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Preface

This brief studies a dynamic model of the vital process of gene regulation. Gene
regulation is a way through which cells communicate with their environment.
Failures in the gene regulation process may result in serious diseases such as cancer.
Moreover, with the newly emerging field of synthetic biology, synthetic circuits are
built using gene and gene products. Therefore, accurate modeling and analysis of
gene regulatory networks (GRNs) are crucial. In the literature, mathematical models
proposed for GRNs include Boolean models, stochastic models, and ordinary
differential equation (ODE) based models. In this manuscript, we investigate an
ODE-based cyclic GRN model involving static Hill-type nonlinearities and delays.
Note that Hill functions are commonly used as nonlinear regulatory functions in
the biology literature. An important property of Hill functions is that they have
negative Schwarzian derivatives; this fact is exploited in the analysis proposed in the
manuscript. The GRN model studied in this volume also contains time delays in the
feedback loop, which makes the dynamical system studied an infinite dimensional
system. The analysis leads to easily interpretable results for asymptotic stability,
oscillations, and bistability.

We investigate the ODE-based GRN model under negative and positive feedback.
Negative feedback helps cells respond faster and lower cellular noise. Moreover, it
causes oscillations with specific periods. Therefore, negative feedback is a common
motif in many biological pathways including those regulating body temperature,
blood glucose levels, and circadian cycles. Positive feedback is also common in
biological pathways and it is often associated with bistability. Bistability leads to
switching behavior, which is important in processes such as cellular differentiation
and apoptosis. Given their biological importance, in this manuscript we analyze the
GRNs both under negative and positive feedback.

The manuscript is organized as follows. Chapter 1 is devoted to the introduction
of various GRN models, starting with Boolean-based models and ending with
ODE-based models. Chapter 2 introduces the required mathematical background
on systems and control theory as well as the notation that will be used throughout
the book. In Chapter 3, a novel analysis of functions with negative Schwarzian
derivatives is provided. Readers who are familiar with the control theory and

vii



viii Preface

properties of functions with negative Schwarzian derivatives may skip Chapters 2
and 3. Chapter 4 consists of the derivation and basic properties of the model
analyzed in the manuscript from the general deterministic ODE-based model of the
GRNs introduced in Chapter 1. In Chapter 5, a global stability analysis of the GRN
model is performed under negative feedback. A necessary and sufficient condition
is derived for the delay-independent global stability of the deterministic ODE-based
GRN model. A delay-dependent local stability condition is obtained by extending
the so-called secant condition to cyclic systems with delayed feedback. Moreover,
lower and upper bounds on the magnitude of the periodic oscillations are given when
the system is not stable. Most of the results presented in Chapter 5 are based on our
recent work [1]. In Chapter 6, the ODE-based GRN model is studied under positive
feedback. It is shown that under positive feedback, generically, the system converges
to one of its equilibrium points. Conditions on bistability as well as existence of a
unique equilibrium are investigated. Chapter 6 is based on the results of [2] and [3].
Finally, Chapter 7 makes some concluding remarks and points out possible future
research directions in this area.

TX, USA Mehmet Eren Ahsen
Ankara, Turkey Hitay Ozbay
Paris, France Silviu-Iulian Niculescu
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Chapter 1
Introduction

Abstract In this chapter, background material is presented for the gene regulation
process and mathematical models of such systems are discussed. In particular, most
popular classification and regression methods are briefly mentioned to give an idea
on how data collected using microarrays can be used in modeling gene regulatory
networks. The chapter ends with the formal definition of the continuous-time ODE-
based model with delay to be analyzed in the rest of the book.

Keywords Gene regulatory networks ¢ Modeling ¢ Classification methods
Regression methods * ODE-based model  Nonlinear system ¢ Time delay

In this monograph, we will be concerned with one of the most complex processes
in nature, namely the gene regulatory mechanism. After decades of research, this
subject is not completely well understood. Although we have a system theoretic
analysis of gene regulation in this monograph, the authors think that some basic
biological knowledge is needed to appreciate the importance of the gene regulation
process. The next section gives a brief introduction for this purpose.

1.1 A Brief Glimpse into Biology

Deoxyribonucleic acid (DNA) is the hereditary molecule in almost all living
organisms (excluding some viruses). In DNA, genetic information is encoded
as a sequence of four nucleotides: adenine (A), guanine (G), cytosine (C), and
thymine (T). Most DNA molecules are long polymers which are comprised of
double-stranded helical chains coiled round the same axis. These two strands are
complementary to each other, i.e. adenine forms hydrogen bonds with thymine and
cytosine forms hydrogen bonds with guanine. This double-stranded structure of the
DNA was discovered by James Watson and Francis Crick in 1953 [4]. Their seminal
paper [4] is only two pages long, but its implications in the study of molecular
biology were immense. It is considered one of the greatest scientific achievements
in history.

© The Author(s) 2015 1
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2 1 Introduction

Within cells, DNA is packaged into compartments called chromosomes. For
example, humans have 23 pairs of chromosomes, out of which one pair contains
the sex chromosomes responsible for the determination of the sex. The whole set of
chromosomes in a cell is called the genome. It is estimated that the human genome
consists of 3 billion base pairs of DNA. Ribonucleic acid (RNA) is a biological
molecule which has an important role in protein synthesis. Unlike DNA, most
RNA is single stranded and consists of the nucleic acids: adenine (A), guanine (G),
cytosine (C), and uracil (U). Moreover, RNA contains the sugar ribose, whereas
DNA contains the sugar deoxyribose. The three major types of RNA that are of
interest to us are: 1) Messenger RNA (mRNA), 2) Transfer RNA (tRNA), and 3)
Ribosomal RNA (rRNA), each of which has a role in protein synthesis. Genes
are the parts of the DNA that code for proteins and RNA. Proteins are biological
molecules consisting of chains of amino acids that are bound together by peptide
bonds. The functions of proteins include (i) catalyzers of metabolic reactions, (ii)
receptors to environmental stimuli, (iii) building blocks of organelles, and (iv)
transportation of molecules. As an example of their catabolic function, we may
consider energy production. Cells need energy to perform metabolic processes. The
mechanism to produce energy in cells is ATP synthesis. In cells, ATP is synthesized
in the presence of an enzyme called ATP synthase. In humans, around 1000 ATP
molecules are produced per second. Without the presence of the enzyme ATP
synthase, it would take days to produce a single molecule of ATP. Therefore, without
enzymes the cell would not be able to sustain life. Protein synthesis starts with a
process called transcription, during which the protein-coding gene is copied into
pre-mRNA with the help of an enzyme called RNA polymerase. Then, the coding
parts of the gene are separated from the non-coding parts by a process called RNA
splicing. After the splicing process, the mature mRNA leaves the nucleus. In the
mRNA sequence, three nucleotides correspond to a codon. Each codon sequence
specifies a unique amino acid, but more than one codon sequence may correspond
to the same amino acid. This can also be inferred from the fact that there are only 20
different amino acids but 64 different codon sequences. The amino acids are linked
to each other by peptide bonds by ribosomes with the help of tRNA.

According to [5], the human genome has approximately 20 000 protein-coding
genes. The human genome project was the first attempt to determine the complete
human genome. The project started in 1989, and the first complete genome was
announced in 2003. The project cost around 3 billion dollars and it took nearly 14
years to complete. Today, the cost of sequencing has dropped to several thousand
dollars, thanks to the advances in the sequencing technology. This decrease in the
cost of sequencing resembles Moore’s law for transistors. Owing to this decrease,
vast amounts of data have been produced by several researchers across the world.
Most of those data is available in public databases such as TCGA (The Cancer
Genome Atlas) [6].

The fact that only a portion of the genome codes for protein (it is estimated that
less than 2% of the genome codes for protein) poses a challenge in gene regulation:
identifying parts of the gene that code for protein is a challenging task, and there is a
huge literature devoted to this problem. Mutations in the DNA provide an additional
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challenge. It is thought that mutations in the protein-coding genes may lead to
genetic diseases such as cancer; hence, the determination of the gene sequence is
important for the cure of some diseases. Today, researchers are comparing gene
sequences of healthy and tumorous tissues to determine which mutations may lead
to cancer. The ultimate aim of these studies is to provide personalized medicine,
as reasons leading to a disease are generally different between patients. Therefore,
understanding gene regulation and the effects of specific genetic mutations on gene
regulation are important factors in disease development and cure.

1.2 Gene Regulatory Networks

A Gene Regulatory Network (GRN) can be defined as the interaction of DNA
segments (genes) with themselves and with regulatory proteins in the cell. Cells use
this regulatory mechanism to communicate with their environment. They respond
to environmental stimuli by expressing certain genes. As an example, when bacteria
cells are grown in a glucose-deficient but lactose-rich environment, the genes that
are responsible for the digestion of lactose are expressed [7]. This way, lactose
is digested into glucose; hence, cells are able to produce the energy required for
the metabolism from glucose. Another example is the p53 gene, which plays an
important role in various vital processes including the initiation of apoptosis (the
process of programmed cell death). If there exists irreparable damage in the DNA,
p53 initiates apoptosis which leads to the death of the infected cell [8]. Therefore,
p53 is generally known as tumor suppressor. Thus, in order to cure diseases,
gene regulation has to be understood correctly, and reliable mathematical models
facilitate this endeavor.

With the help of recent advances in the microarray technology, we can obtain
accurate measurements of gene expression levels at a reasonable price. Without
going into details, we can simply say that microarrays allow simultaneous mea-
surements of the gene expression levels, under certain experimental conditions. By
using the gene expression levels and using statistical tools, researchers try to find
biomarkers which may be associated with a specific disease. The most important
problem with this approach is the lack of samples (patients). Microarray data
consists of expression levels of approximately 20000 genes, whereas the number of
samples available is generally several hundreds. This situation is generally referred
to as p < n case. Depending on the nature of the biological problem, available
data can be analyzed using various machine learning methods such as regression,
classification, or clustering. In this chapter, we want to give a brief introduction
to classification and regression methods due to their wide range of applications
in biology and engineering, as well as other fields such as finance and business
management. If the outcome of the events associated with our problem is real
valued, we can use available regression methods. Two biological applications of
interests are the problems of predicting the time to tumor recurrence from gene
expression data, and predicting the response of a patient to the drug. These type
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of applications have very important benefits to the community such as predicting
which treatment will be the best for the patient, especially for a cancer patient,
for whom the timely treatment is crucial. One of the most popular regression
algorithms is Lasso (Least Absolute Shrinkage and Selection Operator) [9]. It is
a linear regression algorithm which minimizes the sum of squares subject to the
sum of the absolute value of the coefficients being less than a constant value. Sum
of the absolute value of the coefficients is usually known as the £;-norm. Hence,
Lasso formulation is as follows: given A, y, ¢, find

)%Lasso = arg mxin ”y - AX||2 s.t. ||X||1 =c. (11)

The £,-norm constraint in the Lasso formulation gives it the ability to automatically
shrink some coefficients to zero; thus, providing feature selection. The constant ¢ in
(1.1) is used as a mean to balance the MSE (Mean Square Error) and the sparsity
of the vector x. In the above formulation, the matrix 4 € R"*" is the measurement
matrix, whereas y € R™ is the observation vector. In biology, depending on the
application, the matrix A can denote continuous variables such as gene expression
levels, miRNA (micro RNA), protein expression levels as well as binary variables
such as the mutation status of genes. Similarly, the vector y denotes continuous
variables such as the time for a tumor to recur after being treated, or binary values
such as the stage of a cancer. There are several limitations of Lasso including the
number of genes selected is generally less than the number of training points, and
the instability of the final feature set when the variables are highly correlated. These
deficiencies have been discussed in [10], and to overcome the shortcomings of Lasso
the authors introduced EN (Elastic Net) algorithm. The EN formulation is given as
follows:

fpy =arg min |y — Ax|2 st pllxll + 1 - wlx]3 <. (1.2)

In general, the EN algorithm chooses more features than the number of training
points. More importantly, among a given set of high correlated variables, EN tends
to assign similar weights, whereas Lasso chooses one at random. This makes Lasso
very sensitive to measurement noise. In other words, if the data is perturbed slightly,
the final feature set selected by Lasso may change dramatically, whereas the final
feature set selected by EN remains pretty much the same. This is a clear advantage
of EN over Lasso. Moreover, in most practical applications, EN seems to provide
more accurate results than Lasso. The Lasso and EN are mostly used in regression
problems, where the vector y takes continuous values.

In classification problems, the vector y takes finitely many discrete values
(usually binary). To clarify the basic idea in classification we will assume that y
is binary valued. A typical formulation of a classification problem is as follows:
Suppose we are given a measurement matrix A € R™*", where each row a’ of A
consists of measurements of features corresponding to sample i . Moreover, suppose
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that the m samples are grouped into two sets, which we denote as .#| and .#5.
Without loss of generality, we can assume that the first set .#) consists of the vectors
a',---,a™ and the second set .#, consists of the vectors @™t ... g™*"2 Here
we implicitly assume that m4-m, = m. We then construct the vector y by assigning
the label y; = +1 to the vectors in the set .#] and y; = —1 to the vectors in the set
>. The purpose of a classification problem is to find a discrimination function
f : R" — R such that f(x) has the same sign as y; for all i. Moreover, in
a biological problem, where one wants to find which features are mostly related
to the observed output, one desires to find an appropriate mapping f(x) that uses
relatively few features while still maintaining the discriminative ability between the
groups ., and .#,. The most popular classification algorithm is the well-known
Support Vector Machine (SVM), which is introduced in [11]. The basic idea behind
SVM can be described as follows. Suppose we are given a set of labeled vectors
{(@',y;),a" € R",y; € {—1,1}}, we want to find a support vector w € R" and
a threshold 6 € R such that the discriminant function f(x) = xw — 6 linearly
separates the data. In other words, we have

aiw>9,Vi Geﬂl, aiw<9,Vi €=%2.

If the data is linearly separable [12], then there exist infinitely many support vectors
that separate the data. The SVM chooses the support vector w that minimizes ||w||
for a given norm | - || of w. In the original formulation of SVM [11], this norm
is chosen as the £,-norm. Hence, mathematically we can formulate the SVM as
follows:

min |w|| st a'w>1, Vi €, da'w<-—1, Vie.d. (1.3)

The SVM formulation in (1.3) is a convex optimization problem. In particular, if the
norm in (1.3) is the £;-norm, then the problem becomes a quadratic programming
problem which can be solved efficiently. Due to the structure of the £,-norm, the
£,-norm SVM produces a support vector w such that every entry of the vector w
is nonzero [12]. Hence, automatic feature selection is not possible in the original
SVM formulation. The paper [13] suggests RFE (Recursive Feature Selection) for
feature selection in SVM with £, in the regularizer, where the authors propose
to order the features using their corresponding coordinates in the weight vector
w and then remove the one with the least weight. Similar to Lasso, which uses
£1-norm in its regularizer, the £;-norm SVM, introduced in [14], produces a sparse
classifier that linearly separates data. One recent classification algorithm, which
takes advantage of the £;-norm SVM, is called £;—StaR (Lone Star) [15]. The Lone
Star is a two-class classification algorithm which selects statistically significant
genes, the number of such genes is generally far less than the number of samples.
Similar to £,-norm SVM RFE algorithm in [13], Lone Star uses RFE with £;-norm
to provide feature selection. The automatic feature selection ability of the £;-norm
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SVM provides reduction of several features in one iteration of Lone Star. Hence,
Lone Star converges much faster than its £,-norm counterpart given in [13].

In both regression and classification problems, a known problem is overfitting.
Overfitting generally arises when the number of features  is larger than the number
of samples m, which is the case for almost all the available biological data sets.
When the number of features is larger the number of samples, we can easily find a
discriminant function that performs well on the training data but very poorly on test
data. In fact, one reason for feature selection is to reduce the risk of overfitting by
explaining the data in as few dimensions as possible. Feature selection algorithms
that use regularization, including SVM, Lasso, and EN, avoid overfitting to some
extent even without feature reduction [13]. Two biological reasons for feature
selection are as follows: (i) it is believed that a biological process is affected by
a small number of molecules; (i) we need to generate hypothesis that can be
practically validated experimentally.

Another way of using microarray technology is getting time series data for genes
of interest and trying to fit a continuous-time model accounting for the dynamical
behavior of the regulatory mechanism between the selected genes. Such a specific
need is in the design of synthetic networks. In [16], a synthetic oscillatory network
has been produced by using gene products, which could be considered as one of
the early achievements of the newly emerging field synthetic biology. By using
tools from synthetic biology, it is envisioned that one will be able to use plants as
sensor chemicals in order to produce clean and renewable fuels, or even to recognize
cancer cells and destroy them [17]. Therefore, accurate modeling and analysis of
gene regulatory networks (GRNs) are important for building synthetic networks.
Synthetic networks are designed to serve a specific purpose; for example, they may
be designed to function similar to components in the electrical circuits (such as
inverters and gates) or they may have oscillations with predefined periods. For all
such purposes, techniques from feedback control and system theory can be applied
to gene regulatory network models. The study of gene regulation can be divided
into two parts. The first part deals with finding accurate models compatible with
the biological evidence. This includes estimating the parameters of a dynamical
network model from experimental data. The second part deals with the analysis of
these models, which includes the robustness analysis of a network with respect to
perturbations in the system parameters. This book is about the second part, for a
deterministic continuous-time dynamical model. In order to give a bigger picture, in
the next section we discuss various GRN models.

