl� bir algoritmad�r.

Bu tez cal��smas�nda, da�g�t�k bellekli sistemler i�cin s�k diziler k�umesinin tamam�n� bulan ve

Spade algoritmas�n� baz alan dSpade adl� paralel algoritmay� �oneriyoruz. dSpade algoritmas�

her i�slemcinin e�sit miktarda m�u�steri hareketi saklad��g� yatay veritaban� par�calama metodunu

kullan�r.

dSpade birli ve ikili s�k dizileri bulan F1 ve F2 fazlar� s�uresince anauyumlu bir algorit-

mad�r. Her i�slemci F1 ve F2 fazlar� s�uresince yerel verileri �uzerinde yerel destek say�lar�n�

bulur ve genel birli ve ikili s�k dizileri bulmak i�cin bu destek say�lar�n� di�ger i�slemcilere

yay�mlar. Birli ve ikili sik dizileri bulduktan sonra t�um s�k diziler kafes i�cine yerle�stirilir ve

orjinal problemi k�uc�uk par�calara b�olmek amac�yle kafes e�sde�ger s�n�ara ayr��st�r�l�r. E�sde�ger

s�n�ar a�cg�ozl�u kurami yontemiyle en az g�orev y�uk�u olan i�slemciye d�ong�usel bir s�rayla

e�sle�stirilir. Bu a�samadan sonra, her i�slemci zaman uyumsuz olarak kendisine e�sle�stirilen

e�sde�ger s�n�ar� �uzerindeki t�um artan uzunluktaki s�k dizileri, Fk, bulur.

Sonu�clar�n� a�c�klad�g�m�z ba�sar�m deneylerini 32-d�u�g�uml�u Beowulf k�umesinde y�ur�utt�uk.

Deneyler g�osterdi ki, dSpade iyi bir h�z oran� ve veritaban� boyutuna ba�gl� olarak lineer

�ol�cekle artan sonu�clar verir.

Anahtar S�ozc�ukler: Kafes, e�sde�ger s�n�f, yatay veritaban� par�calama metodu .
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Chapter 1

Introduction

The problem of mining sequential patterns in a large database of customer

transactions was introduced in [1]. A transaction data typically consists of a

customer identi�er, a transaction identi�er, a transaction time associated with

each transaction and the bought items per transaction. For example, consider

the sales database of a bookstore, where the objects represent customers and

the attributes represent authors or books. Let's say that the database records

are the books bought by each customer over a period of time. The discovered

patterns are the sequences of books most frequently bought by the customers.

An example could be that \60 % of the people who buy Orhan Pamuk's Benim

Ad�m K�rm�z� also buy Ahmet Altan's K�l��c Yaras� Gibi within 2 months."

Stores can use these patterns for promotions, shelf placement, etc. Consider

another example of a web access database at a popular site, where an object

is a web user and an attribute is a web page. The discovered patterns are

the sequences of most frequently accessed pages at that site. This kind of

information can be used to restructure the web site, or to dynamically insert

relevant links in web pages based on user access patterns.

The task of discovering all frequent sequences in large databases is a time

consoming task. The search space is extremely large. For example, with m

attributes there are O(mk) potentially frequent sequences of length k. However,

large databases forces us to partition the origional database into chunks of data

to process in main-memory. Most current algorithms require as many database

scans as the longest frequent sequence.

Several algorithms have been proposed to �nd sequential patterns. The �rst

algorithm for �nding all sequential patterns, named AprioriAll, was presented

in [1]. First, AprioriAll discovers all the sets of items with a user-speci�ed min-

imum support (large itemset), where the support is the percentage of customer

transactions that contain the itemsets. Secondly, the database is transformed

by replacing the itemsets in each transaction with the set of all large itemsets.

6



CHAPTER 1. INTRODUCTION 7

Lastly, it �nds the sequential patterns. It is costly to transform the database.

In [2], GSP (Generalized Sequential Pattern) algorithm that discovers gener-

alized sequential patterns was proposed. GSP �nds all the frequent sequences

without transforming the database. GSP algorithm outperformed AprioriAll

by up to 20 times. Besides, some generalized de�nitions of sequential patterns

are introduced in [2]. First, time constraints are introduced. Users often want

to specify maximum and/or minimum time period between adjacent elements.

Second, exible de�nition of a customer transaction is introduced. It allows a

user-speci�ed window-size within which the items can be present. Third, given

a user-de�ned taxonomy (is-a hierarchy) over the data items, the generalized

sequential pattern, which includes items span di�erent levels of the taxonomy,

is introduced.

The problem of �nding frequent episodes in a sequence of events was pre-

sented in [6]. An episode consists of a set of events and an associated partial

order over the events. The de�nition of a sequence used in dSpade can be ex-

pressed as an episode, however their work is targeted to discover the frequent

episodes in a single long event sequence, while we are interested in �nding

frequent sequences across many di�erent customer sequences. They further

extended their framework in [8] to discover generalized episodes, which allows

one to express arbitrary unary conditions on individual episode events, or bi-

nary conditions on event pairs.

Zaki presented a new algorithm in his paper[12] which is called Spade (Se-

quential PAttern Discovery using Equivalence classes), for discovering the set

of all frequent sequences. The key features of his approach are as follows:

1. He used a vertical ctid list database format. He showed that all frequent

sequences can be enumerated via simple ctid list intersections.

2. He used a lattice-theoretic approach to decompose the original search

space (lattice) into smaller pieces (sub-lattices) which can be processed

independently in main-memory. His approach usually requires three

database scans, or only a single scan with some pre-processed informa-

tion, thus minimizing the I/O costs.

3. He decoupled the problem decomposition from the pattern search. He

proposed two di�erent search strategies for enumerating the frequent se-

quences within each sub-lattice: breadth-�rst and depth-�rst search.

Spade not only minimizes I/O costs by reducing database scans, but also

minimizes computational costs by using eÆcient search schemes. The vertical

ctid list based approach is also insensitive to data-skew (see [5] for a good

introduction on data-skew). Spade outperforms previous approaches by a factor

of two. Furthermore, Spade scales linearly in the database size, and a number

of other database parameters.
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All the previous algorithms for �nding sequential patterns mentioned above

are serial algorithms. The problem of discvering sequential patterns has to

handle a large amount of customer transaction database and requires multiple

passes over the database which takes long computation time. Thus, its compu-

tational requirements are too large for a single processor to have a reasonable

response time. In the literature, up to this time there exists two proposed work

for parallel sequence mining. The �rst work on parallel sequence mining has

looked at distributed-memory machines [10]. In this paper, they consider the

parallel algorithms for mining sequential patterns on a shared-nothing environ-

ment. Three parallel algorithms (Non Partitioned Sequential Pattern Mining,

Simply Partitioned Sequential Pattern Mining and Hash Partitioned Sequen-

tial Pattern Mining) are proposed. In NPSPM, the candidate sequences are

just copied among all the nodes. The remaining two algorithms partition the

candidate sequences over the nodes, which can eÆciently exploit the total sys-

tem's memory as the number of nodes is increased. If the candidate sequences

are partitioned simply, customer transaction data has to be broadcasted to all

nodes. HPSPM partitions the candidate itemsets among the nodes using hash

function, which eliminates the customer transaction data broadcasting and re-

duces the comparison workload. Among three algorithms, HPSPM attains

best performance.

The second work is pSpade presented by Zaki in [13], a parallel algorithm

for fast discovery of frequent sequences in large databases targeting shared-

memory systems. pSpade decomposes the original search space into smaller

suÆx-based classes. Each class can be solved in main-memory using eÆcient

search techniques, and simple join operations. Further each class can be solved

independently on each processor requiring no synchronization. However, dy-

namic inter-class and intra-class load balancing must be exploited to ensure

that each processor gets an equal amount of work.

