
Robust Threshold Schemes Based on the
Chinese Remainder Theorem

Kamer Kaya� and Ali Aydın Selçuk

Department of Computer Engineering
Bilkent University

Ankara, 06800, Turkey
{kamer,selcuk}@cs.bilkent.edu.tr

Abstract. Recently, Chinese Remainder Theorem (CRT) based func-
tion sharing schemes are proposed in the literature. In this paper, we
investigate how a CRT-based threshold scheme can be enhanced with
the robustness property. To the best of our knowledge, these are the first
robust threshold cryptosystems based on a CRT-based secret sharing.

Keywords: Threshold cryptography, robustness, RSA, ElGamal, Pail-
lier, Chinese Remainder Theorem.

1 Introduction

In threshold cryptography, secret sharing deals with the problem of sharing a
highly sensitive secret among a group of n users so that only when a sufficient
number t of them come together the secret can be reconstructed. Function shar-
ing deals with evaluating the encryption/signature function of a cryptosystem
without the involved parties disclosing their secret shares. A function sharing
scheme (FSS) requires distributing the function’s computation according to the
underlying secret sharing scheme (SSS) such that each part of the computa-
tion can be carried out by a different user and then the partial results can
be combined to yield the function’s value without disclosing the individual se-
crets. Several SSSs [1,3,20] and FSSs [8,9,10,11,19,21] have been proposed in the
literature.

Nearly all existing solutions for the function sharing problem have been based
on the Shamir SSS [20]. Recently, Kaya and Selçuk [14] proposed several thresh-
old function sharing schemes based on the Asmuth-Bloom SSS for the RSA [18],
ElGamal [13] and Paillier [16] cryptosystems. These FSSs are the first examples
of secure function sharing schemes based on Asmuth-Bloom secret sharing.

We say that a function sharing scheme is robust if it can withstand partic-
ipation of corrupt users in the function evaluation phase. In a robust FSS, a
detection mechanism is used to identify the corrupted partial results so that, the
corrupted users can be eliminated. The FSSs proposed by Kaya and Selçuk [14]

� Supported by the Turkish Scientific and Technological Research Agency (TÜBİTAK)
Ph.D. scholarship.

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 94–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Robust Threshold Schemes Based on the Chinese Remainder Theorem 95

did not have the robustness property and, to the best of our knowledge, no
CRT-based robust and secure function sharing scheme exists in the literature.

In this paper, we investigate how CRT-based threshold schemes can be en-
hanced with the robustness property. We first give a robust threshold function
sharing scheme for the RSA cryptosystem. Then we apply the ideas to the ElGa-
mal and Paillier decryption functions. For RSA and Paillier, we use the thresh-
old schemes proposed by Kaya and Selçuk [14]. For ElGamal, we work with a
modified version of the ElGamal decryption scheme by Wei et al. [22]. All of
the proposed schemes are provably secure against a static adversary under the
random oracle model [2].

In achieving robustness, we make use of a non-interactive protocol designed to
prove equality of discrete logarithms [4,5,21]. The original interactive protocol
was proposed by Chaum et al [5] and improved by Chaum and Pedersen [6].
Later, Shoup [21] and, Boudot and Traoré [4] developed a non-interactive version
of the protocol.

The organization of the paper is as follows: In Section 2, we describe the
Asmuth-Bloom SSS and the FSSs proposed by Kaya and Selçuk [14]. After de-
scribing a robust threshold RSA scheme and proving its security in Section 3, we
apply the proposed idea to the Paillier and ElGamal cryptosystems in Section 4.
Section 5 concludes the paper.

2 Function Sharing Based on the Asmuth-Bloom Secret
Sharing

The Asmuth-Bloom SSS shares a secret among the parties using modular arith-
metic and reconstructs it by the Chinese Remainder Theorem. Here we give the
brief description of the scheme:

– Dealer Phase: To share a secret d among a group of n users with threshold
t, the dealer does the following:

• A set of pairwise relatively prime integers m0 < m1 < m2 < . . . < mn

are chosen where m0 > d is prime,

t∏

i=1

mi > m0

t−1∏

i=1

mn−i+1. (1)

• Let M denote
∏t

i=1 mi. The dealer computes

y = d + Am0

where A is a positive integer generated randomly subject to the condition
that 0 ≤ y < M .