1.3 Models for Gene Regulatory Networks

The decrease in the cost of obtaining gene expression data, and the improvement
in measurement techniques resulted in vast amounts of data produced by various
researchers around the globe. Proper analysis of gene expression data may give
us useful insights about the changes in the regulatory networks that may lead to
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diseases. For example, parts of the regulatory network between a normal person
and a cancer patient might be quite different. A differential analysis of the GRN
between a healthy person and a patient might give us clues about the treatment
of that particular disease. In this section, we will briefly summarize three methods
on the analysis of gene regulatory networks: (1) Boolean Networks (2) Reverse
Engineering Methods (3) Continuous-Time models. Out of these three methods,
Reverse Engineering Methods are used to identify which genes are interacting with
each other by using the available steady state gene expression data. In this way, it
serves as a guide for building dynamical models from time series data using the
other two methods mentioned. The focus of the current monograph will be on the
continuous-time models, i.e. ODE models representing GRNs. Let us now briefly
describe these three methods.

1.3.1 Boolean Networks

Boolean networks consist of Boolean variables which take only discrete values.
Usually, when the biological entity is active it takes the value “1”” and when inactive
it takes the value “0.” The input to each Boolean variable is a Boolean function
of a subset of the variables. The output of this Boolean function determines the
output (state) of the corresponding Boolean variable. In Boolean networks, the
time is discretized as well; hence, the states of each variable is updated at each
step according to its Boolean function. In the Boolean network representation of
GRNs, each node corresponds to a gene or gene product. Therefore, the number of
nodes (N) in the network is equal to the number of genes or gene products under
consideration. At any time, the state of a node is “1” if the corresponding gene is
expressed and it is “0” otherwise. Therefore, at any given time instant the network
is at one of its 2 possible states. Due to its discrete nature, Boolean networks
do not capture the dynamic nature of the underlying GRN. So, when the GRN
under consideration is small and only qualitative information is available, Boolean
networks can provide researchers useful knowledge about the existence and nature
of steady states. Therefore, if one needs to analyze dynamical features of the GRN
such as the period of oscillations or effect of delays on the network, it will be
better to use continuous-time models. Usually, Boolean networks are used when the
regulatory network is not known or partially known. Boolean networks are easier to
analyze as they have a predetermined number of states. The regulatory relationships
between the genes can be found using the experimental data. Also, note that we
may choose to analyze the global network or we may focus on a local part of the
network. For an in-depth analysis of Boolean gene regulatory network models, see,
for instance, [18].
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1.3.2 Reverse Engineering Gene Regulatory Networks

The primary aim of reverse engineering GRN modeling is to understand how gene
and gene products within a cell interact with each other. In this method, gene and
gene products are considered as random variables. The network is then constructed
by using the dependence structure between these random variables (genes and
gene products). The joint probability distribution functions between genes are
estimated using the experimental steady state data. Depending on the algorithm
used, we may end up with a directed or an indirected network. Reverse engineering
allows deducing dependence structure between genes and gene products using the
estimated probability distributions. The resulting network obtained by this method
does not give much information about the dynamical behavior of the network. It
facilitates the process of building a dynamical model that represents the system
to be investigated by giving information about the interaction of genes. Therefore,
this method is most suitable if we do not have much idea about the interactions in
the system. To give a more detailed description of the reverse engineering method,
let A € R”*" represent the gene expression data. Here, the integer n corresponds
to the number of features (genes and gene products) and p corresponds to the
number of samples. As mentioned earlier, when this approach is considered, it is
necessary to be sure that samples have the same context (e.g., each sample should
have lung cancer). In the context of specific geno-wide networks, the number of
genes under study is in the order of 20000, whereas the number of samples is
around 500, so p < n as mentioned before. Consider now the expression levels
of the genes as random variables Ay, ..., A,, so that each column of the matrix 4
corresponds to independent realizations of the random variable A4;. Since p < n,
the joint distribution of the random variables cannot be reliably inferred from the
data. Therefore, the aim of the reverse engineering algorithms is to capture at
least the dependence structure in the network. In order to do that, first, the joint
distribution of the random variables A; and A is estimated using the matrix X . One
such popular reverse engineering algorithm is the so-called ARACNE (Algorithm
for the Reconstruction of Accurate Cellular Networks) [19], which uses mutual
information in order to deduce the independence structure in the network. Since the
mutual information is a symmetric quantity, the network produced by the ARACNE
algorithm does not have a direction. In [20], the authors deal with this restriction
by using another information theoretic quantity known as the ¢-mixing coefficient.
For two random variables A4; and A; assuming values in finite sets A and 1B, the
¢-mixing coefficient is defined as follows:

¢(A,|A/) = SgHAg,aTXnglpr{Ai [S S|A/ [S T} —PI‘{A[ € S}|

For discrete random variables, a closed form formula for the ¢-mixing coefficient is
proven in [21]. Therefore, computation of the ¢-mixing is efficient. The ¢-mixing
coefficient also satisfies the data processing inequality [22], which is used to infer
the independence structure of the network. Moreover, it can be easily verified that
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¢(Ai|A;) # ¢(Ai|A;). Therefore, the resulting network is directed. Furthermore,
the resulting graph is also weighted with each weight being equal to the ¢-mixing
coefficient between the corresponding nodes. Reverse engineering methods are
generally used for identifying biological pathways that may occur, or to identify
genes that have high connectivity so can serve as biomarkers related to a disease.

1.3.3 Continuous-Time Models

In this section, we define the network model which will be the main emphasis of
the current monograph. We will investigate a Continuous-Time Nonlinear Cyclic
Model representing GRNs. Before going into details, we would like to note that
there is an inherent stochasticity, which is denoted as noise, in gene regulation. The
paper [16] was among the first to observe noise in gene expression; it includes an
experimental observation that identical cells grown up in identical conditions have
huge differences in their expression levels. The authors claim that this phenomenon
is more visible when the biological components (genes) are low in number. In
[16], the noise is decomposed into two orthogonal parts. The first part of the
noise is called the intrinsic noise, which is inherent in the biochemical process
of gene expression. The second part is called as extrinsic noise which is due to
the fluctuations in the external environment. Having said that, deterministic models
are useful especially when the number of molecules under study is very large or
one considers averages of a population of cells. Deterministic models also give
information about the structure of the network such as existence of oscillations,
and existence of stable equilibrium points. Furthermore, the tools of control theory
(see, e.g., [23] for an introduction, and [24] for various methods developed for time
delay systems) give information about the stability range of the system. Therefore,
deterministic models should be studied along with the stochastic models to have a
good idea of the system under consideration. Different ODE modeling approaches
for gene regulatory networks have been compared in [25]. Dynamic patterns of gene
regulation have been investigated in [26] for the two-gene system. For a review of
data integration in dynamic models of gene regulatory networks, see, e.g., [27].

In this manuscript, we investigate global stability of a cyclic dynamical model
accounting for the GRN which contains a nonlinear feedback loop and time delays.
The dynamical model studied is described in Figure 1.1.

The GRN model shown in Figure 1.1 represents a cyclic connection of subsys-
tems X, ..., Y, where the input of X; is the output of X;_; fori = 2,...,m,
and the feedback connection is established by defining the input of X'; as the output
of X,,. In the model, each subsystem X; consists of series connections of a stable
system X,; whose delayed output p; (¢ — t,;) is the input of a stable system X,;
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Fig. 1.1 A continuous-time model of GRN.

which generates g; (¢), and the output of X; is g; (f —7,;). More precisely, the model
is given by a set of differential equations in the following form:

pl(t) = _kplpl(t) + fpl(gm(t - Tgm))
§1(t) = —kgg1(t) + fa(pi(t — 1)) (1.4)

pm([) = _kpmpm(t) + fpm(gm—l([ - Tgm_l))
gm(t) = _kglgm(t) + fgm(pm(t - ‘Cpm)),

with appropriate initial conditions. The variables p;(¢) and g;(¢) represent the
protein and mRNA concentrations, respectively. The parameters k; represent the
degradation rate of the corresponding biological entity.

Models in the general structure of (1.4) are frequently encountered in the
modeling of biological processes such as mitogen-activated protein cascades and
circadian rhythm generator, see, e.g., [28-30] and [31]. To account for the switch-
like phenomena observed in gene regulation, the nonlinear regulation functions are
often approximated by Hill functions [32, 33]. In [34], the authors analyze the
system (1.4) and prove a local stability result by including explicit information
on the value of the time delay. Again, for the local stability of this system, an
explicit computation of the upper bound of the delay value is performed in [35].
For double-gene version of the above system with four cascade sub-blocks with
four delays, center manifold theory is used in [36] to investigate the existence
of Hopf bifurcation. Another challenge for such networks is the estimation of
the network parameters from time series data. A work in this direction is [37],
where Hill functions are taken as nonlinearities, and the coefficients of specific
Hill functions are estimated from experimental data. Apart from the GRN literature,
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models similar to (1.4) are also found in the neural networks literature. For example,
in [30], system (1.4) has been considered with nonlinearities as tangent hyperbolic
functions.

In this manuscript, we assume that the functions f,; and f,; are nonlinear
and have negative Schwarzian derivatives [38]. For example, Hill functions and
tangent hyperbolic function have negative Schwarzian derivatives. A linear model
of the repressilator (a special type of GRN) has been analyzed in [39] by using the
Schwarzian derivative concept. In [40] a model similar to (1.4) is analyzed; however,
the model considered in [40] takes the dynamics for the protein concentration as a
linear system, where f,; is the identity operator.

In this study, the nonlinear functions f,; appearing in (1.4) are taken to be general
functions with negative Schwarzian derivatives (can be other than Hill functions);
so, the results of the present study do not apply to the model studied in [40]. The
system (1.4) under single time delay and negative feedback has been studied in [41],
where an easy condition for guaranteeing asymptotic stability has been obtained by
using the arguments of [42, 43] to embed the original system (1.4) to a discrete-
time system. It is worth mentioning that the stochastic behavior of the system
does not change the general average behavior of the system, but it may change the
equilibrium points of the system quite significantly. Therefore, deterministic models
will give us a general behavior of the system, and they are sufficient in most of the
cases such as designing synthetic networks.



Chapter 2
Basic Tools from Systems and Control Theory

Abstract This chapter sets up the notation for the rest of the book and introduces
basic concepts from control theory for the readers who are not familiar with
fundamental feedback stability analysis techniques. Delay-differential equations are
considered, and the small gain theorem is given for a delay independent stability
condition for linear feedback systems. The Nyquist criterion is given in order to
derive the necessary and sufficient conditions for delay dependent stability of such
systems.

Keywords Functional differential equations ¢ Equilibrium points ¢ Linear time
invariant systems ¢ Systems with time delay ¢ Small gain theorem ¢ Nyquist
stability test * Delay margin

2.1 Preliminary Definitions and Notations

In this section, we set up the notations for the rest of the book. Although most of the
results presented in this chapter can be generalized to any inner product space, we
consider the vector space R” equipped with the usual Euclidean norm defined as

x| = /X2 +...+x2, for x=(x1,...,x,)" €R" 2.1

A subset K of the vector space R” over the field R is called a convex cone if for any
scalars @ , B € Ry and vectors x, y € K we have

ax + By € K. (2.2)

Since the biological variables, such as the expression levels of genes, enzymes, and
mRNA, take positive values, the systems to be considered are analyzed in the cone
R’ , which is defined as

R:={xeR":x;>0 Vi=12,...n}. 2.3)
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For an interval I of the real line, int(1I) denotes the interior of /. The symbol C
will denote the set of complex numbers and the set C is defined as

Cy ={s € C: Re(s) > 0}. (2.4)
For a function
f(x): K — K, (2.5)

where K is any set, /" (x) will denote the function which is the composition of f(x)
with itself n times. Given an interval / C R, D" (I) will denote the set of n times
continuously differentiable functions defined on the interval /. A function f(x)
defined from the normed linear space X to the normed linear space Y is bounded if

there exists M > 0 suchthat |[|f(x)|ly < M||x||x, VxeX. (2.6)

A complex valued function F(s) is said to belong to the set sZ7°° if it is analytic
and bounded in C. The set 57 is a commutative ring with unity over itself. For
a function F(s) € 2, the infinity norm of F denoted as || F||oo is defined as
follows:

|| Flloo = ess sup |F(s)]. 2.7)
s€Cy

Note that this definition makes sense since F(s) is bounded and analytic in C.

Let x(¢) € R” be a vector function depending on the variable ¢. The notation
X(¢) stands for %x(l‘), i.e., the derivative of x with respect to #. A point y € R”" is
said to be an omega point of x(t) if there is an increasing sequence 0 < t; — 00
and we have

lim (x(1))) = y.

ti —>00
The omega limit set of the solution x () is the set of omega points of x(¢) and will
be denoted by w(x(¢)). Similarly, a point y € R” is said to be an alpha point of
x(¢) if there is a decreasing sequence 0 > t; — —oo and we have

Jlim (x (1) =y

The alpha limit set of the solution x () is the set of alpha points of x (¢) and will be
denoted by a(x(t)).
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2.2 Linear Time Invariant Systems

Linear systems can be used to accurately model most of the systems we encounter
in engineering, economics, and other fields of science. A retarded linear time
invariant (LTT) autonomous system with a single delay has the following state space
representation:

X(t) = Aox(t) + A1x(t — 1), >0, (2.8)

where Ay, A1 € R"" and x(¢) € R". Although the results presented in this section
can easily be generalized to multiple delay case, single delay case will be considered
here since the mathematical models discussed in Chapters 5 and 6 fit in such a class.

Definition 2.1. The characteristic function y(s) associated with the system (2.8) is
given by

x(s) =det(s] — Ag — A1e™ ), (2.9)

where det(-) denotes the determinant of a square matrix.

Definition 2.2. The characteristic function (2.9) is said to be stable if
x(s) # 0, Vs e Cy. (2.10)

The system (2.8) is said to be stable if its characteristic function is stable. The
system (2.8) is said to be stable independent of delay if it is stable for all T > 0.

Assume that in (2.8) the matrix A; is in the form: A4y = BC where the
dimensions of the matrices B and C are n x 1 and 1 x n, respectively. Then, the
dynamical system given in equation (2.8) can be re-written as

X(t) = Aox(t) + Bu(t)
y() = Cx()

with the time delayed feedback
ut) =yt — 7).

The characteristic equation of this SISO time delayed feedback system is in the
following form:

x(s) = Po(s) + Pi(s)e™™ =0, (2.11)
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where Py(s) = det(sI — Ap) and P (s) = C adj(sI — Ay) B. Note that Py(s),
Py (s) are polynomials of degree n and n — 1, respectively. If Py(s) and Pi(s) in
(2.11) do not have a common zero in C, then for any sy € C4 we have

Py (so)e™ "%

x(s0) =0 <~ 1+ Po(50)

= 0. 2.12)

In fact, the above condition is equivalent to having

14 G(s)|y=sy =0 where Go(s) = C(sI — Ag)"'B, G(s) = Go(s)e ™.
(2.13)

The result below is known as the Nyquist stability test (see, e.g., [23]); for us, it
will be very useful in deriving local stability conditions.

Proposition 2.1. Let G(s) and G(s) be as defined in (2.13), and assume that Ay
does not have any eigenvalues on the imaginary axis, and let n, be the number of its
eigenvalues in C. The characteristic equation 1 + G(s) = 0 is stable if and only if
the Nyquist graph (i.e., the closed path obtained by plotting G(jw) as w increases
from —oo to +00) encircles —1 exactly n, times in the counterclockwise direction.

The proof of the Nyquist test comes from Cauchy’s Theorem, and the case
where Ay does have imaginary axis eigenvalues can also be handled by a slight
modification, see, e.g., [23]. For the GRN models considered in the next chapters,
all the eigenvalues of Ay are in C_, i.e. n, = 0; so, we have stability of the
characteristic equation if and only if the Nyquist graph does not encircle —1. The
next result is known as the Small Gain Theorem, and it can be obtained from
Proposition 2.1.

Proposition 2.2. Let G(s), H(s) € #* such that |GH| s < 1. Then, the
characteristic function y(s) = 1+ G(s)H(s)e™™ is stable for all T > 0.

Proof. For fixed t, we know that the characteristic function
x(s) =14 G(s)H(s)e™™
is stable if
x(s) #0, Vs € Cy.
Suppose for some sy € C, we have
x(s0) =1 + G(so)H(so)e ™ =0

= G(so)H(sp)e ™ = —1
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= |G(s0)H(s0)| > 1
= [GH oo = 1.

which contradicts the fact that | GH oo < 1. O
As a corollary of Proposition 2.2, we have the following result.

Lemma 2.1. Let G(s) € ', then for all |k| < |G|} the characteristic
equation

x(s) =1+kG(s)e™™ (2.14)

is stable independent of delay.
Proof. Let H(s) = k, then we have

IGH |00 <1

and the result follows from Proposition 2.2. O

Consider a characteristic function of the form (2.14), then w. > 0 is called a gain
crossover frequency of the characteristic equation if it satisfies

kG(jwc)| = 1. (2.15)
Similarly, wg is a phase crossover frequency of the characteristic equation if
Lk + £G(jwg) = —7 . (2.16)
A characteristic equation of the following form is analyzed next:

ke—'[S
=1+kG v =1 =0, keR, a €R,.
x(s) TkGls)e + (s+ap)...(s+ay) ¢ +

(2.17)

Suppose for k > 0 and t = 0 the characteristic function y(s) is stable; then, the
phase margin, PM := & + ZG(jw,), is positive. Note that time delay t introduces
a phase drop of tw radians at each frequency @ > 0. So, we define the delay
margin (abbreviated as DM) as DM = PM/w,. For all 7 less than the delay margin,
the phase margin remains to be positive and stability is preserved. The next result
explicitly computes the DM for k > 0, and it also determines the values of k for
which we have delay independent stability, or instability.