In this thesis work, we present dSpade, a parallel algorithm, based on Spade,

for discovering the set of all frequent sequences, targeting distributed-memory

systems. In dSpade, horizontal database partitioning method is used, where

each processor stores equal number of customer transactions.

dSpade is a synchronous algorithm for discovering frequent 1-sequences (F1)

and frequent 2-sequences ( F2). Each processor performs the same computation

on its local data to get local support counts and broadcasts the results to other

processors to �nd global frequent sequences during F1 and F2 computation.

After discovering all F1 and F2, all frequent sequences are inserted into lattice to

decompose the origional problem into equivalence classes. Equivalence classes

are mapped in a greedy heuristic to the least loaded processors in a round-robin

manner. Finally, each processor asynchronously begins to compute Fk on its

mapped equivalence classes to �nd all frequent sequences.
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We present results of performance experiments conducted on a 32-node

Beowulf Cluster. Experiments show that dSpade delivers good speedup and

scales linearly in the database size.

1.1 Problem Statement

Here we will discuss the problem of mining sequential patterns, stated as in

[1]. Let I =f i1, i2, . . . , im gbe a set of m distinct attributes, also called

items. An itemset is a nonempty unordered collection of items (without loss

of generality, we assume that items of an itemset are sorted in lexicographic

order). A sequence is an ordered list of itemsets. An itemset i is denoted as(i1,

i2, . . . , ik), where ij is an item. An itemset with k items is called a k-itemset.

A sequence � is denoted as (�1 7!�2 7!. . . 7!�q ), where the sequence element

�j is an itemset. A sequence with k items

k =
qX

j=1

�j

is called a k-sequence. For example, (B 7! AC) is a 3-sequence. An item

can occur only once in an itemset, but it can occur multiple times in di�erent

itemsets of a sequence.

A sequence �=(�1 7!�2 7!. . . 7!�n ) is a subsequence of another sequence

�=(�1 7!�2 7!. . . 7!�m ) , denoted as ���, if there exist integers (i1<i2<. . .<in)

such that aj<bij for all aj . For example the sequence (B 7! AC) is a sub-

sequence of (AB 7!E 7! ACD), since the sequence elements B � AB, and AC

� ACD. On the other hand the sequence (AB 7! E) is not a subsequence of

(ABE), and vice versa. We say that � is a proper subsequence of �, denoted

��� if ��� and � 6��. A sequence is maximal if it is not a subsequence of any

other sequence. A subsequence of length k is called a k-subsequence.

A transaction T has a unique identi�er and contains a set of items, i. e., T

� I. A customer C has a unique identi�er and has associated with it a list of

transactions fT1, T2, . . . , Tng. We assume that no customer has more than one

transaction with the same time-stamp, so that we can use the transaction-time

as the transaction identi�er. We also assume that a customer's transaction

list is sorted by the transaction-time, forming a sequence T1 7!T2 7!. . . 7!Tn
called the customer-sequence. The database D consists of a number of such

customer-sequences.

A customer-sequence, C is said to contain a sequence �, if ��C, i. e., if

� is a subsequence of the customer-sequence C. The support or frequency of

a sequence, denoted �(�), is the the total number of customers that contain

this sequence. Given a user-speci�ed threshold called the minimum support
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DATABASE

Customer-ID Transaction-Time Items

1 10 CD

1 15 ABC

1 20 ABF

1 25 ACDF

2 15 ABF

2 20 E

3 10 ABF

4 10 DGH

4 20 BF

4 25 AGH

Figure 1.1: Original Customer-Sequence Database

(denoted as min sup), we say that a sequence is frequent if occurs more than

min sup times. The set of frequent k-sequences is denoted as Fk.

Given a database D of customer sequences and min sup, the problem of

mining sequential patterns is to �nd all frequent sequences in the database.

For example, consider the customer database shown in Figure 1.1 (used as a

running example throughout this paper). The database has 8 items (A to H ),

4 customers, and 10 transactions in all. The Figure 1.2 shows all the frequent

sequences with a minimum support of 50% or 2 customers. In this example we

have a unique maximal frequent sequence D7! BF 7! A.

The organization of this thesis is as follows: Chapter 2 presents a brief

description of subsequence lattice theory and the Spade algorithm. The ter-

minology described in this chapter will be used throughout this document. In

Chapter 3, we will give detailed information about dSpade algorithm and dis-

cuss important issues. In Chapter 4, experimental results will be presented

along with the comments. Finally, directions for future work and a conclusion

will be presented.
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FREQUENT SEQUENCES

Fk Sequences Frequency

1 A 4

1 B 4

1 D 2

1 F 4

2 AB 3

2 AF 3

2 B7!A 2

2 BF 4

2 D7!A 2

2 D7!B 2

2 D7!F 2

2 F7!A 2

3 ABF 3

3 BF7!A 2

3 D7!BF 2

3 D7!B7!A 2

3 D7!F7!A 2

4 D7!BF7!A 2

Figure 1.2: Frequent sequences with a minimum support of 2



Chapter 2

The Spade Algorithm

In this chapter, the most important issues of the Spade algorithm are discussed

to make the reader more familiar with the thesis subject.

2.1 Vertical Database Layout

Most of the current sequence mining algortihms assume a horizontal database

layout, where each customer-transaction identi�er, (cid-tid), is stored, along

with the items contained in the transaction. In Spade , vertical database layout

is used, where each item X is associated with its ctid list, denoted L(X), which

is a list of all customer-transaction identi�ers, (cid-tid), containing the item.

2.2 Subsequence Lattice Approach

We assume that the reader is familiar with basic concepts of lattice theory (see

[3] for a good introduction).

The bottom element of the sequence lattice S is fg, but the top element is

unde�ned. However, in practical cases it is bounded. The set of items of lattice

S are de�ned to be the immediate upper neighbors of the bottom element. For

example, consider Figure 2.2 which shows the sequence lattice induced by the

maximal frequent sequence D 7! BF 7! A for our example database. The set

of the frequent items is fA, B, D, Fg.

It is obvious that the set of all frequent sequences forms a meet-semilattice.

So, we observe that all subsequences of a frequent sequence are frequent.

12
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HORIZONTAL

CID-TID ITEMS

1-10 AC

1-20 BD

1-30 ACD

2-20 ABCD

2-25 AB

3-15 BC

3-25 AD

4-10 AB

4-30 BCD

VERTICAL

A

CID TID

1 10

1 30

2 20

2 25

3 25

4 10

B

CID TID

1 20

2 20

2 25

3 15

4 10

4 30

C

CID TID

1 10

1 30

2 20

3 15

4 30

D

CID TID

1 20

1 30

2 20

3 25

4 30

Figure 2.1: Database Layout
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A

CID TID

1 15

1 20

1 25

2 15

3 10

B

CID TID

1 15

1 20

2 15

3 10

4 20

D

CID TID

1 10

1 25

2 25

4 10

4 25

F

CID TID

1 20

1 25

2 15

3 10

4 20

Figure 2.3: Ctid lists for the items

2.3 Support Counting

Each item X in the sequence lattice have its vertical ctid list, denoted L(X),

which is a list of all customer (cid) and transaction identi�er (tid) pairs con-

taining the item. Figure 2.3 shows the ctid lists for the items in our example

database. For example, consider the item D. In Figure 1.1, we observe that D

occurs in the following customer-transaction identi�er pairs f(1, 10), (1, 25),

(2, 25), (4, 10), (4, 25)g.

We scan the vertical ctid list of item D and count di�erent cids encountered.

If this count is equal or larger than the minimum support value, then item D

is inserted into lattice S.
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D7!A

CID TID

1 15

1 20

1 25

4 25

D7!B

CID TID

1 15

1 20

4 20

D7!F

CID TID

1 20

1 25

4 20

D7!B7!A

CID TID

1 20

1 25

4 25

D7!BF

CID TID

1 20

4 20

D7!BF7!A

CID TID

1 25

4 25

Figure 2.4: Computing Support Count via Ctid list Intersections

2.4 Ctid list Intersection

We now describe how the actual ctid list intersection is performed. Consider

Figure 2.4, which shows the example ctid lists for the sequence atoms D 7!

