
INCREMENTAL HASH FUNCTIONS

a thesis

submitted to the department of mathematics

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Emrah Karagöz

June 2014

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Hamza YEŞİLYURT(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ahmet Muhtar GÜLOĞLU

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ali Aydın SELÇUK

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

INCREMENTAL HASH FUNCTIONS

Emrah Karagöz
M.S. in Mathematics

Supervisor: Asst. Prof. Dr. Hamza YEŞİLYURT
June 2014

Hash functions are one of the most important cryptographic primitives. They
map an input of arbitrary finite length to a value of fixed length by compressing
the input, that is why, they are called hash. They must run efficiently and satisfy
some cryptographic security arguments. They are mostly used for data integrity
and authentication such as digital signatures.

Some hash functions such as SHA family (SHA1-SHA2) and MD family (MD2-
MD4-MD5) are standardized to be used in cryptographic schemes. A common
property about their construction is that they are all iterative. This property
may cause an efficiency problem on big size data, because they have to run on
the entire input even it is slightly changed. So the question is "Is it possible to
reduce the computational costs of hash functions when small modifications are
done on data?"

In 1995, Bellare, Goldreich and Goldwasser proposed a new concept called
incrementality: a function f is said to be incremental if f(x) can be updated in
time proportional to the amount of modification on the input x. It brings out two
main advantages on efficiency: incrementality and parallelizability. Moreover, it
gives a provable security depending on hard problems such as discrete logarithm
problem (DLP). The hash functions using incrementality are called Incremental
Hash Functions. Moreover, in 2008, Dan Brown proposed an incremental hash
function called ECOH by using elliptic curves, where DLP is especially harder
on elliptic curves, and which are therefore quite popular mathematical objects in
cryptography.

We state incremental hash functions with some examples, especially ECOH ,
and give their security proofs depending on hard problems.

Keywords: Incremental Hash Functions, MuHASH, AdHASH , ECOH .

iii

ÖZET

ARTIMLI ÖZET FONKSİYONLARI

Emrah Karagöz
Matematik, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Hamza YEŞİLYURT
Haziran 2014

Özet Fonksiyonları daha çok veri bütünlüğünde ve elektronik imza gibi kimlik
doğrulamada kullanılan kriptolojinin en önemli araçlardan biridir. Bu fonksiyon-
lar, herhangi bir uzunluktaki girdiyi belli özelliklerle sıkıştırarak sabit bir uzun-
luktaki çıktıya götürler. Bu fonksiyonlar ayrıca hızlı hesaplanabilir olmalı ve bazı
kriptografik güvenlik gereksinimlerini sağlamalıdırlar.

SHA ve MD gibi özet fonksiyonları aileleri, kriptolojik uygulamalarda kullanıl-
mak üzere standartlaştırılmış özet fonksiyonlarıdır. Bunların en önemli yapısal
özelliği yinelemeli (iterative) olmalarıdır. Bu özellik büyük boyutlu verilerde ver-
imlilik problemine neden olur, çünkü girdide ufak bir değişiklik olsa bile özet
fonksiyonu bütün girdi üzerinde tekrar çalışmalıdır. Bu yüzden sormamız gereken
soru "Veri üzerindeki ufak bir değişiklik olduğunda özet fonksiyonun hesaplama
maliyetini düşürmek mümkün müdür?" olacaktır.

1995 yılında Bellare, Goldriech ve Goldwasser tarafından artımlılık isimli yeni
bir konsept sunulmuştur: eğer x girdisi üzerinde yapılan küçük bir değişiklik
sonucu f(x) değeri değişiklikle doğru orantılı olacak bir zamanda güncellenebiliy-
orsa f fonksiyonuna artımlı denir. Bu konsept verimlilik açısından çok önemli iki
tane avantaj sağlamıştır: artımlılık ve paralelleştirilebilirlik. Ayrıca ayrık logar-
itma problemi gibi çözülmesi zor olan problemlere dayalı bir güvenlik sağlamıştır.
Bu özelliği kullanan özet fonksiyonlarına Artımlı Özet Fonksiyonları diyoruz.
Ayrıca, Dan Brown 2008 yılında artımlı özet fonksiyonlarına örnek olacak El-
liptik Eğrilerde Özet Fonksiyonu (ECOH) adlı özet fonksiyonunu önermiştir.

Bu tezde, artımlı özet fonksiyonları örnekleriyle (özellikle de ECOH örneğiyle)
birlikte incelenmiş ve bunların güvenlik ispatları çözülebilirliği zor problemlerle
karşılaştırılırak gösterilmiştir.

Anahtar sözcükler : Artımlı Özet Fonksiyonları, MuHASH, AdHASH , ECOH .

iv

Acknowledgement

Although all the work put out for this thesis is presented in following chapters,
the soul of this thesis and the people created this soul are presented here. There-
fore, writing a good acknowledgement for these people deserves more attention,
but, it is more enjoyable than writing all the thesis.

I start by thanking my former advisor Asst. Prof. Dr. Koray Karabina, I
am deeply indebted to him. He inspired the idea of this thesis, encouraged me
and supported my studies. I will always be remembering our meetings such as
our after-midnight study when we came together in the end of an exhausted day
in CryptoDays conference in Gebze. I will always admire his attention to his
students, and his fidgety moves when he gives a lecture or a presentation.

I secondly thank my advisor Asst. Prof. Dr. Hamza Yeşilyurt. He accepted
being my advisor after Koray Karabina had left Bilkent University. He read and
checked the errors in my thesis again and again. He spent his plenty time for me,
in spite of the fact that, he could spend it to his newborn baby.

I also thank Asst. Dr. Ahmet Muhtar Güloğlu and Prof. Dr. Ali Aydın
Selçuk. They accepted to be in the jury of my thesis defense. Moreover, Prof.
Dr. Ali Aydın Selçuk lectured the cryptography course in Bilkent University and
taught me the practical cryptography by giving a lot of projects and homeworks.

I would like to acknowledge to people who involves in my cryptography career
by starting from Boğaziçi University where I got my BS degree in Maths. I start
by thanking Prof. Dr. Yılmaz Akyıldız, who lectured my first cryptography
course in the university. After this lecture, I found this area interesting and I
decided to study in cryptography. Moreover, he wrote many reference letters for
me, even after he had retired from the university. I also thank my ex-advisor in
the university, Ferit Öztürk, who suggested me to stop studying mathematics, to
forget an academic life, and to find a job and work in a different area. I am sorry,
I could not keep this advice in mind, and I continued to pursue my dreams. It

v

vi

seems that sometimes miracles can happen. I finally thank Müge Taşkın Aydın,
whom I studied with in my last year in the university, and who did not write
a reference letter by telling that she did not get to know me in this period,
however, she had told before that she wanted to. After a year I graduated from
the university, she saw me in a conference and asked whether I was still angry or
not, but my answer was no, I was not, because I knew that it was not own her
decision.

I contiue to acknowledge to Prof. Dr. İsmail Güloğlu and Prof. Dr. Mehpare
Bilhan, who are doyen of Turkish mathematicians in this life, as far as I see. I
had a chance to know Prof. Dr. İsmail Güloğlu in Doğuş University when I was
working there as a teaching assistant. He encouraged me to go to Ankara and
to learn cryptography there as fast as I can. He also taught algebra courses and
made this field lovely to me. I know him as a person who is still desirous to learn
and ambitious to teach like a young researcher, even if his age gets older. I met
Prof. Dr. Mehpare Bilhan in METU IAM and she taught the course of finite
fields and its applications. I know her as a person who standed out against her
illness with her ambition to teach and her love to students. I believe she will
recover soon. I will always respect to these two admirable people forever.

I would like to thank my dear teachers in Bilkent University and METU IAM,
who taught many things in Maths and Cryptography: Mefharet Kocatepe, Ergün
Yalçın, Müfit Sezer, Alexander Goncharov, Metin Gürses, Laurance Barker,
Hakkı Turgay Kaptanoğlu, Salih Karadağ and especially Meltem Sağtürk from
Bilkent University; Muhiddin Uğuz, Ersan Akyıldız and Ferruh Özbudak from
METU IAM. Salih Karadağ, as we call him Salih Başkan, usually calls me "Neşeli
Çocuk" (happy kid). I promise I will continue to look happy forever.

I will not forget to thank my dear friends : Erion Dula, Fatih Çiğci,
Can Türkün, Hubeyb Gürdoğan, İsmail Özkaraca, Zeliha Ural, Merve Demirel,
Yasemin Türedi, Emre Şen and Mehmet Kişioğlu from Bilkent University; Ab-
dullah Öner, Bekir Danış, Recep Özkan, Elif Doğan, İsmail Alperen Öğüt, Oğuz
Gezmiş, Burak Hatinoğlu again from Bilkent University, but we call them as
"Genç Subaylar" (young soldiers) because their entrance to the university was

vii

the next semester of ours; Mehmet Toker, Halil Kemal Taşkın, Murat Demir-
cioğlu, Mustafa Şaylı, Sabahattin Çağ, Ahmet Sınak, Rumi Melih Pelen, Kamil
Otal, and Pınar Çomak from METU. Erion and Fatih have also been my friends
from Boğaziçi, and they shared the boring life of Ankara by making it full of
action. Erion, Can and I also shared the same office room in Bilkent, and I
thank them for keeping our castle from the known person. In addition, I thank
very much to Abdullah, Oğuz and Burak who were my only supporters in thesis
defense, while it was occurred in time of vacation.

I will also acknowledge to my dear colleagues from TÜBİTAK BİLGEM
UEKAE: Hüseyin Demirci, Fatih Birinci, Şükran Külekçi, Mehmet Sabır Kiraz,
Mehmet Karahan, Ziynet Nesibe Dayıoğlu, Dilek Çelik, Mehmet Emin Gönen,
Oğuzhan Ersoy, and especially İsa Sertkaya and Birnur Ocaklı. İsa has given
many many advices and shared his experiences about work, life and even in writ-
ing thesis, however, I could not take care about them enough, and this is why,
he always gets angry to me. On the other hand, Birnur, the adorable lady, has
been the real heroin behind the scene with her supportive words, her patience,
and her struggles for motivating me to finish my thesis at once. Therefore, she
deserves this special compliment, which is only for her: "Thanks to Birnur".

Finally, I would like to thank my parents who show an enormous patience
with a great love to a son like me. They think I am studying for my PhD
degree in Ankara, and they will continue to think like this for a while, but do
not worry, one day your son will have his PhD degree and will thank you again
in acknowledgment part in his PhD thesis. I also thank to my little sister with
these words: you always love me more in a moment than I could in a lifetime.

By the way, I can not forget to thank TÜBİTAK who financially supported
by through the graduate fellowship, namely "TÜBİTAK BİDEB 2210-Yurt İçi
Yüksek Lisans Doğrudan Burs Programı". I am grateful to council for their kind
support, and I believe that they will always continue to support young researchers.

This thesis is not a big success in my career, however, it is an award of small
steps for my pursued big studies. Thus, I present this award to my lonely and
beautiful country, which I love passionately, as Nuri Bilge Ceylan did in Cannes.

viii

To all my friends,
who really wants my thesis to be finished at once.

I hope all you are happy now ,

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Groups and Fields . 5

2.2 Message Encoding and Parsing into Blocks 8

2.2.1 Message Encoding . 8

2.2.2 Parsing Messages into Blocks 13

2.3 Is it Easy or Hard? . 14

2.3.1 Complexity Theory . 14

2.3.2 Models for evulating security 16

2.3.3 Some perspective for computational security 17

3 Incremental Hash Functions 18

3.1 Hash Functions . 18

3.1.1 Merkle-Damgard Construction 20

3.1.2 A Standard Hash Function: SHA-1 21

ix

CONTENTS x

3.2 Incremental Hash Functions . 24

3.2.1 Randomize-then-Combine Paradigm 26

3.2.2 Standard Hash Functions vs. Incremental Hash Functions 28

3.3 Some Examples of Incremental Hash Functions 29

3.3.1 Impagliazzo and Naor’s hash function 29

3.3.2 Chaum, van Heijst and Pfitzmann’s Hash Function 30

3.3.3 Bellare, Goldreich and Goldwasser’s Hash Function 30

3.3.4 Bellare and Micciancio’s Hash Functions 31

4 Security of Incremental Hash Functions 36

4.1 Computationally Hard Problems 36

4.2 Security of CvHP’s Hash Function 39

4.3 Security of BGG’s Hash Function 42

4.4 Balance Lemma . 44

4.4.1 Balance Problem & Collision Resistance 44

4.4.2 Balance Problem & Discrete Logarithm Problem 46

4.5 Security of Bellare and Micciancio’s Hash Functions 51

4.5.1 Security of MuHASH . 52

4.5.2 Security of AdHASH . 53

4.5.3 Security of LtHASH . 54

4.5.4 Security of XHASH . 54

CONTENTS xi

5 Elliptic Curve Only Hash ECOH 56

5.1 Elliptic Curves in Cryptography 56

5.2 Elliptic Curve Only Hash: ECOH 59

5.3 The Ferguson-Halcrow Second Preimage Attack on ECOH 61

5.4 ECOH2 . 63

5.5 Security of ECOH and ECOH 2 . 64

6 Conclusion 67

A Elliptic Curves proposed by NIST 71

A.1 Elliptic Curves over Prime Fields 71

A.2 Elliptic Curves over Binary Fields 73

List of Figures

3.1 Merkle-Damgard Construction . 20

3.2 The round function ft of f in SHA-1 24

3.3 Randomizer-then-combine paradigm in BM’s hash functions. . . . 32

xii

List of Tables

2.1 ASCII Table . 9

2.2 base64 Table . 10

2.3 hexTable . 11

2.4 Magnitude Reference Table . 17

3.1 Expected complexities of the security of hash functions for an n-bit
output . 19

3.2 Standard hash functions versus Incremental hash functions 28

3.3 Types of BMHashGh functions . 33

5.1 The parameters of NIST Curve P-256 59

5.2 The parameters of NIST Curve K-283 59

5.3 Parameters of ECOH hash functions 60

5.4 Parameters of ECOH2 hash functions 64

A.1 Parameters of P-192 and P-224 Curves 72

A.2 Parameters of P-256 and P-384 Curves 72

xiii

LIST OF TABLES xiv

A.3 Parameters of P-521 Curve . 73

A.4 Parameters of K-163 Curve . 74

A.5 Parameters of B-163 Curve . 74

A.6 Parameters of K-233 Curve . 75

A.7 Parameters of B-233 Curve . 75

A.8 Parameters of K-283 Curve . 76

A.9 Parameters of B-283 Curve . 76

A.10 Parameters of K-409 Curve . 77

A.11 Parameters of B-409 Curve . 78

A.12 Parameters of K-571 Curve . 79

A.13 Parameters of B-571 Curve . 80

List of Symbols

a||b Concatenation of bitstrings a and b
{0, 1}n Set of bitstrings of length n
{0, 1}∗ Set of all bitstrings
len(M) Bitlength of a bitstring M
0k The bitstring 00 . . . 0 of length k
∧ AND operation
∨ OR operation
¬x Negation of x
≪ n Cyclic left rotation by n
≫ n Cyclic right rotation by n
⊕ Exclusive OR operation
� Modular Addition Operation
Z The set of integers {. . . ,−2,−1, 0, 1, 2, . . .}
Q The set of rational numbers {a

b
: a, b ∈ Z, b 6= 0}

R The set of real numbers
Fq Finite field of q elements
dxe The smallest integer greater than or equal to x
bxc The largest integer less than or equal to x⋃
iAi The union of the sets Ai⋂
iAi The intersection of the sets Ai

A−B The difference of the set A from the set B, i.e. {a : a ∈ A and a /∈ B}
a | b The integer a divides the integer b
a - b The integer a divides the integer b

xv

Chapter 1

Introduction

Information is an understood quantity. An identity of a person, a letter, a sen-
tence, even a mathematical formula is an information. It is expressed in letters,
numbers or symbols of a certain language. In daily lives, we use words to express
the information, on the other hand, a mathematical formula is expressed with
numbers and mathematical symbols. But in computer science, every information
is seen as a combination of zeros and ones where these two numbers 0 and 1 are
called as bit and their any combination is called as bitstring.

Not every information is public, some is intended to be known by only the
people who have permission to know it. For example, the PIN code of someone’s
cell phone has to be known by the owner of the cell phone. The secret letters
or messages sent among the allied countries has to be not seen by their enemies.
Many protocols and mechanisms have been created to satisfy the security of the
information. In formal definition according to [1], cryptography is the study of
mathematical techniques related to aspects of information security. The four goals
of cryptography are confidentiality (keeping the content of information from all
but those authorized to have it), data integrity (addressing the unauthorized al-
teration of data), authentication (identification of entities and information itself),
and non-repudiation (preventing an entity from denying previous commitments
or actions). There are several tools in cryptography such as block/stream ciphers
and digital signatures. One of the most important cryptographic primitives are

1

hash functions. They are mainly used to satisfy the goals of data integrity and
authentication in cryptography.

