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ABSTRACT 

Continuous Time Control of  
Make-to-Stock Production Systems 

Önder Bulut 
Ph.D. in Industrial Engineering 

Supervisor: Asst. Prof. M. Murat Fadıloğlu 

July, 2010 

 

We consider the problem of production control and stock rationing in a make-to-

stock production system with multiple servers –parallel production channels--, and 

several customer classes that generate independent Poisson demands. At decision 

epochs, in conjunction with the stock allocation decision, the control specifies 

whether to increase the number of operational servers or not. Previously placed 

production orders cannot be cancelled. We both study the cases of exponential and 

Erlangian processing times and model the respective systems as M /M /s and M /Ek /s 

make-to-stock queues. We characterize properties of the optimal cost function, and 

of the optimal production and rationing policies. We show that the optimal 

production policy is a state-dependent base-stock policy, and the optimal rationing 

policy is of state-dependent threshold type.  For the M /M /s model, we also prove 

that the optimal ordering policy transforms into a bang-bang type policy when we 

relax the model by allowing order cancellations. Another model with partial order-

cancellation flexibility is provided to fill the gap between the no-flexibility and the 

full-flexibility models. Furthermore, we propose a dynamic rationing policy for the 

systems with uncapacitated replenishment channels, i.e., exogenous supply systems. 
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Such systems can be modeled by letting s --the number of replenishment channels-- 

go to infinity. The proposed policy utilizes the information on the status of the 

outstanding replenishment orders.  

This work constitutes a significant extension of the literature in the area of con-

trol of make-to-stock queues, which considers only a single server.  We consider an 

arbitrary number of servers that makes it possible to cover the spectrum of the cases 

from the single server to the infinite servers. Hence, our work achieves to analyze 

both the exogenous and endogenous supply leadtimes. 
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ÖZET 

Stoğa-Üretim Sistemlerinin Sürekli 
Zamanda Kontrolü 

 

Önder Bulut 
Endüstri Mühendisliği, Doktora 

Tez Yöneticisi: Yrd. Doç. Dr.  M. Murat Fadıloğlu 

Temmuz, 2010 

 

Bu çalışmada  paralel üretim kanalları ve birden çok müşteri sınıfına sahip stoğa-

üretim sistemleri için üretim ve stok tayınlama kontrol problemleri ele alınmaktadır. 

Çalışmada, bağımsız Poisson talep süreçleri varsayılmıştır. Karar anlarında 

kontröller, stok paylaştırma kararı ile birlikte aktif olan üretim kanal sayısınının 

arttırılıp arttırılmayacağını belirtir. Daha önce verilen üretim siparişleri iptal 

edilemez. Üssel ve Erlang dağılımına sahip üretim zamanlı sistemler sırasıyla M /M 

/s ve M/Ek/s stoğa-üretim kuyruk modelleri olarak incelenmiştir. Maliyet 

fonksiyonun ve en iyi üretim ve tayınlama politikalarının özellikleri belirlenmiştir. 

En iyi üretim politikasının duruma-bağımlı temel-düzey politikası ve en iyi 

tayınlama politikasının duruma-bağımlı eşik tipi politika olduğu gösterilmiştir. M /M 

/s modeli için, herhangi bir siparişin iptal edilebilmesine izin verildiğinde, en iyi 

üretim politikasının ya hep-ya hiç tarzı bir politikaya dönüştüğü ispatlanmıştır.  Tam 

iptal esnekliği olan ve hiç esnekliği olmayan modellerin yanısıra, kısmi sipariş iptal 

esnekliğini içeren model de incelenmiştir. Çalışmada ayrıca kapasite kısıtı olmayan 

tedarik kanalına sahip sistemler için, beklenen siparişlerin ulaşmalarına kalan zamanı 

kullanan, yeni bir devingen tayınlama politikası önerilmektedir. 
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Bu çalışmayla, stoğa-üretim sistemlerini şimdiye kadar tek bir üretim kanalıyla 

modelleyen çalışmaları içeren teknik yazına önemli katkıda bulunulmaktadır. 