A, D 7! B and D 7! F. To compute the new ctid list for the resulting itemset

atom D 7! BF, we simply need to check for equality of (cid, tid) pairs. In

our example, the only matching pairs are f(1, 20), (4, 20)g. This forms the

ctid list for D 7! BF. To compute the ctid list for the new sequence atom D

7! B 7! A, we need to check for a follows relationship, i. e., for a given pair

(cid, tid1) in L(D 7! A), we check whether there exists a pair (cid, tid2) in L(D

7! B ) with the same cid, but with tid1 > tid2. If this is true, it means that

the item A follows the item B for customer cid. In other words, the customer

cid contains the pattern D 7! B 7! A, and the pair ( cid, tid1) is added to its

ctid list. Since we only intersect sequences within a class, which have the same

pre�x, we only need to keep track of the last tid for determining the equality

and follows relationships.

2.5 Lattice Decomposition: Pre�x-Based Classes

If we had enough main-memory, we could enumerate all the frequent sequences

by traversing the lattice, and performing intersections to obtain sequence sup-

ports. In practice, we only have a limited amount of main-memory, and all the

intermediate vertical ctid lists will not �t in memory. This problem is solved by

decomposing the original lattice into smaller pieces which are called as equiv-

alence classes such that each equivalence class can be solved independently in

main-memory.

An equivalence relation on a set is a reexive, symmetric and transitive bi-
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Figure 2.5: Equivalence Classes Induced by �1, on S and �2, on [D]�1

nary relation. An equivalence relation partitions the set (lattice) into disjoint

subsets, called equivalence classes (sublattices). De�ne an equivalence relation

�k on the lattice S as follows: two sequences are in the same class if they share

a common k-length pre�x. We therefore call �k a pre�x-based equivalence rela-

tion. Figure 2.5 shows the lattice induced by the equivalence relation �k where

we collapse all sequences with a common k-length pre�x into an equivalence

class. Figure 2.5 shows the equivalence classes induced by �1 on S, namely,

f[A]�1 , [B]�1 , [D]�1, [F ]�1 g

We can compute all the support counts of the sequences in each class (sub-

lattice) by intersecting the ctid list of items or any two subsequences at the

previous level.

In practice it is found that the one level decomposition induced by �1 is

suÆcient. However, in some cases, a class may still be too large to be solved

in main-memory. In this case, equivalence class decomposition is applied re-

cursively. Let's assume that [D] is too large to �t in main-memory. Since [D]

is itself a lattice, it can be decomposed using �2. Figure 2.5 shows the classes

induced by applying �2 on [D] (after applying �1 on S). Each of the resulting

six classes, [A], [B], [D 7! A], [D 7! B], [D 7! F ], and [F], can be solved

independently.
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Spade(Min sup, Data)

F1=ffrequent itemsg;

F2=ffrequent 2-sequencesg;

" = fEquivalence classes [X]�1g;

for all [X]�1 2 " do

Enumerate Frequent Sequences([X]);

Enumerate Frequent Sequences(T)

for all atoms Ai 2 S do

Ti = ;;

for all atoms Aj 2 S, with j > i do

R=Ai

S
Aj;

if (Prune(R)==FALSE) then

L(R)=L(Ai)
T
L(Aj);

if �(R) �Min sup then

Ti = Ti
S
fRg;

FjRj = FjRj
S
fRg;

if (DFS) then Enumerate Frequent Sequences(Ti)

if (BFS) then

for all Ti 6= ; do Enumerate Frequent Sequences(Ti)

Figure 2.6: Pseudocode of the Spade algorithm

2.6 The Serial Spade Algorithm

Figure 2.6 shows the high level structure of the algorithm. The main steps

include the computation of the frequent 1-sequences and 2-sequences, the de-

composition into pre�x-based equivalence classes, and the enumeration of all

other frequent sequences via Breadth-First Search or Depth-First Search within

each class.



Chapter 3

The Parallel dSpade Algorithm

3.1 Introduction

In this chapter, the design of the parallel dSpade algorithm and its implemen-

tation on distributed-memory systems is presented. First, a brief description of

the distributed-memory multicomputers and the parallel programming model

will be given since the parallel design (of the Spade algorithm) depends sig-

ni�cantly on the underlying machine model. Then, major decisions about the

parallelization of the Spade algorithm, such as data partitioning, will be dis-

cussed. Finally, detailed description and implementation of major phases of

the parallel dSpade will be given. The reader is referred to [11] for more infor-

mation on parallel computers and programming models. We will only describe

basic characteristics of message passing systems and programming as needed

in our design.

Distributed memory machines are cost-e�ective and scalable form of par-

alel computers. Generally, a distributed memory multicomputer is a collection

of processing nodes interconnected via a fast communication network. Each

processing node has a processor, local memory and cache, and communication

subsystem which handles communication through the network. The most sig-

ni�cant characteristic of these systems is that a processor cannot access directly

local memory of other processing nodes. Therefore, these systems are called

shared-nothing or message-passing systems as well. The data or information is

exchanged by messages. In order to get some data or result of a computation

done at another processor, a processor requests the data by sending explicitly

a message to the remote processor. When the remote processor receives the

request (which must post a receive command explicitly), and if the data is

ready, a reply message will be send back to the requester with data. This is

the simple request-reply mechanism. However, depending on the design of the

parallel algorithm and type of interaction, there can be other forms of commu-

18
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nication. For example, if the producer of the data knows that the data will be

needed by another processor, the producer can send the data without waiting

for the request. This improves the performance since it eliminates one mes-

sage send-receive phase. Or, sometimes, a particular data is needed by every

processor. Then, another form of communication, a collective communication,

broadcast is done. Instead of sending the data to each processor with separate

messages, a broadcast operation is provided by the programming environment,

possibly, implemented in a more eÆcient way depending on the architecture.

The parallel algorithm designer, therefore, must use such services as much as

possible instead of using simple send-receive all the time.

The parallel programming model that we have used is explicit message

passing and SPMD (single program multiple data). In this model, the same

program is loaded and executed on processors. However, each processor has its

own data (multiple data), and processor can take di�ering actions by checking

their processor identi�cation. For example, in the program, only one particular

processor can be given right to read user input, say processor with id 0, by

coding "if my id is zero then read user input else receive input message".

These programs is written usually in traditional sequential languages such as

C++ or C, and linked with a message-passing library which supports loading

program to each processor, setting up communication between processors, and

performing message passing. MPI [4, 9] is one of the popular message-passing

libraries that we used in our implementation. MPI was developed by a group

of computer companies and universities and it is avalible on a wide range of

machines. MPI contains a rich set of communication calls including many

collective operations such as broadcast, reduce, gather, and more that we will

be sing in our code.

Development of parallel algorithms for distributed memory machines, in

general, follow certain steps. First, one must partition the data among proces-

sors and map the computations to processors. The data partitioning result in

mapping the computations to processors in our case because we follow "owner

computes" rule. The computations are associated with data and the processor

that owns the data perform the computation also. In this way, the computa-

tions are distributed to processors but one must be careful about the distribu-

tion. For an eÆcient parallel execution, each processor must have equal amount

of computational load, and also communication across processors must be low.

In general, load balancing is a diÆcult issue. Depending on the problem, the

load can be balanced at the beginning of the computation if the computational

load can be estimated in advance and does not change during the execution.

This is called static load balancing. If the computational load changes dy-

namically during the execution, then the data distribution and mapping of

computations must be adjusted dynamically. Dynamic load balancing thus

brings additional costs for task/data movement and also mechanisms to detect

whether there is an imbalance. In our implementation, we try to guess the
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ENTIRE DATABASE

ITEMS A B C D

cid-tid 1 - 10 1 - 10 1 - 10 1 - 10

cid-tid 2 - 20 2 - 20 2 - 20 2 - 20

cid-tid 3 - 30 3 - 30 3 - 30 3 - 30

cid-tid 4 - 40 4 - 40 4 - 40 4 - 40

Figure 3.1: Entire Database

computational load in advance and partition data to do static balancing at the

beginning.