• The share of the ith user, 1 ≤ i ≤ n, is

yi = y mod mi

i.e., the smallest nonnegative residue of y modulo mi.

96 K. Kaya and A.A. Selçuk

– Combiner Phase: Assume S is a coalition of t users to construct the secret.
For any coalition S, we define MS as

MS =
∏

i∈S
mi.

• Given the system
y ≡ yi (mod mi)

for i ∈ S, find y in ZMS using the Chinese Remainder Theorem.
• Compute the secret as

d = y mod m0.

According to the Chinese Remainder Theorem, y can be determined uniquely in
ZMS . Since y < M ≤ MS , the solution is also unique in ZM .

In the original Asmuth-Bloom scheme, m0 is not needed until the last step
of the combiner phase but still it is a public value. To avoid confusions, we
emphasize that it will be secret for the robust FSSs proposed in this paper.

Kaya and Selçuk [14] modified the Asmuth-Bloom SSS by changing (1) as

t∏

i=1

mi > m0
2

t−1∏

i=1

mn−i+1. (2)

to make the Asmuth-Bloom SSS perfect in the sense that t−1 or fewer shares do
not narrow down the key space and furthermore all candidates for the key are
equally likely: Assume a coalition S′ of size t − 1 has gathered and let y′ be the
unique solution for y in ZMS′ . According to (2), M/MS′ > m0

2, hence y′+ jMS′

is smaller than M for j < m0
2. Since gcd(m0, MS′) = 1, all (y′ + jMS′) mod m0

are distinct for 0 ≤ j < m0 hence, d can be any integer from Zm0 . For each value
of d, there are either �M/(MS′m0)� or �M/(MS′m0)� + 1 possible values of y
consistent with d, depending on the value of d. Hence, for two different integers
in Zm0 , the probabilities of d being equal to these integers are almost equal. Note
that M/(MS′m0) > m0 and given that m0 � 1, all d values are approximately
equally likely.

In the original Asmuth-Bloom SSS, the authors proposed an iterative process
to solve the system y ≡ yi (mod mi). Instead, a classical and non-iterative
solution exists which is more suitable for function sharing in the sense that
it does not require interaction between parties and has an additive structure
convenient to share exponentiations [12].

1. Let S be a coalition of at least t users. Let MS\{i} denote
∏

j∈S,j �=i mj and
M ′

S,i be the multiplicative inverse of MS\{i} in Zmi , i.e.,

MS\{i}M ′
S,i ≡ 1 (mod mi).

First, the ith user computes

ui =
(
yiM

′
S,i mod mi

)
MS\{i}. (3)

Robust Threshold Schemes Based on the Chinese Remainder Theorem 97

2. y is computed as

y =
∑

i∈S
ui mod MS .

3. The secret d is computed as

d = y mod m0.

Even with these modifications, obtaining a threshold scheme by using Asmuth-
Bloom SSS is not a straightforward task. Here we give the description of the
proposed threshold RSA signature scheme [14].

– Setup: In the RSA setup phase, choose the RSA primes p = 2p′ + 1 and
q = 2q′+1 where p′ and q′ are also large random primes. N = pq is computed
and the public key e and private key d are chosen from Z

∗
φ(N) where ed ≡

1 (mod φ(N)). Use Asmuth-Bloom SSS for sharing d with a secret m0 =
φ(N) = 4p′q′.

– Signing: Let w be the hashed message to be signed and suppose the range
of the hash function is Z

∗
N . Assume a coalition S of size t wants to obtain

the signature s = wd mod N .

• Generating the partial results: Each user i ∈ S computes

ui =
(
yiM

′
S,i mod mi

)
MS\{i}, (4)

si = wui mod N.