Proposition 2.3. Consider a characteristic equation in the form (2.17) and let

n

K =] ](@). (2.18)

i=1
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Then, the following statements hold:

1.
2.

3.
4.
5.

If0 < k < K, then y(s) is stable independent of delay.
If K < k < K,, then x(s) is stable for all 0 < t < 1, and unstable for all
T > 1T, where 1, is the delay margin and it is computed as

1 " W,
Ty = — | — arctan(—) |,

where w. > 0 is the unique gain crossover frequency satisfying

[T@? +ah) =i

i=1

and K, is given by the following formula

Ifk > K, then y(s) is unstable independent of delay.
If —K; < k <0, then x(s) is stable independent of delay.
If k < —K;, then x(s) is unstable independent of delay.

Proof. For fixed a; € R4, let y(s) be a characteristic equation in the form (2.17).
Simple algebraic manipulations show that

ke_fjmc

1= .
(jowe+ap)...... (jwe + ay)

= []w+a)=k.

i=1

But i(w) = []/_,(@* + @?) is an increasing function of @ and

h(0) = ﬁ(af), h(c0) = oo.

i=1
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Therefore if k > K;, there exists unique w, > 0 satisfying

n

[[@?+a}) =k

i=1

Let G (s) be defined as

e—IS

GO =T cray

If k satisfies the condition given in parts 1 and 4, then the Nyquist graph of kG, (jw)
does not encircle —1, for all ¢ > 0; hence, the results follow from Proposition 2.1.
For the proof of parts 2 and 3, suppose that

n
k>[]@) =k
i=1
and consider the delay free system
F(s) =14 kGy(s). (2.19)
Since the roots of the characteristic function F(s) depends continuously on the
parameter k, it can be concluded that F(s) is stable for all k < K, where K, is
the smallest positive number such that the characteristic equation
1+ K,G(s) =0 (2.20)

has a root on the imaginary axis [44]. That is, there exists wg > 0 such that

1+ K,Go(jwg) = 0

=K, = —H(ja)g +a;)

i=1
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If k > K, then the Nyquist plot of the delay free system encircles the point —1 and
the delay free system is unstable by Proposition 2.1. Moreover, if

Kl<k<K,,,

then the delay free system is stable. By the continuous dependence of the roots with
respect to the parameter 7, we know that the system will be stable forall z € [0, t,,,)
where 1, is the smallest positive number such that for T = 7, the characteristic
function y(s) has a root on the imaginary axis [44]. That is, there exists w, > 0
satisfying

ke_jfmwc

4+ —f7—F— =0,
1_[;:1(]6% + ai)

where w, is the unique frequency satisfying
n
[T@?+a) =k
i=1
and T, is given by
1 ‘ ,
Ty = — |7 — arctan(—) | .

Note that 7, depends on k and we have

Tm(Ky) =0, (K1) = oo. (2.21)
If ¢ > 1,,, we have
Lke 7 G(jw.)) < —1 , (2.22)
because both
. 1)
Tw, Z arctan(a—i) (2.23)

are increasing functions of w. But (2.22) and (2.23) imply that for t > 1, the
Nyquist plot of kG, (jw) will encircle the point —1 at least once so y(s) is unstable
for t > 1,,. For part 3 of the Proposition, it is shown that if

k = K.
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then the delay free system is unstable. Using the same arguments as part 2 of the
Proposition, the system will remain unstable as delay increases. For the proof of
part 5, note that for k < —K; and any positive delay we have

x(0) <0, y(00) =1 VYt > 0.
Intermediate theorem implies that there exists a real number y > 0 such that
() =0 VreR;. (2.24)

Equation (2.24) proves that the characteristic function is unstable independent of
the delay. O

Remark 2.1. A different way to prove the results of Proposition 2.3 can be
summarized as follows: (i) derive conditions under which delay free system is
stable, (ii) detect crossover frequencies and related critical delay values (that is
determining the cases when the characteristic equation has roots on the imaginary-
axis), (iii) then by using the continuity argument with respect to the delay parameter
the results follow. For further discussions on such an approach see, e.g., [24].

Although the GRN model analyzed in this monograph contains nonlinearities,
Proposition 2.3 is needed to determine the stability of the linearized systems. It is
worth mentioning that the linearized system and nonlinear system have similar local
behavior around the vicinity of an equilibrium point of the nonlinear system.

2.3 Functional Differential Equations

Many of the processes we observe in the nature cannot be accurately modeled by
means of linear systems. Such processes involve nonlinearities, and many of them
involve time delays as well. In this case, the mathematical models can be in the
form of functional differential equations. We need to present some results that are
widely used in the analysis of functional differential equations. A general model for
a nonlinear system is given by

X = ft,x(t),x(t —7), teRy, x(t)e R", f:RxR"xR" — R".
(2.25)

Most of the physical systems that are modeled are casual. Therefore, we assume in
(2.25) that

T > 0. (2.26)

If the function f(¢,x(t), x(t — 7)) in (2.25) does not explicitly depend on ¢, the
system (2.25) is called autonomous. Otherwise, it is called non-autonomous. The
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GRN model studied in this work represents an autonomous system. Therefore,
in this subsection only autonomous systems are considered. For the rest of this
subsection, assume that our system has the following general form:

X = f(x(),x(t—1)), x()e R", t>0, f:R"xR" > R".  (2.27)

To find a solution of a functional differential equation (2.27), we need to know initial
values of the states. It is clear that for delay free system, the vector x(#y) € R”,
where ty, € R is the initial time, determines x(¢), for ¢ > #y. On the other hand, for
systems with time delay, to find a unique solution, x(¢), for ¢ > ¢, it is necessary to
know

x(0) for th—1 <0 <t. (2.28)

An excellent book on the analysis of functional differential equations is [45], and it
also contains results on the existence, uniqueness, and continuous dependence of the
solutions on initial conditions (these topics are beyond the scope of this manuscript).
The GRN model to be analyzed here satisfies the technical conditions given in [45]
so that it has a unique solution which depends continuously on initial conditions.
Note: In all the simulation examples given in this book, the initial time instant is
taken to be ty = 0 and initial conditions are taken to be constant, i.e., x(6) = x(0)
for all 0 € [—t , 0]. Hence, for the sake of brevity, only x(0) will be explicitly
specified in the examples.

Another concept related to the analysis of functional differential equations is
the equilibrium point. A constant vector x, € R” is called an equilibrium point of
the system (2.27), if f(x., x.) = 0. The linearization of system (2.27) around the
equilibrium point x, leads to the following:

(1) = AX(t) + BR(t —1), X(t)=x({)—x.. A, B €eR™", (229

where

4, = o0 of; (2.30)

” axj x=xe’ " axj (t - ‘L—) X=X

The linearization of a nonlinear system around its equilibrium points plays an
important role in the analysis of functional differential equations. In fact, we know
that if the characteristic equation of the linearized system (2.29) is stable, then the
equilibrium point around which the linearization is done is locally stable. In other
words, the solutions with initial conditions in some neighborhood of the equilibrium
point converge to the equilibrium point. In some special cases, one can conclude
satisfactory information regarding the general behavior of a system by just looking
at the linearization of it around its equilibrium points.
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2.4 Exercises

Problem 1. Let Ag and A; = BC be given by

—1

10
Ao = 2 2|, B=[0 o0 1", C=[30 0.
0-3

0
0
Determine Go(s) = C(sI — Ag)~' B. Compute y(s) = det(s] — Ag— A1e~*), and
verify that y(s) = 0 if and only if 1 4+ G(s) = 0 where G(s) = Go(s)e™ ™.

Hint: You may use the matrix inversion lemma.

Problem 2. Let Gy(s) = Mw, with k € R. Determine the range k €

(k= , k™) such that the characteristic equation 1 + Go(s)e™™ = 0 is stable
independent of delay t > 0.

Problem 3. Let Gy(s) = m, determine 7, > O such that the characteristic

equation 1 + Go(s)e ™ = 0 is stable for all T € [0, Tpax)-

Problem 4. Consider the nonlinear system

) = — _ 6
Xi(t) = —x1(t) + 25 20)

. . 4x12(t—r)
Xa(t) = —x2(t) + m

where © > 0. Find the unique equilibrium point of this system, and obtain the
linearized system around this equilibrium.

Problem 5. Consider the nonlinear system

X1(1) = =x1(1) + f(xa(2))
X(1) = =x2(1) + f(x1(t — 7)),

2

where T > 0 and f(x) = 0.1+x2

. Determine all equilibrium points of this system.



Chapter 3
Functions with Negative Schwarzian Derivatives

Abstract This chapter is devoted to the analysis on functions with NSD (negative
Schwarzian derivatives). First, basic properties of functions with NSD are given and
a classification result is proven for such functions. Then, an analysis is made on the
fixed points for functions with NSD.

Keywords Schwarzian derivatives ¢ Hill functions e Tangent hyperbolic
functions ¢ Fixed points

This chapter is devoted to the analysis of functions with NSD (negative Schwarzian
derivatives) and consists of two sections. In the first section, basic properties of
functions with NSD are given and a classification result is proven for such functions.
The second section contains an analysis on the fixed points of functions with NSD.

3.1 Classification of Functions with Negative Schwarzian
Derivatives

We start this section with the definition of the Schwarzian derivative. Since the
biological entities take only positive values, we will implicitly assume that the
functions considered here have their domain and range as positive real numbers.
Let a function f be defined from Ry to Ri. The definition of Schwarzian
derivative implicitly requires a function to be at least three times differentiable.
For this reason, suppose f is at least three times continuously differentiable, with
f'(x), f"(x), f"(x) representing its first, second, and third derivatives. Then, the
Schwarzian derivative of the function f(x), see [38], denoted as S f(x), is defined
as:

—00 if f'(x)=0
S — " " 2 31
£(x) f,(x)_g(f/(X)) i€ £16) £ 0. (3.1)
S 2\ f(x)
The following result can be deduced from the definition (3.1).
© The Author(s) 2015 25
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Proposition 3.1. Let I C R be an interval and suppose f, g € D3(Ry) such that
the function f o g(x) is well defined. Suppose also that we have

f(x)#£0 Vx € (0, 00), (3.2)

then the following holds:

1. Foranyc € Randd € R\ {0}, Sf(x) = S(f(x) 4+ c¢)and Sf(x) = S(df(x)).

2. 8(f og)(x) = Sf(g(x)) - &g'(x)* + Sg(x).

3. IfSf(x) <0, Sg(x) <O, then S(f o g)(x) <O.

4. If Sf(x) <0 Vx € int(I), then f'(x) cannot have positive local minima nor
negative local maxima.

Proof. 1. Observe that f’(x) = (f(x) + ¢)’ which proves Sf(x) = S(f(x) +¢).
Furthermore,
S/ (x) = @df”"(x)/(@df (x))
F1)/f(x) = (df"(x)/(df(x)).
Therefore, Sf(x) = S(df(x)).
2. The following set of equations lead to the desired result:
(fog)(x) = fl(g(x)g'(x)
(fog)'(x) = f"(g(x)g' (x)* + f'(g(x)g" (x)
(fog)"(x) = f"(g(x))(&'(x) +3f"(g(x)g" (x)g'(x) + f'(g(x)g" (x)
(fog)” 3 ((f o g)"(x))z
(fog)(x) 2\ (fog)x)

_ 80 MW" (e ())g ()
g'(x) f'(g(x) J'(g(x)

3 (f”<g(x))g’(x) N g”(x))z

S(feog)x) =

2\ f(gx) g'(x)
= S(f 0 g)(x) = Sf(g(x))g'(x)* + Sg(x).

3. Since
Sf(x) <0, Sg(x)<0 and g'(x)>>0 Vx eint(l), (3.3)
part 2 of the Proposition implies that

S(f 0 g)(x) = Sf(g(x)g'(x)* + Sg(x) <. (34
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4. Suppose [’ has a positive local minima at x € int([), then

f'x) >0, f"x)=0, f"(x)=0
= Sf(x)>0

which is a contradiction. Similarly, suppose that f’ have negative local maxima
at x, and let

h(x) = —f(x).
Then, the function /4’ will have a positive local minima at x and from part 1,
Sh(x) =Sf(x) <0. (3.5)

In other words, it was shown that 4’ cannot have positive local minima, so f’
cannot have negative local maxima. O

Let us now calculate Schwarzian derivatives of some functions which are commonly
used as nonlinearities in the modeling of physical systems. In particular, we
will consider Hill functions, which are typical nonlinearities appearing in gene
regulatory networks, as illustrated in Section 4.3.

Example 3.1. The exponential function has NSD; more precisely, for any a € R,
we have
a? 5a*
Sy =——, S =——.
(@) ==F. S =-3

In real-life problems, we commonly encounter Hill function type nonlinearities. Hill
functions have the following general form:

a ax™

f@) = g g = 5o

+c¢ ab>0 ¢>0 meN.

(3.6)
We will now calculate Schwarzian derivatives of Hill functions in the interval
(0, 00). From Proposition 3.1, we know addition and multiplication with a constant
does not change the value of the Schwarzian derivative, so we will, without loss of
generality, calculate the Schwarzian derivative of the following functions:

X m

feo = b+ xm

, glx)= b > 0. (3.7)

b+ xm

Notice that

1 1 x™ 1
Jx) = b+xm b (b+x’” _1) Z_E(g(x)_l)'
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Then from Proposition 3.1 it follows that

Sf(x)=Sgkx) = S(b—}—lx’")'

Therefore, without loss of generality, we will only calculate S f (x). For this purpose,
let

1
hi(x)=b+x", hy(x)= e
Then,

f(x) = hyohi(x),
= Sf(x) = S(ha 0 h1)(x) = Sha(hi(x))h (x)* + Shi(x)

Shi(x) = —W—;l), Shay(x) =0
X
2 _
= Sf(x) = —(mx—zl).

Lastly, let us calculate the Schwarzian derivative of the tangent hyperbolic function
defined as

2bx_1

f(x) = a tanh(bx) =a ( ) a,beR;.

ebe +1
Let

x—1

— 2bx7 h — ,
) =e (x) = a*s

(3.8)

then f(x) = h o g(x) and

Sg(x) = —2b*
Sh(x) =0
= Sf(x) = S(hog)(x) =—-2b><0.

As a corollary of the above, we have the following result.

Corollary 3.1. Leta, b > 0, c > 0 and m € N be constants. Suppose f and g are
Hill functions of the form (3.6). Then, one of the following holds:

1. Ifm=1,then Sf(x) = Sg(x) = 0.

2. Ifm>1,then Sf(x) = Sg(x) <0.
3. If h(x) = a tanh(bx), then S(h(x))< 0.
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In the sequel, we try to classify functions with negative Schwarzian derivatives. Next
result helps this endeavor.

Lemma 3.1. Let h be a three times differentiable function from R4 to Y C Ry and
suppose that we have

—o00 < Sh(x) <0, Vx € (0, 00). (3.9)

Then h' cannot be constant for any [a, b] C (0, 00) with a < b. Moreover, suppose
that

H(x)>0 VYV xe(0,00), (3.10)
and there exists ¢ € Ry such that h”(¢) < 0, then we have
h'(d)<0, VYV d=>c. (3.11)

Proof. For the first part of Lemma, suppose on the contrary that there exist positive
constants a < b such that 4’ is constant in [a, b]. Let ¢ € (a,b), then h”(c) =0 =
h"(c), but this implies that

Sh(c) =0,

which is a contradiction. Therefore, &’ cannot be constant in any subinterval of R .
For the second part of Lemma, suppose that there exist positive real numbers ¢ < d
such that 2”(c) < 0 and h”(d) > 0. Let I be defined as

I =[c.d]. (3.12)
Since 4’ is a continuous function and 7 is a compact set, there exist x, x, € I such
that &' (x1) < h'(x) < h'(x,) for all x € I. But since h”(c) < 0, there exists y > ¢
satisfying
W (y) < i (c). (3.13)
Similarly, since h”(d) > 0 there exists z < d satisfying
W(z) < h'(d). (3.14)
Equations (3.13) and (3.14) imply that x; # ¢ and x; # d and we have
R (x1) < I (x), Vx € I. Hence, by definition, x, is a positive local minima of the

function 4’. But since S/ (x) < 0, i’ cannot have a positive local minima. Therefore,
we have h”(d) <0,Vd > c. O
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Having in mind the technical assumptions of Lemma 3.1, suppose that a function
h(x) satisfies

R'(y)=0, H(y)>0 (3.15)

for some y € (0, 00). Then, it follows

) 3 (O
1) = 55 =3 () (10
h///(y)
= 0 3.17
) GA7)
= B"(y) <0, (3.18)

which implies that the point y is a positive local maxima of the function /’.
Combining Lemmas 3.1 and equation (3.18), we conclude that if 4’(x) is decreasing
in some interval [a, b] then it must be decreasing in [b, oo]. In particular, if 2”7 (0) <
0, then i4”(x) < O for all x > 0 which implies that 4’(x) is a decreasing function.
Combining this fact with Lemma 3.1, the result below is obtained.