In he next section, we will discuss partitioning of the input database. Then,

we will explain the parallelization of each major phase of the Spade algorithm,

F1, F2, and Fk phases. Each phase produces their own partial results. And

we will discuss how the partial results are combined to continue with the next

phase.

3.2 Database Partitioning Methods

There are two methods for partitioning the entire database among P proces-

sors. In vertical database partitioning method, each processor has a subset of

items for all customers such that the number of items is roughly equal among

processors. In dSpade, horizontal database partitioning method is used, where

each processor stores equal number of customer transactions.

\Why we did not use vertical database partitioning method ?" is a naturally

upcoming question. Since each processor holds the complete ctid lists of items,

in the computation of F2 each processor needs all of the ctid lists of all items

to compute any candidate 2-sequence is frequent or not. Thus, it requires

multiple pass on database and extra communication overhead to compute all

the set of F2.

Figure 3.1 shows the entire database before partitioned among processors.

In this example, we assume that entire database holds 4 customer transactions

and each customer buys 4 di�erent items in one transaction. For each item,

its own vertical ctid list is formed and stored in database. Figure 3.2 shows

database partitioning methods in more detail. In vertical database partitioning

method, each of 4 processor holds an entire vertical ctid list of the corresponding

item. In horizontal database partitioning method, each of 4 processor holds its

corresponding portion of vertical ctid lists for the all items. In a real dataset

example, we design a dataset such that it holds 10,000 items with 200,000

customer transactions. Also, we assume that number of processors is 8. In
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VERTICAL PARTITION

PROCESSORS 1 2 3 4

ITEMS A B C D

cid-tid 1 - 10 1 - 10 1 - 10 1 - 10

cid-tid 2 - 20 2 - 20 2 - 20 2 - 20

cid-tid 3 - 30 3 - 30 3 - 30 3 - 30

cid-tid 4 - 40 4 - 40 4 - 40 4 - 40

HORIZONTAL PARTITION

ITEMS A B C D

PROCESSORS cid-tid cid-tid cid-tid cid-tid

1 1 - 10 1 - 10 1 - 10 1 - 10

2 2 - 20 2 - 20 2 - 20 2 - 20

3 3 - 30 3 - 30 3 - 30 3 - 30

4 4 - 40 4 - 40 4 - 40 4 - 40

Figure 3.2: Data Partitioning Methods

vertical database partitioning method, we will divide the whole dataset into 8

chunks of data such that every chunk of data stores whole vertical ctid list

of 1,250 items. In horizontal database partitioning method, we will divide the

whole dataset into 8 chunks of data such that every chunk of data stores 25,000

customer transaction portion of each vertical ctid list for all items.

3.3 The Parallel dSpade Algorithm

Figure 3.3 shows the high level structure of the dSpade algorithm. The main

steps include the computation of the frequent 1-sequences and 2-sequences,

decomposition of lattice into pre�x-based equivalence classes, partition of total

task among processors, the broadcasting of vertical ctid lists of all elements of

each equivalence class and the enumeration of all other frequent sequences via

BFS or DFS search within each class asynchronously by each processor. We

will now describe each step in some more detail.

3.3.1 Computing Frequent 1-Sequences F1

Given the horizontal partitioned database to each processor, all frequent 1-

sequences can be computed in a single database scan. For each database item,

every processor reads its ctid list from the local disk into its memory, then

scans the ctid list, increments the support for each new cid encountered and

inserts the support count into a 1-dimensional array indexed by item id number

for the all items. After each processor completes support count for the all
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dSpade(min sup, D)

GenF1(min sup, D);

GenF2(min sup, D);

C=fparent equivalence classes Ci=[Xi]g;

Sort on Weight(C);

Partition Work(C);

for all items i 2 D do

Form Fk Ctid List(i);

for all items i 2 Ci do

Enumerate Frequent Sequences(i);

end

Figure 3.3: Pseudocode of the parallel dSpade algorithm

items, each processor broadcasts the count array to other processors in a single

communication. After reducing the counts by summation into a 1-dimensional

array indexed by only frequent item id numbers, each processor computes

frequent 1-sequences. At this level, each processor does the same computation

on its local data and stores the global F1 frequent items for use in computation

of F2. Figure 3.4 shows the high level structure of the GenF1. GenF1 produces

a 1-dimensional array shown in Figure 3.5 to represent frequent 1-sequences.

3.3.2 Computing Frequent 2-Sequences F2 :

Vertical data layout using ctid lists increases cost of computing F2, which is

basically a self join on F1. For each item X 2 F1, we can read its vertical

ctid list from disk into memory. Then for all items Y 2 F1, such that Y � X,

we can read their ctid lists and intersect them with X. A single intersection is

suÆcient to determine whether any of the sequences (XY ), (X 7! Y ), or (Y

7! X) is frequent. If we use this approach, then item i is scanned i times from

the disk. If j F1 j= n, then the total number of ctid list scans is given by the

sum:

nX

i=1

i = n(n + 1)=2

The average number of times an item's ctid list is scanned asymptotically

O(n). Thus, using the vertical data layout to compute F2 requires n database

scans, whereas in the horizontal format this can be done in a single pass. Then

we recover the horizontal format on-the-y from the vertical data layout, and
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GenF1(min sup, D)

I=Maximum item number in database D;

F1=int [j I j];

Frequent F1=int [ ];

for all database items i 2 I do

L=Read ctid list(i);

for all distinct cid 2 L do i sup=i sup+1 ;

F1[i]=i sup;

Reduce local support count array F1 by summation;

for all items i 2 F1 do

if (F1[i] � min sup) then Frequent F1 = Frequent F1

S
fig;

return Frequent F1;

end

Figure 3.4: Pseudocode of the GenF1

FREQUENT 1-SEQUENCES

index 0 1 2 3 4 5 6 7 8 9 . . . n-2 n-1 n

items A B D F G H K L M S . . . W Y Z

Figure 3.5: Array for frequent 1-sequences

use this new format to compute F2. How to achieve this eÆciently is discussed

below. This is done in the same way with Spade.

Optimized F2 Computation:

There are four main steps in the optimized F2 calculation:

� Invert the vertical data layout to obtain the horizontal format,

� Create S1 and S2 matrices for candidate generation,

� Use the new format to compute F2.

� Insert frequent 2-sequences into lattice

After each processor completes the �rst three steps mentioned above for

its local data, each processor broadcasts the counts to other processors at a

manageable communication cost. Then each processor computes frequent 2-

sequences by a simple comparison of all elements of S1 and S2 matrices with

minimum support value. The structure of S1 and S2 matrices is discussed in

page 25.
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GenF2(min sup, D)

ID = Invert(D);

Generate candidate matrices S1 and S2;

for all rows of S1 and S2 do

CompF2(ID);

Broadcast S1 and S2 and reduce by summation;

for all X; Y 2 S1 and S2 do

if(S1[X][Y ] � min sup)thenF2 = F2

S
f(X 7! Y )g;

if(S1[Y ][X] � min sup)thenF2 = F2

S
f(Y 7! X)g;

if((Y > X)and(S2[X][Y ] � min sup))thenF2 = F2

S
f(XY )g;

insert all elements of F2 into equivalence classes graph;

end

Figure 3.6: Pseudocode of the GenF2

Invert(D)

for all frequent items i 2 F1 do

L=Process ctid list(i);

for all (cid, tid) pairs in L do

n=cid-mincid ;

ID[n] = ID[n]
S
(i, tid);

end

Figure 3.7: Pseudocede of Invert Database

Finally, each processor inserts frequent 2-sequences into the lattice. Fig-

ure 3.6 shows the high level structure of the GenF2. Algorithms used at each

step are discussed in full detail below.