• Combining the partial results: The incomplete signature s is obtained by
combining the si values

s =
∏

i∈S
si mod N. (5)

• Correction: Let κ = w−MS mod N be the corrector. The incomplete
signature can be corrected by trying

(sκj)e = se(κe)j ?≡ w (mod N) (6)

for 0 ≤ j < t. Then the signature s is computed by

s = sκδ mod N

where δ denotes the value of j that satisfies (6).

– Verification is the same as the standard RSA verification where the verifier
checks

se ?≡ w (mod N)

98 K. Kaya and A.A. Selçuk

The signature s generated in (5) is incomplete since we need to obtain y =∑
i∈S ui mod MS as the exponent of w. Once this is achieved, we have wy ≡ wd

(mod N) as y = d + Am0 for some A where m0 = φ(N).
Note that the equality in (6) must hold for some j ≤ t − 1 since the ui

values were already reduced modulo MS . So, combining t of them in (5) will
give d+am0 + δMS in the exponent for some δ ≤ t−1. Thus in (5), we obtained

s = wd+δMS mod N = swδMS mod N = sκ−δ mod N

and for j = δ, equation (6) will hold. Also note that the mappings we mod N
and wd mod N are bijections in ZN , hence there will be a unique value of s = sκj

which satisfies (6).
Besides RSA, Kaya and Selçuk also applied this combine-and-correct approach

to obtain threshold Paillier and ElGamal schemes [14] with Asmuth-Bloom secret
sharing.

3 Robust Sharing of the RSA Function

To enhance the threshold cryptosystems with the robustness property, we use a
non-interactive protocol proposed to prove equality of two discrete logarithms
with respect to different moduli. The interactive protocol, which was originally
proposed by Chaum et al [5] for the same moduli, was modified by Shoup and
used to make a threshold RSA signature scheme robust [21]. He used Shamir’s
SSS as the underlying SSS to propose a practical and robust threshold RSA sig-
nature scheme. In Shamir’s SSS, the secret is reconstructed by using Lagrange’s
polynomial evaluation formula and all participants use the same modulus which
does not depend on the coalition. On the other hand, in the direct solution used
in the abovementioned CRT-based threshold RSA scheme, the definition of uis in
(3) and (4) shows that we need different moduli for each user. For robustness, we
need to check the correctness of ui for each user i in the function evaluation phase.
We modified the protocol in [21] for the case of different moduli as Boudot and
Traoré [4] did to obtain efficient publicly verifiable secret sharing schemes.

To obtain robustness, we first modify the dealer phase of the Asmuth-Bloom
SSS and add the constraint that

pi = 2mi + 1

be a prime for each 1 ≤ i ≤ n. These values will be the moduli used to con-
struct/verify the proof of correctness for each user. The robustness extension
described below can be used to make the CRT-based threshold RSA signature
scheme in Section 2 robust. We only give the additions for the robustness exten-
sion here since the other phases are the same.

– Setup: Use Asmuth-Bloom SSS for sharing d with m0 = φ(N). Let gi be an
element of order mi in Z

∗
pi

. Broadcast gi and the public verification data

vi = gi
yi mod pi

for each user i, 1 ≤ i ≤ n.

Robust Threshold Schemes Based on the Chinese Remainder Theorem 99

– Generating the proof of correctness : Let w be the hashed message to be
signed and suppose the range of the hash function is Z

∗
N . Assume a coalition

S of size t participated in the signing phase. Let h : {0, 1}∗ → {0, . . . , 2L1−1}
be a hash function where L1 is another security parameter. Let

w′ = wMS\{i} mod N,

v′i = vi
M ′

S,i mod pi,

zi = yiM
′
S,i mod mi.

Each user i ∈ S first computes

W = w′r mod N,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(w′, gi, si, v
′
i, W, G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with the partial signature si.
– Verifying the proof of correctness: The proof (σi, Di) for the ith user can be

verified by checking

σi
?= h(w′, gi, si, v

′
i, w

′Disi
−σi mod N, gi

Div′i
−σi mod pi). (7)

Note that the above scheme can also be used to obtain a robust threshold RSA
decryption scheme. Since RSA signature and decryption functions are mostly
identical, we omit the details.

