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Abstract. A one-dimensional model having a unique ground state and countable number of 

extreme limit Gibbs states is constructed. 

1. The main result 

During recent decades the problem of phase transitions in one-dimensional models has been 

studied extensively [1–6]. In [7] the following conjecture was formulated: any 

onedimensional model with discrete (at most countable) spin space and with a unique ground 

state has a unique Gibbs state if the spin space of this model is finite or the potential of this 

model is translationally invariant. 

The conjecture originates from [7], where it is proved that in a one-dimensional 

antiferromagnetical model with the Hamiltonian 

H(ϕ(x)) =  

where µ is the external field and the potential U(x) is non-negative convex function which is 

extendible to a twice continuously differentiable function such that U(x) ∼ Ax−γ ,U0 ∼ 

−Aγx−γ−1,U00(x
) 
∼ 

Aγ(γ 
+1)x−γ−2 at 

x 
→ ∞; where γ > 1, and A is a strong positive constant, 

has a unique ground state at low temperatures. 

The ground states of this model are functions of the external field and this relation is very 

sophisticated [8, 9]. It turns out that at any fixed value of the external field this model has a 

unique ground state to within translations. The method of [7] substantially uses the facts that 

the model is one dimensional, the ground state of the model is unique (to within translations) 

and that the ground state satisfies the Peierls condition. The uniqueness of the limit Gibbs 

states is proved by showing that since the ground state is unique the configuration with the 

minimal energy at any boundary conditions almost coincides with the ground state and the 

dependence of any event ϕ(A) on the boundary conditions can be expressed via the sum of 

terms connecting A with the boundary, and since the dimension is one (the terms connecting 

A with the boundary are very long and their entropy is not large enough) this dependence is 

very weak. 
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Since in two- or more dimensional models with a unique ground state and with the Gibbs 

state related to the ground state different entropy Gibbs states are possible (like those in the 

Potts model) the conjecture is formulated in one dimension. 
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In [7] it is shown that the violation of the conditions of the conjecture leads to the 

existence of a phase transition in a model with a unique ground state. In this paper we 

generalize the result of [7] by defining a model (1) (with countable spin space and 

nontranslationally invariant potential) with a unique ground state having infinitely many 

extreme limit Gibbs states. 

In one dimension any limit Gibbs state of the model is translationally invariant [8]. 

Moreover, limit Gibbs states of any model satisfying the condition 

  constant 

where the inequality is held uniformly with respect to ϕ(x) and integers m,l are translationally 

invariant. This fact is a good reason for the absence of phase transitions in antiferromagnetic 

models. Below we construct a ferromagnetical model with countably many limit Gibbs states. 

Consider a ferromagnetical model on Z1 with the Hamiltonian 

  (1) 

The spin space 8 of the model (1) consists of a countable number of alpha spins , 

where m,i = 1,2,... and a gamma spin γ. All spins are two-dimensional vectors: 

 is a vector (cosθm,sinθm) of ith colour, where θm = 2π(1−1/2m). The 

zero-interaction measure λ on the space 8 is a counting measure [10, 11]. 

Below we define the functions . The first function 

Ux,x
1 

+1(ϕ(x),ϕ(x + 1)) is bounded in any finite volume and the second functionm it only 

controls the number of ‘admitted’Ux
2(ϕ(x))αim plays the role of the external field (at fixed 

spins). 

The pair potential function of nearest neighbours  is symmetric 

with respect to the two arguments 

Ux,x
1 

+1(ϕ0,ϕ00) = Ux,x
1 

+1(ϕ00,ϕ0) 

and 

 

For non-negative is defined as (m,i,j = 1,2,...) 

 Ux,x1 +1(γ,γ) = 0 Ux,x1 +1(αm,γ) = m (2) 

 Ux,x1 +1(αim,αjm) = m Ux,x1 +1(αim,αjk) = fx(m,k) 

where 
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The function playing the role of the external field is symmetric with respect to 

the point . For positive x ∈  Z1 

 is defined as 

 0 if i 6 gx  if i > gx (3) 

where 

. 

It can be readily verified that the configuration ϕ(x) = γ,x ∈  Z1 is the only ground state of 

the model (1). 

The model constructed in [7] has three types of spins: α,β and γ. The unique ground state 

of the model is a constant configuration ϕ(x) = γ and the α and β spins generating two extreme 

Gibbs states are symmetric with respect to each other. The model (1) has countable types of 

spins: αm and γ. At each value of the external field the finite number of different αm spins, 

namely  spins are allowed. But the number of allowed  spins at any fixed value of m is 

not uniformly bounded: the number of allowed spins tends to infinity as x grows. 

In this model the unique ground state of the model is a constant configuration ϕ(x) = γ 

but the αm spins are not symmetric. Since we have countable types of spins for the 

convergence of the partition function (lemma 1) we use the conditions (2) and for 

guaranteeing of lemma 3 we define the function fx(m,k) as a function depending on x (as in 

[7]) plus a term involving m and k. 

Let IV be the segment [−V,+V ]. Suppose the boundary conditions ϕ1(x) = ϕ1(x),x ∈  

Z1 − IV are fixed and 

 
Let us define the partition function 

 

corresponding to the boundary conditions ϕ1(x),x ∈  Z1 − IV is finite. 

Lemma 1. For any fixed value of V 4V < ∞. 