A cryptographic hash function maps a bitstring of arbitrary length to a bit-
string of fixed length. Hash functions takes a data of big size and gives its hash
value of short fixed size. The main idea of hash functions is to represent the data
in a compact form and use it as the identification of the data. The output of a
hash function is called hash value or simply hash. The term hash is originated
from compressing a message of big size to a small value of fixed length.

Hash functions are mainly used for data integrity: when an authorized entity
receive a data whose hash value is known by himself, if an unauthorized entity
has altered the original data, then the receiver can easily recognize whether it
is changed or not by comparing its original hash value and the hash value he
computed. In that sense, hash functions are used in digital signature schemes,
where a message is hashed first, and then the hash value as a representative of the
message, is signed instead of the original message using a public key encryption.

They are also used for authentication such as message authentication codes
(MACs), passwords and passphrases. For example, mail services do not save
the database of the passwords of their users, instead of this, they save only the
hash values of passwords: when the user enters his password, the hash value is
computed and sent to the mail server, then the mail server checks whether the
value is equal to the saved value. In that sense, hash functions are used for
comparing two values without revealing or storing them in clear. Other uses of
hash functions are checksums of files, key generation procedures, and random
number generators.

Hash functions are designed to be efficient in sense of running time of com-
putation, and to satisfy some security properties in sense of cryptography: 1)
preimage resistance - it is difficult to find a message for a given hash value , 2)
second preimage resistance - it is difficult to modify a message without changing
the hash value 3) collision resistance - it is difficult to find two different messages
whose hash values are same. The security level of a hash function is determined
by the computational difficulty of these properties.

2

Some hash functions are standardized to be used commonly in practice be-
cause of their security level. For example, National Standards Institution of USA
(NIST) proposes hash functions SHA-1 and SHA-2 in the document FIPS 180-4
[2] to be supported by most of the cryptographical tools. Also the MD family
(MD2[3], MD4[4] and MD5[5]) and RIPEMD family [6] of hash functions are
mostly supported. In standard hash functions, the construction is mainly based
on a compression function f . It starts with an initial hash value H0, then com-
putes the latter hash value Hi+1 by using the message blocks Mi and the former
hash values Hi until the last message block is processed, i.e. f(Hi,Mi) = Hi+1

for i = 0, 1, . . . , n where n is the number of blocks in the message. In that sense,
it runs efficiently since it uses the same function, but it runs iteratively, in other
words, the hash function has to process all message blocks again even if there is
a small change on the message. This will result a main problem on big data.

In 1995, Bellare, Goldreich and Goldwasser proposed a new construction for
hash functions called Incremental Hash Functions 1 in [8] where it is named by
the concept of incrementality :

Definition 1. Given a map f and inputs x and x′ where x′ is a small modifi-
cation of x. Then f is said to be incremental if one can update f(x) in time
proportional to the amount of modification between x and x′ rather than having
to recompute f(x′) from scratch.

Incremental hash functions can be efficiently used in practice where incremen-
tality makes a big difference in sense of time of computation. This difference can
be seen easily on some examples such as storing files online (today it is called as
cloud servers), software updates and virus protection. These examples will be
detailed in Chapter 3.

In 2008, Dan Brown proposed a practical example for incremental hash func-
tions called ECOH (Elliptic Curve Only Hash) [9] to SHA-3 contest of NIST. His
submission ECOH was constructed on elliptic curves which are quite popular in
modern cryptography. This popularity of elliptic curves comes from the difficulty

1Their first incremental hash function is based on exponentiation in a group of prime order.
Then their construction is improved by Bellare and Micciancio in [7].

3

level of discrete logarith problem in this mathematical object.

This thesis is organized as follows: in Chapter 3 , we state the construction of
incremental hash functions with some examples. In Chapter 4, we then discuss
their security proofs with comparing computationally hard problems. In Chapter
5, we give the practical example ECOH of incremental hash functions. Finally, in
Chapter 6, the thesis is concluded with some remarks, open problems and future
work.

4

Chapter 2

Preliminaries

We start with Groups and Fields to define mathematical objects used in incre-
mental hash functions. We, then, continue with Message Encoding and Parsing
into Blocks to represent messages in numerical, binary or hex representation via
standard character tables, and to parse them equally into the blocks of fixed
length. Finally, Is it Easy or Hard? is about the complexity theory to mention
the levels of security arguments.

2.1 Groups and Fields

Some algebraic structures such as groups and finite fields especially are used for
the construction of incremental hash functions. Therefore they are defined with
some examples. Here we follow [10].

Definition 2 (Binary Operation). A binary operation ? on a non-empty set
G is a function ? : G × G → G. For any a, b ∈ G, this function is denoted by
a ? b. The binary operation ? is associative if the equality (a ? b) ? c = a ? (b ? c)

holds, and is commutative if the equality a ? b = b ? a holds for any a, b, c ∈ G.

Example 1. +,× and − (usual addition, multiplication and subtraction, respec-
tively) are commutative binary operations on Z (or on Q, R, C respectively).

5

However, − is not a binary operation on Z+ since 2− 5 = −3 /∈ Z+.

Definition 3. Let G be a non-empty set and ? be a binary operation on G. Then
(G, ?) is called a group if the following properties are satisfied:

1. ? is associative, in other words, (a ? b) ? c = a ? (b ? c) holds for every
a, b, c ∈ G.

2. There exists an element e ∈ G, called an identity of G, such that a ? e =
e ? a = a for all a ∈ G.

3. For each a ∈ G, there is an element a−1 ∈ G, called inverse of a, such
that a ? a−1 = a−1 ? a = e.

The group (G, ?) is called abelian if a ? b = b ? a for all a, b ∈ G, and is called
finite group if it contains finitely many elements.

Example 2. Z Q, R, and C are groups under + with e = 0 and a−1 = −a. Also
Q − {0}, R − {0} and C − {0} are groups under × with e = 1 and a−1 =

1

a
.

However, Z−{0} is not a group since
1

2
, the inverse of 2 ∈ Z, is not an integer.

Definition 4. Let K be a nonempty set and + and × be two binary operations
on K. Then K is called as field if the followings are satisfied:

1. (K,+) is an abelian group,

2. (K×,×) is an abelian group where K× = K − {0} and 0 is the identity
element of (K,+),

3. The distributive law of × over + exists: for all a, b, c ∈ K,

a× (b+ c) = (a× b) + (a× c) and (a+ b)× c = (a× c) + (b× c)

holds.

In a field K, the identity element of (K,+) is denoted by 0 and the identity
element of (K×,×) is denoted by 1, where 1 6= 0. The additive inverse of a ∈ K
is denoted by −a and the multiplicative inverse of a ∈ K× is denoted by a−1, 1/a
or 1

a
.

6

Example 3. Q, R, C, and Zp for prime p are fields. However Z is not a field
since 2 ∈ Z× has no multiplicative inverse in Z×. Also Z6 is not a field since
3 ∈ Z6 has no multiplicative inverse in Z×6 .

Definition 5. The characteristic of a field K, denoted by char(K), is defined
to be the smallest positive integer n such that

1 + 1 + . . .+ 1︸ ︷︷ ︸
n

= 0

if it exists. Otherwise, it is defined to be 0.

Example 4. The characteristic of Q, R, C is 0. The characteristic of Zp for
prime p is p.

It is easy to show that the characteristic of a field K is always 0 or a prime p.

Definition 6. A field that contains finitely many elements is called finite field.
A finite field is denoted by Fq where q is the number of elements in the field.

It can be shown that the characteristic of a finite field Fq is always a prime
number p and the number of elements in Fq is a power of p, i.e. q = pn for some
positive integer n. If n = 1, then Fp = Zp

Definition 7. Let p(x) be a polynomial of degree n ∈ Z over a field K, i.e.
p(x) = a0 + a1x + . . . + anx

n where ai ∈ K for i = 1 . . . n. Then the polynomial
p(x) is irreducible over K if there exists no polynomials q(x) and r(x) over K
of degrees greater than or equal to 1 such that p(x) = q(x)r(x).

Example 5. The polynomial p(x) = x2+1 is irreducible over R and Z3, however
is not irreducible over Z2 since x2 + 1 = (x+ 1)(x+ 1).

Now we conclude this section by giving the construction of finite fields. If
p(x) is an irreducible polynomial of degree n ≥ 2 over finite field Fp and α be a
root of p(x), i.e. p(α) = 0, then the finite field Fq with q = pn can be regarded
as the set

{a0 + a1α + . . .+ an−1α
n−1 : ai ∈ Fp for i = 0, . . . , n− 1}.

7

The addition of the elements a0+a1α+. . .+an−1αn−1 and b0+b1α+. . .+bn−1αn−1

in Fq is

(a0 + b0 mod p) + (a1 + b1 mod p)α + . . .+ (an−1 + bn−1 mod p)αn−1

and the multiplication of these two elements is

(a0 + a1α + . . .+ an−1α
n−1)(b0 + b1α + . . .+ bn−1α

n−1) mod p(α).

Example 6. For the irreducible polynomial p(x) = x2 + 1 over F3,

F9 = {0, 1, 2, α, 1 + α, 2 + α, 2α, 1 + 2α, 2 + 2α}

where 1 + α2 = 0 over F3, i.e. α2 = 2. In that case, the multiplication of 1 + α

by 1 + 2α is

(1 + α)(1 + 2α) = 1 + 2α + α + 2α2 = 1 + 0 + 4 = 2

and the inverse of 1 + α, i.e. (1 + α)−1, is 2 + α since

(1 + α)(2 + α) = 2 + α + 2α + α2 = 2 + 0 + 2 = 1.

2.2 Message Encoding and Parsing into Blocks

The main input of hash functions are messages which consists of characters such
as letters, numbers, or symbols. Each character can be represented by a number
using a table called "character table" or "character set" [11]. Therefore, any
message of an arbitrary length can be represented by these numbers. All this
numerical representation can be parsed into the blocks of fixed length so that the
hash function processes each block to calculate the final hash value.

2.2.1 Message Encoding

In computer science, every character has to be encoded to a numerical represen-
tation to be understood by computers. The commonly used numerical represen-
tation is binary representation which is a sequence consisting of numbers 0 and

8

1 called as bits. In that sense, this representation is also called as bit represen-
tation. The mapping from characters to numbers are done by using character
tables. Some standard character tables such as ASCII 1 [12, 13] and base64 [14]
are given in Table 2.1 and in Table 2.2, respectively. Characters are represented
in 8-bits by using ASCII table and in 6-bits by using base64 table.

Val Char Val Char Val Char Val Char Val Char Val Char Val Char
0-32 non-printable 64 @ 96 ‘ 128 Ă 160 ă 192 À 224 à
33 ! 65 A 97 a 129 Ą 161 ą 193 Á 225 á
34 " 66 B 98 b 130 Ć 162 ć 194 Â 226 â
35 # 67 C 99 c 131 Č 163 č 195 Ã 227 ã
36 $ 68 D 100 d 132 Ď 164 ď 196 Ä 228 ä
37 % 69 E 101 e 133 Ě 165 ě 197 Å 229 å
38 & 70 F 102 f 134 Ę 166 ę 198 Æ 230 æ
39 ’ 71 G 103 g 135 Ğ 167 ğ 199 Ç 231 ç
40 (72 H 104 h 136 Ĺ 168 ĺ 200 È 232 è
41) 73 I 105 i 137 Ľ 169 ľ 201 É 233 é
42 * 74 J 106 j 138 Ł 170 ł 202 Ê 234 ê
43 + 75 K 107 k 139 Ń 171 ń 203 Ë 235 ë
44 , 76 L 108 l 140 Ň 172 ň 204 Ì 236 ì
45 - 77 M 109 m 141 Ŋ 173 ŋ 205 Í 237 í
46 . 78 N 110 n 142 Ő 174 ő 206 Î 238 î
47 / 79 O 111 o 143 Ŕ 175 ŕ 207 Ï 239 ï
48 0 80 P 112 p 144 Ř 176 ř 208 Ð 240 ð
49 1 81 Q 113 q 145 Ś 177 ś 209 Ñ 241 ñ
50 2 82 R 114 r 146 Š 178 š 210 Ò 242 ò
51 3 83 S 115 s 147 Ş 179 ş 211 Ó 243 ó
52 4 84 T 116 t 148 Ť 180 ť 212 Ô 244 ô
53 5 85 U 117 u 149 Ţ 181 ţ 213 Õ 245 õ
54 6 86 V 118 v 150 Ű 182 ű 214 Ö 246 ö
55 7 87 W 119 w 151 Ů 183 ů 215 Œ 247 œ
56 8 88 X 120 x 152 Ÿ 184 ÿ 216 Ø 248 ø
57 9 89 Y 121 y 153 Ź 185 ź 217 Ù 249 ù
58 : 90 Z 122 z 154 Ž 186 ž 218 Ú 250 ú
59 ; 91 [123 { 155 Ż 187 ż 219 Û 251 û
60 < 92 \ 124 | 156 Ĳ 188 ĳ 220 Ü 252 ü
61 = 93] 125 } 157 İ 189 ¡ 221 Ý 253 ý
62 > 94 ^ 126 ~ 158 đ 190 ¿ 222 Þ 254 þ
63 ? 95 _ 127 - 159 § 191 £ 223 ß 255 ß

Table 2.1: ASCII Encoding Table

Example 7. The word crypto can be encoded by using the ASCII table as follows:
1American Standard Code for Information Interchange

9

Val Char Val Char Val Char Val Char
0 A 16 Q 32 g 48 w
1 B 17 R 33 h 49 x
2 C 18 S 34 i 50 y
3 D 19 T 35 j 51 z
4 E 20 U 36 k 52 0
5 F 21 V 37 l 53 1
6 G 22 W 38 m 54 2
7 H 23 X 39 n 55 3
8 I 24 Y 40 o 56 4
9 J 25 Z 41 p 57 5
10 K 26 a 42 q 58 6
11 L 27 b 43 r 59 7
12 M 28 c 44 s 60 8
13 N 29 d 45 t 61 9
14 O 30 e 46 u 62 +
15 P 31 f 47 v 63 /

Table 2.2: base64 Encoding Table

Character Value on Binary Representation
ASCII Table (in 8-bits)

c 99 01100011

r 114 01110010

y 121 01111001

p 112 01110000

t 116 01110100

o 111 01101111

So the word crypto can be represented in ASCII encoding as the concatenation
of these 6× 8 = 48 bits:

crypto→ 011000110111001001111001011100000111010001101111.

Example 8. The same word crypto can be encoded using base64 table as follows:

10

Character Value on Binary Representation
base64 Table (in 6-bits)

c 28 011100

r 43 101011

y 47 101111

p 41 101001

t 45 101101

o 40 101000

So the word crypto can be represented in base64 encoding as the concatenation
of these 6× 6 = 36 bits:

crypto→ 011000110111001001111001011100000111010001101111.

As it is explained in the examples, any message of consisting characters can be
encoded to its binary representation by using a standard character table. Then
these binary representations are used in cryptographic operations.

For simplicity, binary representation can be expressed in hex representation
shortly by using 16 characters 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f instead of
4-bits, see Table 2.3.

4-bit Hex 4-bit Hex 4-bit Hex 4-bit Hex
Value Value Value Value Value Value Value Value
0000 0 0100 4 1000 8 1100 c
0001 1 0101 5 1001 9 1101 d
0010 2 0110 6 1010 a 1110 e
0011 3 0111 7 1011 b 1111 f

Table 2.3: Hex table

Example 9. The encoding of the word crypto via ASCII

011000110111001001111001011100000111010001101111

can be represented via hex table as

63727970746f

11

and the encoding of the word crypto via base64

011100101011101111101001101101101000

can be represented via hex table as

72bbe9b68.

Definition 8. For a positive integer n, a bitstring of length n is a sequence of
bits

a1a2 . . . an

where ai ∈ {0, 1} for i = 1 . . . n. The set of all bitstrings of length n is denoted
by {0, 1}n. The number of bitstrings in the set {0, 1}n is 2n.

Example 10. The encoding of the word crypto via ASCII is a bitstring of length
48. On the other hand, the encoding of the word crypto via base64 is a bitstring
of length 36.

Example 11. For n = 3, the set of bitstrings of length 3 is

{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}

and this set contains 23 = 8 elements. For n = 4, the set of bitstrings of length 4
is

{0, 1}4 =

{
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

}
and this set contains 24 = 16 elements.