Çalışmada ele alınan modellerde üretim kanalı sayısı herhangi bir değeri alabilecek 

şekilde serbest bırakılarak, kapasite kısıtı olan ve olmayan sistemlerin aynı anda 

incelenmesi sağlanmıştır. 
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Chapter 1 

Introduction 

In this thesis, we study the problem of production control and stock rationing of a 

single-item, make-to-stock facility with parallel production channels and several de-

mand classes. In a production system that keeps inventory to instantaneously satisfy 

random demand originating from distinct customer classes, the decision maker 

should develop a strategy in order to efficiently use system resources and allocate 

inventory among different customer classes.  

In order to better understand the problem, let us consider the following example.  

We have a company that produces spare parts for a large car manufacturer.  There 

are two types of demand for the parts.  The first one is the demand from the car man-

ufacturer and the second one is the demand from different spare part distributors.  

We are obliged to provide the parts demanded by the manufacturer instantaneously 

or pay a hefty fine due to our contract.  We do not have such an obligation with the 

distributors, although the sale is lost.  Hence the manufacturer’s demand has higher 

priority.  Our production facility has s parallel channels such that each can process 

one part at a time.  Given the state of the system, we would like to determine how 
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many production channels to utilize and which types of demand to satisfy so as to 

operate the system optimally with respect to a predetermined cost function.   

For the most general case of this problem, the generally distributed customer in-

ter-arrival times and non-identical servers (production channels) with controllable 

generally distributed processing times should be considered. However, in order to 

make the analytical analysis tractable, we assume that each customer class generates 

demand according to a stationary Poisson process independent from the other 

classes, and the servers are identical with independent processing times. Moreover, 

we restrict the analysis to Markov policies by assuming exponential or Erlangian 

processing times. Therefore, the system considered in this research is modeled as an 

M /M /s or an M /Ek /s make-to-stock queue.  

In the most general setting, characterization of the optimal strategy may not be 

analytically tractable because the decision maker should continuously adjust produc-

tion and stock allocation decisions based on the current status of the production (the 

age information for all the outstanding production orders) and the current inventory 

level. The existing literature on the production control problem in make-to-stock sys-

tems does not even include the more tractable single server models with general pro-

duction times. Moreover, the studies those consider the rationing problem in the 

classical inventory setting can only provide approximate results even for the static 

policies. The reader is directed to Chapter 2 for a more detailed discussion on the 

literature.   

In our setting, at any point in time, the decision maker determines the number of 

active servers and makes a rationing decision for an arriving customer demand. For 

the lost sales case, we characterize structural properties of the optimal cost function, 

and the optimal production and stock rationing policies. In addition to these, we also 

propose a dynamic rationing policy for the systems with uncapacitated replenishment 

channels, which corresponds to the continuous-review inventory systems and can be 
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obtained by letting s --the number of replenishment channels-- go to infinity. The 

proposed policy utilizes the age information for all the outstanding replenishment 

orders.  

 Modeling the supply process of the inventory systems with an arbitrary number 

of replenishment channels is instrumental in filling the gap between the two main 

streams of studies in the existing literature.  One of these streams considers standard 

inventory models where supply leadtimes are exogenous, i.e., the replenishment 

channel is uncapacitated.  In this setting, the optimal policy is not fully characterized 

under lost sales. Recently, Zipkin (2008a) reformulates the standard periodic-review 

lost-sales inventory problem with a new approach based on discrete convex analysis. 

He shows that the optimal policy is state-dependent, i.e., the ages and the quantities 

of all outstanding orders have an effect on the optimal ordering decision. On the oth-

er hand, for the backordering case, Erhardt (1984) shows that if the replenishment 

orders do not cross in time (e.g., deterministic leadtimes), the optimal ordering poli-

cy is independent from the status of the outstanding orders. For such settings, simple 

base-stock, i.e., order-up-to, policy is optimal.  Most of the studies in this stream as-

sume deterministic leadtimes and provide analyses under simple base-stock policies 

irrespective of the shortage dynamics. However, for the lost sales systems, numerical 

results of Zipkin (2008b) manifest that simple (state-independent) base-stock policies 

do not perform well. In many settings, it is even worse than the constant-order poli-

cy, which orders the same amount at fixed intervals.  