Corollary 3.2. Let h be a three times differentiable function defined from R to
Y C€ Ry and suppose that we have

Sh(x) <0 and h(x) >0, Vx € (0, 00)

Then h' is a function from Ry to Y C Ry satisfying one of the following
properties:

1. I is a strictly increasing function on [0, 00).

2. W is a strictly decreasing function on [0, 00).

3. There exists a > 0 such that h'(x) is strictly increasing in (0,a) and strictly
decreasing in (a, o). |

Note that Lemma 3.1 implies that 4’ cannot be constant in any interval, so the strictly
increasing or decreasing function assumptions in the statement of Corollary 3.2
are without loss of generality. Corollary 3.2 is a general statement also covering
unbounded functions, though the functions we are particularly interested in are
bounded.

Remark 3.1. Let h be a function satisfying the assumptions of Corollary 3.2.
Moreover, suppose that /1 is bounded. Then &’ cannot be a strictly increasing
function, otherwise s cannot be bounded. Therefore, for a bounded function / with a
negative Schwarzian derivative, either 4’ is a strictly decreasing function in [0, 0o] or
there exists @ > 0 such that 4’ is strictly increasing in (0, a) and strictly decreasing
in (a, 00). |

Remark 3.1 leads us to the following definition:
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h'(x)
h'(x)
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Fig. 3.1 Typical i’ vs x graphs for type A and B functions.

Definition 3.1. For a bounded function /& with a negative Schwarzian derivative,
we will say /4 is of type A if A’ is a strictly decreasing function, and of type B
otherwise. The two types of such functions, satisfying 4’(x) > 0, are illustrated in
Figure 3.1. a

Also note that whether the function 7 is of type A or B, the following property holds:
lim A'(x) = 0. (3.19)
X—>00

Remark 3.2. 1t is easy to determine whether a function % is of type A or B. If
h'(0) = 0, then it is clear that the function /4 is of type B. If

h'(0) > 0, (3.20)
and 7" (0) > 0, then £ is of type B. If (3.20) is satisfied and
h"(0) <0, (3.21)

then £ is of type A.

3.2 Fixed Points

In this section, we analyze fixed points of functions with NSD. In this manuscript,
we assume that the nonlinearity functions are monotonic, bounded functions, which
take positive values. Therefore, a prototype function r is defined from R4 to X C
R such that

F(x)>0 or r'(x)<0, Vx>0.
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We allow the derivative of r to be zero at x = 0 as this does not violate the
monotonicity assumption of r. Moreover, we will assume that r has negative
Schwarzian derivative. The point X is said to be a fixed point of r if we have

r(xo) = Xo.

Our first result is concerned with the total number of fixed points of the prototype
function r.

Proposition 3.2. Let r be a bounded function from Ry to X C R4. Moreover,
assume that r has negative Schwarzian derivative. Then, one of the following
properties holds:

1. If r'(x) < O forall x > 0, then r has a unique fixed point.
2. If r'(x) > O forall x > 0, then r has at most three fixed points.

Proof. For the first part of the proof, assume r’(x) < 0 for all x > 0, which implies
that r(x) is a strictly decreasing function. Moreover, since r(x) has NSD, from
Lemma 3.1, it cannot be constant on any interval. Therefore, we have r(0) > 0 and
since r is bounded, it follows that

0<r(x)<B, Vx e Ry.

Let f(x) = r(x) — x, then f(0) > 0, f(B) < 0 and f is continuous being
the summation of two continuous functions. Therefore, by the intermediate value
theorem, there exists some real number xo, € [0, B] such that f(xy) = 0, which
implies that r(xg) = xo. Hence, r has at least one fixed point. To prove the
uniqueness of the fixed point, assume x; < X, are two different fixed points of
the function r. Then, we have r(x;) = x; and r(x;) = x,. But from mean value
theorem, there exists ¢ € (x1, x;) such that

_r(x) —r(x)
S

¥ (c) 1,

which is a contradiction to the assumption that r’(x) < 0 for all positive x.
Therefore, r(x) can have a unique fixed point, which completes the first part of the
proof. For the second part, assume that r has four fixed points x; < x, < x3 < Xx4.
Since r’(x) cannot be constant in any interval, there must exist y; € (x1,X2)
and y; € (x3,x4) such that r’(y;) > 1 and r’(y;) > 1. Again from the mean
value theorem, there exists y, € (xp,x3) such that 7’(y,) = 1. Hence, we have
y2 € (y1,y3) and r'(y2) < min{r’(y1),r’'(y3)}. Now, since r’ is continuous and
the set [y, y3] is compact, so r’ attains its infimum at some i, € (y1, y3), which
is a positive local minima. But this contradicts Proposition 3.1, which states that a
function with NSD cannot have a positive local minima. Therefore, r cannot have
more than three fixed points. O
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The proposition above shows that if r is strictly decreasing, it has a unique fixed
point. On the other hand, if 7 is strictly increasing, it proves that r has at most three
fixed points. Next, we analyze the values of 7’ at its fixed points. We start with the
strictly decreasing case.

Proposition 3.3. Let r(x) : Ry — X C Ry be a function with a negative
Schwarzian derivative satisfying

r'(x) <0, Vx € (0, 00).
Then r has a unique fixed point xy and

¥ (xo0) # —1. (3.22)

Proof. First of all, it is assumed that r is a non-constant, positive, and strictly
decreasing function. Therefore, it must satisfy r(0) > 0. Since the function r is
monotonic, we have

0<r(x)<r() Vx € (0, 00),
which implies that r is bounded. The uniqueness of the fixed point of the function r

follows from Proposition 3.2. Let x( be the unique fixed point of r. Since r(0) > 0,
we have x¢ > 0. Let us define

f(x) =ror(x). (3.23)
Since r is bounded, the function f is also bounded. By assumption the function
has NSD, then from Lemma 3.1, it follows that the function f also has negative
Schwarzian derivative. Moreover, by the chain rule, we have f' = r’-r’ > 0. From
Section 3.1, we know that the function f is either of type A or B. Let f be of type
A and suppose that

r'(xo) = —1, (3.24)
then
f'(x0) = (' (x0))* = 1.
We know 0 < xg. Therefore, we have
fl(x)>1 vV x €0, xp).

Let us define / as

h(x) = f(x)—x.
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Notice the following facts:
h(0) = f(0) > 0, W(x)=f'(x)—1>0 Vx €][0,xo).

Then, by fundamental theorem of calculus, we have the following inequality:
X0
h(xo) = 0 = h(0) +/ K (x)dx > h(0) > 0,
0

leading to a contradiction. Therefore, when the function f is of type A, it follows

f(x0) < 1= r'(x0) # —1.

Suppose now the function f is of type B, and

f'(xo) = 1.

We know that f can have either a unique fixed point or three fixed points. Since f
is of type B, we have either

f(x)<1, Vxe[0,x) or f'(x)<l1, Vx e (xp,00).
If f/(x) < 1in]0, xg), we have

h@@=0=M®+AmW@Mx>Mm>Q

leading to a contradiction. For the other case assume that f'(x) < 1 in (xg, 00).
Then, for any x > x, we have

h(x) = hixo) +/ R (x)dx <0+ x —xp < x
X0

which implies that the function f cannot have a fixed point x greater than x;. Also if
f(x) <1, Vx € [0, xo),

the following equality follows:

h@@=0=M®+AmW@Mx>M®>Q
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which is again a contradiction. Therefore, considering the shape of type B function
f, we see that there exists some ¢ < xg such that

fl(x)>1,  Vxe(t x).

As aresult, we have the following
X0
h(xg) = 0=h() + / h(x)dx = h(t) —a
t
X0
= h(t) = —/ h(x)dx < 0.
t

Since we have
h(0) >0 and h(t) <0,

intermediate value theorem implies that there exists some real number k € (0,¢)
such that

h(k) = 0.

Therefore, the point k < xq is a fixed point of f. Then, we should have another
fixed point of the function f* which is larger than x,. But we showed that f cannot
have a fixed point larger than x, which gives us another contradiction. Therefore,
we get the desired result, that is f(xo) = (r'(x0))? # 1. O

Next, we analyze the situation when r is strictly increasing. We have three
different results characterizing such a case.

Proposition 3.4. Let r(x) : Ry — X C Ry be a function with a negative
Schwarzian derivative such that r'(x) > 0 for all x € Ry. Suppose that r is
bounded and at least three times continuously differentiable. Let Xy denote the
greatest positive fixed point of g. Then,

r'(xy) < L. (3.25)

Proof. Assume that '(x ) > 1. Then, since the function r’ is continuous, there
exists € > 0 such that 7’(x) > 1 for any x € (xy,xs + €). Using the fundamental
theorem of calculus, it follows that

xfte

r(xp+e)=r(xs)+ / r'(x)dx >r(xs)+€=xy5 +e,
Xf

since r’'(x) > 1 forany x € (x7,xs + €). Hence, we have r(x; 4+ €) > x7 + €.
Since the function r is bounded and continuous, there should exist a fixed point x
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of r such that xo > x; + €. This is contradiction to the fact that x s represents the
greatest fixed point of 7. Therefore, r’(x =1L O

The second result shows that r has at most two fixed points if r is of type A.

Proposition 3.5. Let r(x) : Ry — X C Ry be a type A function. Suppose that
r is bounded and continuously differentiable. Then, r has at most two fixed points.
In particular;, r has two fixed points if and only if r'(0) > 1 and r(0) = 0, i.e. the
origin is a fixed point. Moreover; if xo > 0 is a fixed point of r, then

' (xo) < 1. (3.26)

Proof. Assume that r is of type A. Then 7’ is strictly decreasing in R4. Let xo > 0
be any fixed point of r. Suppose r’(xp) > 1. Then

r(x)>1 Vx € [0, xo].

From the mean value theorem, for some y € (0, xo), the following inequality holds:

P = r0) _x-r©) _
Xo o Xo -

r'(y) =
On the other hand,
r'(x) > 1, Vx € [0, xo],

leads to a contradiction. Therefore, r’(x) < 1. Next, suppose r'(0) > 1 and r(0) =
0. If r(x) has no other fixed points, we have either r(x) > x or r(x) < x for all
x € (0,00). Since r is bounded, we have r(x) < x for all x € (0, co). But since
r’ is continuous and strictly decreasing 3¢ > 0 such that ’(x) > 1 for x € (0, €).
Then, the fundamental theorem of calculus implies that

r(e) = r(0) + /: r'(x)dx > 0+ e,

which is a contradiction to the assumption that r(x) < x for all x € (0, c0). Hence,
r(x) has another fixed point greater than 0. Assume that 0 < x; < x; are two fixed
points of r(x). Then from the first part of the proof, it is easy to see that '(x) < 1
for x > x;. Moreover, from the mean value theorem, we can find y € (x1, x;) such
that:

r(xy) —r(x1)
X2 — X1 -

r'(y) = 1,
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which is a contradiction to the assumption that 7'(x) < 1 for x > x;. Therefore, r
can only have a unique fixed point greater than 0. O

Our final result deals with the case when r is of type B and has exactly three fixed
points. This result is especially useful for studying the bistable behavior discussed
in Chapter 6.

Proposition 3.6. Let r(x) be a type B function. Then r has at most three fixed points
and at most two of them satisfy r'(x) < 1. Moreover, if the function r has exactly
three fixed points x; < X, < X3, then

Fx) <1, r'(x) > 1, r'(x3) < 1.

Before starting the proof, it is worth noting that for r to have three fixed points, it
should be a type B function.

Proof. We have already proved that the function r has at most three fixed points. If r
has two or less fixed points, then the proposition is proven automatically. Therefore,
assume that r has three fixed points x; < x < x3, and assume that r'(x;) < 1 for
alli = 1,2, 3. Now since r(x;) = x1 and r(x;) = X, there exist y; € (x, x) such
that ’(y;) > 1. Otherwise, if #’(y) < 1 for all y € (x1, x3), using the fundamental
theorem of calculus, it follows that

r(x) =r(x)) + /m r'(x)dx < r(x,),

X1

where we used the fact that »’ cannot be constant in (x;, x). This is contradiction
to the fact that x; is a fixed point of . Similarly, there exists y, € (x2, x3) such that
r'(y2) > 1. Since x; € (y1, y2) and r’(x,) < 1, r’ has a positive local minima in
(»1, ¥2), which is a contradiction to Proposition 3.1.

Let us continue with the second part of the proof. Assume that x; < x; < X3
are three fixed points of the function r. Using the same argument from the first part
of the proof, we can find y; € (x,x3) and y, € (x2,x3) such that r'(y;) > 1
and r’(y;) > 1. Hence, using exactly the same argument as the first part we can
conclude that r’(x,) > 1. Next, suppose that r’(x3) = 1, but from Corollary 3.2, we
conclude that 7/(x) > 1 for all x € [x,, x3). Then, from the fundamental theorem
of calculus, it follows that:

X3

r(x3) = r(xy) + / ' (X)dx > x5 + x3 — X2,

X2

which is a contradiction to the fact that x3 is a fixed point of g(x). Therefore, we
conclude that r'(x3) < 1. Finally, assume that r'(x;) > 1. Then, we should have
r’(x) > 1forall x € (x1, x2), since otherwise r’(x) has a local minima in (x, x»),
which is contradiction. But since r’(x,) > 1 and r/(x) is continuous, there exists
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€ > O such that '(x) > 1in [x, —¢€, x»]. Then, again from the fundamental theorem
of calculus, it follows that

X2

F(x) = r(x) + f F(x)dx > X1 + X2 — x1,

X1

which again is a contradiction to the fact that x; is a fixed point of r. Therefore,
r’'(x1) < 1, which completes the proof. a

Next, we deal with the case where r(x) has a special form.

Remark 3.3. Suppose the function r is defined as follows:
r(x) = fo f(x), (3.27)
where [ is a function defined from R to X € R such that
Sf(x) <0 and f'(x) <0, Vx e (0,00). (3.28)
Then, by the convolution property of the Schwarzian derivative we have
Sr(x) <0, Vxe(0,00). (3.29)

Moreover, if xy is a fixed point of r, then one of the following holds:

1. Xxo is a fixed point of f.

2. xo < f(x0),s0r(f(x0)) = f(f(f(x0))) = f(x0) and r has another fixed point
X1 > Xo.

3. f(xo) < x0,s07(f(x0)) = f(f(f(x0))) = f(x0) and r has another fixed point
X1 < Xp. O

Proposition 3.7. Let r be a function of the form given in (3.27), where [ satisfies
(3.28). Let x¢ be the unique fixed point of the function f. Then, the following
properties hold:

1. If [r'(xo)| < 1, then r has the unique fixed point x.
2. If r(x) is of type A, then r has the unique fixed point xq satisfying r'(xg) < 1.
3. If r(x) is of type B and

(@) If r'(xo) < 1, then r has the unique fixed point x
(ii) r'(x0) > 1, then r has exactly three fixed points.

Proof. First note that since f is a strictly decreasing function, the following
inequality holds:

f0)> f(x)>0  Vx>0. (3.30)
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So, f is a bounded function, which implies that the function r is bounded. From
Proposition 3.3, we conclude that f has a unique fixed point xo > 0 such that
f'(x0) # —1. Observe that

r'(x) = f1(f) f(x).

Since

f'(x) <0 Vx € (0, 00),
we have

r'(x) >0 Vx € (0,00).
At the unique fixed point x¢ of f, we have the following equality:

r'(xo) = f'(f(x0)) f'(x0) = (f'(x0))*.

Therefore, the following equivalences are verified:

| f(x0)] <1 % g'(x) <1
| (x0)| > 1 & g'(x0) > 1.

Having a negative Schwarzian derivative, r is either of type A or type B. Therefore,
if we prove second and third part of the Proposition, then the first part will follow.
Second part follows directly from Proposition 3.5 by noting that 0 cannot be a fixed
point of . For the third part, we assume that r is of type B. Introduce a new function
in the following way:

h(x) = x —r(x). (3.31)

Then, clearly,
h(0) <0 and K (x)=1-r'(x). (3.32)
Note that the zero crossings of / and the fixed points of r are the same. Suppose that
fl(xg) <1 = r'(x) < 1. (3.33)

Also assume that the function r has a fixed point y which is different from xy. From
Remark 3.3, we can safely assume that

¥ < Xo. (3.34)
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Again from Remark 3.3 we have another fixed point of 4 which is denoted by z and
is greater than x,. For type B functions, we have either

r'(x) < r'(x0) <1 Vx € [0, xo] (3.35)
or
r'(x) <r'(xp) <1 Vx € [xp, 00]. (3.36)

If the condition (3.35) is satisfied, then we have h(0) < 0, h(x¢) = 0 and
h(x)>0 x¢€][0,xo. (3.37)
Then, it is clear that 4(y) < 0; so,

r(y) #0 (3.38)

which is a contradiction. For the case (3.36), using a similar argument, we can show
that 7(z) # 0. Hence, if (3.33) is satisfied, then / has the unique fixed point xy.
Now, assume that

F(xo) > 1. (3.39)

But for a type B function r, we can have at most two different values such that #;
and 1, such that

) =1 fori =1,2. (3.40)

Hence & can have at most three zero crossings which implies that the function r has
at most three fixed points. From (3.39) we can deduce the following

dx; > xo suchthat h(x;) <O, (3.41)
but since the function r is bounded we have

tl_iglo(h(x)) = tl_i)rglo(x —r(x)) = o0. (3.42)

Therefore, & has a zero crossing greater than xo, thus r has a fixed point greater than
Xo. But, from Proposition 3.6, we know that the function r has at most three fixed
points. From Remark 3.3, we can conclude that g has exactly three fixed points. O

Final result of this section reduces the process of finding the fixed points of some
multidimensional functions defined on the cone R”} to finding the fixed points of a
function defined on R .
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Proposition 3.8. Let h(x) : RY — Y C RY be defined as

hi(x2)
h(x1,X2,...,x,) = :
hn—l(xn)
B (x1)
where
hi(x;) :Ry = Y; TR, Vi=1,2,...,n.
Let the function q(x) from Ry to Y C Ry be defined as

q(x) =hjohyo...0h,(x). (3.43)

The number of fixed points of the functions h and q have the same cardinality.