Database Inversion:

The inversion method is shown in Figure 3.7. The vertical input database

is denoted as D. We assume that the inverted database, denoted as I, �ts in

memory. In the �gure, ID[n], denotes the set of transactions belonging to the

n-th customer. Each element of this set is of the form (item, tid), i.e., an item

and its associated transaction identi�er (tid). The inversion process is quite

straight-forward. For each item, i, we scan its ctid list from disk. Each element

of the ctid list is a (cid, tid) pair. Using cid to compute the o�set n, we insert

into ID[n] the pair (i, tid). Figure 3.8 shows the inverted database obtained

from vertical database.
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ON-THE-FLY TRANSFORMATION

cid (item, tid) pairs

1 (A 15)(A 20)(A 25)(B 15)(B 20)(C 10)(C 15)(C 25)(D 10)(D 25)(F 20)(F 25)

2 (A 15)(B 15)(E 20)(F 15)

3 (A 10)(B 10)(F 10)

4 (A 25)(B 20)( D 10)(F 20)(G 10)(G 25)(H 10)(H 25)

Figure 3.8: Vertical-to-Horizontal Database Recovery

Candidate array generation for F2 :

S1 MATRIX FOR (X 7! Y )

index A B C D E F . . . Z

A 0 0 0 0 0 0 . . . 0

B 0 0 0 0 0 0 . . . 0

C 0 0 0 0 0 0 . . . 0

D 0 0 0 0 0 0 . . . 0

E 0 0 0 0 0 0 . . . 0

F 0 0 0 0 0 0 . . . 0

. . . 0 0 0 0 0 0 . . . 0

Z 0 0 0 0 0 0 . . . 0

S2 MATRIX FOR (XY)

index A B C D E F . . . Z

A - 0 0 0 0 0 . . . 0

B - - 0 0 0 0 . . . 0

C - - - 0 0 0 . . . 0

D - - - - 0 0 . . . 0

E - - - - - 0 . . . 0

F - - - - - - . . . 0

. . . - - - - - - - 0

Z - - - - - - - -

Figure 3.9: S1 and S2 matrix for candidate 2-sequences

Let j F1 j= n, and X; Y 2 F1. Each processor forms two matrices of (n*n)

dimensions indexed by the frequent items of F1. We setup a matrix denoted S1
for counting sequences of the form (X 7! Y ), and another matrix denoted S2
of dimensions (n*(n-1)/2) for counting sequences of the form (XY). Figure 3.9

shows an example of these two 2-dimensional arrays. Each cell of these arrays

containing \0" is used to count 2-sequences. In S2 array, each cell containing

\-" is not created and not used, since (XY) and (YX) represents the same

itemset.
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CompF2(min sup, HD)

for all C 2 HD do

for all distict items X 2 C do

X.L=Get Pairs with Item(X);

for all distict items Y 2 C, with Y � X do

Y.L=Get Pairs with Item(Y);

Contains(X, Y, S1[X][Y], S1[Y][X], S2[X][Y]);

end

Figure 3.10: Pseudocede of Compute F2

Compute F2:

We use the recovered horizontal database to count the support of all 2-sequences.

We assume that the candidate count matrices �t in memory. For an item X,

let X.L denote the list of all (X, tid) pairs for the current customer. For each

item pair X, and Y (with Y � X), we �rst form their lists, X.L and Y.L, and

then call the Contains() routine to increment the count of the sequences (XY

), (X7! Y ), or (Y 7! X) if any of them are present.

Insertion of Frequent 2-sequences into Lattice:
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Figure 3.11: Lattice Formed by Insertion of Frequent 2-sequences.

Each processor inserts frequent 2-sequences into the lattice and form equiv-

alence classes. Every frequent 2-sequence is inserted into the equivalence class

according to its pre�x subclass. For example, B7!A is inserted into equiv-

alence class induced by B as shown in Figure 3.11. Arrows in Figure 3.11

make it easy to understand the structure of lattice implemented. Every new

k-length frequent sequence is inserted into equivalence class of k-1 length pre�x

sequence.
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3.3.3 Computing Frequent k-Sequences, k� 3, Fk

We decompose lattice [C] formed after insertion of all elements of F2 into

independent equivalence classes. Each equivalence class is weighted according

to number of its elements. By using static load balancing approach these

equivalence classes are shared among processors such that each processor is

assigned nearly equal weighted amount of task.

From the GenF2() routine we know the elements of lattice [C], but not their

vertical ctid lists. The �rst step is to construct the ctid lists for the elements

(Cx)2 [C], or (C 7! x) 2 [C]. This is discussed in full detail below.

Finally, each processor asynchronously begins to compute Fk on its assigned

equivalence classes bu using the Enumerate Frequent Sequences(C) algorithm

shown in Figure 3.19. To compute new frequent k-sequences we use three rules

of candidate generation with simple ctid list intersections, check for contain-

ment and insert frequent items into equivalence classes to recursively generate

new classes of increasing lengths of sequence until all frequent sequences with

pre�x C is found.

We will now discuss important steps related to computation of Fk in detail.

Equivalence Classes :

Given the set of frequent k-sequences, Fk, it is said that any two sequences

belong to the same equivalence class if they share a common k-1 length sequence

pre�x. More formally, let Pk�1(X) denote the k-1 length sequence pre�x of the

k-sequence X.Since X is frequent, Pk�1(X) 2 Fk�1. An equivalence class is

de�ned as follows:

[C 2 Fk�1] = fX 2 Fk j Pk�1(X) = Cg

Each equivalence class has two kinds of elements, [C]:S1 = f(C 7! x)g, or

[C]:S2 = f(Cx)g, depending on the sequence pattern.

The motivation for this de�nition is that it leads to a very natural partition

of the k-sequences into equivalence classes which can be processed indepen-

dently. A class [C] has all information for generating all sequences with the

pre�x C.
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Figure 3.12: Computation tree of classes

Problem Decomposition using Equivalence Classes :

The dSpade algorithm begins by calling GenF1, and GenF2. At the end of

this process, we have available the sets of frequent sequences, F1 and F2. The

elements of F1 actually belong to a single equivalence class, [;], with a null pre-

�x. However, this class corresponds to the entire sequential pattern discovery

problem. The equivalence classes of F2, on the other hand, provide a natural

partition of the problem into the subclasses, [C], where C 2 F1. Each subclass

can be processed independently, since all frequent k-length sequences with the

pre�x C is produced with intersection of k-1 length sequences of the subclass.

These equivalence classes can be solved independently.

Static Load Balancing

Let C = fC1; C2; C3g represent the set of the parent equivalence classes as

shown in Figure 3.12. We need to assign the classes into the processors to

minimize load imbalance during computation of Fk. As in Zaki's approach

[13], an entire class is scheduled on one processor. Each equivalence class is

weighted according to the number of elements in the class. Since the dSpade

algorithm will use all pairs of items for the next iteration, weight !i is assigned

!i = (
jCij
2 )

to the class Ci.



CHAPTER 3. THE PARALLEL DSPADE ALGORITHM 29

Form Fk Ctid List(i)

Read Ctid List(i);

Gather Ctid List(i);

for all elements j 2 F2 and j 2 Ci do

Read Ctid List(j);

Gather Ctid List(j);

Intersect(i, j);

end

Figure 3.13: Pseudocode of Form Fk Ctid List(i)

After assigning the weights, classes are scheduled using a greedy heuristic.

The classes are sorted on the weights (in decreasing order), and assigned in a

round-robin manner to the least loaded processor.

Once the classes have been scheduled, the computation proceeds in a purely

asynchronous manner since there is never any need to synchronize or share

information among the processors. If we apply Weight Function ! to the class

tree shown in Figure 3.12, we get !1 = !2 = !3 = 3. Using the greedy

scheduling scheme on two processors, P0 gets the classes C1 and C3, and P1

gets the class C2.