 The other stream of studies considers production-inventory systems.  These sys-

tems are characterized by capacitated replenishment channels. With the exception of 

the work of Zipkin (2000), all the works in this stream model endogenous supply 

leadtimes with a single server.  For basic single server models (models without addi-

tional sources of information such as advance demand and assembly component in-

ventory levels) the optimal production policy is a simple base-stock policy defined in 
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terms of a constant produce-up-to level. It is optimal to produce up to a certain in-

ventory level and then stop the production. This holds for both of the lost sales and 

the backordering cases (see Ha, 1997a; Ha, 1997b; and Gayon et al., 2009b). In fact, 

simple base-stock is the only meaningful policy that can be considered for the single 

server case. In the manufacturing systems literature, this policy is known as the pro-

duction authorization mechanism (see Buzacott and Shantikumar (1993, pp 103)).  A 

natural extension of the single production channel is parallel production channels.  

Buzacott and Shantikumar (1993, pp. 43) call systems with parallel production chan-

nels “single-stage systems.”  In these systems, “a job can be processed by any one of 

the machines, but only one machine is required to complete the required tasks.”  

Zipkin (2000, pp 244) calls the same kind of systems “parallel processing systems” 

and provides an analysis for such systems with independent, stochastic leadtimes un-

der the base-stock policy. But the base-stock policy is not optimal for this setting. 

There is flexibility to utilize different number of servers at different inventory levels, 

which gives rise to the state-dependent policies. Identifying optimal production poli-

cies for “parallel processing systems” and quantifying the optimality gap left by the 

base-stock policy are among the main issues addressed in this PhD dissertation.  

 Our work achieves the analyses of both the exogenous and endogenous supply 

leadtimes within a single model. This is made possible by considering an arbitrary 

number of supply channels so as to cover the spectrum from the single server to the 

infinite servers. Our model allows analysis of single location continuous-review in-

ventory systems with exogenous exponential leadtimes (i.e., uncapacitated reple-

nishment channel) by letting the number of replenishment channels go to infinity.  

On the other hand, having 1s =  corresponds to the single server, capacitated produc-

tion model, which is the subject of most of the literature on the control of make-to-

stock queues.  Furthermore, as Zipkin (2000, pp. 246) discusses, no real supply sys-

tem has infinitely many processing channels. Therefore, realistic models should con-

sider finite processing capacity. In this context, the M /M /∞ and M /Ek /∞ models 
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should be considered as the limiting cases of the M /M /s and M /Ek /s models, re-

spectively.  It should also be noted that the models give the exact solution of the M 

/M /∞ and M /Ek /∞ when s is selected to be sufficiently large, since the optimal 

number of servers to be utilized is bounded. The existence of such a bound (beyond 

which the system is equivalent to a system with exogenous leadtimes) is discussed in 

Section 3.5 and illustrated in Figure3. 2.  Furthermore, an algorithm is provided to 

calculate this bound under the average cost criterion. 

 In our numerical study, we investigate the performance of the base stock policy 

in comparison with the optimal policy.  If the number of servers is limited, i.e., pro-

duction capacity is tight, base-stock performs well.  When there is ample capacity, 

base-stock results in dramatic loss.  

 Furthermore, increasing the number of servers while keeping the traffic intensity 

constant, undermines the base-stock’s performance. In this setting, as the available 

number of servers increases, the control space becomes more finely discretized. Con-

sequently, the control problem resembles to the one that Mayorga et al. (2006) con-

sider in which the service rate of a single server is controlled over a continuous set.  