When the length of a bitstring is a fixed positive integer n, then we say that
this bitstring belongs to the set {0, 1}n. However, the length of messages, and so
its length of binary representations, may be different and it can not be fixed. So
a big set can be defined containing all bitstrings as follows:

Definition 9. The set of all bitstrings of arbitrary length is denoted by {0, 1}∗

and is defined as
{0, 1}∗ =

⋃
n∈N

{0, 1}n.

12

2.2.2 Parsing Messages into Blocks

The bitstrings can be parsed into blocks of equal lengths before cryptographic
operations are applied.

Definition 10. Consider a bitstring M of length n, i.e. M ∈ {0, 1}n, and let
b be a positive integer divisor of n. Then the bitstring M can be parsed into k
parts M1,M2, . . . ,Mk where k = n/b and each Mi is a bitstring of length b. The
message M can be written as

M =M1M2 . . .Mk.

Then each Mi is called as a block of M . In other words, M is parsed into k

blocks M1M2 . . .Mk. Also it is said that the block length is b.

Example 12. Take the bitstring of length 48 which corresponds to the ASCII
encoding of the word crypto:

M = 011000110111001001111001011100000111010001101111.

Then the bitstring M can be parsed into 8 blocks of length 6, M1,M2 . . .M8 :

M = 011000 110111 001001 111001 011100 000111 010001 101111

where M1 = 011000, M2 = 110111, M3 = 001001, M4 = 111001, M5 = 011100,
M6 = 000111, M7 = 010001 and M8 = 101111.

A bitstring can be parsed into the blocks when the block length divides the
length of the bitstring. However there is a way, called as padding, to parse a
bitstring whose length is not divided by block length:

Definition 11. Consider a bitstring M of length n and let b be a block length. If
b does not divide n, then append a bitstring P of length k to M , where k is the
smallest positive integer so that b divides n+k. Then the new bitstring M ′ =MP

can be parsed into the blocks of length b. This operation is called as padding and
M ′ is called as padded bitstring. In general P = 1||0k−1 for k ≥ 2 and P = 1

when k = 1.

13

Example 13. Take the bitstring:

M = 011000110111001001111001011100000111010001101111

of length 48. Then M can be parsed into 5 blocks of length 10 with padding the
bitstring 10:

M ′ =M ||10 = 0110001101 1100100111 1001011100 0001110100 0110111110.

In hash functions, for the added security, the padding procedure is applied
even the block length divides the length of the bitstring. For instance in the
hash function SHA-1, the length or the checksum of the message in a fixed-length
bitstring can be sometimes appended to the bitstring 10 . . . 0.

2.3 Is it Easy or Hard?

Information can be protected by cryptographic tools and it is assumed to be
secure if it is not possible for the adversary to defeat the information security. So
the question "How is a cryptographic tool secure?" is answered in this section by
using the complexity theory in [1].

2.3.1 Complexity Theory

The complexity of the computations in cryptography has two main parameters
called space and time. The space parameter is the amount of storage of the in-
formation you need, and the time parameter is the amount of time to do the
computations by using the information in the space. The time parameter come
first in the complexity assuming that you have enough space to do your compu-
tation.

An algorithm is a well-defined computational procedure that takes a vari-
able input and halts with an output. The running time of an algorithm on a
particular input is the number of primitive operations or steps executed. The

14

worst-case running time of an algorithm is an upper bound on the running time
for any input, expressed as a function of the input size. In complexity theory, the
running time is approximately evaluated by Big-O notation O and it is classified
in three classes: polynomial-time, exponential-time and sub-exponential time.

Definition 12. Let f and g be functions on Z+. Then f(n) = O(g(n)) if there
exists a positive constant c and a positive integer n0 such that 0 ≤ f(n) ≤ cg(n)

for all n ≥ n0.

Definition 13. Let n be the input size of the algorithm and k be a constant.
A polynomial-time algorithm is an algorithm whose worst-case running time
function is of the form O(nk). Any algorithm whose running time cannot be so
bounded is called an exponential-time algorithm. A subexponential-time

algorithm is an algorithm whose worst-case running time function is of the form
eO(n).

Polynomial-time algorithms are regarded as efficient algorithms, while
exponential-time algorithms are considered inefficient. A subexponential-time
algorithm is asymptotically faster than an algorithm whose running time is fully
exponential in the input size, while it is asymptotically slower than a polynomial-
time algorithm.

The complexity theory restricts its attention to decision problems which have
either YES or NO as an answer.

Definition 14. The complexity class P is the set of all decision problems that are
solvable in polynomial time. The complexity class NP is the set of all decision
problems for which a YES answer can be verified in polynomial time given some
extra information, called a certificate. The complexity class co-NP is the set of
all decision problems for which a NO answer can be verified in polynomial time
using an appropriate certificate.

15

2.3.2 Models for evulating security

After defining the terms in complexity theory, the security of the cryptographic
tools can be evaluated under some security models:

• Unconditional security. The question here is whether or not there is
enough information available to defeat the system when the adversary is
assumed to have unlimited computational resource. This model is also
called as perfect secrecy.

• Complexity-theoretic security. The adversary has polynomial compu-
tational power to defeat the information security. Usually the worst-case
analysis is used. Polynomial attacks may be feasible under the model but
still be computationally infeasible in practice.

• Provable Security. A cryptographic tool is said to be provably secure if
the adversary defeats the system when he solves a well-known and suppos-
edly difficult problem. This problem is typically number-theoretic such as
integer factorization or the computation of discrete logarithms.

• Computational Security. The system is said to be computationally se-
cure if the perceived level of computation required to defeat it, even using
the best attack known, exceed by a comfortable margin, the computational
resources of the hypothesized adversary. This is sometimes called practical
security.

• Ad-hoc security. This approach consists of any variety of convincing
arguments that every successful attack requires a resource level such as
time and space greater than the fixed resources of a perceived adversary.
It is also called as heuristic security, with security here typically in the
computational sense.

In this thesis, we mostly used the models of complexity-theoretic security,
provable security and ad-hoc security.

16

2.3.3 Some perspective for computational security

Some certain quantities are often considered to evaluate the security of crypto-
graphic tools.

Definition 15. The work factor W is the minimum amount of work required
to defeat the information security. It is measured in appropriate units such as
elementary operations or clock cycles in computers.

In that sense, if W is t years for sufficiently large t, the cryptographic tool is
a secure system. For comparing the sufficiency for large t, Table 2.4 can be used.

Reference Magnitude Magnitude
(as power of 10) (as power of 2)

Seconds in a year ≈ 3× 107 ≈ 225

Age of our solar system (years) ≈ 6× 109 ≈ 232

Seconds since creation of solar system ≈ 2× 1017 ≈ 257

Electrons in the universe ≈ 8.37× 1077 ≈ 2259

Number of 75-digit prime numbers ≈ 5.2× 1072 ≈ 2241

Binary strings of length 64 ≈ 1.8× 1019 264

Binary strings of length 128 ≈ 3.4× 1038 2128

Clock cycles per year, 50 MHz computer ≈ 1.6× 1015 ≈ 250

Clock cycles per year, 1 GHz computer ≈ 3× 1016 ≈ 254

In the fastest super-computer (as of Nov 2013),
Float operations per second ≈ 33.86× 1015 ≈ 255

Float operations per year ≈ 1.01× 1024 ≈ 280

Table 2.4: Reference numbers comparing relative magnitudes

17

Chapter 3

Incremental Hash Functions

We start by recalling some basic properties of hash functions1. In section 3.1,
we also give an example of a standard hash function. In section 3.2, we state
incremental hash functions and the paradigm standing behind incremental hash-
ing, called Randomizer-then-Combine Paradigm. In section 3.3, some examples
of incremental hash functions are given with their incrementality properties are
given.

3.1 Hash Functions

One of the fundamental cryptographic tools is hash functions. They map the
bitstrings of arbitrary length to a bitstring of fixed length. In that sense, they
actually map the large domains to smaller ranges. However, they also satisfy
some security arguments of cryptographic schemes where they are used. They
are mainly used for data integrity and message authentication.

A hash function is defined as follows:

Definition 16. A function H : {0, 1}∗ → {0, 1}n which takes a bitstring M of
arbitrary finite length, called message, and outputs a bitstring H(M) of fixed

1For the detailed information about hash functions, one can see Chapter 9 of the book [1].

18

length n, called hash of M , is a hash function if it satisfies the following four
properties:

1. Ease of Computation: For a given message M ∈ {0, 1}∗, it is easy to
compute its hash H(M).

2. Preimage Resistance: For a given hash h ∈ {0, 1}n, it is infeasible to
generate a message M ∈ {0, 1}∗ such that H(M) = h.

3. Second Preimage Resistance. For a given message M and its hash
H(M), it is infeasible to find a message M ′ such that M ′ 6=M but H(M) =

H(M ′).

4. Collision Resistance. It is infeasible to find two messages M,M ′ with
M 6=M ′ so that they have the same hash, i.e. H(M) = H(M ′).

The first property is about the efficiency while the others are about the se-
curity of hash functions. The third and the fourth properties may seem to have
same meaning, because it is aimed to find two different messages with same hash
in both of them. However, they are different: in the third property it is restricted
to find a second preimage for a fixed hash, while there is no restriction on the hash
value in the fourth property. The expected complexities of security properties of
hash functions are given in Table 3.1.

Pre-image resistance 2n

Second pre-image resistance 2n

Collision resistance 2n/2

Table 3.1: Expected complexities of the security of hash functions for an n-bit
output

The hash functions are many-to-one functions since the size of the domain
{0, 1}∗ is larger than the range {0, 1}n for any positive integer n, and this results
in collisions. For this reason, a hash function must be constructed so that two
randomly chosen inputs are mapped to the same output with probability 2−n.

19

There are two classes of hash functions, namely Modification Detection Codes
(MDCs) and Message Authentication Codes (MACs). The difference between
these two classes is that secret keys are not used in MDCs while they are used in
MACs. For this reason, MDCs are used in data integrity and MACs are used in
authentication. Moreover, MACs can be constructed by using MDCs.

MDCs can be splitted into two groups called One-way hash functions
(OWHFs) and Collision-resistance hash functions (CRHFs). For the OWHFs,
preimage resistance and second preimage resistance are required, on the other
hand, for the CRHFs, second preimage resistance and collision resistance are
required .

3.1.1 Merkle-Damgard Construction

Standard hash functions such as SHA and MD family are constructed based on
Merkle-Damgard model. In this model, a compression function is used and runs
iteratively.

M0 M1 Mn−1
↓ ↓ ↓

H0 := IV → f → H1 → f → H2 → . . .→ Hn−1 → f → Hn

Initial Value Hash Value

Figure 3.1: Merkle-Damgard Construction

Let H : {0, 1}∗ → {0, 1}n be a hash function constructed on Merkle-Damgard
construction model. H takes a message M parsed into blocks of length b as
M0M1 . . .Mn−1 and gives out the hash valueH(M) by using a compress function f
iteratively. In the i−th step, this compression function f takes the n-bit bitstring
Hi−1 and the b-bit message block Mi−1 and gives the next n-bit bitstring Hi (see
figure 3.1). Here, the first value H0 is set to an initial value called IV. This
construction can be expressed as follows and it is clearly iterative:

Hi :=

{
IV for i = 0,

f(Hi−1,Mi−1) for i = 1 . . . n− 1

20

where f : {0, 1}n × {0, 1}b → {0, 1}n is the compression function.

In general, the function f compress the message blocks in substeps called
rounds by using subfunctions called round function. In each round t, the round
function ft uses linear structures such as XOR operations, bit rotations, permu-
tations or specific matrices; and nonlinear structures such as nonlinear functions
using AND operations or S-boxes. The bits of the block Mi and the value Hi are
so mixed by these round functions.

3.1.2 A Standard Hash Function: SHA-1

The hash function name SHA-1 is designed by National Security Agency (NSA)
of United States in 1995. It is published in the document FIPS PUB 180-4 [2] by
NIST. At present, most of the cryptographic applications and protocols employs
SHA-1. Its name SHA stands for secure hash algorithm.

SHA-1 takes a bitstring of size at most 264 − 1 (not arbitrary length2), and
outputs a 160-bit hash value. Its block size is 512-bit and it is designed on
Merkle-Damgard construction.

SHA-1 produces the hash value of a message M in three main steps: In the
first step, the padding bitstring is appended to the message M to get padded
message M ′ and then the padded message M ′ is parsed into n blocks of size 512-
bit, i.e. M ′ = M0M1 . . .Mn−1. In the second step, the initial state H0 is set to
a constant 160-bit bitstring. In the third step, the compression function f gets
the 160-bit state Hi and the 512-bit message block Mi, and outputs the latter
160-bit state Hi+1 for i = 0, 1, . . . , n − 1. Here the compression function f runs
in 80 subfunctions called also as rounds. The final state Hn is output as the final
hash value of M .

In the following paragraphs, the mains three steps of SHA-1 are explained in
detail for an l-bit message M .

2It is assumed in practice that the size of a message can not be bigger than 264

21

1. Step: Padding and Parsing The message is padded by a padding bitstring
to make the length of the padded message a multiple of 512 since the block size of
SHA-1 is 512. The padding bitstring is specified as follows: it is the concatenation
of the bitstring 10 . . . 0 of size k where k is the smallest positive integer satisfying
the equation k+ l ≡ 448 mod 512, and the 64-bit bitstring representation of the
length l:

M ′ :=M || 100 . . . 0︸ ︷︷ ︸
k-bit

|| l1l2 . . . l64︸ ︷︷ ︸
64-bit length l

.

Then the padded message M ′ is parsed into the n blocks of size 512-bit:

M0M1 . . .Mn−1.

2. Step: Initialization. In the second step, the inital hash value H0 is set by
160-bit bitsting

H0 = 67452301efcdab8998badcfe10325476c3d2e1f0.

3. Step: Compression Function. For a given 160-bit state Hi and the 512-
bit message block Mi, the compression function f outputs recursively the latter
160-bit state Hi+1, i.e. Hi+1 := f(Hi,Mi) for i = 0, 1, . . . , n − 1. Here H0 is the
initialized in the second step and the message blocks Mi are determined in the
first step. The final state Hn is the hash value of the message M .

The compression function f has 80 rounds with round functions ft for 0 ≤
t ≤ 79. In each round t, the round function ft takes 160-bit bitstring in 5

words3 as AtBtCtDtEt and outputs the next 160-bit bitstring in 5 words again
At+1Bt+1Ct+1Dt+1Et+1, in other words,

At+1Bt+1Ct+1Dt+1Et+1 := ft(AtBtCtDtEt)

332-bit bitstring

22

where the words At+1, Bt+1, Ct+1, Dt+1 and Et+1 are computed as

At+1 := Et � gt(Bt, Ct, Dt)� (At≪ 3)�Wt �Kt

Bt+1 := At

Ct+1 := Bt≪ 30

Dt+1 := Ct

Et+1 := Dt

where the nonlinear function gt is defined as

gt(x, y, z) =

(x ∧ y)⊕ (¬x ∧ z) 0 ≤ t ≤ 19

x⊕ y ⊕ z 20 ≤ t ≤ 39

(x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) 40 ≤ t ≤ 59

x⊕ y ⊕ z 60 ≤ t ≤ 79

Here the words Wt are computed from the words M (i)
0 ,M

(i)
1 , . . .M

(i)
15 of the mes-

sage block Mi as follows

Wt =

{
M

(i)
t 0 ≤ t ≤ 15

(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)≪ 1 16 ≤ t ≤ 79

and the constants Kt is set to specific words as follows

Kt =

5a827999 0 ≤ t ≤ 19

6ed9eba1 20 ≤ t ≤ 39

8f1bbcdc 40 ≤ t ≤ 59

ca62c1d6 60 ≤ t ≤ 79

The round function ft is simply illustrated in Figure 3.2.

Hash Value ofM . The compression function f runs on statesH0, H1, . . . , Hn−1

and the message blocks M0,M1, . . . ,Mn−1 until the last message block Mn−1 is
used. The last f function outputs the final state Hn and this Hn is used as the
hash value of M .

23

Figure 3.2: The round function ft of f in SHA-1

3.2 Incremental Hash Functions

Most of the hash functions including standard ones such as SHA and MD family
have the iterative construction based on Merkle-Damgard model. Such functions
runs on the entire data even a small part of the data is changed, because they
are iterative. This can be a big problem for the data of big size on the aspect of
efficiency.