Proof. Let x = (x1,X3,...,X,) be a fixed point of /. Then, the following holds:
xp=hi(x2), x2=hy(x3),--+, X, = hy(x1)

ie,x; =hi(xy) =hjohy(x3) =...=hyohyo...oh,(x;) = q(x;). Hence, x;
is a fixed point of ¢. Conversely, assume that ¢(x;) = xi, and let

u=(x,hyo...oh,(x1),hz0o...0h,(x1),..., h,(x1)).

It is easy to check that this special u satisfies 4(u) = u. Note that if x, y are fixed
points of /& such that x; = yy, then it follows that

Xy = huy(x) = hn(yl) = DJn
Xpn—1 = hn—l(xn) = hn—l(yn) = Yn—1

X2 = ha(x3) = ha(y3) = y2,
which implies that
x =Y.
So for any fixed point of ¢, we can find a unique fixed point of /. Therefore, the

number of fixed points of 4 and ¢ can be bijectively mapped to each other so they
have the same cardinality. O
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3.3 Exercises

Problem 1. Consider the following functions
et —1
e*™ +1

hi(x) = , hy(x) = x> 0.

2+ x3’

(a) Verify that both of these functions have NSD, and they satisfy £/ (x) > 0 for all
x>0,i =12

(b) Check that i and h; satisfy the properties stated in Proposition 3.1.

(¢) Determine if h; is Type A or Type B, fori = 1, 2.

(d) Find the fixed points of 4 and h,.

Problem 2. Let f(x) = ﬁ and h = f o f. Compute the fixed points of 4.

What are the values of 4’ at these fixed points?

Problem 3. Give an example of a function r(x) illustrating the results of
Proposition 3.5.



Chapter 4
Deterministic ODE-Based Model

with Time Delay

Abstract This chapter is devoted to the derivation of the ODE-based model with
time delay that is to be analyzed in the forthcoming chapters. In particular, an
equivalent simplified mathematical model of the GRN model is proposed through
some interpretations of the interconnection scheme. Next, the stability conditions for
the linearized system around an equilibrium point are discussed. Finally, a specific
example (the repressilator) is given to illustrate the motivation behind the model
considered.

Keywords Gene regulatory networks ¢ Cyclic systems ¢ Delayed feedback e
Stability independent of delay ¢ Repressilator

This chapter is devoted to the derivation of the ODE-based model with time delay
that is to be analyzed in the forthcoming chapters. In particular, an equivalent
simplified mathematical model of the GRN model (1.4) is proposed through some
interpretations of the interconnection scheme. Next, the stability of the linearized
system around an equilibrium point is discussed in detail. As mentioned in the
previous chapters, such stability results will be useful in performing the analysis
for the nonlinear system under consideration. Finally, a specific example (the
repressilator) is given to illustrate the motivation behind the model considered.

4.1 Model Transformation and Simplification

Recall that the model (1.4) is in the form:

z21(t) = —Mz1(1) + g1(z2(t — 1))
2(t) = —Az2(1) + g2(z3(t — 12))

211([) = _Anzn(t) + gn(Zl([ - Tn)) 4.1)
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By a change of variables: x;(¢) = z;(¢),

i—1

xi()=z(t—h)., h=)» (). i=2...n 4.2)

k=1
we obtain the simplified mathematical model (4.3), which is equivalent to (4.1):

X1(t) = —Alix1(t) + g1(x2(2))
Xa(1) = —Aax2(1) + g2(x3(2))

Xn(t) = =Apxn (1) + gn(x1( — 7)), 4.3)
where
=3
k=1
the scalar variables x;, j = 1,...,n represent the protein and mRNA concen-
trations on the feedforward path; and A;’s j = 1,...,n, are either kg; or k;,
i =1,...,m;similarly, g;’s represent either f,; or f},;. In summary, the simplified

model to be considered in the book can be represented by the dynamical system
shown in Figure 4.1. Since each subsystem Sys; in Figure 4.1 is stable, the following
assumption holds:

Assumption 1: Forall j =1,2,...,n, we have )Lj > 0.
As far as the nonlinear terms g (-) are concerned, the following assumption will
be in effect for the rest of this book.

Sys, » Sys,.— - — Sys; —‘

L
delay

e m —\Sys. for j=1,...,n-1

I )

N g%+ ColL

| &; T

| ] S+7\.j :

i Static nonlinear Stable linear /;

Fig. 4.1 Simplified cyclic nonlinear model with delayed feedback.
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Assumption 2: Forall j = 1,2,...,n, the nonlinearity functions g; satisfy:

(i) g, is a bounded function defined on R ;
(ii) we have either

gj(x) <0 or gj(x)>0 Vx € (0, 00), (4.4)

(iii) the nonlinearity functions g; satisfy Sg;(x) < 0, with at least one of them
satisfying Sg; (x) < 0.

Assumption 2 means that each g; is a monotone function and takes positive
values. The nonlinearity functions have R as their domain since their domain rep-
resents biological variables which take positive values. The nonlinearity functions in
the proposed model are either Hill functions or tangent hyperbolic function; hence,
they are bounded and monotonic. Therefore, these assumptions do not impose any
constraints on our analysis of the GRN, and they are compatible with various
modeling studies, e.g., [37]. Also note that g} (0) = 0 is allowed, since it does
not violate the monotonicity of g;.

Definition 4.1. With the function g defined as

A 1 1 45
g= (A—]g1) o (rzgz) 0...0 (A—ngn) 4.5)

the gene regulatory network is said to be under negative feedback if
gx)<0 Vx € (0, 00);

conversely, the gene regulatory network is under positive feedback if
g'x)>0 Vx € (0, 00).

In the next two chapters, we will investigate the GRN under both negative and
positive feedback conditions.

At this point, it should be re-emphasized that the system (4.3) is infinite
dimensional. We will assume that the initial condition required to solve this system
of functional differential equations is from the set

2 ={p@) =[¢i(@)...¢u@]" : ¢;i() €€ (—7.OLR) ¢(a) =0},

where € ([—7 , 0], R) denotes the set of real valued continuous functions defined on
the interval [—t, 0]. In other words, we consider continuous functions taking positive
values as initial conditions for the states x; (a), for a € [—t, 0].
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The function g defined in (4.5) plays a crucial role in the analysis of the GRN
model (4.3). For example, if x* = [x{,...,x; T is an equilibrium point, then the
following must be satisfied

1
X = 7o) (4.6)
1
x;—l = A’_gnfl(x,i) (47)
n—1
1
X, = =8 (xp). (4.8)

Therefore, all equilibrium points are determined from the values x{ € R satisfying
xy = g(x7). (4.9)

Once x{ > 0 is determined, remaining coordinates x5, ..., x; are computed from
the set of equations (4.6)—(4.8). The questions of whether we have a unique or
multiple equilibrium points, and whether these points are stable or not, are the
subject of the remaining chapters.

4.2 Analysis of the Linearized Model

Let x.y = [x1,...,x,]T be an equilibrium point of the system. Then, we have:
g(xit1) . g(x))
i =2>——, fori=1,....,n—1, x, = =—=.
Ai ! An

Using Proposition 3.8, we obtain the following result.

Proposition 4.1. The system (4.3) has as many equilibrium as the number of fixed
points of g(x) given in (4.5).

Proof. Let

g1(x2)

Al

h(xy,x2,...,X,) = :
( ! 2 n) &n—1(Xn)
An—l
gn(x1)

An
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and g be as in (4.5). Then, by using Proposition 3.8, we conclude that & has as many
fixed point as g. But each fixed point of % is an equilibrium point of the system,
which concludes the proof. O

If we analyze the equation in depth, we see that for any equilibrium point of the
system in the form x., = [x;,...,x,]7, the first component x; is a fixed point of
the function g(x). To continue our analysis, let x,, = [x1,...,x,] be an arbitrary
equilibrium point of (4.3). Then, we have the following linearization of system (4.3)
around X, :

X() = Aox(t)+ Ax(t — 1) (4.10)
where
A1 gi(x) 0 ... 0
| O g;.(XS):” "1 ad A= B
00 .o,
with

Bi=[0--01]
C, = [g,(x1) 0---0].

The characteristic equation of the system (4.10) is
det(s] —Ag — B]Cle_”) =0

which is equivalent to y(s) = 0, where

x(s) = (]_[(s + /\,-)) —ke ™ (4.11)

i=1

n—1
k = (H gl (x,-+1)> g (x1). (4.12)

i=1

Since we have A; > 0, the characteristic function y(s) defined in (4.11) has all its
roots in C_ if and only if the transfer function

G(s) ke™™

T(s) = 566 where G(s) = =G+ A

(4.13)
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is stable. Note that

SO,

- ge™ |~
=T = (1 TLa +s/xi))

We will use the transfer functions given in (4.13) and (4.14) frequently for the
analysis of the GRN. In fact, the local stability analysis of an equilibrium point
will provide us useful insights in the general behavior of the system. In particular,
in Chapter 5, it is shown that if the unique equilibrium point of the GRN is locally
unstable, then the system exhibits periodic solutions for large enough delay. We
complete this section with a result on delay independent stability of the transfer
function 7 (s).

(4.14)

Proposition 4.2. Consider the transfer function T (s) given in (4.13) where A; > 0
foralli = 1,...n. If |g'(x1)| < 1, then T(s) is stable independent of delay.

Proof. Tt is straightforward to derive the result from the small gain theorem
(Proposition 2.2 and Lemma 2.1). O

4.3 A Synthetic Circuit: The Repressilator

In this section, we derive a dynamic model of repressilators from mass action law
and Michelis—Menten kinetics. The detailed derivation of the chemical reaction
equations is beyond the scope of this book. Also, the assumptions made in this
section are standard in biochemistry. An interested reader may refer to a popular
biochemistry book such as [46].

The repressilator is a synthetic genetic regulatory network first suggested in
[47], where the authors used three transcriptional repressors in cascade to build
an oscillating network in Escherichia coli. The synthetic network periodically
induces the synthesis of green fluorescent protein. In this section, we first derive the
dynamics of a 1-repressilator from mass action law. Then, using this 1-repressilator
model, we derive a dynamical model for the n-repressilator.

The 1-repressilator denotes a circuit that represses itself by binding to some
operator in the bacterial DNA. The kinetic reactions describing this model is as
follows:
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k

G—>G+P transcription+translation
e
ky

P ﬁ) @ degradation

where G, P, and P G represent the Gene, Protein, and Protein-Gene complex, which
provides self-inhibition. The above model (4.15) is given in [48]. Although we can
introduce delays in each reaction in (4.15), for the sake of simplicity we assume that
those delays are negligible. Using mass action law, we can write the dynamics of
the gene regulation given in (4.15) as follows:

4G(t) = k2 PG(t) —kaG(t) P(1)
L PG(t) = —k—2PG(t) + krG(1) P(1) (4.16)
%P(t) =k oPG@)—k,G@)P() + kiG(t) — k3 P(2)
where the number of total genes is assumed to be constant, which implies
G(t)+ PG(t) = G(0), Vt=>0. 4.17)

Above, G(0) denotes the initial state of the gene. If we apply the conservation
law in (4.17), with the steady state assumption % = 0, the protein dynamics

in model (4.15) becomes

dP(t k1G(O
O _ piy + 29O (4.18)
dt 1+ k—_22P(t)

where the term 11“% is a Hill function that denotes inhibition, i.e., negative
—
feedback. ’

Using the I-repressilator model, one can define the n repressilator model

illustrated in Figure 4.2. The model contains n proteins P;, i = 1,...,n, which

Fig. 4.2 The n-repressilator model.
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are produced from the respective gene G;, which in turn is inhibited by P; ;. The
respective chemical kinematics can be described as:

k3i— .. .
G; 2 G; + P; transcription+translation

ksi—1
P11+ G; = PG inhibition 4.19)
k311

k3i .
P; — @ degradation.
For each i, from conservation law, we have

Gi(0) = G;(t) + PG;(t), Vt=0.

The steady state assumption, % = 0, leads to
d a; G;(0) .
—Pi(t)y=—AP(t)+ —————, i=1,...,n, 4.20
TR (t) TF b P @) (4.20)

where A;, a; and b; are positive constants and we implicitly assumed the cyclic
structure so that P,4+; = Pj, G,+1 = Gy, and neglected the time delay. The
Hill function representing inhibition has negative derivative. If n is odd, the overall
system will be under negative feedback. On the other hand, if » is even, the system
will be under positive feedback. We will perform the analysis for both the negative
and positive feedback in the next two chapters.

4.4 Exercises

Problem 1. Consider the system

X1(1) = =x1(t) + f(x2(2))
X(1) = =x2(1) + f(x1(t — 7)),
where T > 0 and f(x) = ﬁ For the computation of the equilibrium points of
this system, the reader is referred to Section 2.4. Now compute the fixed points of
g = f o f, and show how we can compute the equilibrium points from the fixed
points of g.

Problem 2. Find the linearization of the system in Problem 1 at each of the
equilibrium points, and determine whether the linearized system is locally stable
or unstable independent of delay.
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Problem 3. Consider the system

X1(1) = —xi(t) +

2+ x3(1)
. . 4x12(t —1)
Xo(t) = —x2(t) + m

where © > 0. For the computation of the equilibrium points of this system, the
reader is referred to Section 2.4. Show that the system is under negative feedback,
and the characteristic equation of the linear system is in the form 1 + G(s) = 0,
where G(s) = 3‘(‘;;;2. By drawing the Nyquist graph G(jw) for T = 3.5 sec and
T = 3.7 sec, prove that the linear system is stable for 7 < . and unstable for t > 7.,
for some 7. € (3.5, 3.7). Determine the exact value of ..



Chapter 5
Gene Regulatory Networks Under Negative
Feedback

Abstract In this chapter, we consider the simplified GRN model, with the
assumption that it is under delayed negative feedback. By analyzing the fixed
points of a single function determined from the nonlinear connections, we show
that in this case the system has a unique equilibrium point in the positive cone.
Then, delay independent global stability, and instability, conditions are derived.
For a delay dependent stability condition the secant condition is extended to cover
systems with time delays. Special stability conditions are derived for homogenous
GRNs where nonlinearities are Hill functions.

Keywords Gene regulatory networks ¢ Cyclic systems ¢ Delayed feedback
Negative feedback ¢ Secant condition ¢ Delay dependent local stability ¢ Delay
independent global stability * Hill functions

In this chapter, we consider the simplified GRN model (4.3) with the assumption
that it is under delayed negative feedback. More precisely, recall from Chapter 4
that the dynamical system equations are:

X1(t) = =A1x1(t) + g1(x2(2))

X(1) = —A2x2(t) + g2(x3(2)) 5.1)

$0(1) = —An(1) + g0 (61 = 7))

where T > 0 is the delay in the feedback loop. By Assumption 1 of Chapter 4,
A; >O0foralli = 1,...,n. Moreover, by Assumption 2 of Chapter 4, each g; is a
bounded monotone function taking positive values and having negative Schwarzian
derivatives, i = 1,...,n. Recall that the GRN is under negative feedback if

g'x)<0 Vx € (0, 00), (5.2)
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where

1 1 1
—(— — cvo(—g,). 5.3
g (Algl)O(Azgz)o o()Lngz) (5.3)
We start by first showing that g has a unique fixed point, which implies that the
system has a unique equilibrium point.

Proposition 5.1. Consider the system in (5.1) under negative feedback. Then, the
system has a unique equilibrium point in R, .

Proof. When the system is under negative feedback, by using Proposition 3.3 it is
easy to see that g has a unique fixed point. Then, Proposition 4.1 implies that the
system (5.1) has as many equilibrium points as the fixed points of g. Since g has a
unique fixed point, the system has a unique equilibrium point. O

When the system is under negative feedback, from Proposition 3.3 we see that the
system has a unique fixed point x; such that g(x;) # —1. Therefore, we have two
possibilities: either g(x;) < —1 or g(x;) > —1. In the sequel, both situations will
be investigated separately.

5.1 Stability Conditions for GRNs Under Negative Feedback

In this chapter, we need a generalized version of the well-known Poincaré—
Bendixson Theorem [49]. That particular theorem requires that any solution of the
system (5.1) to be bounded. Our next result establishes such a property.

Proposition 5.2. For the system (5.1), R"y is a positively invariant set and, for any
set of initial conditions, the corresponding solution of the system remains bounded.

