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Abstract.

Using the Green function formalism with layer orbitals we studied

the electronic structure of a Si é-layer in germanium. We found two-dimensional
parabolic subbands near the band edges. This approach is extended to treat
the electronic structure of a single quantum well without invoking the periodically

repeating models.

The incorporation of an extremely sharp and high-
density doping profile consisting of a few atomic layers
during the growth of semiconductors is denoted as §-
doping. Such a doping can modify the electronic prop-
erties of a semiconductor heterostructure [1,2]. In fact,
Capasso and his coworkers [3] showed that the band off-
set of an Al,Ga;_,As/GaAs heterojunction is modified
by a §-doping. A new type of non-alloyed Ohmic contact
with GaAs is achieved by placing a high-density donor
sheet a few layers away from thc mctal-semiconductor
interface [2]. Zeindl et al [4] have incorporated a sheet
of Sb into Si(001) with a density of ~ 1.6 x 10° Sb
cm~2. The diffusion of dopants seems to be the ma-
jor difficulty in producing a sharp doping profile during
the growth of the superlattice. Of course the ultimate
goal is to incorporate a stable and defect-free atomic
plane made from impurity atoms. This way one can
fabricate superlattices consisting of repeating 2D metals
and insulators or polarizable crystals. Recently, such
a superlattice (YBCO),,/(PrBCO), has been grown [5],
whereby important properties related to the theory of
high T, superconductivity have been deduced [6]. Sim-
ilarly, hole and electron §-layers separated by dielectric
media can be an interesting system in which to exam-
ine the possibility of hole—¢lectron pair formation and
a BCs-like transition [7, 8].

In this paper, we study the electronic properties of
a Si é-layer embedded in an infinitely large Ge(001)
crystal by using the Green function method with layer
orbitals. The same method is extended to study a sin-
gle quantum well without invoking a supercell having
an artifical periodicity. In this respect, the method is
rather convenient in studying the electronic structure of
a single 6-layer without the artifacts of the periodically
repeating models.

We can treat this type of problem as a defect prob-
lem within a perturbative approach [9,10]. The Hamil-
tonian of the perturbed system can be written in two
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parts:
H=Hy+V (1)

Hy is the perfect crystal Hamiltonian of a periodic lattice
with eigenvalues E,; and eigenstates ¥,,. V' denotes
the deviation from the perfect potential due to the de-
fect, such as §-layers. Let the Schrodinger equation of
the perturbed crystal be

HY =(Hy+V)¥ =EVY. (2)

The solutions of (2) can be classified into two
groups depending on whether the eigenvalue E co-
incides with the spectrum of Hp. These are bound
states and resonances or antiresonances. If the eigen-
value E does not coincide with the spectrum of H),
(say it is in the band gaps of the unperturbed crys-
tal), the corresponding states are bound states local-
ized around the perturbing potential. In this case (2)
is transformed to a system of linear algebraic equa-
tions by expanding the wavefunction ¥ in terms of
a suitable basis set ¢, (¥ = ) ,Cada). Hence,
within the band gaps the Schrodinger equation becomes

Z (6“"" - Z Gga“ (E)Vot“a‘) Cor =0 (3)

where k) (nkl)
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are the Green matrix elements of the unperturbed sys-
tem. For the non-trivial solution of a bound state
the determinant of Q(E) = 1 — Gy(E)V vanishes,

det || Q(E) [|= 0. (5)

If the eigenvalue E coincides with the energy spectrum



of Hy (within the bands of the unperturbed crystal),
solutions always exist with the bands of a perfect crystal.
The wavefunctions, of course, are not ¥,,; but are given
by the Lippman-Schwinger equation. The density of
states

N(E) =~ Im[IG(E)] ©)

is changed in the vicinity of the defect. Here G(E)
is the Green function for the perturbed system and it
can be calculated from Dyson’s equation. In this range
of energy the Green function is defined by analytic
continuation. The change in density of states is obtained
from the following equation:

14 Imdet || Q||
AN(E) = — . g drctan (Redet o ") )
A peak in AN(E) is called a resonance while a dip is
called an antiresonance.