Sort on Weight(C) and Partition Work(C) routines in Figure 3.3 represent

used static load balancing approach in dSpade algorithm.

Form Fk Ctid List(i):

We use static load balancing to decompose the entire lattice among proces-

sors. After scheduling classes to the processors, each processor needs the verti-

cal ctid lists of elements which are belong to the assigned equivalence classes.

From the GenF2() routine we know the elements of [C], but not their vertical

ctid lists. The �rst step is to construct the vertical ctid lists for the elements

(Cx)2 [C], or (C 7! x) 2 [C]. This is done by Form Fk Ctid List(i) routine in

Figure 3.13.

Firstly, each processor reads partial ctid list of item C from local disk and

broadcasts to other processors to gather the complete ctid list of item C. Now,

all processors have vertical ctid list of item i. Then, all processors do the same

things for item x. Finally, all processors perform the intersection by scanning

the two ctid lists via looking for matching customer identi�ers. We then call

the Contains() subroutine to determine frequent sequences.
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C

CID TID

1 30

1 40

2 60

3 40

4 10

4 30

4 50

4 80

5 10

5 50

5 70

8 50

8 60

8 70

x

CID TID

1 70

1 80

2 60

3 40

4 30

4 40

4 50

4 70

5 10

6 50

6 65

7 20

7 35

8 50

C7!x

CID TID

1 70

1 80

4 30

4 40

4 50

4 80

Cx

CID TID

2 60

3 40

4 20

4 15

4 50

8 50

Figure 3.14: Example of ctid list Intersection for Form Fk Ctid List(C) step

The whole Intersection process is shown by means of an example in Fig-

ure 3.14. This approach has important drawbacks such that all processors

gathers the ctid lists for all items of F1 in lattice and makes intersections to

form F2 vertical ctid lists for use in computation of Fk. But each processor

needs only F2 vertical ctid lists for elements of its assigned equivalence classes.

This redundant work e�ects the performance of dSpade.

Candidate Generation Rules:

New candidate sequences are constructed in three steps:

1. Self-Join ([C]:S1 � [C]:S1 ) : Each element, (C 7! x) 2 [C]:S1, generates a

new equivalence class [�] = [(C 7! x)]. To generate the di�erent classes

we simply consider all pairs of elements in [C]:S1, say (C 7! x) and

(C 7! y). With only one intersection of their corresponding ctid lists we

determine whether any one of the sequences (C 7! x 7! y), (C 7! y 7! x),

or (C 7! xy) is frequent, and insert it in the appropriate equivalence class.

2. Self-Join ([C]:S2�[C]:S2 ) : Each element, (Cx) 2 [C]:S2, generates a new

equivalence class [�] = [(Cx)]. To generate the di�erent classes we simply

consider all pairs of elements in [C]:S2, say (Cx) and (Cy). Joining them

can produce only one possible candidate, (Cxy), which belongs to the

list [�]:S2. A simple intersection of ctid lists is performed to check if the

candidate is frequent.
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3. Cross-Join ([C]:S2 � [C]:S1 ) : To obtain class [�]:S1 for [�] = [(Cx)], we

need to join (Cx) 2 [C]:S2, with all elements, (C 7! y) 2 [C]:S1. This

produces only the candidate, (Cx 7! y), which belongs to the list [�]:S1.

A simple intersection of ctid lists is performed to check if the candidate

is frequent.

Let [@] be an equivalence class of frequent k-sequences. Then all frequent

sequences with the pre�x @ are generated from [@] by applying the candidate

generation rules.

The candidate F3 sequences are produced by applying the rules above on the

equivalence classes generated by GenF1 and GenF2. Each k-length candidate

sequence's support is computed with only one intersection of (k-1)-length pre�x

subsequences. Only the frequent sequences are inserted into the appropriate

equivalence classes.

Ctid list Intersection :

The algorithms for Intersect() and Contains() routines is presented in Fig-

ure 3.15 and the whole intersection process is shown by means of an example

in Figure 3.16.

We will now describe how to perform the ctid list intersection for two se-

quences within an equivalence class. Depending on the pattern of the two

sequences there may be three possible frequent candidates. Only one intersec-

tion is suÆcient to determine which of the three are frequent. These three cases

correspond to the candidate generation rules presented above. To perform the

intersection we �rst scan the vertical ctid lists of two items and call Contains()

routine to determine whether the candidate sequences are present in the verti-

cal ctid lists of items for incrementing the count of candidate sequences if they

are.

Checking for Containment :

The Contains() routine checks whether a given sequence is present in a cus-

tomer transaction. Given X and Y, the two vertical ctid lists composed of (cid,

tid) pairs with the same cid, we need to check for two kinds of relationships

among the tid entries:

1. Equality: for XY

2. Follows : for X 7! Y and Y 7! X
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Intersect(�; �;�x7!y;�y 7!x;�xy)

for all distinct cids C� 2 �:ctid list do

for all distinct cids C� 2 �:ctid list do

if (C� == C�) then

�:L = Get pairs with cid(C�);

�:L = Get pairs with cid(C�);

Contains(�; �;�x 7!y;�y 7!x;�xy)

end

Contains(�; �;�x7!y;�y 7!x;�xy)

if(�x 7!y 6= ;) then

for all tids tb 2 �:L do

if 9 tid ta 2 �:L such that tb > ta then

�x 7!y:Add ctid list(cid; tb);

if(�y 7!x 6= ;) then

for all tids ta 2 �:L do

if 9 tid tb 2 �:L such that ta > tb then

�y 7!x:Add ctid list(cid; ta);

if(�xy 6= ;) then

for all tids tb 2 �:L do

if 9 tid ta 2 �:L such that tb = ta then

�xy:Add ctid list(cid; tb);

Figure 3.15: Pseudocodes of Intersection() and Contains() routines.
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P7!X

CID TID

1 30

1 40

2 60

3 40

4 10

4 30

4 50

4 80

5 10

5 50

5 70

8 50

8 60

8 70

P7!Y

CID TID

1 70

1 80

2 60

3 40

4 30

4 40

4 50

4 70

5 10

6 50

6 65

7 20

7 35

8 50

P7!X7!Y

CID TID

1 70

1 80

4 30

4 40

4 50

4 80

P7!Y7!X

CID TID

4 50

4 80

5 50

5 70

8 60

8 70

P7!XY

CID TID

2 60

3 40

4 20

4 15

4 50

8 50

Figure 3.16: Ctid list Intersections
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Prune(�)

for all (k-1)-subsequences, � � �, do

if([�1]) has been processed, and � 62 Fk�1 then

return TRUE;

return FALSE

end

Figure 3.17: Pseudocode of the Prune algorithm

For the equality check we simply traverse the two ctid lists and insert match-

ing (cid, tid) pairs into XY.ctid list. For the follows check for X 7! Y, we insert

into X 7! Y.ctid list all tids 2 X greater than some tid in Y for the matching

cids. Finally, for the follows check for Y 7! X, we insert into Y 7! X.ctid list

all tids in Y greater than some tid in X.

Pruning Candidates

Equivalence classes are processed in descending order to facilitate candidate

pruning. The pruning algorithm is shown in Figure 3.17. We know that all

subsequences of a frequent sequence are frequent. If we can determine that any

subsequence of an candidate sequence is not frequent, then we do not perform

Intersection() for that candidate sequence and go on for the next candidate

sequence. This speeds up the Enumerate Frequent Sequences algorithm. Let's

examine the Prune() algorithm:

Let �1 denote the �rst item of sequence �. Before generating the ctid list

for a new k-sequence �, we check whether all the subsequences, � � �, of

length k-1 are frequent. If they all are frequent, then we perform the ctid list

intersection. Otherwise, � is dropped from computation.