Bellare, Goldreich and Goldwasser [8] proposed a new construction in 1995 to
solve this problem and called it as incrementality :

Definition 17. Given a map f and inputs x and x′ where x′ is a small modifi-
cation of x. Then f is said to be incremental if one can update f(x) in time
proportional to the amount of modification between x and x′ rather than having
to recompute f(x′) from scratch.

The incremental hash functions are constructed on this property. Bellare,
Goldreich and Goldwasser proposed their first incremental hash function based
on exponentiation in a group of prime order using the fact that this group is

24

abelian. The main feature of the construction in incremental hash functions is
mapping the bitstrings blocks to group elements and then multiply them in the
group.

Incremental hash functions can be efficiently used in practice where incremen-
tality makes a big difference. Some examples are given below to explain where it
makes a big difference, in other words, why we need incremental hash functions:

Example 1: Software Updates. Imagine that a software company produces
a software and continuously updates it (slight updates such as fixing a bug etc.)
Every time the software is updated, the company should sign it to convince
customers that all the changes are made by the company.

Example 2: Big Databases. A state keeps all information of its citizens and
wants to be sure that an unauthorized person can not able to change the data.
Therefore the state will take its hash to satisfy the integrity of this data. However
this data is very big and changes a lot, therefore one wants to take the hash of
this changing data in a small time if a slight change is done on an information of
a citizen.

Example 3: Virus Protection. An anti-virus program may want to take a
hash of the hard drive of the computer to be aware of viruses. However the user
do many changes while he is using the computer, so computing the hash value
continuously may be difficult. See also [15].

Example 4: Storing Files Online. Many of computer users keep their files
such as documents, notes, music or photos on their online storages provided by
Dropbox or Google Drive. This storage changes rapidly by uploading new files or
deleting old ones so that the user can not absolutely know which files are added,
deleted or updated. There may be an unauthorized access to his account and a
file is added, deleted or changed without his permission. Therefore he may want
to trace this traffic by taking the hash of all his storage.

25

3.2.1 Randomize-then-Combine Paradigm

Bellare and Micciancio suggested a new paradigm called The Randomize-then-
Combine Paradigm for collision-free hash functions in [7]. This can be actually
seen as the underlying paradigm for the construction of the incremental hash
functions. Therefore this concept can be extended to a general view and be re-
defined with some small differences without changing the name of the paradigm.

There are two main parts of this paradigm: a randomizer function h that
maps the bit strings to elements of a group, and the combine operation that gives
the product of these group elements in the group.

Definition 18. A function h that maps the blocks of length b to an abelian group
G, i.e. h : {0, 1}b → G is called randomizer function.

For a padded message M that is parsed into its blocks M1M2 . . .Mk of each
length b, the randomizer function h maps these blocks to the group elements as
h(Mi) = gi ∈ G for i = 1, . . . , k.

It is applied to inputs of fixed length. It can be seen as a compression function,
however, it can run in parallel since it is not iterative.

Definition 19. For a message M = M1M2 . . .Mk and a randomizer function
h : {0, 1}b → (G,�), the group operation � is called the combining operation.

Incremental hash functions can now be defined using these two definitions:

Definition 20. Let (G,�) be an abelian group, b be the block size, and h :

{0, 1}b → G be a randomizer function. Then the function IncHashGh : {0, 1}∗ → G

is called incremental hash function. For a message M = M1M2 . . .Mk, the
hash value of M is

IncHashGh (M) =
k⊙
i=1

h(Mi).

As randomizer functions and groups vary, incremental hash functions having
different security parameters4 can be defined.

4Bellare and Micciancio did these variations in [7]

26

Incrementality and paralellizability. According to the definition of incre-
mental hash functions, it is clearly seen that the computation via randomizer
function h can be parallelizable since h is applied to each block of a message
independently. Also the incrementality property holds because the chosen group
is abelian and the randomizer function runs on eeach block independently.

The incrementality can be detailed as follows: if a block Mi of the message
M is changed to M ′

i , then the hash value of the new message M ′ can be easily
re-computed from old hash value of the message M by

IncHashGh (M
′) = IncHashGh (M)� h(Mi)

−1 � h(M ′
i)

where h(Mi)
−1 ∈ G is the inverse of the group element h(Mi) ∈ G.

Security requirements. The randomizer function h is described as a random
oracle [16] and its security is accepted "ideal" in [7]. However in practice h can be
derived from a standard hash function like SHA-1, or from additional parameters
such as a set of elements of a group G. Therefore the randomizer function h must
be chosen carefully and its security requirements must be taken into consideration.
h needs to be collision-free [7], and sometimes one-way if it is required.

The security of combine operation depends on computationally hard problems
defined on the group, and so on the choice of the group. These problems and
their security reductions is given in Chapter 4.

This paradigm has two parts linked to each other, so the security relies on
the weaker part. However assuming that the randomizer function h is ideal, the
security of the paradigm relies only on the security of the combining operation, in
other words, the computationally hard problem in chosen group. In that sense,
incremental hash functions give provable security.

In [7], it is stated that the randomizer function is chosen to be ideal and so the
security of this paradigm depends only the choice of the group. However it may
not be enough in practice since two parts of the paradigm performs independently.
Therefore the weaker one of these two parts may result a security gap and so an

27

attack can be found by the adversary. In other words, if the adversary finds
an attack on the h function, then this attack can be applied on the whole hash
function without solving the computationally hard problem on the chosen group.

Output truncation. The output of the hash function based on this paradigm is
an element of a group G. This element can be expressed in binary representation,
and then it can be truncated to a shorter length, for example via a standard hash
function like SHA-1. It still remains collision-free for the security requirements
and parallelizable, but no longer incremental. Therefore, this must be an option
when one does not need incrementality.

3.2.2 Standard Hash Functions vs. Incremental Hash

Functions

Standard hash functions are iterative because they are based on Merkle-Damgard
construction, on the other hand, incremental hash functions use property of in-
crementality. Moreover, the randomizer function in incremental hash functions
can be parallelizable, while the compression function in standard hash functions
are not. Also incremental hash functions gives security depending on a compu-
tationally hard problem and the standard hash functions are secure when their
compression functions are secure. Table 3.2.2 summaries these differences.

Standard HFs Incremental HFs
Construction Iterative Incremental

Compression Functions Not Parallelizable Parallelizable
When some changes Re-hash Apply on the
applied on data entire data the changed part only

Security argument Cryptanalysis of Provable Security
the compression function

Table 3.2: Standard hash functions versus Incremental hash functions

28

3.3 Some Examples of Incremental Hash Func-

tions

In aspect of randomize-then-combine paradigm, some examples of incremental
hash functions are given in this section.

3.3.1 Impagliazzo and Naor’s hash function

Impagliazzo and Naor defined a hash function in [17] in 1990, which hashes a
message bitwise instead of hashing block by block.

Definition 21 (IN’s Hash Function). Let (G,�) be a finite abelian group and
g1, g2, . . . , gn be elements in G. Then the hash function INHashGg1,...,gn takes a
message M =M1M2 . . .Mn in its bit representation and computes the hash of M
as

INHashGg1,...,gn(M) =
n⊙
i=1

(Migi)

where (Migi) = gi ifMi = 1 and (Migi) = e (the identity element of G) otherwise.

From the definition, it is clear to see that the number of group elements
required is equal to the bitlength of the message. Therefore, it is not so efficient
for long messages.

The randomizer function in INHashGg1,...,gn is h : {0, 1} → G where h(Mi) = gi

or h(Mi) = e determined by the value of the bit Mi. Moreover, if the message
M = M1 . . .Mj . . .Mn is changed to M ′ = M1 . . .M

′
j . . .Mn, then the new hash

value is
INHashGg1,...,gn = INHashGg1,...,gn(M)� (Mjgj)� (M ′

jgj).

29

3.3.2 Chaum, van Heijst and Pfitzmann’s Hash Function

Chaum, van Heijst and Pfitzmann defined a hash function in [18] in 1991. Their
hash function uses modular exponentiation and multiplication. The message
blocks in this function can be seen as their integer representation.

Definition 22 (CvHP’s Hash Function). Let p = 2q + 1 be a prime for some
large prime q, and a, b ∈ Zp − {0} be random elements. For any given message
M ∈ Zq2, M can be written uniquely as M =M1+qM2 with 0 ≤M1,M2 ≤ q−1.
Then, the CvHPHasha,bp hash of the message M is defined by

CvHPHasha,bp (M) = aM1bM2 mod p.

This function is not a hash function in proper sense because it can be applied
only to messages whose bit length are ≤ 2 log2 q whereas a hash function has to
be defined for arbitrarily long messages.

The randomizer functions in CvHPHasha,bp are ha, hb : Zq → Zp where ha(M1) =

aM1 and hb(M2) = bM2 determined by the parameters a and b. Moreover, if the
message M = (M1,M2) is changed to M ′ = (M ′

1,M2), then the new hash value is

CvHPHasha,bp (M ′) = aM
′
1−M1CvHPHasha,bp (M) mod p.

Clearly, CvHPHasha,bp is incremental but its incrementality is not so efficient,
because the possible number of changes is 1 or 2 since there are two blocks in the
message. However, it formed the base work for Bellare, Goldreich and Goldwasser
[8].

3.3.3 Bellare, Goldreich and Goldwasser’s Hash Function

Bellare, Goldreich and Goldwasser proposed a hash function in [8] in 1995. It
is based on the idea which is a combination of ideas standing behind IN’s hash
function and CvHP’s hash function. It uses one modular exponentiation per
message block to hash the message.

30

Definition 23 (BGG’s Hash Function). Let (G,�) be an abelian group of prime
order p and g1, g2, . . . , gn be elements in G. For a message M = M1M2 . . .Mn

parsed into blocks of length b, the BGGHashGg1,...,gn of M is

BGGHashGg1,...,gn(M) =
n⊙
i=1

g
〈Mi〉
i

where 〈Mi〉 is the integer representation of the block Mi.

The randomizer functions in BGGHashGg1,...,gn is h : {0, 1} → G where h(Mi) =

g
〈Mi〉
i . Moreover, if the message M = M1 . . .Mj . . .Mn is changed to M ′ =

M1 . . .M
′
j . . .Mn, then the new hash value is

BGGHashGg1,...,gn(M
′) = BGGHashGg1,...,gn(M)� g−〈Mj〉

j � g〈M
′
j〉

j .

BGGHashGg1,...,gn is more efficient then INHashGg1,...,gn since it uses the integer
representation of blocks instead of bits, i.e. its block size is bigger. However, the
group order restricts this efficiency because it is expected that the block size is
≤ log p. Moreover, the storage of parameters g1, . . . , gn may be difficult if the
number n is so large.

3.3.4 Bellare and Micciancio’s Hash Functions

Bellare and Micciancio suggested a new paradigm called Randomize-then-
Combine Paradigm in [7] in 1997. This method is based on their previous works
[8] and [15], and gives a reduced cost in sense of computation and incrementality.
Using this paradigm, they derived three specific hash functions, namely MuHASH,
AdHASH and LtHASH.

The randomizer function in their paradigm takes the message blocks with their
indices and then maps to the group elements. This function may be a random
oracle or a standard hash function like SHA-1. By this construction of randomizer
function, we get out of using such parameters g1, g2, . . . , gn as we do in BGG’s
hash function.

31

Figure 3.3: Randomizer-then-combine paradigm in BM’s hash functions.

Let b be the block length and assume that indices can be represented in l-bit
bitstrings. For a message block Mi in a message M , the randomizer function h
maps the blocks of length b+ l to an element of a group G, i.e. h : {0, 1}b+l → G,
as follows:

h(Ii||Mi) = gi

where Ii is the l-bit representation of the index i. It can be clearly seen that the
number of blocks is bounded above by 2l − 1. The combining operation is the
group operation in G which gives the hash value.

Definition 24 (BM’s Hash Function). Let (G,�) be an abelian group, b be the
block size, l is the upper bound parameter for the number of blocks, and h be the
randomizer function h : {0, 1}b+l → G. Then for a message M = M1M2 . . .Mn

parsed into blocks of length b, the BMHashGh of M is

BMHash(M) =
n⊙
i=1

h(Ii||Mi)

where Ii is the l-bit representation of the index i.

If a messageM =M1 . . .Mj . . .Mn is changed toM ′ =M1 . . .M
′
j . . .Mn, then

the new hash value is

BMHashGh (M
′) = BMHashGh (M)� h(Ij||Mj)

−1 � h(Ij||M ′
j).

32

The upper bound parameter l for the number of blocks can be set by l = 80

since a message with more than 280 blocks is never needed to hash in practice.
Moreover, the block length b can be set so that 2b < |G|.

Bellare and Micciancio give four types of BMHashGh hash function: MuHASHfor
multiplicative group G, AdHASH for modular addition, LtHASH for lattices,
XHASH for XOR operation. The list of BMHashGh is given in Table 3.3.

Type of BM’s hash The based group Hash value of
M =M1M2 . . .Mn

Multiplicative Hash Multiplicative MuHASHGh (M) =
n∏
i=1

h(Ii||Mi)

MuHASH group G

Additive Hash ZN for large AdHASHNh (M) =
n∑
i=1

h(Ii||Mi) mod N

AdHASH N ∈ Z+

Lattice-based Hash Zkp for prime LtHASHp,kh (M) =
n∑
i=1

h(Ii||Mi)

LtHASH p and k ∈ Z+ (vector addition in Zkp)

XOR Hash {0, 1}k with XHASHkh(M) =
n⊕
i=1

h(Ii||Mi)

XHASH XOR addition

Table 3.3: Types of BMHashGh functions

MuHASHfunction. The name MuHASHcomes from the fact that the combining
operation is set to multiplication in a multiplicative group G. For example one
can take G = Z∗p where p is a prime. In this case the randomizer function h maps
the blocks to the elements of Z∗p and the combine operation is the multiplication
in modulo p.

In MuHASH, the cost for a b-bit block is the sum of computation of h and
one modular multiplication per block. However one can see that this cost equals

33

only to one modular multiplication when the computation of h is comparatively
small, for example if SHA is chosen for h. At first look this cost can be seen
too much but there are two points to consider: the first, it is multiplication,
not exponentiation and the second, total cost of modular multiplications can be
reduced by making the block size b larger. In this sense, MuHASHis much faster
than any number theory based hash function. Moreover, if hardware for modular
multiplication is present then MuHASHbecomes even more efficient to compute.

In MuHASH, incremental operation on a block takes one multiplication and
one division, which shows that MuHASHis fast when it updates changes on the
message.

AdHASH function. This hash function is called AdHASH since it uses modular
addition. It differs from MuHASHbecause it is quite attractive both on the effi-
ciency and on the security fronts. It is a significant improvement to replace the
multiplication operation by addition so that AdHASH becomes much faster than
MuHASH. Now the cost for hashing of a message of n blocks is n modular addition
and the cost for increment operation for a block is two modular additions. By
this efficiency and cost, AdHASH can compete with standard hash functions in
speed.

LtHASH function. Its name is LtHASH because lattices are used here. The
combining operation is set to componentwise addition. In LtHASH, the cost
for a b-bit block is the sum of computation of h and one vector addition per
block. Incremental operation on a block takes one vector addition and one vector
subtraction which can be actually seen as two vector additions in Zkp.

XHASH function. They present XHASH using bitwise XOR as combining op-
eration. It works in conventional sense, i.e. its security does not depend on
any number theoretical problem. However, setting the combining operation to
bitwise XOR makes XHASH insecure because of an attack which uses Gaussian
elimination and pairwise independence. Incremental operation on a block takes

34

two bitstring addition.

35

Chapter 4

Security of Incremental Hash

Functions

In this chapter, computationally hard problems are first defined for provable
security. Then security proofs of CvHP’s and BGG’s hash functions are given
in Sections 4.2 and 4.3 respectively. For security proofs of BM’s hash functions,
Balance Lemma is introduced in relation with DLP in Section 4.4, and finally
security of MuHASH, AdHASH, LtHASH and XHASH of BM’s hash functions are
given in Section 4.5.

4.1 Computationally Hard Problems

We define some computationally hard problems such that security of the incre-
mental hash functions relies on hardness of those problems.

Definition 25 (Hardness of a Computational Problem). A problem P is
a (t, ε)-hard if no algorithm, limited to run in time t, can find a solution of the
problem with probability more than ε.

Definition 26 (Balance Problem - BP). For a group (G,�), a positive in-
teger q and random elements a1, a2, . . . , aq ∈ G, find the weights ω1, ω2, . . . ωq ∈

36

{−1, 0, 1}, not all zero, such that

aω1
1 � aω2

2 � . . .� aωq
q = e

where e is the identity element of G. This problem is called (G, q)-balance problem.