Proof. To prove positive invariance, we only need to check the direction of the

vectors on the boundaries of the region R = {[x1,x2,....,x,]" € R" : x; >
0 Vi =1,2,...,n}. The boundaries of the region R’jr are just the planes x; = 0.
If x; = 0 for some i = 1,...,n, then we have x; = f(x;—;) > 0, so if the

derivative is zero, then x; stays on the boundary, otherwise x; moves inside the
region R, showing that the region R’} is an invariant set of the system (5.1). For
the second part of the Proposition, note that if x; (f) becomes greater than

1
- sup|gi(a)],
Ai azl())| |

then we have X; () < 0, which means that x; (¢) is decreasing. Hence, the solutions
remain bounded for any positive initial condition. O

Next, a generalized version of the Poincaré—Bendixson Theorem is presented.
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Theorem 5.1 ([49]). Consider the system (5.1). Assume that A; > 0, and g; is a
bounded monotone function taking positive values and having negative Schwarzian
derivatives, for all i = 1,...,n. Let the system be under negative feedback, so that
it has the unique equilibrium point X,y = [x1,...,x,]T. Let x(t) be a solution of
the system (5.1) which is bounded in R!, . Let w(x) denote the omega-limit set of the
solution x(t). Then, either (i) w(x) is a single non-constant periodic orbit; or (ii)
for each solution u(t) of (5.1) in w(x), we have

a(u(t)) Nwu(t)) S {xeq}-

The above theorem implies that (5.1) cannot have a chaotic behavior. In particular,
the condition (ii) of the theorem says that the omega-limit set of x(-) consists of
the equilibrium point x,, and a set of orbits homoclinic to x,, (note that, since the
equilibrium point is unique under negative feedback, the existence of heteroclinic
orbits are automatically ruled out). Moreover, if the equilibrium is locally unstable,
then according to Theorem 5.1, the system will have either periodic orbit or an orbit
homoclinic to x.g.

Remark 5.1. In the recent work [50], the authors refer to both non-constant periodic
orbits and homoclinic orbits as oscillations, and state that

“In practice, however, the possibility of homoclinic orbits is negligibly small,...”

which is consistent with [41], where it is observed that simulations do not lead
to homoclinic orbits. Similarly, in our extensive simulations we have not observed
homoclinic orbits. However, we cannot theoretically rule out homoclinic orbits. In
order to simplify the notation, similar to [50], in this work, we denote both non-
constant periodic orbits and homoclinic orbits as oscillations. With this notation,
if the unique equilibrium point of the system is locally unstable, then according to
Theorem 5.1, the system exhibits oscillations. Therefore, remaining parts of this
chapter will be devoted to finding conditions for (a) global stability and (b) local
instability around the equilibrium.

In order to derive the main result of this section, Theorem 1 of [51] will be used.
The ODE model studied in [51] is given as:
il([) = _kl (Zl) + hl(zn(t - Tn)) for¢ > Tn
Zj([) = _kj(Zj) + hj*l(zjfl(t — Tj*l)) fort > T,, ] =2,3,....,n—1, (54)
where z;(¢),...,z,(t) are continuous non-negative functions of time t > 0. For
each j, k; is a continuous strictly increasing function satistying

* k;j(0)=0,and k;(z;) - o0 asz; — oo.
» T, is a non-negative constant.
* h; is a continuous monotonic function with /2 (z;) > 0 for z; > 0.
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Under these assumptions, define
D (u) =kn_1 oh,_10...0h Okl_lh,,(u), u>0. (5.5)

Then the system is defined under negative feedback if the function @ is decreasing.
Using a similar argument as in Proposition 5.1, we can show that the system (5.4)
has a unique equilibrium point, which is denoted as a = (a,, az, ..., a,). With these
definitions we are ready to state Theorem 1 of [51].

Theorem 5.2 ([51, Theorem 1]). Consider the system (5.4) under negative feed-
back so that the function @ defined in (5.5) is decreasing.

o If the function @ o ®(u) has the unique fixed point u = a,, then z(t) — a as
t — oo for arbitrary (non-negative) initial conditions.

o Ifthe function @ o @ (u) has any number of non-negative fixed points, but if £ and
L are the lower and upper bounds of these fixed points, then for any non-negative
solution z(t) = [z21(2),22(t), . .., 2. (t)]* of the system (5.4), we have

(< limz(t) < limz() <L Vi=12,....n. (5.6)
[—>00 — =0

Next, Theorem 5.2 will be applied to the network (5.1) under negative feedback. In
particular, we have the following result.

Theorem 5.3. Consider the system (5.1) under negative feedback so that the
function g defined in (5.3) is decreasing. Let X.q = [x1,...,X,] denote the unique
equilibrium point of the system (5.1).

* If the function g o g(u) has the unique fixed point u = xi, then x(t) — X4 as
t — oo for arbitrary (non-negative) initial conditions.

o Ifthe function g o g(u) has any number of non-negative fixed points, but if £ and
L are the lower and upper bounds of these fixed points, then for any non-negative
solution x(t) = [x1(t), x2(2), ..., x, ()] of the system (5.1), we have

(< lim x;(t) < lim x; (1) <L  Vi=12,....n. (5.7)
=00 — —>00

Proof. If we let x,(t) = zi(t), xp—1(t) = z2(t),...,x1(¢t) = z,(¢), the
ODE model (5.1) becomes the same as (5.4) with k;(z;) = A;z;, h; = g;,
Ti,...,T,—1 = 0, and T, = t. Moreover, the function @ defined in (5.5) becomes
the function g defined in (5.3). Then, the result follows from Theorem 5.2. Note that
the non-negativity of the solutions follow from Proposition 5.2 and monotonicity of
the functions g; come from the assumptions made in the problem setup. O

Theorem 5.3 leads to the following result.

Proposition 5.3. Consider the system (5.1). Assume that A; >, and g; is a
bounded monotone function taking positive values and having negative Schwarzian
derivatives, for all i = 1,...,n. Let the system be under negative feedback, so that
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it has the unique equilibrium point X.q = [x1, ..., xn]*. In this case, by Lemma 3.8,
g defined in (4.5) has the unique fixed point x,. If

lg’'(x1)] < 1, (5.8)
then for any non-negative initial condition the solution satisfies

lim x (1) = xe4. 5.9
—>00

Proof. By Theorem 5.3, it is easy to see that we get the desired result if we can
show that the function

Su) = g(gw)

has a unique fixed point. Since the nonlinearity functions g; have negative
Schwarzian derivatives, by Lemma 3.1 the functions g and f have negative
Schwarzian derivatives. Hence the function f is in the form of Proposition 3.7.
Thus, if we have

|g/(X])| <1,

then, by Proposition 3.7, we conclude that the function f has a unique fixed point
which is at the same time the unique fixed point of the function g. Since the function
f(u) has a unique fixed point, the desired result follows from Theorem 5.3. O

Now, the above result is illustrated with an example.

Example 5.1. Consider the system (5.1) withn = 3, A; = A, = A3 = 1, and the
nonlinearity functions are given by

1 2 1
= —:, = —, = . 510
g1(x) Py g2(x) T+ g3(x) e (5.10)

Then, g(x) = g1 o g2 o g3(x) is given as

x24+6x+9

800 = T o8y 1 34

The unique fixed point of g can be found as 0.2551, and the unique equilibrium
point of the system can be found as x., = [0.2551, 1.3856, 0.4434]". At the unique

fixed point of g, we have

1g/(0.2551)| = 0.034 < 1.
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Therefore, by Proposition 5.3, we expect that the solution converges to x4
independent of delay. Figure 5.1 shows the solution of the system with x(0) =
[0.5,1.0,0.1]F, = = 0. As expected, the solution converges to x,,. Figure 5.2 is the
solution of the same system with x(0) = [0.2, 0.6, 1.0]7, T = 2. The solution again
converges to Xeg.

Using Proposition 4.2, we see that the condition:

lg'(x)] <1

also corresponds to the delay independent stability of the linearized system around
its unique equilibrium point. Therefore, Proposition 5.3 is consistent with the result
of Proposition 4.2. Most of the nonlinearity functions considered in biological
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systems have negative Schwarzian derivatives, including the Hill functions. Thus,
the results stated in Proposition 5.3 are useful not only for the analysis of gene
regulatory networks but also for other biological processes, e.g. hematopoiesis [52].

Next, we deal with the case when |g’(x;)| > 1. First, by using Proposition 3.7,
we conclude that the function f(x) = g o g(x) has three fixed points, one of which
is x|, where x; is the unique fixed point of g. Our next results provide upper and
lower bounds for any solution of the system including the case |g’(x1)| > 1.

Proposition 5.4. Consider the system (5.1). Assume that A; >, and g; is a
bounded monotone function taking positive values and having negative Schwarzian
derivatives, for all i = 1,...,n. Let the system be under negative feedback, so that
it has the unique equilibrium point X.q = [x1, ..., X,]". In this case, by Lemma 3.8,
g defined in (4.5) has the unique fixed point x;. If

lg'(x)] > 1, (5.11)

then f(x) = gog(x) has exactly three fixed points, one of which is x\. Let x{” < X,
and x;" > x denote its other two fixed points. Then, if x(t) = [x1(t), ... ., X, (t)]"
is the solution of the system (5.1) with any positive initial condition, we have

xp < lim x;(t) < lim x;(t) <x;7 Vi=1,2,...,n. (5.12)
=00 — t—>00

Proof. The fact that f has exactly three fixed points follows from Proposition 3.7.
Then, the two bounds in (5.12) follow immediately from Theorem 5.2. O

We now analyze the stability of the linearized system, which we then use to show the
existence of oscillations, in the spirit of [50]. In particular, if the unique equilibrium
point x,, is locally unstable, then we have oscillations. Recall that the stability of
the linear system is equivalent to having 7" € J7°°, where

3 g/(xl)e—rs
T(s) = G(s)1+G(s)™', G@s) = —=p—t.
()= GO +GEN™ GO =~ o s
Let again x., = [x1,...,x,]" denote the unique equilibrium point of system (5.1)

under negative feedback, so that x; is the unique fixed point of g. We have shown
in Proposition 4.2 that if [g’(x1)| < 1, then the system is locally stable around x.,
independent of delay. But the small gain theorem is conservative, so it only gives
us some sufficient condition. A less conservative local stability condition for the
delay free system is the so-called secant condition, [53]. Accordingly, the delay free
system is locally stable if

8/Cenl < (see )" (5.13)

Note that the right-hand side of the above equation is always greater than
1, so the secant condition is less conservative than the small gain condition.
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The condition (5.13) is related to “diagonal stability” of cyclic systems, see, e.g.,
[54-56] and their references for further discussion. The next result is a
generalization of the secant condition for systems with time delay. In particular, it
provides a bound for r while still maintaining the system as locally stable.

Proposition 5.5. Let x.; = [x1,...,x,]" be the unique equilibrium point of the
system (5.1) under negative feedback. Let A = max; A; and suppose that t is fixed.

If
/ Y n
lg' (x| < (sec ;) . (5.14)

and

, 1/n
JT — n arccos T
((lg (»’Cl)\) )

T < , (5.15)
W

where w,;, = A y/ |g’(x1)|% — 1, then the system is locally stable around X..

Proof. Recall that g’(x1) < 0; for the sake of clarity, let us re-define the closed loop
transfer function of the linearized system

G(s) |g'(x)le™™

where G(s) = T (0 +5/%) (5.16)
i=1 i

T(s) = TG(S)’

The linearized system is stable if and only if 7 € 7. Let p(w) and ¢, (w) be

n 2
p@) =] (%) i

i=1
q.(w) = Xn:arctan d + tw. (5.17)
i=1 Ai

Note that both p and g, are increasing functions of w. The equilibrium point x,, is
locally stable if and only if all the poles of T'(s) have negative real parts. Let w, be
such that p(w.) = |g’(x1)|. By using the Nyquist criterion, we conclude that T (s)
is stable if and only if

q:(w;) < 7. (5.18)
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Now we assume that (5.14) holds, so the delay free system is locally stable around
Xeq by the secant condition. Let

tan [ £
; = arctan [ — | .
Vi A

Since each y; is positive, by the definition of tangent inverse function they must be
in the interval y; € (0,7 /2) for each i. Thus, under nonzero time delay, 7'(s) is
stable if and only if

n
Ta)cf”_E Vi -
i=1

Note that
A7
cos(y;) = | —+—,
¥) A+ w?
so it follows
1 !
_— = x1)].
[Ti=i cos(yi) &)l

Similar to [53], we use the fact that
n n n
ncos(y,-) < (cos (M)) ,
n
i=1

so we have

'(x1)| = ! = :
lg" ()l = [T7_, cos(y;) (COS(@»”.

The above equation implies that

n 1/n
Z Yi < narccos ( : ) . (5.19)
lg"(x1)

i=1

Therefore,

1 1/n n
n—narccos((m) )<7T—Z)/i.

i=1



62 5 Gene Regulatory Networks Under Negative Feedback

1/n
Hence, if tw. < m — narccos ((Ig’(lxl)l) ), then the system is locally stable

2
around x.4. Let w, = A y/|g'(x1)|* — 1, note that w. < Wy, SO TW, < TWy.

Therefore, if
1/n
7T — 1 arccos (%)
( lg"(x1)]

T < ,

W
then the system is locally stable around x.,, which concludes the proof. O
Note that for the particular case A = --- = A,, we have w,, = w,.

The next result shows that if |g’(x;)| > 1, then there exists 7. such that for any
T > 1. the system is locally unstable around x,.

Proposition 5.6. Let x.; = [xi,...,x,]" be the unique equilibrium point of the
system (5.1) under negative feedback. Assume that

g (x)| > 1.

then there exists T, such that for any T > t. the system (5.1) is locally unstable
around Xeq.

Proof. We will again proceed as in the Proposition 5.5. Hence, let w, be such that
p(w.) = 1, where p(w) is given in (5.17). Note that existence of such a unique w,
is guaranteed by the assumption that 1 < |g’(x;)|. Then by the Nyquist criterion,
the system is locally unstable around x., if g;(w.) > m, where g.(w) is defined
in (5.5). Note that g, (w) is an increasing function of 7. Now let

_\y" 2
T E ;=1 arctan b
T, = .
[OF

It is easy to observe that if T > 7, then ¢, (w,) > 7, so the system is locally unstable
around X, . O

Proposition 5.6 shows that if |g’(x;)| > 1 then for sufficiently high values of the
delay the system is locally unstable. Moreover, using the tools in the proof of
Proposition 5.6, we can actually calculate the threshold t. such that the system
is locally unstable for all ¢ > t.. Our final result in this section gives necessary
conditions for existence of periodic oscillations of the system.

Proposition 5.7. Let x.; = [x1,...,x,]" be the unique equilibrium point of the
system (5.1) under negative feedback. Let

lg' (x| > 1.
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Then, there exists t. such that for any t > t. the system (5.1) has oscillatory
response for all initial conditions, except for the equilibrium itself. Note that
oscillations may include convergence towards a homoclinic orbit.

Proof. Using Proposition 5.6, we establish the existence of 7, such that the system
is locally unstable around x,, for t > 7.. Then, using Theorem 5.1, we conclude
that the system has oscillations for 7 > .. O

Let us illustrate these results with an example.

Example 5.2. Consider the following biological system under negative feedback:

. _ 6

80 =0+ 5

Lo 4x3(t — 1)

X2(t) = —x(t) + m (5.20)

We can calculate the unique equilibrium point of the system (5.20) as x,., = [1,2]%,
from which we obtain the linearization of the system around x,, as:

110 = —x1(0) ~ 2000,
X2(t) = —x2(t) + 2x1(t — 7). (5.21)

We can easily verify that the system (5.21) is under negative feedback by examining
the linearization of it. Moreover, in this case the function g(x) is given as

) ) 4x2 6x* +12x% +6
X) = o X) = = ,
=808 =8\ T732) T I8xt 1 ax2 12

which has the unique fixed point x; = 1 and g’(xy) = —4/3. Then the
characteristic equation of the linearized system is given as

4
1) = (s +1)" + 377"

It can be easily verified that when T = 0, the roots of y(s) are given as —1 % j2/~/3,
which implies that the delay free system is locally stable. Figure 5.3 shows the
behavior of the delay free system. As expected, the solution converges to x.,.
Further note that the feedback system formed around the non-delayed open
loop transfer function Go(s) = ﬁ has the gain crossover frequency w, =

1/ /3 rad/sec, with a phase margin of PM = 2x/3 rad. So, the delay margin
of the linearized system (5.21) is DM = PM/w, = 2m/~/3 sec, see [23]. This
means that the linearized system (5.21) is stable for all 0 < 7 < 2x/ V/3 sec, and
unstable for all t > 1. = 2x/ \/5 ~ 3.6276 sec. This result is consistent with
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Fig. 5.3 x1(t), xo(t) vst
graph of the system with
x(0) =[1.2,0.5]",t = 0.

0.5

0 L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Time

Fig. 5.4 x,(¢), x2(t) vs t graph of the system with x(0) = [1.2,0.5]", 7 = 5 sec.

Proposition 5.6. Figure 5.4 shows the behavior of the system with 7 = 5 sec. In this
case, we observe oscillatory behavior which is consistent with Proposition 5.7.

From the propositions proved so far, it follows that if |g’(x;)| < 1, the solution
converges to the unique equilibrium point of the system, independent of t. If
|g’(x1)| > 1 and t > 7., it is proven that the solution is oscillatory (see also [57]
for a similar result). The only missing part in the analysis is when |g’(x;)| > 1 and
T < 7., in which case the system is locally stable around x.,. Hence, the system
is stable around some neighborhood of the equilibrium x.,. Finding the region
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of attraction is an interesting open problem. In fact, one cannot rule out periodic
solutions in this case using the arguments given in this manuscript. On the other
hand, our simulations suggest that the solutions still converge to the equilibrium
provided that the local stability condition derived here is satisfied. Further research
is required to establish this observation. In fact, in our opinion, this is one of the
most important open problems in nonlinear system theory.