For example consider a sequence �=(D 7! BF 7! A ). The 3-length subse-

quences (D 7! BF), (D 7! B 7! A), and (D 7! F 7! A) are all elements of the

class [D]. So, if any of them is not present in equivalence class [D], then �=(D

7! BF 7! A ) is not frequent also.

Search for Frequent Sequences

We will discuss two main strategies for enumerating the frequent sequences

within each equivalence class: breadth-�rst and depth-�rst search.

1. Breadth-First Search (BFS): In breadth-�rst search, the equivalence classes

generated by Enumerate Frequent Sequences() routine recursively is pro-
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Figure 3.18: Lattice Induced by Maximal Sequence D 7! BF 7! A.

cessed in a bottom-up manner. All the (k-1)-length sequences are pro-

cessed before moving on to the k-length sequences. For example in Fig-

ure 3.18, we process the equivalence classes f[D 7! A], [D 7! B], [D 7! F

]g, before moving on to the classes f[D 7! B 7! A], [D 7! BF ], [D 7! F

7! A]g, and so on.

2. Depth-First Search (DFS):

In a depth-�rst search, all sequences of any k-length of an equivalence

class are completely processed along one path before moving on to the

next path. For example, we process the classes in the following order [D

7! A], [D 7! B], [D 7! B 7! A], [D 7! BF ], [D 7! BF 7! A], and so on.

The advantage of BFS over DFS is that we have more information available

for pruning. For example, we know the set of 2-sequences before constructing

the 3-sequences, while this information is not available in DFS. On the other

hand DFS requires less main-memory than BFS.

Enumerating Frequent Sequences

Basically all processors does the same computation for computing Fk, but do

not synchronize with other processors and work over only its own input data.

The input to the Enumerate Frequent Sequences(S) routine is the equivalence

class S which is composed of F1 and F2 sequences and their vertical ctid lists.



CHAPTER 3. THE PARALLEL DSPADE ALGORITHM 36

Enumerate Frequent Sequences(S)

for all atoms Ai 2 S do

Ti = ;;

for all atoms Aj 2 S, with j > i do

R=Ai

S
Aj;

if (Prune(R)==FALSE) then

L(R)=Intersect(L(Ai); L(Aj);

if �(R) �Min sup then

Si = Si
S
fRg;

FjRj = FjRj
S
fRg;

end;

if (DFS) then Enumerate Frequent Sequences(Ti)

end

if (BFS) then

for all Ti 6= ; do Enumerate Frequent Sequences(Ti)

end

Figure 3.19: Pseudocode of computing Fk

We then enter the iterative processing phase. At each new level, we �rstly

generate candidate sequences by using candidate sequence generation rules

on Fk�1. Frequent sequences, Fk, are determined by intersecting the vertical

ctid lists of Fk�1 elements of Fk and checking the resulting vertical ctid list

against minimum support value. Before intersection step, Prune() routine is

called for ensuring that all the subsequences of the processed candidate se-

quence are frequent. If Prune() returns \false", then we go ahead with the

next candidate sequence. The frequent sequences are inserted into equivalence

class S to recursively generate new frequent sequences of increasing sequence

lengths until all frequent sequences with pre�x S is found.

The depth-�rst search requires to store vertical ctid lists of processed can-

didate sequence and its subsequences. Breadth-�rst search needs the all se-

quences of Fk�1 and omits all vertical ctid lists of Fk�1 after computing Fk

3.3.4 Disk Scans

During GenF1, all the item ctid lists are scanned from local disk into memory

in one pass on the database. During GenF2, only the ctid lists of frequent

1-sequences are inverted into horizontal format in one pass on the database.

To compute all frequent sequences which have length 3 or more, only once

the database is accessed during process of Form Fk Ctid List() routine. Thus,
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it is claimed that dSpade algorithm will require a single database scan after

computing F2, in contrast to the approaches in [10] which require multiple

scans.



Chapter 4

Experiments and Results

In this chapter, results of various experiments that have been conducted are

presented in order to show the e�ects of size of data and minimum support

on the parallel performance. The �rst section describes the synthetic datasets

used in experiments. Then, the implementation details are presented. Finally,

in the last section results of various experiments are discussed.

4.1 Synthetic Datasets

We used the publicly available dataset generation code from the IBM Quest

data mining project [7]. These datasets mimic real-world transactions, where

people buy a sequence of sets of items. Some customers may buy only some

items from the sequences, or they may buy items from multiple sequences.

The customer sequence size and transaction size are clustered around a mean

and a few of them may have many elements. The di�erent dataset generation

parameters are listed in Figure 4.1.

Parameter Description

D Number of customers

C Average number of transactions per customer

T Average number of items per transactions

S Average number of itemsets in maximal potential frequent sequences

I Average number of items in maximal potential frequent itemsets

N Number of items

NS Number of maximal potential frequent sequence

NI Number of maximal potential frequent itemsets

Figure 4.1: Dataset Generation Parameters

38
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Dataset C T S I D Size(MB)

C10-T2.5-S4-I1.25-D200K 10 2.5 4 1.25 200 000 39.8

C10-T2.5-S4-I1.25-D400K 10 2.5 4 1.25 400 000 81.5

C10-T2.5-S4-I1.25-D800K 10 2.5 4 1.25 800 000 163.2

Figure 4.2: Dataset Generation Parameters

The datasets are generated by following the steps listed below:

� NI maximal itemsets of average size I are generated by choosing from N

items.

� NS maximal sequences of average size S are created by assigning itemsets

from NI to each sequence.

� A customer of average C transactions is created, and sequences in NS are

assigned to di�erent customer elements, respecting the average transac-

tion size of T.

� The generation stops when D customers have been generated.

The default values of NS = 5000, NI = 25000 and N = 10000 are selected. We

refer the reader to [7] for detailed information on the datasets generation.

Figure 4.2 shows the datasets with their parameter settings. After gener-

ating the synthetic dataset in horizontal data layout by using the parameters

listed above, the dataset is transformed into vertical data layout o�ine. The

whole database is partitioned into chunks of data according to the number of

processors. Thus, each processor computes on one chunk of data independently.

4.2 Implementation of dSpade

All of the algorithms and related data structures were implemented in C++

programming language and LAM implementation of MPI [9, 4]. LAM is a

parallel processing environment and development system for a network of in-

dependent computers. It features the Messape-Passing Interface (MPI) pro-

gramming standart, supported by extensive monitoring and debugging tools.

The experiments are conducted on a Beowulf Cluster. Beowulf systems are

high performance parallel computers built with cheap commodity hardware

connected with a low latency and high bandwith interconnection network, and

equipped with free system software such as GNU/Linux or FreeBSD. The hard-

ware of the Borg consists of three components:
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C10-T2. 5-S4-I1. 25-D200K

# of processors F1 time F2 time Fk time Total time

1 2.834795 35.317450 1.276176 39.461353

2 0.192478 19.371439 1.772814 21.365688

4 0.079038 18.065061 3.969298 22.138034

8 0.059240 21.222039 4.724835 26.082739

16 0.053348 23.580715 5.489792 29.229082

Figure 4.3: Min Sup=0.5%

C10-T2.5-S4-I1.25-D800K

# of processors F1 time F2 time Fk time Total time

4 2.831116 100.253172 14.879093 118.118775

6 1.332462 48.686530 20.145217 70.274802

8 3.060354 29.904967 23.205833 56.225599

10 2.115730 20.212355 27.471458 49.868859

12 1.010077 17.625880 30.375910 49.115820

14 0.093599 17.781143 33.564061 51.53164

16 0.087551 19.134109 34.795408 54.119033

Figure 4.4: Min Sup=0.5%

1. NODES: There are 32 identical nodes with Intel Pentium II 400 Mhz

CPU, 64 MB PC100 RAM, 6 GB UDMA IDE hard drive and Intel Ether-

Express Pro 10/100 NIC.

2. INTERCONNECTION NETWORK: The interconnection network is a

3COM SuperStack II 3900 smart switch which has 100Base-TX ports

and a Gigabit uplink. The ports connect to nodes and uplink connects

to the interface computer.