In (G, q)-balance problem, the elements a1, a2, . . . , aq are not determined pa-
rameters for the problem, because they are randomly given to a (G, q)-balance
problem solving algorithm. Therefore, the algorithm must run for any q elements
of G.

Using the Definition 25, we say (G, q)-balance problem is (t, ε)-hard if no
algorithm can find a solution to an instance a1, a2, . . . , aq of the problem with
probability more than ε in limited time t.

Definition 27 (Discrete Logarithm Problem - DLP). For a given group G
and two elements g, h ∈ G, find the discrete logarithm to the base g of h in group
G, that is denoted by loggh. In other words find a non-negative integer x, if it
exists, such that gx = h. This problem is called discrete logarithm problem (DLP)
in group G.

For DLP in a group G, the elements g, h are randomly given to an algorithm
that solves the problem. Therefore, the algorithm must run for any g, h ∈ G.

If G is a cyclic group, i.e. it is generated by an element g ∈ G, then there is
always a non-negative integer x such that gx = h for any given h ∈ G. Therefore,
g ∈ G is usually given as a generator and h is randomly taken from G.

Example 14. Take the multiplicative group Z∗p for prime p = 3323 where g = 2

is one of its generators. For h = 15, the discrete logarithm to the base g of h in
Z∗3323 is

logg h = log2 15 = 439,

in other words 2439 = 15 mod 3323.

Now we define two more problems which are specified versions of (G, q)-
balance problem by choosing G = ZN for a large positive integer N .

37

Definition 28 (Weighted Knapsack Problem -WKP). For a k-bit positive
integer N and q numbers a1, a2, . . . , aq ∈ ZN , find weights w1, . . . , wq ∈ {−1, 0, 1},
not all zero, such that

q∑
i=1

wiai = 0 mod N.

This problem is called (k, q)-weighted-knapsack problem.

In this problem, the elements a1, a2, . . . , aq ∈ ZN are chosen randomly, there-
fore they are not actual parameters of the problem, as they were not in balance
problem.

This problem can be re-defined by allowing weights to take the only values
0 and 1, because the inverse of an element a ∈ ZN is directly computed as
−a = N − a in ZN . However, the hardness of the new problem does not remain
the same, actually the old one is harder than new one.

Definition 29 (Standard Modular Knapsack Problem -MKP). For a k-bit
positive integer N and q numbers a1, a2, . . . , aq ∈ ZN , find weights w1, . . . , wq ∈
{0, 1}, not all zero, such that

q∑
i=1

wiai = 0 mod N.

This problem is called (k, q)-knapsack problem.

It is showed in [19] that the weighted knapsack problem is hard as long as there
is no polynomial time approximation algorithm for the shortest vector problem
in a lattice.

One more problem as a specified version of (G, q)-balance problem can be
defined by choosing G = Zkp, i.e. lattices, for positive integers p, k.

Definition 30 (The Matrix Kernel Problem). For a s-bit positive integer p
and a matrix Mk×n over Zp, find a nonzero vector w whose entries can be −1, 0
or 1 such that

Mw = 0

38

where 0 is the zero vector of Zkp. This problem is called as (k, s, n)-matrix-kernel
problem. The operation here is matrix-vector multiplication modulo p.

In matrix kernel problem, the matrix Mk×n over Zp is chosen randomly. The
columns of the matrix can be seen as the elements a1, a2, . . . , an ∈ Zkp in balance
problem. The parameter s gives the size of p, as k gives the size of N in knapsack
problems.

It is showed in [19] that the matrix-kernel problem whose parameters satisfy

the inequality ks < n <
2s

2k4
is hard under the assumption that there is no

polynomial time algorithm to approximate the length of shortest vector in a
lattice within a polynomial factor.

4.2 Security of CvHP’s Hash Function

For given prime number p (such that p = 2q + 1 for some large prime q) and
elements a, b ∈ Z∗p, the CvHPHasha,bp of a message M ∈ Zq2 is defined as

CvHPHasha,bp (M) = aM1bM2 mod p

where M1,M2 is uniquely determined from the equation M = M1 + qM2 when
0 ≤ M1,M2 ≤ q − 1. The following theorem shows that the security of CvHP’s
hash function relies on DLP in multiplicative group Z∗p:

Theorem 1 ([18]). CvHPHasha,bp is not collision resistant if and only if DLP is
solvable in the multiplicative group Z∗p.

Proof. Let M,M ′ ∈ Zq2 be two messages such that M 6= M ′ but
CvHPHasha,bp (M) = CvHPHasha,bp (M ′). Then aM1bM2 = aM

′
1bM

′
2 mod p, or equiva-

lently,
aM1−M ′1 = bM

′
2−M2 mod p

holds for uniquely determined 0 ≤M1,M
′
1,M2,M

′
2 ≤ q−1 whereM =M1+M2q

and M ′ =M ′
1 +M ′

2q.

39

Let d = gcd(M ′
2−M2, p− 1). Since p− 1 = 2q and q is prime, it must be the

case that d ∈ {1, 2, q, p− 1}. Therefore we examine these four cases:

Case 1: If d = 1, let y = (M ′
2 −M2)

−1 mod p− 1. Then we have

b = b(M
′
2−M2)y mod p

= a(M1−M ′1)y mod p

and so
loga b = (M1 −M ′

1)(M
′
2 −M2)

−1 mod p− 1.

Case 2: Now suppose that d = 2. Since p−1 = 2q and q is odd, we must have
gcd(M ′

2 −M2, q) = 1. Let y = (M ′
2 −M2)

−1 mod q. Now (M ′
2 −M2)y = kq + 1

for some integer k and

b(M
′
2−M2)y = bkq+1 mod p

= (−1)kb mod p

= ±b mod p

since bq = −1 mod p. Then

b(M
′
2−M2)y = a(M1−M ′1)y mod p

= ±b mod p.

It follows that
loga b = (M1 −M ′

1)y mod p− 1

or
loga b = (M1 −M ′

1)y + q mod p− 1

and it can be easily tested which of these two possibilities is correct.

Case 3: Now suppose d = q. But we have 0 ≤M2,M
′
2 ≤ q−1 and so−(q−1) ≤

M ′
2 −M2 ≤ (q − 1). Therefore it is impossible to have gcd(M ′

2 −M2, p− 1) = q,
in other words this case does not arise.

Case 4: The final possibility d = p− 1 holds only if M2 =M ′
2. But we have

aM1bM2 = aM
′
1bM

′
2 mod p

40

so
aM1 = aM

′
1 mod p

and M1 = M ′
1. Thus M = M ′ which is a contradiction. So this case is not

possible either.

Therefore, loga b is computable in each case.

Now conversely assume that the DLP is solvable in multiplicative group Z∗p.
Then compute loga b and let l = loga b for simplicity. We want to find two
messages M,M ′ ∈ Zq2 such that CvHPHasha,bp (M) = CvHPHasha,bp (M ′) but M 6=
M ′.

Take an arbitrary message M ∈ Zq2 and compute M1,M2 ∈ {0, 1, . . . q − 1}
so that M =M1 +M2q. Then the CvHPHasha,bp of M is

CvHPHasha,bp (M) = aM1bM2 mod p

= aM1(al)M2 mod p

= aM1+lM2 mod p.

Now we must find M ′
1 and M ′

2 ∈ {0, 1, . . . q − 1} so that we can define M ′ =

M ′
1 +M ′

2q. Let M ′
2 be taken arbitrarily in {0, 1, . . . q − 1} but M ′

2 6= M2, and
define M ′

1 as
M ′

1 =M1 − l(M ′
2 −M2) mod q.

Then the CvHPHasha,bp of M ′ is

CvHPHasha,bp (M ′) = aM
′
1bM

′
2 mod p

= aM
′
1(al)M

′
2 mod p

= aM
′
1+lM

′
2 mod p

= aM1−lM ′2+lM2+lM ′2 mod p

= aM1+lM2 mod p

= CvHPHasha,bp (M).

So we find a collision for the hash function CvHPHasha,bp .

41

4.3 Security of BGG’s Hash Function

For an abelian group (G,�) of prime order p and elements g1, g2, . . . , gn ∈ G, the
BGGHashGg1,...,gn of a message M =M1M2 . . .Mn parsed into blocks of length b is

BGGHashGg1,...,gn(M) =
n⊙
i=1

g
〈Mi〉
i

where 〈Mi〉 is the integer representation of the block Mi.

The security of the hash function BGGHashGg1,...,gn depends on DLP in G. For
the proof, two algorithms namely collision finder algorithm A and discrete log
finder algorithm B are used.

The collision finder algorithm A runs on hash function BGGHashGg1,...,gn : it takes
a hash value h generated by BGGHashGg1,...,gn , and gives out two distinct messages
M1 and M2 such that BGGHashGg1,...,gn(M1) = BGGHashGg1,...,gn(M2) = h.

On the other hand, the discrete log finder algorithm B runs on a group G of
prime order p. Since it is of prime order, it is generated by an element, say g. We
want to find the discrete logarithm of an element h ∈ G, i.e. a positive integer
k such that gk = h. The algorithm B takes the inputs G, g, h and outputs the
value k.

Bellare et al. gives the security proof for BGGHashGg1,...,gn :

Theorem 2 ([8]). Suppose a collision finder algorithm A succeeds in (t, ε) for the
hash function BGGHashGg1,...,gn. Then the discrete log finder algorithm B succeeds
in (t′, ε′) for the group G where t′ = t+O(n log3 p) and ε′ = ε/2.

Proof. Assume that we have a collision finder algorithm A. Then we can costruct
a discrete log finder algorithm B.

The discrete log finder algorithm B takes the inputs G, g, h where the order
of G is prime p. It selects r1, . . . , rn ∈ {0, 1} and u1, . . . , un ∈ {0, 1, . . . , p− 1} at

42

random. Then it sets

gi =

{
gui if ri = 0

hui if ri = 1

for i = 1, . . . , n. The values g1, g2, . . . , gn are also provided to the algorithm
A to specify the hash function BGGHashGg1,...,gn . Then the algorithm B calls the
collision finder algorithm A and gets two distinct messages M = M1 . . .Mn and
M ′ =M ′

1 . . .M
′
n such that BGGHashGg1,...,gn(M) = BGGHashGg1,...,gn(M

′).

Now the algorithm B sets ti := 〈Mi〉 and t′i := 〈M ′
i〉, the integers correspond-

ing to bit representation of message blocks. Then it lets a =
∑

ri=1 ui(ti − t′i)

mod p. If a = 0 then B halts with no input, otherwise B computes the inverse b
of a modulo p. Finally it outputs the discrete logarithm of h over g in the group
G:

indexGp (h) = b
∑
ri=0

ui(t
′
i − ti) mod p.

Note that the algorithm B calls the algorithm A once. It also performs some
arithmetic modulo p of which the dominant part is O(n) exponentiations that
accounts for the claimed running time. Therefore t′ = t+O(n log3 p).

The collision finder algorithm A succeeds with probability ε. After finding
collisions M and M ′ then it gives

n⊙
i=1

gtii =
l⊙

i=1

g
t′i
i

or equivalently ⊙
ri=1

hui(ti−t
′
i) =

⊙
ri=0

gui(t
′
i−ti).

Note that the left hand side is ha. We have that a 6= 0 with probability at least
1/2 . Then we get the following equation

h = hab =
⊙
ri=0

gbui(t
′
i−ti) = gindex

Gp
p (h).

Hence, ε′ = ε/2.

43

4.4 Balance Lemma

Balance problem is the main security argument in incremental hash functions. It
is defined in different versions by specifying the underlying group. In this section,
the relation between balance problem and collision resistance, which is a security
requirement for all hash functions, is defined. Moreover, the reduction of balance
problem and discrete logarithm problem is given so that the hardness of balance
problem can be computed by the hardness of discrete logarithm problem for a
given group.

4.4.1 Balance Problem & Collision Resistance

(G, q)-balance problem is given in Definition 26: for a group (G,�), a posi-
tive integer q and randomly chosen elements a1, a2, . . . , aq ∈ G, find the weights
ω1, ω2, . . . ωq ∈ {−1, 0, 1}, not all zero, such that

aω1
1 � aω2

2 � . . .� aωq
q = e

where e is the identity element of G. This problem is said to be (t, ε)-hard if
no algorithm that is limited to run in time t can find a solution ω1, ω2, . . . ωq ∈
{−1, 0, 1} for instance a1, a2, . . . , aq ∈ G with probability more than ε.

Let IncHash[G, b, h] be an incremental hash function where G is the underlying
abelian group, b is the block length and h : {0, 1}b → G is a randomizer function.
Now the collision resistance for IncHash[G, b, h] is defined:

Definition 31 (Collision-resistance). Let C be a collision finder algorithm
that finds two messages M,M ′ with M 6=M ′ so that IncHash(M) = IncHash(M ′).
Then the incremental hash function IncHash[G, b, h] is said to be (t, q, ε)-

collision-free if no collision finder algorithm C which is limited to run in time
t and makes at most q oracle queries via h succeeds with probability at least ε.

It is easily seen that finding the weights in (G, q)-balance problem is equivalent
to finding two disjoint subsets I, J ⊂ {1, 2, . . . , q} so that

⊙
i∈I ai =

⊙
j∈J aj.

44

By this equality, it seems to find finding collisions in IncHash[G, b, h] is same as
solving the balance problem in G. Remember that the integer q is the number of
computations of h and it is assumed that h is ideal, i.e. collision-free. Moreover,
c > 1 is a small constant depending on the model of computation which can be
derived from the proof.

Lemma 1 (The Balance Lemma [7]). For an abelian group (G,�) and a
positive integer q, assume that (G, q)-balance problem is (t′, ε′)-hard. Then the
hash function IncHash[G, b, h] is a (t, q, ε)-collision-free where ε = ε′ and t =

t′/c− qb.

Proof. Let C be a given collision-finder algorithm for IncHash[G, b, h], which takes
the group G and the randomizer function h, and outputs two different messages
M and M ′ with IncHash(M) = IncHash(M ′). Now an algorithm K that solves
the (G, q)-balance problem can be constructed as follows.

The algorithm K takes the group G and a list of values {a1, a2 . . . , aq} selected
uniformly at random in G. K runs on randomizer function h of C, answering
its oracle queries with the values a1, a2 . . . , aq in order without repeating. Let
Qi ∈ {0, 1}b denote the i-th oracle query of h so that h(Qi) = ai, and let R be
the set of all Qi’s, i.e. R = {Q1, Q2, . . . , Qq}.

The algorithm K runs C once and takes the outputs of C, i.e. two messages
M =M1M2 . . .Mn and M ′ =M ′

1M
′
2 . . .M

′
m with IncHash(M) = IncHash(M ′) but

M 6=M ′. This means that
⊙n

i=1 h(Mi) =
⊙m

i=1 h(M
′
i).

Without loss of generality assume that all the blocks appear in the query set
R, i.e. M1,M2, . . . ,Mn,M

′
1,M

′
2, . . . ,M

′
m ∈ R. We can index these blocks with

respect to queries the Qi: let fM(i) be the unique value j ∈ {1, 2, . . . , q} such that
Mi = Qj and let fM ′(i) be the unique value j ∈ {1, 2, . . . , q} such that M ′

i = Qj.
Then define the sets I = {fM(i) : i = 1, . . . , n} and J = {fM ′(i) : i = 1, . . . ,m}.
and re-write the equation

⊙n
i=1 h(Mi) =

⊙m
i=1 h(M

′
i) as follows:⊙

i∈I

ai =
⊙
j∈J

aj.

45

Since M 6=M ′, it is clear that I 6= J . Now define

wi =

−1 , if i ∈ J − I
0 , if i ∈ I ∩ J or i /∈ I ∪ J
+1 , if i ∈ I − J

for i = 1, . . . , q. All w1, . . . , wq can not be 0 since I 6= J . Finally, it implies that

aw1
1 � . . .� awq

q = e

where e is the identity element of G.

The algorithm K succeeds if the algorithm C does, in other words ε = ε′. The
time for computation is t′/c = t+qb since K runs C for once and makes q queries
via h function.

According to Balance Lemmaa we can say that if (G, q)-balance problem
is hard in the group G then the incremental hash function IncHash(G, b, h) is
collision-free.

4.4.2 Balance Problem & Discrete Logarithm Problem

Balance Lemma shows that the collision resistance of incremental hash func-
tions IncHash(G, b, h) relies on the hardness of (G, q)-balance problem. So the
important question must be answered: "How can the hardness of (G, q)-balance
problem be determined?".

In this section, three theorems are given to answer this question by showing
the relation between balance problem (BP) and discrete logarithm problem (DLP)
for different groups G.

The following theorem proves this relation for any finite group.