 Another issue addressed in the thesis is the problem of allocating a common 

stock pool among different customer classes, which is known as the stock rationing 

problem in the literature. It allows differentiating customer classes in order to pro-

vide different service levels and to operate the system more cost-effectively. The 

stock rationing policy stops serving lower priority classes when the on-hand invento-

ry drops below a certain threshold level. Under the threshold level, only the demands 

from higher priority classes are satisfied. There is a threshold rationing level for each 

customer class. The threshold levels could change dynamically according to the sta-

tus of the production process.  
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Inventory systems subject to multiple demand classes for the same item are fre-

quently observed in real life.  Consider a spare parts inventory system.  A part can be 

demanded in order to repair different end products of different importance and criti-

cality.  Considering the fact that all demands may not be satisfied instantaneously, 

demands for spare parts should be prioritized.  Moreover, the system may experience 

urgent orders in case of system breakdowns.  The unit shortage cost experience un-

der such a scenario is to be dramatically higher compared to the unit shortage cost of 

the orders due to the planned maintenance activities. Another example would be a 

two-echelon inventory system consisting of a warehouse and many retailers. In case 

of stockout, retailers may place urgent, more critical orders to the warehouse. Fur-

thermore, it may be beneficial to better serve certain retailers that constitute a larger 

portion of the warehouse’s business. In multi-echelon systems, intershipments be-

tween the inventory locations in the same echelon may be allowed. However, for any 

inventory location, direct customer orders have precedence over the intershipment 

orders that are placed by the other locations.  

Customer differentiation is also very important in service sectors. Hotel or air-

line companies ration their limited capacity according to the priorities of their differ-

ent customer classes. In this setting, in addition to the rationing decision, another key 

concern is deciding the prices to be charged to individual customer classes. 

 The rest of the thesis is organized as follows. In Chapter 2 we review the related 

literature and then provide our models and analyses in subsequent chapters. Chapter 

3 is devoted to the analysis of M /M /s model. We first introduce our primary model 

and provide the dynamic programming formulation. The primary model assumes no 

setup cost and it is not allowed to cancel the previously placed production orders. 

That is, at decision epochs, in conjunction with the stock allocation decision, the 

control specifies whether to increase the number of operational servers or not. The 

objective is to minimize the infinite horizon expected discounted cost. We character-
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ize the properties of the optimal cost function, and of the optimal production and ra-

tioning policies. We show that the optimal production policy is a state-dependent 

base-stock policy, and the optimal rationing policy is of threshold type.  We also 

prove that the optimal production and rationing policies are monotone in the invento-

ry level and the number of operational servers. We consider variations on the prima-

ry model in Section 3.2. It is shown that the optimal ordering policy transforms into a 

bang-bang type policy when we relax the model by allowing order cancellations. 

Another model with partial order-cancellation flexibility is provided to fill the gap 

between the no-flexibility and the full-flexibility models. The effects of the setup and 

the order cancellation costs are also discussed. In Section 3.3, we generalize our re-

sults and show that there exists an average cost optimal stationary policy that pos-

sesses all the structural properties of the optimal policy under the discounted cost 

criterion. Section 3.4 provides the stationary analysis of the system under both base-

stock and bang-bang policies. Next, in Section 3.5, with a numerical study, we quan-

tify the additional gain that the optimal policy provides over the –suboptimal— base-

stock policy proposed in the literature, along with the value of the flexibility to can-

cel production orders. We also compare the optimal rationing policy with the first-

come-first-served (FCFS) policy. The proofs of the lemmas and theorems presented 

in Chapter 3 are provided in the Appendix of the chapter (Section 3.6). 

 We discuss the system with Erlangian servers in Chapter 4. In order to get in-

sights and develop a general method for the analysis of the M /Ek /s model, we first 

consider the M /Ek /2 model and then discuss the generalization. We state some con-

jectures on the structure of the optimal cost function. Based on these properties, we 

characterize the optimal production and rationing policies. We have succeeded in 

proving some theoretical statements but some others remain conjectures. We present 

the model formulation in Section 4.1 and the analysis in Section 4.2. The proofs are 

presented in the Appendix (Section 4.3). 
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 The analysis of the M /Ek /s model is a direct extension of the M /M /s model. 