3. INTERFACE COMPUTER: The interface computer is a workstation

with Intel Pentium III 500 Mhz CPU, 512 MB RAM, 26 GB hard drive.

It has a Gigabit NIC which connects to the uplink of a switch and fast

Ethernet to connect to the Net. The Interface Computer provides com-

munication with developers through console and network.

4.3 Experiments

Figure 4.5 and 4.6 shows the execution times for each step of dSpade algorithm

for C10-T2.5-S4-I1.25-D800K dataset for 0.6% and 0.8% minimum support val-

ues. Figures 4.7 and 4.8 shows the total execution time and the speedup ra-

tio charts for database C10-T2.5-S4-I1.25-D800K with Min Sup=0.6(%). The
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C10-T2.5-S4-I1.25-D800K

# of processors F1 time F2 time Fk time Total time

4 2.351926 47.935984 5.144520 55.520032

6 4.680082 26.964325 6.219496 37.912134

8 3.898711 18.544761 7.240789 29.741549

10 2.116996 16.206067 8.964333 25.346578

12 1.102453 13.450797 7.477851 22.103976

14 0.090548 10.444257 9.952649 20.557574

16 0.087476 8.575592 9.262332 17.029163

Figure 4.5: Min Sup=0.6%

C10-T2. 5-S4-I1. 25-D800K

# of processors F1 time F2 time Fk time Total time

4 10.611414 25.339592 0.157043 36.162087

8 5.132765 14.034057 0.207893 19.411805

16 0.087098 10.530834 0.311820 11.028449

Figure 4.6: Min Sup=0.8%

Figure 4.7: Execution Time [sec]
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Figure 4.8: Speedup

Figure 4.9: Execution Time [sec]

Figure 4.10: Speedup
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C10-T2.5-S4-I1.25-D800K

# of processors F1 time F2 time Fk Comm time Fk time Total time

4 9.081542 44.290284 3.066090 5.098326 58.534853

8 4.317009 21.500498 3.183651 6.524056 32.390020

16 0.086916 10.588627 4.483058 8.539685 19.309471

Figure 4.11: Min Sup=0.6%

C10-T2.5-S4-I1.25-D800K

# of processors F1 time F2 time Fk Comm time Fk time Total time

4 8.156739 106.246041 9.326660 13.784408 128.277421

8 4.490147 45.996040 10.022598 22.243071 72.803361

16 0.081041 29.211027 18.420772 35.372381 64.763782

Figure 4.12: Min Sup=0.5%

chart is normalized with the execution time on 4 nodes. We used this normal-

ization because at lower number of nodes than 4, the size of the processed data

does not �t in memory and performs very poorly. To get reliable results on

speedup ratio, we selected minimum optimal number of nodes as 4. We obtain

good speedup ratio for 8 processors, ranging as high as 1.86. On 16 processors,

we obtained a maximum of 3.26. Figure 4.9 and 4.10 shows the total execution

time and the speedup ratio charts for database C10-T2.5-S4-I1.25-D800K with

Min Sup=0.8(%). We obtain good speedup ratio for 8 processors, ranging as

high as 1.86. On 16 processors, we obtained a maximum of 3.28. As these

charts indicate, dSpade achieves good speedup performance.

But, in some cases dSpade performs poorly. If we analyze the Figures 4.4

and 4.3, we will see two main problems with the performance of dSpade:

1. dSpade performs poorly if the size of database decreases. For C10-T2.5-

S4-I1.25-D200K dataset with 0.5% minimum support value, as the num-

ber of processors increases the execution time also increases. In Fig-

ure 4.4, the execution time is nearly halved at 2-processors, but in-

creased at 4, 8, 16-processors. Communication overhead defeats the gain

from computation as the number of processors increases at low size of

databases.

2. dSpade performs poorly at some experiments with decreasing minimum

support value on very large databases. Every node keeps a piece of ver-

tical ctid list for all items in the database. The Form Fk Ctid List()

routine collects these vertical ctid lists of frequent items, which are in-

serted into equivalence classes, from nodes and broadcasts the complete

ctid list of every frequent item to other nodes. As the number of nodes

increases, the communication time increases and speedup ratio decreases.
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Figure 4.13: Fk Execution Time [sec]

Figure 4.14: Fk Execution Time [sec]
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Optimized Form Fk Ctid List(Ci)

for all elements a 2 Ci do

Read Ctid List(a);

only related processor Gather Ctid List(a);

for all elements b 2 F2 and b 2 Ci do

Read Ctid List(b);

only related processor Gather Ctid List(b);

only related processor Intersect(a, b);

end

Figure 4.15: Pseudocode for Optimized Form Fk Ctid List(i)

Figures 4.13 and 4.14 shows the percentage of communication time

during Fk computation time. With decreasing minimum support value,

dSpade �nds increasing number of frequent sequences. The experiment

conducted for C10-T2.5-S4-I1.25-D800K dataset with 0. 5% minimum

support value, as shown in Figure 4.3, dSpade speeds down with increas-

ing number of processors, since communication overhead increases with

decreasing minimum support value and increasing number of processors.

We designed a new algorithm to overcome these drawbacks, but not im-

plemented yet. We call this algorithm as Optimized Form Fk Ctid List().

The input to the Optimized Form Fk Ctid List() is a mapped equivalence

class of the processor. Simply, in this algorithm each processor gathers

ctid lists of items from other processors to create ctid lists of F2 ,which

are elements of the mapped equivalence classes to itself. Thus the moved

data amount is decreased if compared with implemented algorithm.

Figure 4.16: Fk Execution Time [sec]
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C10-T2.5-S4-I1.25-D400K

Min Sup(%) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 562 10 0 0 0 0 0 0 0 0

0. 75 1014 55 3 0 0 0 0 0 0 0

0. 5 1773 421 182 53 11 1 0 0 0 0

0. 25 3086 3550 3620 3228 2385 1429 589 131 15 1

Figure 4.17: Number of frequent sequences

We study the e�ect of static load balancing approach on the total elapsed

execution time of each processor. It is shown in Figure 4.16 that static load

balancing approach creates ignoreable amount of load imbalance and does not

cause speeddown in execution time.

Finally, we study the e�ect of changing minimum support on the parallel

performance, as shown in Table 4.17. The minimum support was varied from

a high of 0.25% to a low of 1%. Table 4.17 shows the number of frequent

sequences discovered at the di�erent minimum support levels. The number of

frequent sequences are not linear with respect to the minimum support. But

the total execution time increases linearly with decreasing value of minimum

support.



Chapter 5

Conclusion

In this thesis work, we presented dSpade, a parallel algorithm based on spade

for discovering the set of all frequent sequences, targeting distributed-memory

systems. In dSpade, horizontal database partitioning method is used, where

each processor stores equal number of customer transactions.

dSpade is a synchronous algorithm for discovering frequent 1-sequences (F1)

and frequent 2-sequences ( F2). Each processor performs the same computation

on its local data to get local support counts and broadcasts the results to other

processors to �nd global frequent sequences during F1 and F2 computation.

After discovering all F1 and F2, all frequent sequences are inserted into lattice

to decompose the original problem into equivalence classes. Equivalence classes

are mapped in a greedy heuristic to the least loaded processors in a round-robin

manner. Finally, each processor asynchronously begins to compute Fk on its

mapped equivalence classes to �nd all frequent sequences.

As in Spade algorithm, dSpade usually makes only three database scans.

It has also good scaleup properties with parameters of minimum support and

number of customer transaction.

5.1 Future Work

dSpade performs poorly at some experiments with decreasing minimum support

value on very large databases. We designed Optimized Form Fk Ctid List()

algorithm to to solve this problem, but not implemented yet.

Static load balancing approach creates ignoreable load imbalance and does

not cause speeddown in execution time. But by using dynamic load balancing

techniques, improvements on performance results can be achieved.
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