Theorem 3 (BP & DLP for General Groups [7]). Let G be a group of order
L-bit integer. Assume that the discrete logarithm problem in G is (t′, ε′)-hard.
Then for any positive integer q, the (G, q)-Balance Problem is (t, ε)-hard, where

ε = qε′

46

and
t = t′/c− q · [Trand(G) + Texp(G) + L]

where Trand(G) and Texp(G) are required time for choosing a random element in
G and exponentiation operation in G, respectively.

Proof. Let A be a given algorithm to solve (G, q)-balance problem: it takes G and
a sequence of q random elements a1, a2, . . . , aq ∈ G and outputs w1, w2, . . . , wq ∈
{−1, 0, 1}, not all zero, such that

⊙q
i=1 a

wi
i = e. Now an algorithm I which solves

discrete logarithm problem in G can be constructed: for g, h ∈ G , a non-negative
integer x can be found so that h = gx via the algorithm A.

Let ρ = |G|. The algorithm I first picks a random integer q∗ ∈ {1 . . . q}.
Then I computes the elements ai for i = 1, . . . , q as follows: If i = q∗ then ai = h,
otherwise it chooses a random ri ∈ Zρ and sets ai = gri .

I runs the algorithm A for the group G and elements a1, . . . , aq ∈ G, and gets
the weights w1, . . . , wq, not all zero, such that

aw1
1 � . . .� awq

q = e.

Let i∗ be such that wi∗ 6= 0. Since q∗ is chosen randomly and unknown to A,
the case q∗ = i∗ with probability 1/q. Without loss of generality take q∗ = i∗ = 1

and substitute the values in the previous equation

hw1 � gw2r2 � . . .� gwqrq = e

and re-arrange the terms by noticing w−11 = −w1 in Zρ

h = g−w1(w2r2+...+wqrq).

Thus the discrete logarithm of h is

logg h = −w1(w2r2 + . . .+ wqrq) mod ρ.

The algorithm I succeeds when A is successful and wq∗ 6= 0. Therefore, ε′ = ε/q.

On the other hand, the algorithm I runs A once. Computing each element ai
takes one random choice and one exponentiation in G, that is, Trand(G)+Texp(G).

47

In addition, the final modular additions takes qL time. Therefore, the total time
for I is t′ = t+ q [Trand(G) + Texp(G) + L].

For prime order groups, the following theorem proves this relation by improv-
ing the probability.

Theorem 4 (BP & DLP for Groups of Prime Order [7]). Let G be a group
of L-bit prime order. Assume the discrete logarithm problem in G is (t′, ε′)-hard.
Then for any positive integer q, the (G, q)-Balance Problem is (t, ε)-hard, where

ε = 2ε′

and
t = t′/c− q · [Trand(G) + Tmult(G) + Texp(G) + L]− L2

where Trand(G), Tmult(G) and Texp(G) are required time for choosing a random
element in G, group operation in G and exponentiation operation in G, respec-
tively.

Proof. Assume G is a group of prime order. Let |G| = ρ and g ∈ G be a generator
of G. Let A be a given algorithm to solve (G, q)-balance problem. An algorithm
I which solves discrete logarithm problem in G can be constructed by using A.

Let h be a given element in G. The algorithm I needs to find a positive integer
x so that h = gx.

The algorithm I first chooses random ri ∈ Zρ and di ∈ {0, 1} and sets
ai = gdihri for each i = 1 . . . q. I runs the algorithm A with the group G and
the elements a1, . . . , aq and gets the weights w1, . . . , wq, not all zero, such that⊙q

i=1 a
wq

i = e. When the values are substituted, it results

hw1r1gw1d1 . . . hwqrqgwqdq = e.

Re-arranging terms gives

hw1r1+...+wqrq = g−(w1r1+...+wqrq).

48

By letting

r = w1r1 + . . .+ wqrq mod ρ

d = −(w1r1 + . . .+ wqrq) mod ρ

we get hr = gd. If r 6= 0, the algorithm I computes r−1 mod ρ and gives the
discrete logarithm of h:

loggh = r−1d.

The algorithm I succeeds when A is successful and r 6= 0. It can be observed
that r 6= 0 with probability at least 1/2 since the value of d1 remains equi-probably
0 or 1 from the point of view of A, and is independent of other di values. At
most one of the two possible values of d1 can make d = 0 and hence r = 0. Thus,
ε = 2ε′.

The algorithm I runs A once. Computing each element ai takes one random
choice, one exponentiation and one multiplication (by g since gdi = g or 1) in G,
that is, Trand(G) + Texp(G) + Tmult(G). In addition, computing r and d takes qL
time. Also computing r−1d in the final takes L2 time. Therefore, the total time
for I is t′ = t+ q [Trand(G) + Texp(G) + Tmult(G) + L] + L2.

The order of the group Z∗p for prime p is not prime, therefore Theorem 4 does
not work for this group. However, the following theorem gives a better relation
rather than Theorem 3.

Theorem 5 (BP & DLP for Z∗p [7]). Let p be a k-bit prime number with k ≥ 6.
Assume the discrete logarithm problem in Z∗p is (t′, ε′)-hard. Then for any positive
integer q, the (Z∗p, q)-balance problem is (t, ε)-hard, where

ε = 4ε′ ln(0.694k)

and
t = t′/c− qk3 − k2.

Proof. Let an algorithm A be given for (Z∗p, q)-balance problem. We construct
an algorithm I that solves discrete logarithm problem in Z∗p using A. Let h ∈ Z∗p
be given to the algorithm I.

49

The order of Z∗p is ρ = p− 1. Let g be a generator of Z∗p.

The algorithm I first chooses random ri, di ∈ Zρ and sets ai = gdihri . I runs
the algorithm A for Z∗p and the elements a1, . . . , aq ∈ Z∗p, and gets the weights
w1, . . . , wq, not all zero, such that

∏q
i=1 a

wq

i = 1 mod p. When the values are
substituted, it results

hw1r1gw1d1 . . . hwqrqgwqdq = 1 mod p.

Re-arranging terms gives

yw1r1+...+wqrq = g−(w1r1+...+wqrq) mod p.

By letting

r = w1r1 + . . .+ wqrq mod ρ

d = −(w1r1 + . . .+ wqrq) mod ρ

we get hr = gd mod p. If gcd(r, ρ) = 1, the algorithm I computes r−1 mod ρ

and gives the discrete logarithm of h:

loggh = r−1d mod ρ.

The algorithm I succeeds when A is successful and gcd(r, ρ) = 1. It can be
observed that gcd(r, ρ) = 1 with probability at least 1

4 ln ln ρ
since the inequality

φ(ρ)

ρ
≥ 1

4 ln ln(ρ)
≥ 1

4 ln ln(2k)
≥ 1

4 ln k ln 2
≥ 1

4 ln(0.694k)

holds for k ≥ 6 ([20]). Therefore, ε = 4ε′ ln(0.694k).

The algorithm I runs A once. Computing each element ai takes two random
choices, two exponentiations and one multiplication in Z∗p, that is, k3 time. In
addition, computing r and d takes qk time. Also computing r−1d in the final
takes k2 time. Therefore, the total time for I is t′ = t+ q(k3) + k2.

50

4.5 Security of Bellare and Micciancio’s Hash

Functions

Bellare and Micciancio (BM) suggested three specific incremental hash functions,
namely MuHASH, AdHASH and LtHASH, named with respect to chosen underly-
ing group. They all give provable security depending on the hardness of discrete
logarithm problem, the weighted knapsack problem and matrix kernel problem,
respectively. However the main problem where the security of these incremental
hash functions depends on is the balance problem.

BM’s incremental hash functions are defined with a randomizer function h

and a group G. However, the randomizer function is not defined specially as it
is defined on other incremental hash functions. As it is stated in [7], one can use
a standard hash function like SHA-1 in practice, or a random oracle [16]. In that
sense, Bellare and Micciancio assumes that this randomizer function is ideal hash
function, in other words, it is totally secure. Therefore they analyze only the
security of the combining operation which relies on balance problem in chosen
group.

Choosing the combining operation in BM’s hash functions is actually equiva-
lent to choosing group or class of groups. Bellare and Micciancio states that one
must be careful about choosing the group so that a computationall hard problem
such as DLP or weighted knapsack problem is hard to solve in the group, because
the right choice is crucial for security and efficiency [7]. For example, choosing
XOR operation does not work because an attack (see 4.5.4) is proposed for this
hash function. On the other hand, they proposed multiplication in a group where
DLP is hard, resulting MuHASH; and addition modulo an integer of appropriate
size, resulting AdHASH . LtHASH is an advanced version of AdHASH over lattices.

51

4.5.1 Security of MuHASH

Bellare and Micciancio claim that MuHASHis collision-free as long as DLP in
group G is hard and the randomizer function h is ideal. Furthermore they claim
that MuHASHmay be secure even if DLP in G is easy since there is no attack
that finds collisions even if it is easy to compute discrete logarithms.

The security of MuHASHis satisfied with DLP by constructing the relations
between balance problem and collision resistance and between balance problem
and DLP. They give the main theorem and improve it for groups of prime orders
and Z∗p.

Theorem 6 (Security in General Groups [7]). Let G be a group of L-bit
order and assume DLP in G is (t′, ε′)-hard. Then for any q, MuHASHGh is a
(t, q, ε)-collision-free hash function where

ε = qε′ and t = t′/c− q · [Trand(G) + Texp(G) + L+ b]

where Trand(G) and Texp(G) are required time for choosing a random element in
G and exponentiation in G, respectively.

Proof. Lemma 1 and Theorem 3.

In Theorem 6, the probability relation between finding collisions and solving
DLP is ε = qε′. Since a typical choice of q is about 250 in practice, the DLP in G
must be very hard in order to make finding collisions in the hash function quite
hard.

Theorem 7 (Security in Groups of Prime Order [7]). Let G be a group of L-
bit prime order and assume DLP in G is (t′, ε′)-hard. Then for any q, MuHASHGh

is a (t, q, ε)-collision-free hash function where

ε = 2ε′ and t = t′/c− q · [Trand(G) + Tmult(G) + Texp(G) + L+ b]− L2

where Trand(G), Tmult(G) and Texp(G) are required time for choosing a random
element in G, group operation in G and exponentiation operation in G, respec-
tively.

52

Proof. Lemma 1, Theorem 4.

Theorem 8 (Security in Z∗p [7]). Let p be a k-bit prime number with k ≥ 6.
Suppose DLP in Z∗p is (t′, ε′)-hard. Then for any q, MuHASHGh is a (t, q, ε)-
collision-free hash function where

ε = 4ε′ ln(0.694k) and t = t′/c− qk3 − qb.

Proof. Lemma 1 and Theorem 5.

4.5.2 Security of AdHASH

Collision-freeness of AdHASH is related to the Weighted Knapsack Problem: Bel-
lare and Micciancio show that AdHASH is collision-free as long as the weighted
knapsack problem is hard and the randomizer function h is ideal. According to
[19], the weighted knapsack problem is hard as long as there is no polynomial
time approximation algorithm for the shortest vector problem in a lattice.

The theorem below uses the fact that this problem is a special case of balance
problem, and then it applies Lemma 1 in the proof. Below c > 1 is a small
constant, depending on the computation:

Theorem 9 ([7]). Let N be a k-bit integer and q be a positive integer such that
the (k, q)-weighted-knapsack problem is (t′, ε′)-hard. Then AdHASHNh is a (t, q, ε)-
collision-free hash function where

ε = ε′ and t = t′/c− qN.

Proof. When we set the group G to ZN in Lemma 1, the incremental function
becomes AdHASHNh . On the other hand, (ZN , q)-balance problem is actually
(N, q)-weighted-knapsack problem. Therefore, ε = ε′ and t = t′/c − qN by
Lemma 1.

53

4.5.3 Security of LtHASH

Collision-freeness of LtHASH is related to the Matrix-Kernel Problem: Bellare
and Micciancio claims that LtHASH is collision-free as long as the matrix-kernel
problem is hard and the randomizer function h is ideal.

The proof of the following theorem is similar to the proof of Theorem 9. Below
c > 1 is a small constant, depending on the computation:

Theorem 10 ([7]). Let k, q, s be integers such that the (k, q, s)-matrix-kernel
problem is (t′, ε′)-hard. Then LtHASHp,kh (where p is a s-bit prime) is a (t, q, ε)-
collision-free hash function where

ε = ε′ and t = t′/c− qks.

Proof. Setting the group G to Zkp in Lemma 1 makes the incremental function
LtHASHp,kh . Moreover, (Zkp, q)-balance problem is equivalent to (k, q, s)-matrix-
kernel problem. Therefore, ε = ε′ and t = t′/c− qk log p by Lemma 1.

4.5.4 Security of XHASH

Bellare and Micciancio set the combining operation to bitwise XOR, however
XHASH becomes insecure in this case. They present an attack which uses Gaus-
sian elimination and pairwise independence.

For a fixed k, the underlying group G is {0, 1}k. Let z ∈ {0, 1}k be given. In
this attack, we want to find a message M so that XHASHkh (M) = h.

Fix two messages of length of n blocks,M0 =M0
1 . . .M

0
n and M1 =M1

1 . . .M
1
n

such that M0
i 6= M1

i for i = 1, 2, . . . , n, i.e. the i-th blocks are different. For any
n-bit bitstring y = y1y2 . . . yn, let

My =My1
1 M

y2
2 . . .Myn

n

so that the i-th block of My is either M0
i or M1

i .

54

Now, compute 2n values αji := h(Ii||M j
i) for i = 1 . . . n and j = 0, 1 where Ii

is the bitstring representation of index i. We want to find a y such that

XHASHkh (My) = αy11 ⊕ α
y2
2 ⊕ . . .⊕ αynn = h.

This equation can be rewritten as

n⊕
i=1

(
α0
i yi ⊕ α1

i (1− yi)
)
= h

since

α0
i yi ⊕ α1

i (1− yi) =

{
α0
i if yi = 1

α1
i if yi = 0

for i = 1, 2, . . . , n.

Regard y1, y2, . . . , yn as variables and define new variables y1, y2, . . . , yn so that
yi = 1− yi. Then we have n+ k equations in 2n unknowns over Z2:

yi ⊕ yi = 1 for i = 1, 2, . . . , n
n⊕
i=1

(
α0
i [j]yi ⊕ α1

i [j](1− yi)
)
= h[j] for j = 1, 2, . . . , k

where α[j] and h[j] denotes the j-th bit of bitstrings α and h.

There exists a solution1 y with probability at least 1− 2k

2n
. This probability is

1

2
when n = k + 1 and the equation system can be solved via Gauss elimination

by setting one unknown arbitrarily since there are n+ k = 2k + 1 equations and
2n = 2k + 2 unknowns.

This attack makes 2n many h-computations, sets up a certain linear system,
and then uses Gauss elimination to solve it.

1see Lemma A.1 in [7]

55

Chapter 5

Elliptic Curve Only Hash ECOH

The incremental hash function ECOH, Elliptic Curve Only Hash, is proposed by
Dan Brown in 2008. ECOH is based on Bellare and Micciancio’s hash function
MuHASHand uses elliptic curves on finite fields as a DLP-hard group. It does not
use a specified randomizer function, the blocks of a message represented directly
by the corresponding points on the given elliptic curve.

5.1 Elliptic Curves in Cryptography

Let K be a field. An elliptic curve E over K is the set of points (x, y) ∈ K ×K
satisfying the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

overK for some constants a1, a2, a3, a4, a6, and a pointO called point at infinity.
This equation is called generalized Weierstrass equation. If char(K) 6= 2, 3

then it can be transformed to

y2 = x3 + Ax+B

where A,B are constants in K. This equation is called Weierstrass equation.

56

An addition operation +E can be defined on elliptic curves as follows: Let
E be an elliptic curve over a field K with char(K) 6= 2, 3 and defined by the
equation y2 = x3 + Ax+ B for some constants A,B ∈ K . For given two points
P1 = (x1, y1) and P2 = (x2, y2) on E such that P1, P2 6= O, define the addition of
two points as

P3 = P1 +E P2

where P3 = (x3, y3). Then the the coordinates of the point P3 can be calculated
as follows:

1. If x1 6= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m =
y2 − y1
x2 − x1

.

2. If x1 = x2 but y1 6= y2, then P1 +E P2 = O.

3. If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x21 + A

2y1
.

4. If P1 = P2 and y1 = 0, then P1 +E P2 = O.

For elliptic curves over a field K of characteristic 2 or 3, the addition of points
is similarly formulated but in more sophisticated way.