3.1 Security Analysis

Here we will prove that the proposed threshold RSA signature scheme is se-
cure (i.e. existentially non-forgeable against an adaptive chosen message attack),
provided that the RSA problem is intractable (i.e. RSA function is a one-way
trapdoor function [7]). We assume a static adversary model where the adversary
controls exactly t − 1 users and chooses them at the beginning of the attack. In
this model, the adversary obtains all secret information of the corrupted users
and the public parameters of the cryptosystem. She can control the actions of
the corrupted users, ask for partial signatures of the messages of her choice, but
she cannot corrupt another user in the course of an attack, i.e., the adversary is
static in that sense.

First we will analyze the proof of correctness. For generating and verifying
the proof of correctness, the following properties holds:

100 K. Kaya and A.A. Selçuk

– Completeness: If the ith user is honest then the proof succeeds since

w′Disi
−σi = w′r mod N,

gi
Div′i

−σi = gi
r mod pi.

– Soundness: To prove the soundness, we will use a lemma by Poupard and
Stern [17] which states that if the prover knows (a, b, σ, σ′, D, D′) such that
aDbσ ≡ aD′

bσ′
(mod K) for an integer K, then he knows the discrete loga-

rithm of b in base a unless he knows the factorization of K.
Let us define Ψ : Z

∗
Npi

→ Z
∗
N × Z

∗
pi

be the CRT isomorphism, i.e., x →
(x mod N, x mod pi) for x ∈ Z

∗
Npi

. Note that gcd(N, pi) = 1. Let g =
Ψ−1(w′, gi), v = Ψ−1(si, v

′
i) and τ = Ψ−1(W, G). Given W and G, if the

ith user can compute valid proofs (σ, D) and (σ′, D′) then we have

τ = gDvσ mod Npi = gD′
vσ′

mod Npi

and according to the lemma above, the ith user knows ui unless he can com-
pletely factor Npi. Since the factorization of N is secret we can say that if
the proof is a valid proof then the discrete logarithms are equal in modmi

and the prover knows this discrete logarithm. Hence, an adversary cannot
impersonate a user without knowing his share. Similar to Boudot and Tre-
ore [4], a range check on Di might be necessary while verifying the proof
of correctness to detect incorrect partial signatures from users with valid
shares.

– Zero-Knowledge Simulatability: To prove the zero-knowledge simulatability,
we will use the random oracle model for the hash function h and construct a
simple simulator. When an uncorrupted user wants to create a proof (σi, Di)
for a message w and partial signature si, the simulator returns

σi ∈R {0, . . . , 2L1 − 1}

and
Di ∈R {0, . . . , 2L(mi)+2L1 − 1}

and sets the value of the oracle at

(w′, gi, si, v
′
i, w

′Disi
−σi mod N, gi

Div′i
−σi mod pi)

as σi. Note that, the value of the random oracle is not defined at this point
but with negligible probability. When a corrupted user queries the oracle,
if the value of the oracle was already set the simulator returns that value
otherwise it returns a random one. It is obvious that the distribution of
the output of the simulator is statistically indistinguishable from the real
output.

To reduce the security of the proposed threshold RSA signature scheme to the
security of the standard RSA signature scheme, the following proof constructs
another simulator.

Robust Threshold Schemes Based on the Chinese Remainder Theorem 101

Theorem 1. Given that the standard RSA signature scheme is secure, the thresh-
old RSA signature scheme is robust and secure under the static adversary model.

Proof. To reduce the problem of breaking the standard RSA signature scheme
to breaking the proposed threshold scheme, we will simulate the threshold pro-
tocol with no information on the secret where the output of the simulator is
indistinguishable from the adversary’s point of view. Afterwards, we will show
that the secrecy of the private key d is not disrupted by the values obtained by
the adversary. Thus, if the threshold RSA scheme is not secure, i.e., an adversary
who controls t − 1 users can forge signatures in the threshold scheme, one can
use this simulator to forge a signature in the standard RSA scheme.