Moreover, it provides clues for the analysis of the model with deterministic produc-

tion times, because the deterministic production times are the limit of Erlangian pro-

duction times as the number of Erlang stages increases. Thus, based on the discus-

sion related to the system with Erlangian servers, it is possible to propose better per-

forming rationing policies than the static one for the continuous-review inventory 

systems with deterministic lead time and uncapacitated replenishment channels (ex-

ogenous supply can be modeled by letting s --the number of replenishment channels-

- go to infinity).  The analysis of M /Ek /s model shows that the outstanding that 

completes more Erlang stages has more value in terms of the rationing decision. 

Based on this fact, in Chapter 5, we propose a new class of dynamic rationing poli-

cies for continuous-review inventory systems with multiple customer classes. The 

new class of policies is based on the idea of rationing the inventory as if the out-

standing replenishments were flowing into the system in a continuous fashion. The 

age information for all the outstanding orders is used to modify the inventory level 

dynamically. Upon a discussion delineating the effect of the flow function on the in-

ventory dynamics (Section 5.1), we suggest a policy that assumes exponential flow 

of the replenishment orders (Section 5.2). For both backordering and lost sales envi-

ronments, in Section 5.3, we conduct simulation studies to compare the performance 

of the dynamic policy with the static critical level and the FCFS (common stock) 

policies and quantify the gain obtained. We also propose two new bounds on the per-

formance of the –unknown-- optimum dynamic rationing policy that enables us to 

tell how much of the potential gain the proposed dynamic policy realizes.  We dis-

cuss the conditions under which stock rationing –both dynamic and static– is benefi-

cial and assess the value of the dynamic policy. Finally, we provide concluding re-

marks and discuss future research directions in Chapter 6. 

  



 

Chapter 2 

Literature Review 

 

In this chapter we review the literature on stock rationing and production control for 

make-to-stock systems. We classify the stock rationing literature according to the 

assumed rationing policy and its dynamics (static or state-dependent), and by the 

clearing mechanism for the backorders that defines how to handle the arriving reple-

nishment orders. Similar to the other stochastic inventory problems, stock rationing 

literature can also be categorized based on the review policy (continuous or periodic) 

and on the consequence of shortages (backorders or lost sales). There is also a paral-

lel literature on the production environment. We review all the important works that 

address rationing problem in these different settings.   

The other area of subject that we achieve to make contribution is the control of 

make-to-stock production systems. Contrary to the inventory systems, production 

systems have capacitated channels, i.e., the number replenishment channels is li-

mited. All the works in this stream model the capacitated channel with a single serv-

er. However, they assume different processing time and shortage cost structures. 

Some of the works also consider settings in which there are other sources of informa-

tion such as advanced demand and assembly component inventory levels.  



Chapter 2 Literature Review 
 

 10

 Veinott (1965) is the first to study the rationing problem. He considers a zero 

leadtime backordering model in the periodic review setting with exogenous supply.  

He introduces the concept of threshold rationing levels that are used to allocate the 

on-hand inventory among different customer classes. For the same setting, using dy-

namic programming Topkis (1968) shows that a time remembering rationing policy 

is optimal. He also considers the lost sales case. He divides the review periods into 

sub-periods and finds the threshold rationing levels (for all classes) at each sub-

period that depend on the remaining time to the next review.   

 For the infinite horizon multi-period problem, under the static rationing policy, 

i.e., the threshold rationing levels are state-independent and fixed; Nahmias and 

Demmy (1981) derive approximate expressions for the expected number of backord-

ers for each customer class. They assume that the stock is replenished according to 

the (s, S) policy, leadtime is zero, and demand is realized at the end of each review 

period. Cohen et al. (1989) also consider a periodic review (s, S) policy with lost 

sales, deterministic leadtimes and two demand classes. At the end of each period, 

after the demand realizations, they use the on hand stock to meet the demands of cus-

tomer classes in the order of priorities. They propose a greedy heuristic to minimize 

the expected system cost under the service level constraints.  

 Frank et al. (2003) analyze a periodic review model with two demand classes. 