Under this adding operation, the elliptic curve E forms an abelian group:

Theorem 11 ([21]). The addition of points on an elliptic curve E satisfies the
following properties:

1. P1 +E P2 = P2 +E P1 for all P1, P2 on E,

2. P +E O = P for all P on E,

3. Given a point P on E, there exists P ′ on E with P +E P
′ = O. This point

P ′ is usually denoted by −P ,

4. (P1 +E P2) +E P3 = P1 +E (P2 +E P3) for all P1, P2, P3 on E.

57

In other words, the points on (E,+E) form an additive abelian group where O is
the identity element of E.

Proof. See the proof of Theorem 2.1 in [21]

There are some standard elliptic curves proposed by NIST in FIPS 186-3 [22].
The principal parameters are the elliptic curve E defined with an equation over
a finite field and a designated point G = (Gx, Gy) ∈ E called the base point.
The base point has order r which is a large prime. The number of points on the
curve is n = fr for some integer f (the cofactor) not divisible by r. For efficiency
reasons, it is desirable to take the cofactor to be as small as possible. All of the
NIST curves have cofactors 1, 2, or 4.

There are two types of NIST curves: 1) Curves over prime fields Fp for prime
number p and 2) Curves over binary fields F2m for some positive integer m. The
curves over binary fields has also two subtypes because of their different equations.

For curves over prime fields Fp, NIST determines five prime numbers for p
where the length of primes are 192-bit, 224-bit, 256-bit, 384-bit, 521-bit. The
curves are labeled as P-192, P-224, P-256, P-384 and P-521. Each curve
satisfies the equation

E : y2 = x3 − 3x+ b.

Here the coefficient A is set to −3 for efficiency reasons. The coefficients b and
p are chosen carefully to be sure that the group (E,+E) is of prime order r. In
that case, the base point G generates all the group and therefore the cofactor is
f = 1. The parameters of the curve P-256 is given in Table 5.1.

For curves over binary fields F2m , NIST determines five positive prime integers
for m : 163, 233, 283, 409, 571. Two subtypes of binary curves, called pseudoran-
dom curves and Koblitz curves, are given by the equations

Eb : y
2 + xy = x3 + x2 + b

for pseudo-random curves, and

Ea : y
2 + xy = x3 + ax2 + 1

58

p 1157920892103562487626974469494075735300861434152903141955336
31308867097853951

r 1157920892103562487626974469494075735299969552241357603424222
59061068512044369

b 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6
(in hex) 3bce3c3e 27d2604b

Gx 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0
(in hex) f4a13945 d898c296

Gy 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece
(in hex) cbb64068 37bf51f5

Table 5.1: The parameters of NIST Curve P-256

where a = 0 or 1 for Koblitz curves. The cofactor is f = 2 for pseudorandom
curves, and is f = 2 if a = 1 and f = 4 if a = 0 for Koblitz curves. Pseudorandom
curves are labeled by B-163, B-233, B-283, B-409 and B-571 for pseudoran-
dom curves, and K-163, K-233, K-283, K-409 and K-571 for Koblitz curves.
The parameters of the Koblitz curves K-283 are given in Table 5.2.

The Curve K-283 - f(t) = t283 + t12 + t7 + t5 + 1
a 0
r 38853377844514581418389238136470378132848117337

93061324295874997529815829704422603873
Polynomial Basis

Gx 503213f 78ca4488 3f1a3b81 62f188e5 53cd265f
(in hex) 23c1567a 16876913 b0c2ac24 58492836

Gy 1ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0
(in hex) e8184698 e4596236 4e341161 77dd2259

Normal Basis
Gx 3ab9593 f8db09fc 188f1d7c 4ac9fcc3 e57fcd3b

(in hex) db15024b 212c7022 9de5fcd9 2eb0ea60
Gy 2118c47 55e7345c d8f603ef 93b98b10 6fe8854f

(in hex) feb9a3b3 04634cc8 3a0e759f 0c2686b1

Table 5.2: The parameters of NIST Curve K-283

The parameters of all NIST curves can be found in [22].

5.2 Elliptic Curve Only Hash: ECOH

Elliptic Curve Only Hash [9], namely ECOH , is proposed to SHA-3 contest of
NIST by Dan R. L. Brown in 2008. It is based on BM’s hash functionMuHASHand
it uses elliptic curve groups as DLP-hard groups. However the function which

59

maps the message blocks to the group elements is not ideal in sense of MuHASH.

In ECOH, the message is first padded to N and then parsed into the blocks
N0, N1, . . . , Nk−1. Then the blocks are mapped to the elliptic curve points with
their indices and some extra bitstrings called counters. Finally the points are
added to get a pre-hash point Q and then it is mapped to a resulting hash value
which has a standard size. ECOH uses the curves over binary fields.

There are four ECOH hash functions called ECOH-224, ECOH-256, ECOH-384
and ECOH-512 where the length of each hash value is 224-bit, 256-bit, 384-bit
and 512-bit, respectively. The parameters of ECOH hash functions are listed in
Table 5.3.

ECOH NIST-recommended Block Length Index Length Counter Length
algorithms elliptic curve E blen ilen clen

ECOH-224 B-283 128-bit 64-bit 64-bit
ECOH-256 B-283 128-bit 64-bit 64-bit
ECOH-384 B-409 192-bit 64-bit 64-bit
ECOH-512 B-571 256-bit 128-bit 128-bit

Table 5.3: Parameters of ECOH hash functions

Remember that the curves B-283, B-409 and B-571 use the binary fields F2283 ,
F2409 and F2571 respectively. All the points corresponding to blocks are in the
subgroup generated by the base point G which is determined by NIST.

All ECOH hash functions have the same generic algorithm:

1. Padding and Parsing. Let N = M ||1||0j where j is the smallest non-
negative integer such that blen | len(N). Then parse N into k blocks
N = N0N1 . . . Nk−1 where k = len(N)

blen
.

2. Concatenating with Indices. Append the bitstrings Ii to the blocks Ni,
where Ii is the ilen-bit representation of the integer i for i = 0 . . . k − 1.
Denote them by Oi, i.e. Oi = Ni||Ii.

60

3. Let Ok =
(⊕k−1

i=0 Ni

)
||Ilen(M) where Ilen(M) is the ilen-bit representation of

the length len(M) of the message M .

4. Mapping blocks to points Let Pi = (xi, yi) be the point in the subgroup
generated by G so that Xi = 0m−(blen+ilen+clen)||Oi||Ci is the m-bit bitstring
representation of xi for the smallest integer represented by clen-bit bitstring
Ci, and the rightmost bit of yi/xi equals the leftmost bit of Ni.

5. Combining Operation. Let Q =
∑k

i=0 Pi be the pre-hash value.

6. Hash Output. Output the n-bit representation of bx(Q+ bx(Q)/2cG)/2c
mod 2n where x(P) is the integer value of x-coordinate of a point P .

The randomizer function in ECOH works as try-and-increment method: it
starts with the bitstring Oi||Ii||00 . . . 0 and increments it by one in each step until
it finds a point in the subgroup of the curve. One can notice that the message
blocks can be easily seen in the bitstring representations of x-coordinates of the
corresponding points. Also it is noticed that the leftmost bit of Ni is used to
determine which yi is chosen since there are two choices for each xi.

ECOH loses its incrementality property at the end of hash output operation.
Therefore it can remain incremental if this step is ignored.

5.3 The Ferguson-Halcrow Second Preimage At-

tack on ECOH

In second preimage attacks, a message and its hash value is given and it is aimed
to find another message with same hash value. In this attack, assume that the
prehash value Q for a message is given.

This attack works for messages M so that blen | len(M). The main idea in
the attack is setting the blocks of the message so that their checksum is equal
to zero bitstring 00 . . . 0. Then a collision is searched in two lists consisting of
elliptic curve points corresponding to such messages.

61

For a message M where blen | mlen, M can be parsed into blocks M =

M0M1 . . .Mk−1. Then the padded message N can be parsed into blocks N =

N0 . . . Nk−1Nk where Ni = Mi for i = 0, 1, . . . , k − 1 and Nk = 10blen−1. The
bitstrings Oi is the concatination of blocks and indices, i.e. Oi = Mi||Ii for
i = 0, 1, . . . , k− 1 and Ok = 10blen−1||Ik. The extra bitstring Ok+1 determined by
the checksum and the length of the message is Ok+1 = 0blen||Ikblen if the checksum
of the message blocks is set to the bitstring 0blen, in other words

k−1⊕
i=0

Nk =
k−1⊕
i=0

Mk = 0blen.

Let Pi be the point corresponding to the message blockMi for i = 0, 1, . . . , k−1
via Oi; Ppadding be the point corresponding the padding block via Ok; and Pcl be
the point corresponding to Ok+1 determined by checksum and the message length.
Then the prehash value of a message M is

k−1∑
i=0

Pi + Ppadding + Pcl.

In that sense, the last two points Ppadding and Pcl are always fixed if the checksum
and the messege length is fixed.

In Ferguson and Hallcrow’s attack, the number of message blocks is fixed to 6,
i.e. M = M0M1M2M3M4M5. Then two lists L1 and L2 are prepared as follows:
Choose K different random values for (M0,M1) and define M2 := M0 ⊕ M1.
Then compute the sum of corresponding points P0, P1 and P2 and store it in
list L1, where P0, P1 and P2 are the corresponding points to blocks M3,M4 and
M5, respectively. On the other hand, choose again K different random values
for (M3,M4) and define M5 := M3 ⊕M4. Then compute the point Q − P3 −
P4 − P5 − Ppadding − Pcl and store them in list L2, where P3, P4 and P5 are the
corresponding points to blocks M3,M4 and M5, respectively. Note that both of
Ppadding and Pcl are fixed since padding occurs as a block itself in the padded
message and checksum of the message blocks is 0 bitstring, i.e.

5⊕
i=0

Mk = 0blen.

62

If there is a match between these two lists L1 and L2, namely (M
(j)
0 ,M

(j)
1)

from list L1 and (M
(k)
2 ,M

(k)
3) from list L2 , then the message

M =M
(j)
0 M

(j)
1 M

(j)
2 M

(k)
3 M

(k)
4 M

(k)
5

is a second preimage for the hash value Q, because

P
(j)
1 + P

(j)
2 + P

(j)
3 = Q− P (k)

4 − P (k)
5 − P (k)

6 − Ppadding − Pcl

implies that

ECOH (M) = P
(j)
1 + P

(j)
2 + P

(j)
3 + P

(k)
4 + P

(k)
5 + P

(k)
6 + Ppadding + Pcl = Q.

The attack complexity is 2K computations where

K ≈
√

number of points on the elliptic curve

For this reason, it has complexity 2143 for ECOH -224 and ECOH -256, 2206 for
ECOH -384 and 2287 for ECOH -512. However, the expected security level is 2224

for ECOH -224, 2256 for ECOH -256, 2384 for ECOH -384, and 2512 for ECOH -512.
Therefore, ECOH is not a second preimage resistant hash function.

5.4 ECOH2

Ferguson-Halcrow attack is successful because the number of points on the elliptic
curve where ECOH is defined makes the attack complexity less than expected
security level. For this reason, ECOH is directly updated to ECOH2 by doubling
the elliptic curve size, in other words message blocks are mapped to the points
whose coordinates are in F22m . In that sense, efficiency is not too adversely
affected, and is indeed potentially improved for two reasons: more message bits
are used per point, and elliptic curve twists are used to lessen the number of
attempted points per message.

In ECOH2 , the parameter m is replaced by setting d as d = 4m. The param-
eters of ECOH2 hash functions are listed in Table 5.4.

63

ECOH2 NIST-recommended Block Length Index Length Counter Length
algorithms elliptic curve E blen ilen clen

ECOH2-224 B-283 384-bit 64-bit 64-bit
ECOH2-256 B-283 384-bit 64-bit 64-bit
ECOH2-384 B-409 640-bit 64-bit 64-bit
ECOH2s-512 B-571 768-bit 128-bit 128-bit

Table 5.4: Parameters of ECOH2 hash functions

The generic algorithm of ECOH2 is same as ECOH ’s algorithm except the step
mapping to points: Let Pi = (xi, yi) be the point in the subgroup generated by
G so that Xi = 0d−(blen+ilen+clen)||Oi||Ci is the m-bit bitstring representation of
xi for the smallest integer represented by clen-bit bitstring Ci, and the rightmost
bit of yi/xi equals the leftmost bit of Ni.

5.5 Security of ECOH and ECOH 2

The main security argument of ECOH and ECOH2 is the problem of finding points
P1, P2, . . . , Pk such that

P1 + P2 + . . .+ Pk = Q

for a given point Q. However, both of ECOH and ECOH2 works on the subgroup
of a standard elliptic curve generated by a base point G. Therefore, each point
Pi can be written as aiG and the point Q can be written as aG for some integers
a1, a2, . . . , ak, a. In that sense the equation transforms to solving

a1 + a2 + . . .+ ak = a mod n

where n is the order of the point G. However, the discrete logarithm problem
must be easy to find such an equation and, in elliptic curves, DLP is especially
harder.

Semaev [23] reduce he problem of finding a number of points P1, P2, . . . , Pn

such that
P1 + P2 + . . .+ Pk = Q

64

to a new one: the problem of finding bounded solutions to some explicit modular
multivariate polynomial equations which arise from the elliptic curve summation
polynomials. He introduces polynomials called Semaev’s summation polyno-

mials:

Definition 32 ([23]). Let E be the elliptic curve of points (x, y) satisfying the
equation y2 = x3 + ax + b over a field field K with char(K) 6= 2, 3 for some
a, b ∈ K. For any integer n ≥ 2, the polynomial

fn(x1, x2, . . . , xn)

is a summation polynomial if for any x1, x2, . . . , xn ∈ K

fn(x1, x2, . . . , xn) = 0

if and only if there exist y1, y2, . . . , yn ∈ K such that the points (xi, yi) are on E
and

(x1, y1) + (x2, y2) + . . .+ (xn, yn) = O

in E(K).

Theorem 12 ([23]). Let fn(x1, x2, . . . , xn) be a summation polynomial defined as
above. Then

f2(x1, x2) = x1 − x2

for n = 2,

f3(x1, x2, x3) = (x1 − x2)2x23 − 2[(x1 + x2)(x1x2 + a) + 2b)x3]

+[(x1x2 − a)2 − 4b(x1 + x2)]

for n = 3, and

fn(x1, x2, . . . , xn) = Resx (fn−k(x1, . . . , xn−k−1, x), fk+2(xn−k, . . . , xn, x))

for n ≥ 4 and n− 3 ≥ k ≥ 1.

Proof. The proof for n = 2 is done here. For the proof for and n = 3 and n ≥ 4,
see [23].

65

For n = 2, we have

(x1, y1) + (x2, y2) = O ⇐⇒ (x1, y1) = (x2,−y2)

⇐⇒ x1 = x2, y1 = −y2

Therefore, for any x1, x2 ∈ K, one can define f2(x1, x2) = x1 − x2. When
f2(x1, x2) = 0, the roots y1, y2 of the polynomial y2 = x31 + ax1 + b satisfy
y1 = −y2.

We further have the following theorem.

Theorem 13 ([23]). Let fn(x1, x2, . . . , xn) be a summation polynomial defined as
above. Then the polynomial fn have the following properties:

i) The polynomial fn is symmetric and of degree 2n−2 in each variable xi for
any n ≥ 3.

ii) The polynomial fn is absolutely irreducible and

fn(X1, . . . , Xn) = f 2
n−1(X1, . . . , Xn−1)X

2n−2

n + . . .

for any n ≥ 3

Proof. See [23].

Semaev finds a relation between solving the discrete logarithm problem in
elliptic curves and finding solutions for the Semaev’s summation polynomials. He
gives an algorithm to find bounded solutions for summation polynomial. However,
it remains computationally hard to find such solutions.

66

Chapter 6

Conclusion

In this thesis, we surveyed the new concept of Incremental Hash Functions in
cryptography. We gave the construction idea, the efficiency benefits such as
incrementality and paralllelizability.

Morover, some examples of incremental hash functions are introduced, espe-
cially ECOH . A hash function on elliptic curves is not a standard construction
and this makes ECOH interesting. It becomes more interesting because it uses
incrementality property with MuHASHstructure.

In incremental hash functions, we only change the blocks, but we do not insert
or delete blocks or bitstrings. This is not studied well in cryptography and left
as an open problem.

In all the constructions of the incremental hash functions, the emphasis is
given to the combining operation. One may seek to find efficient randomizer
functions satisfying security levels so that the security of the incremental hash
functions depends only to the computationally hard problems of the underlying
group. On the other hand, the complexity of algorithms solving computationally
hard problems can be reduced in the future. It is also desirable to search for new
group structures for added security and efficiency.

67

Bibliography

[1] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied
Cryptography. CRC Press, Inc., 1st ed., 1996.