5.2 Homogeneous Gene Regulatory Networks
with Hill Functions

In this section, we consider the homogenous gene regulatory network under
negative feedback with Hill function type nonlinearities. More precisely, consider
the following system:

xi(t)=_xi(t)+f(xi+l(t)) i=1,2,...,l’l—1
Xn(t) = —x, (1) + f(x1(t — 7)), (5.22)

where the function f(x) is arbitrary such that
f(x) <0, Vx € (0, 00), (5.23)

and f has negative Schwarzian derivative. Note that equation (5.23) combined
with Proposition 5.1 implies that the function f has a unique fixed point, say x;.
Also notice that to have negative feedback, n should be an odd number. From
Proposition 5.1, it is known that under negative feedback the system has a unique
fixed point, which is in the form x., = [x1,..., x]".

Proposition 5.8. Consider the homogenous GRN model given in (5.22) where n is
an odd integer and f satisfies (5.23) and Sf(x) < O for all x > 0. Let x; > 0
denote the unique fixed point of f(x). Then, X.q = [xi,...,x1]" is the unique
equilibrium point of the system (5.22), and the following statements hold:

o If|f'(x1)| < 1, then any solution of (5.22) converges to X., independent of
delay.

o If|f'(x1)| > 1, the function f o f has exactly 3 fixed points, including x,. Let
X[ < xy and x;t > x| denote the other two fixed points of f o f. Then, any
solution x(t) = [x1(t), ..., x,(D)]F of (5.22) satisfies

xp < lim x;(t) < lim x;(t) <x;"  Vi=1,2,...,n.
t—>o00 — —>00

Moreover, there exists t. > 0 such that for every value of the delay Tt > t. the
system has an oscillatory behavior.



66 5 Gene Regulatory Networks Under Negative Feedback

Proof. Note that in the homogenous network g(x) is given as
gx) = f"(x),
and since 7 is an odd number
g (x) <0, Vx>0, andg'(x;) = (f'(x1))".
But the above inequality implies that
gDl <1 & |f'xDl <1 gDl >1 & [f(x)] > 1. (5.24)

If | f/(x1)| < 1, then by using (5.24) it is easy to see that |g’(x;)| < 1. Then, part (i)
of the proof follows from Proposition 5.3. If | f"(x;)| > 1, then again by using (5.24)
it can be shown that |g’(x;)| > 1. Parts (ii) and (iii) follow from Propositions 5.4
and 5.7, respectively. The explicit calculation of 7. can be found in the proof of
Proposition 5.6. O

Next, assume f given in (5.22) has the following form:

a
b+ xm’

fx) = a,b>0, me{l, 2, 3,...} (5.25)
Also note that to have negative feedback, we should have odd number of interactions
between genes. If n is even, the system is under positive feedback, which is studied
in Chapter 6. Accordingly, assume that n is an odd integer. Since f(0) > 0 and f
is decreasing, f has a unique fixed point, x;, satisfying

a
= = 5.26
X1 f(xl) b+ x’]" ( )
Then the unique equilibrium point of system (5.22) is x,; = [x1, ..., x]". Note that
m—1 m+1
, ma x| m X
=_ =— 5.27
f (xl) (b +xin)2 a ( )

From (5.26), it is straightforward to get the following identity:

X' =a —bx;. (5.28)
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Then, g(x) can be written as
glx) = f"(x).
From Proposition 5.8, the system (5.22) is stable if we have

g'(x)l <1 & |ff(x)]" < 1.

Combining (5.26) and (5.27), the following set of inequalities are obtained

L/l <1 = |f'(x)] < 1.

m—+1
mx)
= <1
a
= mx’ln‘H <a

= m(a—bx;) <a

N (m—1a -

X1.
mb

Let p : R — R be given by
p(x) =x"t' 4 bx —a.

Clearly, p(x;) = 0 and

PxX)=m+Dx"+b>0 Vxe(0,00) and p(0)=—a <0.

Since p(x;) = 0 and p is strictly increasing, one gets

mb mb

Finally, the following identities hold:
(m—1)a m—1\""! (a)m+l+m—l
= - a—a
P mb m b m
m—1\"t" ja\nt1  a
-(7) G

67

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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Combining (5.33) and (5.34), we arrive at the following set of inequalities:
(m—1a
—_— 0
P ( mb =
m—1\"T ja\m+1 g
< (—m ) G <

¢>(%)m<<(;£}7)m+{ (5.35)

If the constants a, b, and m satisfy the inequality (5.35), then from Proposition 5.3
the unique equilibrium point of system (5.22) is globally attractive. The arguments
we had so far are valid for m > 1 case. For m = 1, the Hill functions do
not have negative Schwarzian derivative. Now let m = 1 and a and b arbitrary
positive real numbers. Then, the system (5.22) has the unique equilibrium point
Xeg = [x1,...,x1]T satisfying

_ a
- b+X1

X1
= xl=a—bx
From Proposition 5.3, the unique equilibrium point of (5.22) is globally attractive if

’ a xl
- —_— = 1
)= GraE T -

=S a—-bx <a

=0<x. (5.36)

Equation (5.36) shows that for m = 1 the unique equilibrium point of (5.22) is
globally attractive regardless of the values of the positive constants a and b. Thus
the following result has been established.

Proposition 5.9. Consider system (5.22) with f defined in (5.25), and let x,q =
[x1,...,x1]F be its equilibrium point. Then, the following statements hold:

(i) If m =1, then x.q is globally attractive for all positive constants a, b.
(ii) If m = 2,3,...and a, b, m satisfy

a\m b m+1
Go) <(=t)
m m—1
then x., is globally attractive.

(iii) For cases other than (i) and (ii), the system (5.22) has oscillatory behavior for
sufficiently large values of delay.
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Proof. From the above arguments, if (i) or (ii) holds, then at the unique fixed point
x1 of g(x), we have

lg"(x1)] < 1.

Hence the result follows from Proposition 5.3. If the conditions in (i) and (ii) are not
satisfied, then

g (x)| > 1.

Then, (iii) follows from Proposition 5.8. Note that in this case we can calculate t,
such that for t > 7, the system has oscillatory behavior. For details, see the proof
of Proposition 5.6. O

Example 5.3 (Homogenous Negative Feedback Case). In this example, we will
try to highlight the results of Proposition 5.9. Consider the homogenous negative
feedback case witha = 1.5, = 0.5,m = 2,n = 3 and f is given by

(5.37)

Note that

m b m+1
(ﬁ) = 0.5625 > (—1) —0.125. (5.38)

m m —

Then, the function

h(x) = f o f(x)

has three fixed points given by y; = 0.1771, y, = 1 and y3 = 2.8229. Moreover,
the system has the unique equilibrium point x,, = [1, 1, 1]*. The linearization of
the system around x,., is given as

£1(0) = 1 (0) — 3000

() = —00) ~ 310)
X3(t) = —x3(t) — éxl(t — 7).

For sufficiently large values of the delay, from Propositions 5.7 and 5.9, oscillatory
solutions of the system are expected to satisfy

0.1171 = yy < lim x;(1) < lim x;(1) < y; = 28229 Vi =1.2.3.
—>00 —— —00
(5.39)
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Fig. 5.5 x,(¢) vs ¢t graph of the system with x(0) = [2.0,0.5,0.2]%,7 = 0.

The simulation results corresponding to x;(¢), with initial conditions x1(0) = 2.0,
x2(0) = 0.5, x3(0) = 0.2, and T = 0, are shown in Figure 5.5. The other
two coordinates behave similarly. We have a periodic solution as expected and the
inequality in (5.39) is satisfied.

Consider the same problem witha = 2, b = 3, m = 2, n = 3. Then,

2 a\m m+1
f() = 3= which implics (n—1) —1< (m) —27. (5.40)
The unique equilibrium point of the system can be calculated as

Xeq = [0.5961,0.5961,0.5961]". (5.41)

From Proposition 5.9, we expect the solution of the system to converge to x4
regardless of the initial condition and the time delay. The simulation results are
shown in Figures 5.6 and 5.7 for two different sets of initial conditions and time
delays. The simulation results are consistent with the theory: x(¢) converges to x4
independent of delay.
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Fig. 5.6 x,(¢), x2(), and x3(¢) vs ¢ graphs of the system with x(0) = [1.0,0.3,0.1]*, t = 0.5.
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Fig. 5.7 x,(¢), x2(t), and x3(¢) vs ¢ graphs of the system with x(0) = [0.5,1.0,0.2], T = 3.
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5.3 Exercises

Problem 1. Consider the nonlinear system:

).C](l) = —A]Xl([) + gl(X2([)) (5.42)
).Cz(l) = —/\2X2(l‘) + gz(xl(t — ‘L’)), (5.43)

where g1(x) = H%, 2(x) = %’ A1 > 0,4, > 0,and T > 0. As in (5.3) define

g= (g o (L)

(a) For Ay = A, = 1, the unique equilibrium point is computed above from the
unique positive fixed point x; = 1 of g, as x,, = [l 2]T. Clearly, since
n = 2, in this case, the condition (5.14) is automatically satisfied. Find the
largest t satisfying (5.15), compare this result with t,. found above (recall that
7. = 27/~/3). What is the level of conservatism of Proposition 5.5?

(b) Now let A; = 2 and A, = 0.5. Determine the equilibrium point of (5.42) and
obtain the characteristic equation of linearized system around this equilibrium
in the form 1 + Go(s)e™ = 0, where Gy(s) WIM for
K = |g'(xs)| and x is the fixed point of g. Now compute w. such that
|Go(jw.)| = 1. Determine the 7, = PM/w, where the phase margin is
PM = 7 + £Go(jw,.) (phase of Go(jw,) is in the interval (—z , 0]). Verify
that in this case w, < w,,. Find the largest delay value t satisfying (5.15), and
compare it with 7,. What is the level of conservatism of Proposition 5.5 in this
case?

Problem 2. For the system defined in Problem 1, part b, show that Proposition 5.5
becomes less conservative if we change the definition of w,, to

n 1/n
o =2 (I8P =1)"".  where i=(l’[M) :

i=1

Prove that w, < @,, < w,, in this case. Repeat the exercise for A; = 1, A, = 0.25.
Examine the stability conditions given in Section III of [58] and compare them to
the sufficient condition obtained in Proposition 5.5.

Problem 3. Consider the nonlinear system

xX1(t) = =i x1(t) + f(x2(1)) (5.44)
Xo(t) = —Aaxa(t) + f(x((t — 1)), (5.45)

where A; > 0, A, > 0, 7 > O and f is in the form (5.25). Try to find an extension
of Proposition 5.9 for the case A; # A, i.e. the stability/instability conditions are
expressed in terms of the parameters a, b, m, A, and A,. Give numerical examples
and simulation results illustrating this result.



Chapter 6
Gene Regulatory Networks Under Positive
Feedback

Abstract In this chapter, we consider the simplified GRN model, with the assump-
tion that it is under delayed positive feedback. By analyzing the fixed points of a
single function determined from the nonlinear connections, we show that the system
may have three equilibrium points in the positive cone. When the system has a
unique equilibrium, generically all solutions converge to this point. When there are
three equilibrium points, the system shows a bistable behavior. Homogenous GRNs
under delayed positive feedback are analyzed, and their stability and bistability are
determined from the parameters of the Hill function used in the nonlinear coupling.

Keywords Gene regulatory networks ¢ Cyclic systems ¢ Delayed feedback
Positive feedback e« Bistability ¢ Hill functions

In this chapter we consider the simplified GRN model (4.3) with the assumption that
it is under delayed positive feedback. For the sake of completeness, the ODE-based
model defined in Chapter 4 is re-written

xX1(t) = —A1x1(t) + g1(x2(2))

Xp—1(t) = =Ap—1Xu—1(t) + gn—1(x, (1))
xn(t) = _A11x11(l) + gn(-xl(t - ‘L’)), (6.1)

where © > 0 is the delay in the feedback loop, A; > 0 and each g; is a
bounded monotone function taking positive values and having negative Schwarzian

derivatives, i = 1,...,n. Recall that the GRN is under positive feedback if
g'(x) >0, Vx € (0, 00), (6.2)
where
1 1 1
g = (A_lgl) ° (A—zgz) 0::-0 (Zgn)- (6.3)
© The Author(s) 2015 73
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It is easier to determine the behavior of the system (6.1) under positive feedback
compared to the negative feedback case; in the sense that, as we shall see,
generically the solution converges to one of the equilibrium points of the system.
Hence, if the system has a unique equilibrium point, then the solution converges
to the equilibrium point for almost every non-negative initial condition and any
delay value t > 0. The most interesting phenomena under positive feedback is
bistability. Basically, a bistable system has two stable states and an unstable state
and the system can converge to one of the stable states depending on the initial
conditions and the value of the delay. In biology, bistability is a key concept for
understanding the cellular functioning. It is involved in critical processes such
as cellular differentiation and apoptosis, see, e.g., [59]. In this chapter, we give
conditions that will lead to the bistability of the system.

6.1 General Conditions for Global Stability

We start with a result from [60], which states that, generically, the solution of (6.1)
converges to one of the equilibrium points.

Theorem 6.1 ([60, 61]). Consider system (6.1) under positive feedback with initial
conditions from

2 ={¢@ =[p1@@)...¢u(@)]" : $:i() €€ (-7 . OLR), ¢(a) =0}

Then, almost every solution of system (6.1) converges to one of its equilibrium
points. O

The above result is a consequence of Theorem 4.12 of [60]; for its application
to (6.1) under positive feedback, see Theorem 3 of [61] and its references for
technical arguments of the proof. A similar result also appears in Section 7.2 of
[62]. What is meant by “almost every solution converge” is that there is a dense open
subset of 2" such that any initial condition from this subset leads to a convergent
solution; see [60] and also [63—65] for measure theoretic details on the definition of
a dense subset on infinite dimensional spaces.

Next, let us turn back to the analysis of the linearized system under positive
feedback. Note that different from the negative feedback case, in the positive
feedback case, we may have more than one equilibrium point, which implies that
g(x) may have more than one fixed point. Observe that for any fixed point x; of g,
the corresponding equilibrium point of the system is given as xoq = [x1,...,x,]",
where

_ &) _ gn—1(xn) _ &) _ &ilx) _

Xn Xn—1 = e, X2 X1 = g(xy).
An n A’f’l—l ' ' A2 ' A2
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Let x,; = [X1....,x,]T be an equilibrium point of the system. Then, as in the
negative feedback case x; is a fixed point of g. The stability of the linear system
around x,, is determined from the locations of the poles of the transfer function

Gs) where G(s) = g'x)e™™

1-G(s)’ H?z—l (f—l N 1).

Since g’(x) > 0, from Proposition 2.3, we get the following result regarding the
stability of the linearized system.

T(s) = (6.4)

Proposition 6.1. Consider the system (6.1) under positive feedback. Let x., =
[x1,....x,]T be an equilibrium point of the system. If

g'(x) <1, (6.5)

then the system is locally stable around x., independent of the delay. On the other
hand, if

g'x) =1, (6.6)

the system is locally unstable independent of delay.

Proof. If g’(x1) = 1, the rightmost pole of T'(s) is at zero, so the system violates
our definition of local stability (we are interested in local asymptotic stability).
For the cases g’(x;) > 1 and g’(x1) < 1, the results are obtained directly from
Proposition 2.3. O

According to Theorem 6.1, generically, the system converges to one of its equilib-
rium points independent of delay. Proposition 3.5 deals exactly with that case. It
implies that the largest fixed point x s of g satisfies

g'(xp) <L
Then, by Proposition 6.1, the system is locally stable independent of delay around
the equilibrium point x,, = [x1,..., x,]7, where
X1 =Xp, Xp =gn(Xp)/An, ..., X2 = ga(x3)/As.

We now elaborate our analysis of the positive feedback case by using the results
from Chapter 3. The result below gives a general condition on the existence of
unique equilibrium point for (6.1).

Proposition 6.2. Consider the system (6.1) under positive feedback. If g’'(x) < 1
for all x > 0, then g(x) has a unique fixed point. In this case, the system (6.1) has
a unique equilibrium point x., which is globally attracting, for almost every initial
condition from Z .
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Proof. Suppose g’'(x) < 1forall x > 0, but g has two fixed points x; < x,. Then, a
routine application of the mean value theorem implies that there exists ¢ € (xy, x3)
such that

g(x2) —glx1)
X2 — X1 B

g'(c) = 1,

which is a contradiction. Hence, g has a unique fixed point. Convergence to
the unique equilibrium, for almost every initial condition from 2, follows from
Theorem 6.1. o

The condition given in the above theorem is by no means necessary. Simply, it
provides a sufficient condition for the existence of a unique fixed point of the
function g(x).

Proposition 6.3. Consider the system (6.1) under positive feedback. If g'(0) > 1,
then the system (6.1) has a unique equilibrium point x., which is locally stable
independent of delay. Moreover, if g(0) > 0, then g has a unique fixed point.