While high priority class experiencing deterministic demand, the demand for the 

other class is stochastic. The deterministic demand must be met immediately in each 

period and any unsatisfied stochastic demand is lost. They show that the optimal rep-

lenishment and rationing policies are complex in structure of the optimal policy and 

propose the simpler (s, S) replenishment policy under static rationing. In the study, it 

is assumed that the orders arrive instantaneously. Therefore, stock rationing is used 

to gain from fixed ordering cost instead of saving stock for future deterministic de-

mand.  
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  The study of Nahmias and Demmy (1981) is the first in the literature that con-

siders the stock rationing problem in continuous time. They consider a setting with 

unit Poisson arrivals, two demand classes, constant leadtime, and backordering. They 

derive approximate expressions for the expected number of backorders and for the 

fill rates for both classes under a (Q, r, K) policy, which is a (Q, r) policy with the 

fixed threshold rationing level K.  Their approximation is based on the at-most-one-

order-outstanding assumption.  Moon and Kang (1998) extend this work by consi-

dering compound Poisson demand. They analyze the system with a simulation mod-

el.  

In backordering environments, to completely define the stock rationing policy 

the way that the backorders are cleared should also be defined. The clearing mechan-

ism specifies how the replenishment orders should be allocated between increasing 

the stock level and clearing the backorders. Nahmias and Demmy (1981) derive ap-

proximate service levels without taking the effects of clearing mechanisms on the 

system dynamics into the consideration. They totally ignore the clearing issue and 

analyze the system within a single replenishment leadtime window.   

The natural way to perform the clearing is to employ the same threshold levels, 

which are used to control the demand traffic, for clearing the backorders. That is, the 

backorders for a certain customer class are not cleared until the inventory level 

reaches to the threshold level which is associated for that customer class. This me-

chanism is referred as the priority clearing in the literature.  The related literature ei-

ther ignores the clearing issue (Nahmias and Demmy (1981), Dekker et al. (1998) 

and Kocaga and Sen (2007)) or resorts to tractable clearing mechanisms that elimi-

nate interaction between consecutive leadtime periods (Deshpande et al. (2003) and 

Arslan et al. (2007)). Deshpande et al. (2003) address this issue on page 684 of their 

study: “The optimal scheme is to always clear higher-priority customers first. How-

ever, this “priority-clearing” scheme is intractable because it does not allow closed-
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form expressions for the stockout levels, and average number of demand in backlog, 

for each demand class. To overcome this problem we introduce a tractable “threshold 

clearing” scheme to approximate the systems dynamics”.  

In this thesis, in Chapter 5, we propose a dynamic rationing policy together with 

the associated dynamic clearing mechanism. We conduct a simulation study to eva-

luate the performance of the proposed policy. Since the analytical evaluation of the 

policy is not tractable without simplifying assumptions –our policy is a state-

dependent one which also captures the dynamics of priority clearing--, simulation is 

the only available tool. In the existing literature, the only exception that provides 

analysis under priority clearing is the work of Fadiloglu and Bulut (2008), which will 

be detailed below together with the other cited works. 

 Dekker et al. (1998) consider the same setting with Nahmias and Demmy (1981) 

with Q =1. Without specifying any clearing mechanism, they derive the exact fill rate 

expression for the non-critical demand class and make an approximation for the crit-

ical class fill rate by conditioning on the time that stock level hits the critical level. 

They test their approximation under three different clearing mechanisms using simu-

lation. Kocaga and Sen (2007) extend the approximation of Dekker et al. (1998) to 

accommodate a demand lead-time for non-critical orders. They conduct a simulation 

study to assess the performance of the approximation 

 Without any restriction on the number of outstanding orders, Deshpande et al. 

(2003) work on the stock rationing problem for the same setting that Nahmias and 

Demmy (1981) consider. They introduce the threshold clearing mechanism that al-

lows clearing low priority backorders before clearing all class 1 backorders and rais-

ing the inventory above the threshold rationing level. Threshold clearing makes it 

possible to obtain close form expressions for the desired performance measures of 

the system.  Deshpande et al. (2003) derive the expected system cost under threshold 

clearing and provide an algorithm to obtain the policy parameters that minimizes this 
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cost. It is interesting that their analysis yields the same results with Dekker et al. 