Let S′ denote the set of users controlled by the adversary. To simulate the
adversary’s view, the simulator first selects a random interval I = [a, b) from
ZM , M =

∏t
i=1 mi. The start point a is randomly chosen from ZM and the end

point is computed as b = a+m0MS′ . Then, the shares of the corrupted users are
computed as yj = a mod mj for j ∈ S′. Note that, these t−1 shares are indistin-
guishable from random ones due to (1) and the improved perfectness condition.
Although the simulator does not know the real value of d, it is guaranteed that
for all possible d, there exists a y ∈ I which is congruent to yj (mod mj) and to
d (mod m0).

Since we have a (t, n)-threshold scheme, given a valid RSA signature (s, w),
the partial signature si for a user i /∈ S′ can be obtained by

si = sκ−δS
∏

j∈S′

(wuj)−1 mod N

where S = S′ ∪ {i}, κ = w−MS mod N and δS is equal to either
⌊�

j∈S′ uj

MS

⌋
+ 1

or
⌊�

j∈S′ uj

MS

⌋
. The value of δS is important because it carries information on

y. Let U =
∑

j∈S′ uj and US = U mod MS . One can find whether y is greater
than US or not by looking at δS :

y < US if δS = �U/MS� + 1,

y ≥ US if δS = �U/MS�.

Since the simulator does not know the real value of y, to determine the value of
δS , the simulator acts according to the interval randomly chosen at the beginning
of the simulation.

δS =
{

�U/MS� + 1, if a < US
�U/MS�, if a ≥ US

(8)

It is obvious that, the value of δS is indistinguishable from the real case if
US /∈ I. Now, we will prove that the δS values computed by the simulator does
not disrupt the indistinguishability from the adversary’s point of view. First of
all, there are (n−t+1) possible δS computed by using US since all the operations

102 K. Kaya and A.A. Selçuk

in the exponent depend on the coalition S alone. If none of the US values lies
in I, the δS values observed by the adversary will be indistinguishable from
a real execution of the protocol. Using this observation, we can prove that no
information about the private key is obtained by the adversary.

Observing the t − 1 randomly generated shares, there are m0 = φ(N) candi-
dates in I for y which satisfy yj = y mod mj for all j ∈ S′. These m0 candidates
have all different remainders modulo m0 since gcd(MS′ , m0) = 1. So, exactly one
of the remainders is equal to the private key d. If US /∈ I for all S, given an si, the
shared value y can be equal to any of these m0 candidates hence any two different
values of the secret key d will be indistinguishable from adversary’s point of view.
In our case, this happens with all but negligible probability. First, observe that
US ≡ 0 mod mi and there are m0MS′/mi multiples of mi in I. Thus, the prob-
ability of US /∈ I for a coalition S is equal to

(
1 − m0MS′ /mi

MS′

)
=

(
1 − m0MS′

MS

)
.

According to (1), mi > m0
2 for all i hence the probability of US /∈ I for all

possible S is less than
(
1 − 1

m0

)n−t+1
, which is almost surely 1 for m0 � n.

The simulator computes the public verification data of the users in S′ as
vj = gyj mod pj for j ∈ S′. For other users i /∈ S′, the simulator chooses a
random integer yi ∈R Zmi and sets vi = gyi mod pi. Note that gcd(N, pi) = 1.
So the public verification data generated by the simulator are computationally
indistinguishable from the real ones.

Consequently, the output of the simulator is indistinguishable from a real
instance from the adversary’s point of view, and hence the simulator can be
used to forge a signature in the standard RSA scheme if the threshold RSA
scheme can be broken. ��

4 Robustness in Other CRT-Based Threshold Schemes

The robustness extension given in Section 3 can be applied to other CRT-based
threshold schemes as well. Here we describe how to adapt the extension to the
CRT-based threshold Paillier and ElGamal function sharing schemes.