We apply this approach to the case of the §-doping
by taking the §-layer as a planar perturbation. Since
the system preserves the two-dimensional periodicity,
the basis set is taken as layer orbitals which are simply
Bloch sums in two dimensions [11].

mo - 1 iq- A m
TG H(r) = 'Xr\/TT—zz,:"’"' (et (r - pr— A7) (8)

where p; are the lattice vectors of the two-dimensional
lattice, A7 are the position vectors of the atoms in the
two-dimensional unit cell and they can be decomposed
into two parts as the surface parallel component, o7,
and perpendicular component, x#. The index m labels
the layer while y labels different atoms in the same
plane. {p;,A}'} span the entire bulk lattice, and o
labels the orbitals. N1N, is the number of lattice points
in the 2D lattice. Similarly the Bloch wavevector k is
decomposed as

k=q+g+ks 9

where q is a two-dimensional wavevector, g is the recip-
rocal lattice vector of the two-dimensional lattice and
k, is the perpendicular component.

States of the perturbed system are then expanded
in terms of the layer orbital [11]

Wog(r) = Y _ AL, (r) (10)
)

where j = moy is a composite index for the layer or-
bitals and s labels the states. Then the Green function
becomes [11]
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where C} and E, are the eigenfunction and eigenvalue
of the entire bulk lattice. The energy, Et, is given as
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E + ie where ¢ is a very small quantity for the energies
within the bands of the unperturbed system. Nj is the
number of lattice points in the perpendicular direction.
The prime over the summation indicates g vectors cor-
responding to k which lie inside the first Brillouin zone
according to (9). Note that these bulk states are calcu-
lated once and for all in an appropriate cell and used
for defects (or §-dopings) having perturbative potentials
of similar range. The element of the potential matrix is

(. eVl @)= U.alHlf @) — (. glHoli . q)-  (12)

For a localized perturbation, the potential matrix will
have blocks with all zeros. Thus, depending on the
chosen basis set and the range of the perturbation,
the size of the matrices with non-zero elements can be
rather small.

Having presented a brief summary of the method,
we now turn to the theoretical study of the electronic
energy structure of a Si é-layer in a Ge(001) crystal.
Since Si layers are pseudomorphically grown on the Ge
(001) surface, in-plane lattice constants are restricted
to the lattice constant of Ge (5.65 A). Therefore, while
the Ge layers preserve the cubic symmetry, Si layers are
distorted tetragonally, ie. a)si = 5.65 A, a 5 = 5.26 A.
The lattice parameters are obtained from self-consistent
field pscudopotential calculations [12]. The interlayer
spacing at the Ge-Si interface is taken to be the aver-
age of the interlayer spacings in the Ge and Si layers.
We used the energy parameters of Li and Chung [13]
for construction of the empirical tight-binding Hamilto-
nian. Since the Si-Ge and Si-Si interatomic distances
deviate from their ideal bulk values owing to the strain
imposed by the lattice mismatch, the energy parameters
are scaled by the d~2 scaling [14]. Another critical pa-
rameter in our calculation is the band offset, AEy. We
used the value (0.3 €V) calculated by Van de Walle et a/
[12] for the Si~-Ge superlattice grown on the Ge(001)
surface. In all calculations we neglect the spin-orbit
splitting.