(1998) when Q =1. They simulate the rationing policy with priority clearing mechan-

ism to compare the performance of threshold clearing with the performance of priori-

ty clearing.  They also propose a lower bound on the cost of the unknown optimal 

policy. In Chapter 5, we propose another lower bound and show with numerical ex-

amples that our bound is tighter than the bound of Deshpande et al. (2003).  

Zhao et al. (2005) analyze a game theoretical model of a decentralized dealer 

network in which each dealer can share its inventory with the others. They use the 

threshold clearing mechanism that Deshpande et al. (2003) introduce.  Arslan et al. 

(2007) analyze the multiple demand-classes extension of the same setting Nahmias 

and Demmy (1981) and Deshpande et al. (2003) consider. They construct an equiva-

lent multi stage serial system of the original single location system. For the ease of 

analysis, they assume that in each stage the backorders are cleared in the order of 

occurrence. Thereby, they derive approximate results for the priority clearing me-

chanism. Their results are exact under the clearing mechanism introduced by Desh-

pande et al. (2003).   

Fadiloglu and Bulut (2008) also consider the same setting. They propose a me-

thod which captures the priority clearing dynamics for continuous-review inventory 

systems with backordering under static rationing policy. They assume two demand 

classes with Poisson arrivals and constant lead-time. They sample the continuous 

system at multiples of the lead time and show that the state of the system evolves 

according to an embedded Markov chain. They provide a recursive procedure to ob-

tain the transition probabilities of the embedded chain and obtain the steady-state 

probabilities of interest with desired accuracy by considering a truncated version of 

the chain. This is the only work in the literature that analyzes the static rationing pol-

icy under priority clearing mechanism.  
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Dekker et al. (2002) consider a lot-per-lot continuous-review setting with the 

static rationing in a lost sales environment. The clearing mechanism is not relevant in 

the lost sales case. They provide exact expressions for service levels under general 

stochastic lead-time and multiple demand classes. Their results are adapted from the 

analysis of M/G/∞ queue under state-dependent arrival rates.  Melchiors et al. (2000) 

also analyze the lost sales case with static rationing. They assume (Q, r) replenish-

ment policy, deterministic leadtimes, and at most one outstanding order. This analy-

sis is exact when r Q< .  

There are only two studies in the existing literature that consider dynamic ration-

ing policies for continuous review systems with exogenous leadtimes.  Melchiors 

(2003) extends the work of Melchiors et al. (2000) by considering a time remember-

ing rationing policy that allows different threshold rationing levels for different time 

slots between the placement of an order and its arrival. Threshold levels are set ac-

cording to the age of the outstanding order. This is a restricted dynamic policy be-

cause threshold levels are assumed to be constant over predetermined time intervals. 

However, the unknown optimal policy should allow the threshold levels change at 

any point in time.  Teunter and Haneveld (2008) also consider a time remembering 

policy for the backordering case. They aim to determine the set of critical remaining 

lead-time values (L1, L2…) for the rationing decision.  If the remaining lead-time is 

less than L1 they do not ration the stock, if it is between L1 and (L1+L2) one item is 

reserved for the high priority class and so on. Under the at-most-one-outstanding-

order assumption, they approximate the optimal critical remaining lead-time values. 

Using two examples, they demonstrate that the dynamic policy outperforms the static 

policy. 

The study presented in Chapter 5 of this thesis provides an extension to the anal-

ysis of the dynamic rationing policies. We propose a new dynamic policy and dis-

cuss the conditions under which stock rationing – static or dynamic—is beneficial 
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and asses the value of the proposed policy. We also compare our results with the 

numerical results of Teunter and Haneveld (2008) and show that our policy outper-

forms theirs. 

The other stream of studies that is related to our PhD study considers the problem 

of production control in make-to-stock production systems. The studies of this 

stream all assume Poisson demand arrivals and exponential or Erlangian processing 

times. The rationale behind these assumptions is twofold. First one is for the ease of 

analysis. Considering memoryless inter-demand-arrival and process stage comple-

tion times (Erlangian processing times are generalizations of exponential processing 

times since they are composed of exponential stages) enable to characterize the evo-

lution of the system without keeping track of the history of the state variable(s).  