Proof. Recall that the assumptions in the problem setup imply that g has negative
Schwarzian derivative. Then, by Remark 3.1, g is either of Type A or Type B. First
suppose that g is of type A. Then, the result follows from Proposition 3.5, which
states that g has at most two fixed points including 0. If g(0) > 0, then from
Proposition 3.5, we conclude that g has unique fixed point x; > 0 such that the
corresponding equilibrium point of the system is locally stable. If g(0) = 0, again
Proposition 3.5 shows that g has two fixed points 0 and x; such that g’(x;) < 1. The
fixed point of the system corresponding to the fixed point 0 of g is locally unstable
independent of delay by our assumption that g’(0) > 1 (see Proposition 6.1). Other
fixed point of the system, corresponding to the fixed point x; of g(x), is locally
stable independent of delay as we have g’(x;) < 1. Next assume g(x) is of type
B. Combining our assumption g’(0) > 1 with Remark 3.1, we conclude that there
exists xo > O such that

g'(x)>1, Vx€[0,xp), and g’(x) <1, Vx > xy.

Note since g(0) > 0, for any y € [0, xo), we have

i
¢ = g(0) + /0 ¢/ (0)dx > g(0) + y.

which implies that g cannot have any fixed points in [0, xo] apart from 0. When
X > X, since g’(x) < 1, g has a unique fixed point x; > x¢ such that g’(x;) < 1.
Whether 0 is a fixed point or not, our assumption g’(0) > 1 implies that the
equilibrium point of the system corresponding to O is unstable independent of delay
by Proposition 6.1. On the other hand, the fixed point corresponding to x; is locally
stable independent of delay again by Proposition 6.1. O
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Next, we investigate the bistability of the system by using Proposition 3.6. The
bistability condition depends only on the number of fixed points of g.

Proposition 6.4. Consider the system (6.1) under positive feedback. Moreover,
suppose that g(x) has three fixed points x; < x; < x[". Then, the system exhibits
bistable behavior.

Proof. Suppose g has three fixed points x| < x; < xl+. Then, Proposition 3.6
implies that

<1, gex)>1, gxh <1

From Proposition 6.1, it can be concluded that the two equilibrium points cor-
responding to x;” and x1+ are locally stable independent of delay, whereas the
equilibrium point of the system corresponding to x; is locally unstable independent
of delay. But since the system has two locally stable equilibria, the solution of the
system will converge to one of these equilibrium points depending on the initial
value. Hence, the system exhibits a bistable behavior. O

6.2 Analysis of Homogenous Gene Regulatory Networks

In this section, homogenous gene regulatory networks of the form (6.1) are studied;
i.e., it is assumed that A; = 1 and there exists a function f such that

gi(x) = f(x), Vi=12,...,n.

For the sake of clarity, let us rewrite the homogenous network as:

Xi(t) = —xi(t) + f(xi+1(2)) i=12,....,n—1
X (1) = —xu (1) + (01 (1 = 7). (6.7)

Note that no special structure is assumed for f yet. But, due to the monotonicity
assumption, we have either

f(x)>0Vx € (0,00) or f'(x)<0Vx e (0,00).

The following result plays a crucial role in the remainder of this section.

Lemma 6.1. Let k(x) : Ry — I C Ry be a three times continuously
differentiable function satisfying k'(x) > 0 for all x € (0, 00). Let h(x) be defined
on Ry as h(x) = k™ (x), for some positive integer m. Then, any fixed point of h is
a fixed point of k.
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Proof. Suppose that 2(0) = 0 and k(0) > 0. Then we have
h(0) = k"(0) > ... > k(k(0)) > k(0) > 0,

which is a contradiction. Therefore, k(0) = 0 and 0 is a fixed point of the function
k.Let x > 0 be a fixed point of the function & and suppose k(x) # x. Then, either
x < k(x) or k(x) < x.If x < k(x), since k is a strictly increasing function, it
follows that

h(x) =k"(x) > ...> k(x) > x,
leading to a contradiction. Similarly, if k(x) < x, then
h(x) =k"(x) <...<k(x)<x,

which is again a contradiction. Therefore, we should have k(x) = x. Also, it is easy
to see that any fixed point x of k is a fixed point of /. Thus we conclude that the
functions k and & have the same fixed points. |

Remark 6.1. The homogenous system is under positive feedback if

(i) f'(x) > 0forall x € (0, 00), or
(ii) f'(x) < 0forall x € (0,00) and 7 is a positive even integer. |

First, consider the case (ii) of Remark 6.1.

Proposition 6.5. Consider the homogenous gene regulatory network (6.7) under
positive feedback with f'(x) < 0. Then, g(x) = f"(x) and f has the unique fixed
point xy. If

|f (el < 1L

then the system has the unique fixed point X.q = [xi,...,x1]" which is globally
attractive, independent of delay, for almost every initial condition from Z . Other-
wise, if

|f el > 1,

the system exhibits bistable behavior.

Proof. When f’(x) < 0, in order for the system to be under positive feedback n
should be an even number. Let n = 2 x m; and let k(x) = f?(x). Then, we have
g(x) = k™ (x). Moreover, from chain rule

K(x)=f'(f(x)f'(x) >0, Vx>0.
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Also note that, from Lemma 6.1, g has the same fixed points as k. If

FACHIET

then from Proposition 3.7, the function k has the unique fixed point x;. In this case,
the homogenous GRN has the unique equilibrium point x,, = [x1,..., x;]T. Hence,
Theorem 6.1 implies that almost all the solutions converge to x., independent of
delay. Next assume that

flx) > 1.

Then, again from Proposition 3.7, k has three fixed points x|” < x; < x1+ .Hence, g
has the same three fixed points. Therefore, Proposition 3.6 implies that the system
exhibits bistable behavior. O

Next, assume a special form for the nonlinearity function f(x), which is given as
follows:

fx) = a,b>0, ke{l, 2 3,...% (6.8)

a
b+ xk’
Note that f’(x) < 0. In this case, the following proposition holds.

Proposition 6.6. Consider the homogenous gene regulatory network (6.7) under
positive feedback with f given as in (6.8). In this case, if k = 1 or a, b, k satisfy

0 < ()

then the system has a unique equilibrium point which is globally attractive for
almost every initial condition from Z . Otherwise, the system exhibits bistable
behavior.

Proof. Since f(x) has negative derivative, it has a unique fixed point. Let x; be
the unique fixed point of f(x). If k = 1 or (6.9) is satisfied, by using the same
argument as in the proof of Proposition 5.9, it follows that | /" (x;)| < 1. Otherwise,
| /" (x1)| > 1. The rest of the proof follows from Proposition 6.5. O

Now consider the case (i) of Remark 6.1, where f(x) satisfies
f'(x) >0, Vxe€(0,00). (6.10)

Lemma 6.2. Consider the homogenous gene regulatory network (6.7) under pos-
itive feedback with the nonlinearity function f(x) satisfying (6.10). Then, the
function g(x) = f"(x), where n is even, has as many fixed points as f. In
particular, if f has a unique fixed point, then the system (6.7) has a unique
equilibrium which is globally attractive for almost all initial conditions from Z .
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Proof. Lemma 6.1 and Theorem 6.1 lead to the desired result. O

For the case (6.10), the above Lemma reduces the whole analysis to the investigation
of the fixed points of f. If f has a negative Schwarzian derivative, then we have
theoretically shown that it has one, two, or three fixed points. As an example,
consider the following Hill type of functions and try to find some conditions
regarding its fixed points:

axm

b+ xm

f(x) = +c¢, a,b, c>0. (6.11)

Note that zero is ruled out as a fixed point by taking the constant ¢ strictly positive.
Then x > 0 is a fixed point of the function defined in (6.11) if x is a root of the
following polynomial:

h(x) = x"*t' — (a 4+ ¢)x™ + bx — bc. (6.12)

Some interesting cases regarding the function (6.12) may occur. For example,
consider the following numerical values: a = 3.6, b = 5, m = 2, and ¢ = 0.4.
Then

h(x) = x"' —(a + c)x™ + bx —bc = (x — 1)*(x — 2)

which implies that the function f has exactly two fixed points, both of which are
different than 0.

Let us now try to find a sufficient condition depending on the parameters a, b, c,
and m so that the function f defined in (6.11) has a unique equilibrium point. First
note that, for arbitrary positive constants a, b, ¢, and m, the following holds:

h(0) = —bc < 0. Therefore, if we have

W(x)>0  VxeRy, (6.13)

then A(x) can have at most one positive root, so f has a unique fixed point. For
m>1,

W(x)=(m+ Dx™—@m)a+c)x™ ' +b
=x"Y(m+D)x—m@+c)+b = hi(x)+b.

In order to guarantee (6.13), we should have &;(x) > —b for all x € Ry. But i
takes its minimum at the point y where

K, (y) = 0. (6.14)
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As aresult of (6.14), we get the following relations:

Ri(x) = (m+ D)(m)x""" = (m)(m — 1)(a + c)x" >
= X" 2(m)(m + 1)(x — ”Z; i(a +0):
1
= h(y)=0&y= ’:”1+1(a+c):

) m—1 m—1\""" ”
:>§nzl{)1h1(x)—h1(m+](a+c)) = _(m——i-l) (a+o)".

Combining this with (6.13) and (6.14), the following result is obtained:

—1 m—1

(’"—) @+e)y" <b= h(x)>—b=h(x)=>0.
m+1

Proposition 6.7. Let f be given as a Hill function in the form (6.11). Then, the

following properties hold:

(i) If m = 1, then for any positive a, b, and ¢, the function [ has a unique fixed
point.
(ii) If m = 2, 3, ... and the positive constants a, b, and ¢ satisfy

m—1\""
n’l<b
(m+1) @+ =b,

then f has a unique fixed point.

In both of the cases above the homogenous GRN (6.7) has a unique equilibrium
point, which is globally attractive for almost all initial conditions from 2.

Proof. We already proved the case (ii). For the case where m = 1, leta, b, and ¢ be
arbitrary positive constants. If y is a fixed point of the function f', we have

h(y)=y>4+ (b —-a—c)y —bc =0.

But /& can have at most two roots. Since 4(0) < 0 and i#(—o0) = oo, the function
h has only one positive root; so, f has a unique fixed point. In both of the above
cases, the function f has a unique fixed point, which implies that the homogenous
network (6.7) has a unique equilibrium. On the other hand, by Theorem 6.1, when
the system has a unique equilibrium point almost every solution of (6.7) converges
to this equilibrium. O
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We will now illustrate the results of this section with two numerical examples.
One of the first examples of positive feedback in biology is the bistable toggle
switch studied in [66]. As in [66], we assume that two proteins mutually repress the
expression of each other. The system can be modeled by the following equations:

X1(1) = =x1 (1) + f(xa(2))
X(1) = —x2(1) + [0 (1 — 7)), (6.15)

where the nonlinear function f is given as follows:

f =5 @b>0, ke{l, 2,3} (6.16)

Example 6.1. Let the nonlinear function f be given by

Applying the inequality in Proposition 6.6, one sees that

k
ay _ k+1 _
(k) =025 < () =11

The unique fixed point of the function f is calculated as x; = 0.68, which gives the
unique equilibrium point of the system as x,, = [0.68, 0.68]". From Proposition 6.6,
we expect that the solution will converge to its unique equilibrium point independent
of delay. Simulation results in Figures 6.1 and 6.2 show that the solutions of the
system converge to X, under different initial conditions for different delay values.

Example 6.2. In order to illustrate the bistable behavior, now let us take

Again applying the inequality in Proposition 6.6, it is easily observed that

a k | b k+1 10_3
— = > _— = .
() =1 (=)

One can find the unique fixed point of f as x; = 1.2335 and the three equilibrium
points of the system can be found as x.,1 = [0.005, 20]", x.4> = [1.2335,1.2335]"
and x.43 = [20,0.005]". Note that | f(x;)| = 1.8767 > 1. From Proposition 6.6,
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Fig. 6.1 Simulation of the system in Example 6.1 with initial
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Fig. 6.2 Simulation of the
system in Example 6.1 with
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we expect the system to show a bistable behavior. Simulation results shown in
Figures 6.3 and 6.4 illustrate this behavior: depending on the initial conditions and
the value of the time delay, x (¢) converges to either xi,, OF X3,.
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Fig. 6.3 Simulation of the system in Example 6.2 with initial conditions x (0) = [4, 8]*,7 = 0.5.
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Fig. 6.4 Simulation of the system in Example 6.2 with initial conditions x(0) = [12,3]%,7 = 2.

6.3 Exercises

Problem 1. Consider the nonlinear system

xX1(t) = =Aix1(2) + g1(x2(2)) (6.17)
Xa(t) = —=A2x2(t) + g2(x1(t — 1)), (6.18)
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where gl(-x) — b.ﬁx“’ g2(-x) — #’ A'l = 2, A’Z = 1, b > O, and T > 0. As
before, define g = (%gl) o (A—Ilgzl

(a) Determine the equilibrium point(s) from the fixed point(s) of g for two cases
b = 0.1 and b = 1.1. Is the system stable independent of delay, or shows
bi-stable behavior, for these two values of b?

(b) Run a time domain simulation illustrating the results of part (a).

(¢) What is the largest allowable value of b so that the solution converges to the
unique equilibrium?

Problem 2. Consider the nonlinear system

xX1(t) = =Aix1(2) + g1(x2(2)) (6.19)
Xao(t) = —Aax2(t) + g2(x1(t — 7)), (6.20)

where g(x) = m, g(x) = ﬁ, A1 > 0,4, = 1,and T > 0. As before,
define g = (3-g1) o (5-2).

(a) Determine the equilibrium point(s) from the fixed point(s) of g for two cases
A = 2 and A; = 0.5. Is the system stable independent of delay, or shows
bi-stable behavior, for these two values of A1?

(b) Run a time domain simulation illustrating the results of part (a).

(¢) What is the smallest allowable value of A; such that the solution converges to
unique equilibrium?



Chapter 7
Summary and Concluding Remarks

Abstract In this chapter, the analysis results for GRNs under negative and positive
feedback are discussed and concluding remarks are made. Some possible future
research directions are also pointed out.

Keywords Gene regulatory networks ¢ Time delay ¢ Negative feedback e
Positive feedback ¢ Global stability ¢ Local stability ¢ Region of attraction
* Bistability

In this brief, we have studied the dynamical behavior of the cyclic network (7.1),
which represents a deterministic model of the gene regulatory networks under
delayed feedback:

)'ci(t)=—/\ixi(t)+g,-(x,-+1(t)), i=1,.. ,n—l,

1) = ~Apxa(0) + a1t — 7)), 7> 0 .1

It is assumed that in (7.1) each A; > 0, and the functions g; are monotonically
increasing, or decreasing, with a negative Schwarzian derivative on R . Typical

examples of GRNs have g; as Hill functions, satisfying these properties. The
equilibrium points of the system (7.1) are determined from the fixed points of the

function
1 1
= — o ol —g.].
g Mgl )kng1

7.1 GRNs Under Negative Feedback

We have seen that in the negative feedback case, where g’(x) < 0 for all x > 0, the
function g has unique fixed point x; satisfying g(x;) = x;. Then, the system (7.1)
has an equilibrium point x,,, which is uniquely determined from
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_ gn(xl) ¥ _ gn—l(xn) o g2(x3)
A}l 9 ’1_1 A”l_l 9 AR ) 2 A’z .

Xeg = [x10 oo uxn]T 1 Xy

In this case, a simple global stability condition is determined as |g’(x;)| < 1, which
implies that all solutions x(¢) converge to x., as t — oo. We have also proven
that, under the assumptions made on g;, i = 1, ..., n, the value of g’(x;) cannot be
equal to —1. Furthermore, when |g’(x;)| > 1 and the delay value 7 is greater than
a critical value 7, the equilibrium point x,, is locally unstable, which simply means
that the system (7.1) has an oscillatory response. The value of 7, is determined from
the stability analysis of the linearized system, and computed from the delay margin
of the non-delayed system by using the Nyquist criterion. In any case, we know that
x;(t) > 0 and the solution remains bounded. By analyzing the fixed points of g(x)
for the case |g’(x1)| > 1 we were able to determine the upper and lower bounds of
x;(t)ast — oo.

In order to simplify the exposition, we have denoted both solutions with a
non-constant periodic orbit and solutions that converge to a homoclinic orbit as
oscillations. However, up-to-date there is no theoretical evidence that can rule out
the existence of homoclinic orbits. In our extensive simulations, we observed that
all locally unstable solutions converge to a non-constant periodic orbit. It is still an
open question to prove this observed behavior and find conditions on the functions
g; and the initial conditions so that homoclinic orbits are ruled out.

The most interesting situation for the GRN under negative feedback is when
|g’(x1)] > 1 and © < 7. In this case, x.4 is locally stable. In other words, if the
initial condition is sufficiently close to x4, then the solution x () converges to the
equilibrium. However, at this point, finding the largest region of attraction is an open
research problem.

7.2 GRNs Under Positive Feedback

In Chapter 6 we have studied the positive feedback case where g’(x) > 0 for all
x > 0. In this case g(x) may have several fixed points (at most three). We have
examined conditions under which (7.1) admits unique equilibrium which is globally
attractive. Also we have seen that if g has three fixed points, then the system (7.1)
exhibits a bistable behavior.

Some interesting open problems, related to the positive feedback case, arise when
g’(x1) = 1 where x; is a fixed point of g. First open question is whether g’(x;) = 1
is possible under standing assumptions made in this work. Second, if this happens,
then except the single pole at the origin, all poles of T'(s) defined in (6.4) are in
C_. This means that there exist initial conditions (albeit a set of measure zero) for
which the local behavior near the corresponding equilibrium is stable (in the sense
of Lyapunov) but not asymptotically stable. Finding such initial conditions, and
determining the response of the original nonlinear system under these conditions is
still an interesting open problem.
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