[2] National Institute of Standards and Technology, FIPS PUB 180-4: Secure
Hash Standard. Mar. 2012.

[3] B. Kaliski, “The MD2 Message-Digest Algorithm.” RFC 1319 (Historic),
Apr. 1992. Obsoleted by RFC 6149.

[4] R. L. Rivest, “The MD4 Message Digest Algorithm,” in CRYPTO, pp. 303–
311, 1990.

[5] R. Rivest, “The MD5 Message-Digest Algorithm.” RFC 1321 (Informa-
tional), Apr. 1992. Updated by RFC 6151.

[6] H. Dobbertin, A. Bosselaers, and B. Preneel, “RIPEMD-160: A Strengthened
Version of RIPEMD,” in FSE, pp. 71–82, 1996.

[7] M. Bellare and D. Micciancio, “A new paradigm for collision-free hashing: In-
crementality at reduced cost,” in Advances in Cryptology—EUROCRYPT 97
(W. Fumy, ed.), vol. 1233 of Lecture Notes in Computer Science, pp. 163–192,
Springer-Verlag, 11–15 May 1997.

[8] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptography:
The case of hashing and signing,” in CRYPTO, pp. 216–233, 1994.

[9] D. R. L. Brown, A. Antipa, M. Campagna, and R. Struik, “ECOH: the
Elliptic Curve Only Hash.” Submission to NIST, 2008.

68

[10] D. S. Dummit and R. M. Foote, Abstract Algebra (3rd Edition). John Wiley
and Sons, 2004.

[11] J. Jenkins, “Character sets,” in Encyclopedia of Language & Linguistics (2nd
Edition) (K. Brown, ed.), pp. 296–299, Oxford: Elsevier, second edition ed.,
2006.

[12] American Standards Association, “American Standard Code for Information
Interchange,” ASA X3.4, 1963.

[13] V. Cerf, “ASCII format for network interchange.” RFC 20, Oct. 1969.

[14] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings.” RFC 4648
(Proposed Standard), Oct. 2006.

[15] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptography and
application to virus protection,” in STOC, pp. 45–56, 1995.

[16] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for
designing efficient protocols,” in ACM Conference on Computer and Com-
munications Security, pp. 62–73, 1993.

[17] R. Impagliazzo and M. Naor, “Efficient cryptographic schemes provably as
secure as subset sum,” J. Cryptology, vol. 9, no. 4, pp. 199–216, 1996.

[18] D. Chaum, E. van Heijst, and B. Pfitzmann, “Cryptographically strong un-
deniable signatures, unconditionally secure for the signer,” in CRYPTO,
pp. 470–484, 1991.

[19] M. Ajtai, “Generating hard instances of lattice problems (extended ab-
stract),” in STOC, pp. 99–108, 1996.

[20] J. Rosser and L. Schoenfeld, “Approximate formulas for some functions of
prime numbers,” in Illinois Journal of Math Vol. 6, 1962.

[21] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Sec-
ond Edition. Chapman & Hall/CRC, 2 ed., 2008.

69

[22] National Institute of Standards and Technology, FIPS PUB 186-3: Digital
Signature Standard (DSS). June 2009.

[23] I. Semaev, “Summation polynomials and the discrete logarithm problem on
elliptic curves,” IACR Cryptology ePrint Archive, vol. 2004, p. 31, 2004.

70

Appendix A

Elliptic Curves proposed by NIST

The principal parameters are the elliptic curve E defined with an equation over
a finite field and a designated point G = (Gx, Gy) ∈ E called the base point.
The base point has order r which is a large prime. The number of points on the
curve is n = fr for some integer f (the cofactor) not divisible by r. For efficiency
reasons, it is desirable to take the cofactor to be as small as possible. All of the
NIST curves have cofactors 1, 2, or 4.

A.1 Elliptic Curves over Prime Fields

The underlying finite fields are prime field Fp for prime number p and binary
fields F2m for some positive integer m. NIST choose the primes of length 192-bit,
224-bit, 256-bit, 384-bit, 521-bit for prime fields, and m = 163, 233, 283, 409, 571

for binary fields.

Over the prime fields, the curve satisfying the equation

E : y2 = x3 − 3x+ b

is chosen, i.e. a = −3. The coefficient b and prime p is chosen carefully to satisfy
that E is of prime order r and so the cofactor f = 1. The parameters of the
NIST curves given below.

71

The Curve P-192
p 6277101735386680763835789423207666416083908700390324961279
r 6277101735386680763835789423176059013767194773182842284081
b 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1
Gx 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012
Gy 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

The Curve P-224
p 6277101735386680763835789423207666416083908700390324961279
r 6277101735386680763835789423176059013767194773182842284081
b 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1
Gx 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012
Gy 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

Table A.1: Parameters of P-192 and P-224 Curves

The Curve P-256
p 1157920892103562487626974469494075735300861434152903141955336

31308867097853951
r 1157920892103562487626974469494075735299969552241357603424222

59061068512044369
b 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6

3bce3c3e 27d2604b
Gx 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0

f4a13945 d898c296
Gy 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece

cbb64068 37bf51f5
The Curve P-384

p 394020061963944792122790401001436138050797392704654466679482934
04245721771496870329047266088258938001861606973112319

r 394020061963944792122790401001436138050797392704654466679469052
79627659399113263569398956308152294913554433653942643

b b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112
0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

Gx aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98
59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

Gy 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c
e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

Table A.2: Parameters of P-256 and P-384 Curves

72

The Curve P-521
p 68647976601306097149819007990813932172694353001433054093944

63459185543183397656052122559640661454554977296311391480858
037121987999716643812574028291115057151

r 68647976601306097149819007990813932172694353001433054093944
63459185543183397655394245057746333217197532963996371363321
113864768612440380340372808892707005449

b 051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3
b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd 3bb1bf07
3573df88 3d2c34f1 ef451fd4 6b503f00

Gx c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 053fb521
f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127 a2ffa8de
3348b3c1 856a429b f97e7e31 c2e5bd66

Gy 118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468
17afbd17 273e662c 97ee7299 5ef42640 c550b901 3fad0761
353c7086 a272c240 88be9476 9fd16650

Table A.3: Parameters of P-521 Curve

A.2 Elliptic Curves over Binary Fields

Over the binary fields, two types of curves called pseudo-random curve and
Koblitz curve. Pseudo-random curve satisfies the equation

Eb : y
2 + xy = x3 + x2 + b

and Koblitz curve satisfies the equation

Ea : y
2 + xy = x3 + ax2 + 1

for a = 0 or 1. The cofactor is f = 2 for pseudorandom curves, and it is f = 2 if
a = 1 and f = 4 if a = 0 for Koblitz curves. The parameters of the binary curves
are given below.

73

The Curve K-163 - f(t) = t163 + t7 + t6 + t3 + 1
a 1
r 5846006549323611672814741753598448348329118574063

Polynomial Basis
Gx 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8
Gy 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Normal Basis
Gx 0 5679b353 caa46825 fea2d371 3ba450da 0c2a4541
Gy 2 35b7c671 00506899 06bac3d9 dec76a83 5591edb2

Table A.4: Parameters of K-163 Curve

The Curve B-163 - f(t) = t163 + t7 + t6 + t3 + 1
r 5846006549323611672814742442876390689256843201587

Polynomial Basis
b 2 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd
Gx 3 f0eba162 86a2d57e a0991168 d4994637 e8343e36
Gy 0 d51fbc6c 71a0094f a2cdd545 b11c5c0c 797324f1

Normal Basis
b 6 645f3cac f1638e13 9c6cd13e f61734fb c9e3d9fb
Gx 0 311103c1 7167564a ce77ccb0 9c681f88 6ba54ee8
Gy 3 33ac13c6 447f2e67 613bf700 9daf98c8 7bb50c7f

Table A.5: Parameters of B-163 Curve

74

The Curve K-233 - f(t) = t233 + t74 + 1
a 0
r 34508731733952818937173779311385127605709409888

62252126328087024741343
Polynomial Basis

Gx 172 32ba853a 7e731af1 29f22ff4 149563a4 19c26bf5
0a4c9d6e efad6126

Gy 1db 537dece8 19b7f70f 555a67c4 27a8cd9b f18aeb9b
56e0c110 56fae6a3
Normal Basis

Gx 0fd e76d9dcd 26e643ac 26f1aa90 1aa12978 4b71fc07
22b2d056 14d650b3

Gy 064 3e317633 155c9e04 47ba8020 a3c43177 450ee036
d6335014 34cac978

Table A.6: Parameters of K-233 Curve

The Curve B-233 - f(t) = t233 + t74 + 1
r 69017463467905637874347558622770255558398127373

45013555379383634485463
Polynomial Basis

b 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42
81fe115f 7d8f90ad

Gx 0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36
f8f8eb73 71fd558b

Gy 100 6a08a419 03350678 e58528be bf8a0bef f867a7ca
36716f7e 01f81052
Normal Basis

b 1a0 03e0962d 4f9a8e40 7c904a95 38163adb 82521260
0c7752ad 52233279

Gx 18b 863524b3 cdfefb94 f2784e0b 116faac5 4404bc91
62a363ba b84a14c5

Gy 049 25df77bd 8b8ff1a5 ff519417 822bfedf 2bbd7526
44292c98 c7af6e02

Table A.7: Parameters of B-233 Curve

75

The Curve K-283 - f(t) = t283 + t12 + t7 + t5 + 1
a 0
r 38853377844514581418389238136470378132848117337

93061324295874997529815829704422603873
Polynomial Basis

Gx 503213f 78ca4488 3f1a3b81 62f188e5 53cd265f
23c1567a 16876913 b0c2ac24 58492836

Gy 1ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0
e8184698 e4596236 4e341161 77dd2259
Normal Basis

Gx 3ab9593 f8db09fc 188f1d7c 4ac9fcc3 e57fcd3b
db15024b 212c7022 9de5fcd9 2eb0ea60

Gy 2118c47 55e7345c d8f603ef 93b98b10 6fe8854f
feb9a3b3 04634cc8 3a0e759f 0c2686b1

Table A.8: Parameters of K-283 Curve

The Curve B-283 - f(t) = t283 + t12 + t7 + t5 + 1
r 77706755689029162836778476272940756265696259243

76904889109196526770044277787378692871
Polynomial Basis

b 27b680a c8b8596d a5a4af8a 19a0303f ca97fd76
45309fa2 a581485a f6263e31 3b79a2f5

Gx 5f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8
557eac9c 80e2e198 f8cdbecd 86b12053

Gy 3676854 fe24141c b98fe6d4 b20d02b4 516ff702
350eddb0 826779c8 13f0df45 be8112f4
Normal Basis

b 157261b 894739fb 5a13503f 55f0b3f1 0c560116
66331022 01138cc1 80c0206b dafbc951

Gx 749468e 464ee468 634b21f7 f61cb700 701817e6
bc36a236 4cb8906e 940948ea a463c35d

Gy 62968bd 3b489ac5 c9b859da 68475c31 5bafcdc4
ccd0dc90 5b70f624 46f49c05 2f49c08c

Table A.9: Parameters of B-283 Curve

76

The Curve K-409 - f(t) = t409 + t87 + 1
a 0
r 33052798439512429947595765401638551991420

23414821406096423243950228807112892491910
50673258457777458014096366590617731358671
Polynomial Basis

Gx 060f05f 658f49c1 ad3ab189 0f718421 0efd0987
e307c84c 27accfb8 f9f67cc2 c460189e b5aaaa62
ee222eb1 b35540cf e9023746

Gy 1e36905 0b7c4e42 acba1dac bf04299c 3460782f
918ea427 e6325165 e9ea10e3 da5f6c42 e9c55215
aa9ca27a 5863ec48 d8e0286b
Normal Basis

Gx 1b559c7 cba2422e 3affe133 43e808b5 5e012d72
6ca0b7e6 a63aeafb c1e3a98e 10ca0fcf 98350c3b
7f89a975 4a8e1dc0 713cec4a

Gy 16d8c42 052f07e7 713e7490 eff318ba 1abd6fef
8a5433c8 94b24f5c 817aeb79 852496fb ee803a47
bc8a2038 78ebf1c4 99afd7d6

Table A.10: Parameters of K-409 Curve

77

The Curve B-409 - f(t) = t409 + t87 + 1
r 66105596879024859895191530803277103982840

46829642812192846487983041577748273748052
08143723762179110965979867288366567526771
Polynomial Basis

b 021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e
f1f3dd67 4761fa99 d6ac27c8 a9a197b2 72822f6c
d57a55aa 4f50ae31 7b13545f

Gx 15d4860 d088ddb3 496b0c60 64756260 441cde4a
f1771d4d b01ffe5b 34e59703 dc255a86 8a118051
5603aeab 60794e54 bb7996a7

Gy 061b1cf ab6be5f3 2bbfa783 24ed106a 7636b9c5
a7bd198d 0158aa4f 5488d08f 38514f1f df4b4f40
d2181b36 81c364ba 0273c706
Normal Basis

b 124d065 1c3d3772 f7f5a1fe 6e715559 e2129bdf
a04d52f7 b6ac7c53 2cf0ed06 f610072d 88ad2fdc
c50c6fde 72843670 f8b3742a

Gx 0ceacbc 9f475767 d8e69f3b 5dfab398 13685262
bcacf22b 84c7b6dd 981899e7 318c96f0 761f77c6
02c016ce d7c548de 830d708f

Gy 199d64b a8f089c6 db0e0b61 e80bb959 34afd0ca
f2e8be76 d1c5e9af fc7476df 49142691 ad303902
88aa09bc c59c1573 aa3c009a

Table A.11: Parameters of B-409 Curve

78

The Curve K-571 - f(t) = t571 + t10 + t5 + t2 + 1
a 0
r 19322687615086291723476759454659936721494636648532174

99328617625725759571144780212268133978522706711834706
71280082535146127367497406661731192968242161709250355
5733685276673
Polynomial Basis

Gx 26eb7a8 59923fbc 82189631 f8103fe4 ac9ca297 0012d5d4
60248048 01841ca4 43709584 93b205e6 47da304d b4ceb08c
bbd1ba39 494776fb 988b4717 4dca88c7 e2945283 a01c8972

Gy 349dc80 7f4fbf37 4f4aeade 3bca9531 4dd58cec 9f307a54
ffc61efc 006d8a2c 9d4979c0 ac44aea7 4fbebbb9 f772aedc
b620b01a 7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3
Normal Basis

Gx 04bb2db a418d0db 107adae0 03427e5d 7cc139ac b465e593
4f0bea2a b2f3622b c29b3d5b 9aa7a1fd fd5d8be6 6057c100
8e71e484 bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7

Gy 44cbb57 de20788d 2c952d7b 56cf39bd 3e89b189 84bd124e
751ceff4 369dd8da c6a59e6e 745df44d 8220ce22 aa2c852c
fcbbef49 ebaa98bd 2483e331 80e04286 feaa2530 50caff60

Table A.12: Parameters of K-571 Curve

79

The Curve B-571 - f(t) = t571 + t10 + t5 + t2 + 1
r 38645375230172583446953518909319873442989273297064349

98657235251451519142289560424536143999389415773083133
88112192694448624687246281681307023452828830333241139
3191105285703
Polynomial Basis

b 2f40e7e 2221f295 de297117 b7f3d62f 5c6a97ff cb8ceff1
cd6ba8ce 4a9a18ad 84ffabbd 8efa5933 2be7ad67 56a66e29
4afd185a 78ff12aa 520e4de7 39baca0c 7ffeff7f 2955727a

Gx 303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a
a5f40fc8 db7b2abd bde53950 f4c0d293 cdd711a3 5b67fb14
99ae6003 8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19

Gy 37bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca
1980f853 3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8
b3531d2f 0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b
Normal Basis

b 3762d0d 47116006 179da356 88eeaccf 591a5cde a7500011
8d9608c5 9132d434 26101a1d fb377411 5f586623 f75f0000
1ce61198 3c1275fa 31f5bc9f 4be1a0f4 67f01ca8 85c74777

Gx 0735e03 5def5925 cc33173e b2a8ce77 67522b46 6d278b65
0a291612 7dfea9d2 d361089f 0a7a0247 a184e1c7 0d417866
e0fe0feb 0ff8f2f3 f9176418 f97d117e 624e2015 df1662a8

Gy 04a3642 0572616c df7e606f ccadaecf c3b76dab 0eb1248d
d03fbdfc 9cd3242c 4726be57 9855e812 de7ec5c5 00b4576a
24628048 b6a72d88 0062eed0 dd34b109 6d3acbb6 b01a4a97

Table A.13: Parameters of B-571 Curve

80