4.1 Robust Sharing of the Paillier Decryption Function

Paillier’s probabilistic cryptosystem [16] is a member of a different class of cryp-
tosystems where the message is used in the exponent of the encryption operation.
The description of the cryptosystem is as follows:

– Setup: Let N = pq be the product of two large primes and λ = lcm(p−1, q−
1). Choose a random g ∈ ZN2 such that the order of g is a multiple of N .
The public and private keys are (N, g) and λ, respectively.

– Encryption: Given a message w ∈ ZN , the ciphertext c is computed as

c = gwrN mod N2

where r is a random number from ZN .

Robust Threshold Schemes Based on the Chinese Remainder Theorem 103

– Decryption: Given a ciphertext c ∈ ZN2 , the message w is computed as

w =
L

(
cλ mod N2

)

L (gλ mod N2)
mod N

where L(x) = x−1
N , for x ≡ 1 (mod N).

By using the combine-and-correct approach, Kaya and Selçuk proposed a
threshold version of the Paillier’s cryptosystem [14]. As in threshold RSA, the
decryption coalition needs to compute an exponentiation, s = cλ mod N2, where
the exponent λ is shared by Asmuth-Bloom SSS in the setup phase. Hence,
similar to RSA, the partial result si of the ith user is equal to si = cui mod N2.
The robustness extension can be applied to the Paillier cryptosystem as follows:

– Setup: Use Asmuth-Bloom SSS for sharing λ with m0 = φ(N2) = Nφ(N).
Let gi ∈ Z

∗
pi

be an element with order mi in Z
∗
pi

. Broadcast the public
verification data gi and

vi = gyi

i mod pi

for each user i, 1 ≤ i ≤ n.
– Generating the proof of correctness : Let h : {0, 1}∗ → {0, . . . , 2L1 − 1} be a

hash function where L1 is another security parameter. Let

c′ = cMS\{i} mod N2,

v′i = vi
M ′

S,i mod pi,

zi = yiM
′
S,i mod mi.

Each user i ∈ S first computes

W = c′r mod N2,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(c′, gi, si, v
′
i, W, G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with the partial decryption si.
– Verifying the proof of correctness: The proof (σi, Di) for the ith user can be

verified by checking

σi
?= h(c′, gi, si, v

′
i, c

′Disi
−σi mod N, gi

Div′i
−σi mod pi). (9)

If the ith user is honest then the proof succeeds since c′Disi
−σi = c′r mod N2

and gi
Div′i

−σi = gi
r mod pi. The soundness property can be proved with a proof

similar to the proof of Theorem 1. Note that gcd(N2, pi) = 1 for all users and
φ(N2) = Nφ(N) is secret. A similar proof can be given for the zero knowledge
simulatability as the one in Section 3.1.

104 K. Kaya and A.A. Selçuk

4.2 Robust Sharing of the ElGamal Decryption Function

The ElGamal cryptosystem [13] is another popular public key scheme with the
following description:

– Setup: Let p be a large prime and g be a generator of Z
∗
p. Choose a random

α ∈ {1, . . . , p − 1} and compute β = gα mod p. (β, g, p) and α are the public
and private keys, respectively.

– Encryption: Given a message w ∈ Zp, the ciphertext c = (c1, c2) is computed
as

c1 = gk mod p,

c2 = βkw mod p

where k is a random integer in {1, . . . , p − 1}.
– Decryption: Given a ciphertext c, the message w is computed as

w = (c1
α)−1c2 mod p.

Adapting our robustness extension to the threshold ElGamal scheme given
in [14] is slightly more complicated than it is for the Paillier’s cryptosystem,
because φ(p) = p−1 is public. A simple solution for this problem is to extend the
modulus to N = pq where p = 2p′+1 and q = 2q′+1 are safe primes. There exist
versions of the ElGamal encryption scheme in the literature with a composite
modulus instead of p. For example, Wei et al. [22] modified the standard ElGamal
scheme to obtain a hidden-order ElGamal scheme. They proved that their scheme
is as secure as each of the standard RSA and ElGamal cryptosystems. Here we
give the description of a robust, CRT-based threshold scheme for Wei et al.’s
version of the ElGamal encryption.