The electronic structure of the Si,-Ge (001) (n =
1,2,3,4) 5-doping structure is calculated by using the
Green function formalism to investigate the electronic
structure of a single quantum well in the Ge crystal.
The energy band structure of bound states of the Sig—
Ge (001) é-doping structure is calculated by solving (5),
and is shown with the projected bands of Ge (001)
in figure 1. Since the Si-Ge heterojunction shows a
type-II behaviour, the electrons are confined in the Si
sublattice, while the holes are in the Ge sublattice. As
seen in figure 1(@), near the conduction band edge,
the energy band of the bound state shows a parabolic
dispersion which is characteristic of a 2D electron system
treated in the effective mass approximation. The total
contribution of the Si orbitals is 90%. This indicates
strong confinement of electrons in the quantum well
occurring in the Si é-layers. For the value of the band
offset, AEy=0.3 eV, bound states appear also near the
conduction band edge between M and X points, but they
merge in the conduction band of Ge (001) and become
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Figure 1. Energy band structure of Si,—~Ge (001). Bound
states are shown by full curves, and the projected bands
of Ge{001) are hatched. The band offset vaiues ars (a)
AEy=0.3 eV and (b) AEy=0.5 eV.
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Figure 2. AN(E), the change in the density of states

(in units of states/eV unit cell) at the T point. (a) Total
change in density of states. (b) Layer-resolved change

in density of states. (Energies are broadened by 0.1 eV in
the calculation of the Green function.)
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Figure 3. Energy band structure of Sig~Ge (001) for different band offset values
AEy. (A and £ points are such that | TE |=0.15 |TM| and | TA |=0.13 | TX].)

resonances. As secn in figure 1(b), increasing the value
of band offset causes these resonance states to shift
down in energy towards the band gap and to become
bound states. Changes in density of states are calculated
at the T point by using (6) and (7) and are shown in
figure 2. The peak at 0.5 eV corresponds to the bound
state originating from Si é-layers while the dip near 0 eV
is due to the antiresonance state. Note that dips in the
continuum of projected bands are antiresonance states
and simply mean a charge transfer from these states to
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the bound states or to the resonance states. The nature
of these states is revealed in the layer-resolved change
in density of states. While the peak is just the addition
of change in density of states in Si layers, all layers
contribute to the dip as seen in figure 2(b). In addition
to these states, there are other bound states within the
gaps in the projected valence and conduction bands of
Ge (001). For n = 1,2 and 3, we observed the same
trends in the energy band diagram. The 2D parabolic
band around the T point and bands near the conduction



band edge along the I'M and MX directions are found
for all n values (1 € n < 4). However, the dispersion of
the parabolic bands decreases with decreasing n. For a
single é-layer (n = 1) it becomes a shallow level 30 meV
below the band edge. Note that the subbands calculated
within the effective mass approximation having a free
electron behaviour in the plane of the epilayer display
equivalent dispersion.

Finally, to explore the effect of the band offset on the
subband structure the electronic structure of the Sis—
Ge (001) quantum well is calculated for different band
offset values (AEy), i.e. for different depths of quantum
wells. The calculated energy bands near the I point are
presented for different AEy values in figure 3. As AEy
increases, the bands of bound states are shifted down
in energy (since the tops of the valence and conduction
bands of Ge are raised) and new parabolic bands emerge
in the band gap of Ge. For example, the number of
parabolic bands is found to be two and three for AEy =
0.5 and 0.7 eV, respectively, since the deeper quantum
wells support larger numbers of subbands. Upon further
increase of AEy the lowest subband overlaps with the
valence band continuum of Ge. As soon as the energy
of the lowest subband coincides with the maximum of
the valence band, the charge starts to transfer from Ge
to the Si §-layer.

In conclusion, the electronic structure of a single
quantum well is treated by using the Green function
method. States of the parabolic bands in the funda-
mental band gap of the host Ge are confined in the
é-layer. As the band offset and thus the depth of the
quantum well increases, the number of subbands in-
creases. We have shown that the electronic structure of
the quantum well or §-doping can be handled by using
the Green function method. Another aspect to note is
that the Green function is calculated once and for all to
treat different problems in the same host lattice (such as
different doping concentrations, different doping atoms,
etc). We believe that the theoretical method exempli-
fied in this paper is convenient to treat the electronic
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structure of a §-layer, in particular a metal é-layer, by
using the self-consistent field tight-binding method (with
a Gaussian orbital basis set or without any specific form
of orbitals).
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