It follows from lemma 1 that Gibbs distribution in any volume V corresponding to 

arbitrary boundary conditions ϕ1(x),x ∈  Z1 − IV is well defined. In further calculations we 

restrict the value of the temperature by β > 1, where β−1 = kT,T is the temperature, k is the 

Boltzmann constant. 

Theorem. Let T < 1. For any m there exists limit Gibbs state of the model (1) P αm such that 

 P . (4) 
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2. Proofs 

We start this section with the proof of lemma 1. 

Proof of lemma 1. Let us fix V and the boundary conditions ϕ1(x),x ∈  Z1 − IV : 

. 

The notation  will be convenient for further calculations. 

The last 

summation is taken over all possible configurations, 

ϕ(x) 
 − − − 

where m and i take all non-negative integers, and the indices of α are both together zeros or 

non-zeros. 

Thus, the partition function can be written as 

 (5) 

Due to (3) 

for each fixed 

collection 

(m0(−V − 

1),m0(−V),...,m0(V)) there are just a finite number of collections (i(−V − 1),i(V),...,i(V)), such 

that the corresponding term in the summation (5) is non-zero (for others 
U

x
2(ϕ(x)) 

= ∞). 

Therefore, in order to prove the lemma, it is enough to show that 

where in P1 the summation is taken over all possible configurations 

. 

Now we note that 

 
where 
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and the summation is taken over all possible natural numbers k and l. It can be easily shown 

that due to the conditions (2) Mx is finite. The lemma is proved.  

Define the Gibbs distribution PV (ϕ(x)|ϕαm) in the space  corresponding to the boundary 

conditions m ]. Let P α be a limit point of the sequence of 

Gibbs distributions PV (ϕ(x)|ϕα ) when V goes to infinity. This limit point P αm is a limit Gibbs 

state of the model (1) [8, 9]. 

Proof of the theorem. In order to prove the theorem we show that P αm satisfies (4). 

To prove (4) it is enough to show that at any value of . 

Let P . 

Obviously, PV (ϕ(0) = αm|ϕαm) >PV (ϕ(x) = αm,x ∈  [−V,V ]|ϕαm). In order to 

prove (4) we shall prove that 

 P . (6) 

distribution PV (ϕ(x)|ϕαm,left) in Define a Gibbs 

the space 8V corresponding to them boundary conditions m 1] and ϕα ,left(x) = ∅ ,x ∈  

[V + 1,∞). 

By definition 

 P  (7) 

 P  (8) 

where the summations in both numerators are taken over all configurations ϕ(x) ∈  8V such 

that ϕ(x) for some i and both summations in the denominators are taken over all 

configurations ϕ(x) ∈  8V . 

In the model (1) ‘adjacent’ spins (  spins at fixed m or γ spins) tend to be aligned. That 

is, the Hamiltonian (1) can be interpreted as ferromagnetic and the following inequality is a 

natural ferromagnetic inequality.  

Lemma 2. 

PV (ϕ(x) = αm,x ∈  [−V,V ]|ϕαm,left) 6PV (ϕ(x) = αm,x ∈  [−V,V ]|ϕαm). 

Proof. Let us compare numerators and denominators of (7) and (8). Each term in the 

numerator of (7) is equal to exp(−mβ) times the corresponding term of (8). Each term in the 

denominator of (7) is equal to exp(−mβ) (respectively exp(−fxβ)) times the corresponding 

term of (8) if at x = V ϕ(x) = αi
m for some i or ϕ(x) = γ (respectively ϕ(x) = αj

k for some k 6= 

m and j). 

 Since fx > m, the lemma is proved.  
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It follows from lemma 2 that the theorem is a consequence of the following. 

Lemma 3. 

 P . (9) 

Proof. Consider a Markov chain (non-homogeneous) starting at point x = −V and ending at 

point x = V with initial condition ϕ(−V −1) = α1 with transition probabilities πξ(x),ξ(x+1) 

(πξ(x),ξ(x+1) is the probability of the event that ϕ(x +1) = ξ(x +1) under the condition that ϕ(x) 

= ξ(x)), where 

πξ(x),ξ(x+1) = PV (ϕ(x + 1) = ξ(x + 1)|ϕ(x) = ξ(x),ϕ(x + 2) = ∅ ). 

It follows from the definitions that 
 V 1 

P. 
=− 

Define πξ(x)=αm,ξ(x+1)=αm = Pπξ(x)=αim,ξ(x+1)=αjm, where the summation is taken over all possible 

values of j (by definition the sum consists of a finite number of terms (due to (3)) and does 

not depend on i). 

Thus, 
 V
 1 

P 
=− 

. 

Due to definitions (β > 1), 

 
Since 

2 
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P 
= 

in order to prove (9) it is enough to show that 

 . (10) 

The last inequality (10) follows directly: 

. 

The inequality (10), and hence lemma 3 is proved.  

Now the inequality (6) is a direct implication of lemmas 2 and 3. The theorem follows 

from the inequality (6). 

3. Final remarks 

The model (1) has the following unusual property: 

P  

where the last inequality is held uniformly with respect to l and x1,x2,...,xl. The model 

(1) also has the following physical meaning. 

(i) At zero temperature all spins of the model aligned: ϕ(x) = γ. 

(ii) At non-zero temperatures since the ferromagnetical model has a very strong 

couplingpotential between aligned spins  there exist αm states at which almost all spins 

are aligned. 
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