– Setup: In the ElGamal setup phase, choose p = 2p′ + 1 and q = 2q′ + 1 be
large primes such that p′ and q′ are also prime numbers. Let N = pq and let
gp and gq be generators of Z

∗
p and Z

∗
q , respectively. Choose αp ∈R Z

∗
p and

αq ∈R Z
∗
q such that gcd(p − 1, q − 1) | (αp − αq). The secret key α ∈ Zλ(N)

is the unique solution of the congruence system

α ≡ αp (mod p − 1),
α ≡ αq (mod q − 1)

where λ(N) = 2p′q′ is the Carmichael number of N . Similarly, the public
key β ∈ ZN is the unique solution of congruence system

β ≡ gp
αp (mod p),

β ≡ gq
αq (mod q).

Let g be the unique solution of the congruence system

g ≡ gp (mod p),
g ≡ gq (mod q)

Robust Threshold Schemes Based on the Chinese Remainder Theorem 105

and α and (β, g, N) be the private and the public keys, respectively. Note
that β = gα mod N . Use Asmuth-Bloom SSS for sharing the private key α
with m0 = 2p′q′. Let gi ∈ Z

∗
pi

be an element with order mi in Z
∗
pi

. Broadcast
the public verification data gi and vi = gyi

i mod pi for each user i, 1 ≤ i ≤ n.
– Encryption: Given a message w ∈ ZN , the ciphertext c = (c1, c2) is computed

as

c1 = gk mod N,

c2 = βkw mod N

where k is a random integer from {1, . . . , N − 1}.
– Decryption: Let (c1, c2) be the ciphertext to be decrypted where c1 = gk mod

N for some k ∈ {1, . . . , N −1} and c2 = βkw mod N where w is the message.
The coalition S of t users wants to obtain the message w = sc2 mod N for
the decryptor s = (cα

1)−1 mod N .
• Generating the partial results: Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (10)

si = c1
−ui mod N,

βi = gui mod N. (11)

• Generating the proof of correctness : Let h : {0, 1}∗ → {0, . . . , 2L1 − 1}
be a hash function where L1 is another security parameter. Let

c′1 = c1
MS\{i} mod N,

v′i = vi
M ′

S,i mod pi,

zi = yiM
′
S,i mod mi.

Each user i ∈ S first computes

W = c′1
r mod N,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(c′1, gi, si, v
′
i, W, G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with si.
• Verifying the proof of correctness: The proof (σi, Di) for the ith user can

be verified by checking

σi
?= h(c′1, gi, si, v

′
i, c

′
1
Disi

−σi mod N, gi
Div′i

−σi mod pi).

106 K. Kaya and A.A. Selçuk

• Combining the partial results: The incomplete decryptor s is obtained
by combining the si values

s =
∏

i∈S
si mod N.

• Correction: The βi values will be used to find the exponent which will
be used to correct the incomplete decryptor. Compute the incomplete
public key β as

β =
∏

i∈S
βi mod N. (12)

Let κs = c1
MS mod N and κβ = g−MS mod N be the correctors for s

and β, respectively. The corrector exponent δ is obtained by trying

βκj
β

?≡ β (mod N) (13)

for 0 ≤ j < t.
• Extracting the message: Compute the message w as

s = sκs
δ mod N,

w = sc2 mod N.

where δ denotes the value of j that satisfies (13).

As in the case of RSA, the decryptor s is incomplete since we need to obtain
y =

∑
i∈S ui mod MS as the exponent of c−1

1 . Once this is achieved, (c−1
1)y ≡

(c−1
1)α (mod N) since y = α + 2Ap′q′ for some A.
When the equality in (13) holds we know that β = gα mod N is the correct

public key. This equality must hold for one j value, denoted by δ, in the given
interval since the ui values in (10) and (11) are first reduced modulo MS . So,
combining t of them will give α + am0 + δMS in the exponent in (12) for some
δ ≤ t − 1. Thus in (12), we obtained

β = gα+am0+δMS mod N ≡ gα+δMS = βgδMS = βκ−δ
β (mod N)

and for j = δ equality must hold. Actually, in (12) and (13), our purpose is not to
compute the public key since it is already known. We want to find the corrector
exponent δ in order to obtain s, which is equal to the one used to obtain β. This
equality can be seen as follows:

s ≡ c1
−α = β−r

=
(
g−(α+(δ−δ)MS)

)r

= c1
−(α+am0+δMS) (

c1
MS

)δ
= sκs

δ (mod N)

If the ith user is honest then the proof succeeds since c′1
Disi

−σi = c′1
r mod N

and gi
Div′i

−σi = gi
r mod pi. The soundness property can be proved with a proof

similar to the one in Section 3.1. Note that gcd(N, pi) = 1 for all users and
λ(N) = 2p′q′ is secret. A similar proof can be given for the zero knowledge
simulatability as the one in Section 3.1. We omit the security proof here since the
structure of the simulator is very similar to the one in Theorem 1 of Section 3.1.

Robust Threshold Schemes Based on the Chinese Remainder Theorem 107

5 Conclusion

In this paper, we proposed robust threshold RSA, Paillier and ElGamal schemes
based on the Asmuth-Bloom SSS. Previous solutions for robust function shar-
ing schemes were based on the Shamir’s SSSs [10,15,19,21]. To the best of our
knowledge, the schemes described in this paper are the first robust and secure
FSSs using a CRT-based secret sharing. The ideas presented in this paper can
be used to obtain other robust FSSs based on the CRT.

References

1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. In-
formation Theory 29(2), 208–210 (1983)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proc. of First ACM Conference on Computer and Commu-
nications Security, pp. 62–73 (1993)

3. Blakley, G.: Safeguarding cryptographic keys. In: Proc. of AFIPS National Com-
puter Conference (1979)

4. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes with
fast or delayed recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS,
vol. 1726, pp. 87–102. Springer, Heidelberg (1999)

5. Chaum, D., Evertse, J.H., Van De Graaf, J.: An improved protocol for demon-
strating possesion of discrete logarithm and some generalizations. In: Price, W.L.,
Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer,
Heidelberg (1988)

6. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

7. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)

8. Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Okamoto,
E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 158–173. Springer, Heidelberg (1998)

9. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

10. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Hei-
delberg (1992)

11. Desmedt, Y., Frankel, Y.: Homomorphic zero-knowledge threshold schemes over
any finite abelian group. SIAM Journal on Discrete Mathematics 7(4), 667–679
(1994)

12. Ding, C., Pei, D., Salomaa, A.: Chinese Remainder Theorem: Applications in Com-
puting, Coding, Cryptography. World Scientific, Singapore (1996)

13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory 31(4), 469–472 (1985)

14. Kaya, K., Selçuk, A.A.: Threshold cryptography based on Asmuth–Bloom secret
sharing. Information Sciences 177(19), 4148–4160 (2007)

15. Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 331–350. Springer, Heidelberg (2001)

108 K. Kaya and A.A. Selçuk

16. Paillier, P.: Public key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999)

17. Poupard, G., Stern, J.: Security analysis of a practical on the fly authentication and
signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 422–436. Springer, Heidelberg (1998)

18. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Comm. ACM 21(2), 120–126 (1978)

19. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function se-
curely? In: Proc. of STOC 1994, pp. 522–533 (1994)

20. Shamir, A.: How to share a secret? Comm. ACM 22(11), 612–613 (1979)
21. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)
22. Wei, W., Trung, T., Magliveras, S., Hoffman, F.: Cryptographic primitives based on

groups of hidden order. Tatra Mountains Mathematical Publications 29, 147–155
(2004)

	Robust Threshold Schemes Based on the Chinese Remainder Theorem
	Introduction
	Function Sharing Based on the Asmuth-Bloom Secret Sharing
	Robust Sharing of the RSA Function
	Security Analysis

	Robustness in Other CRT-Based Threshold Schemes
	Robust Sharing of the Paillier Decryption Function
	Robust Sharing of the ElGamal Decryption Function

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