That is, the optimal policy for the system under consideration is a Markovian one. 

Second, by changing the number of Erlang stages, a wide range of systems with dif-

ferent processing time variances can be analyzed since the variance is decreasing in 

the number of Erlang stages. Exponential processing times have single stages and 

deterministic processing times are the limit of Erlangian processing times as the 

number of stages goes to infinity.  Most of the studies of this stream also address the 

stock rationing problem. 

 One of the other commonalities of the studies that consider production control in 

make-to-stock systems is about the modeling perspective. In almost all the studies, 

the capacitated production system is modeled using only a single channel. The con-

sidered settings either constitute M /M /1 or M /Ek /1 make-to-stock queue models 

depending on the distribution of the processing times. Characterization of optimal 

production policies for multi-channel systems is for the first time provided in chap-

ters 3 and 4 of this thesis. We allow arbitrary number of processing channels (serv-

ers) and develop M /M /s and M /Ek /s models in Chapter 3 and 4, respectively. The 

only analysis that we have come across for multiple replenishment channels with 
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stochastic leadtimes is presented in Zipkin (2000) for the M /G /s system with a sin-

gle customer class and lost sales.  Zipkin provides a performance analysis for the 

system under –suboptimal-- simple base-stock policy.  Multi-channel settings are 

also identified by Buzacott and Shantikumar (1993), but again base-stock policy is 

proposed. In this thesis, while characterizing the optimal policy, we show that base-

stock policy is not optimal. 

All the analyses for make-to-stock production systems, including ours, rely on 

the uniformization technique proposed by Lippman (1975).  Lippman shows that a 

Continuous Time Markov Chain (CTMC) is statistically equivalent to another 

CTMC that is obtained from the original chain by allowing fictitious self-transitions 

to obtain a uniform, i.e., state-independent, transition rate. Here, statistical equiva-

lence means that starting from an initial state the probability that the process will be 

in a specific state at time t is identical for the original process and its uniform ver-

sion. Uniformization can be applied by choosing an arbitrary uniform rate that is 

greater than all the rates of the original exponential transition times. Once this result 

is on hand, continuous-time Markovian control problems can be converted to equiva-

lent discrete-time problems (to Markov Decision Processes) as outlined in Volume 

II-Chapter 5 of the book of Bertsekas (2000).  

Ha (1997a) is the first to study the production control problem in continuous-

time systems with capacitated replenishment channel. He considers a make-to-stock 

production facility with a single exponential server, zero setup cost, multiple demand 

classes and lost sales.  He formulated the queueing control model using a single state 

variable that keeps track of the inventory level. He shows that base-stock policy is 

optimal for production control and static threshold level policy is optimal for stock 

rationing.  Ha (1997a) also performs a stationary analysis of the system with two 

demand classes and distinguish the cases where the optimal average cost is convex. 
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In a numerical study, he also compares the performance of the optimal rationing pol-

icy with the performance of FCFS policy under different scenarios. 

Ha (1997b) analyzes the same problem in a backordering environment with two 

customer classes. Since it is possible to have both on-hand inventory and class 2 

backorders at the same time, he defines the state of the system with two variables: 

the inventory level, negative part of which corresponds to the number of class 1 

backorders, and the number of class 2 backorders.  He characterizes optimal policies 

by a single monotone switching curve; optimal production decision is determined by 

a base stock policy and optimal rationing decision is determined by a rationing level 

that is decreasing in the number of backorders of class 2. Vericourt et al. (2002) ex-

tends the work of Ha (1997b) to multiple demand classes. They provide the full cha-

racterization of the optimal rationing policy and present an efficient algorithm to 

compute the optimal policy parameters, i.e., the optimal rationing levels for all 

classes.  

Ha (2000) and Gayon et al. (2009b) consider Erlangian production times in the 

lost sales and backordering environments, respectively.  Ha (2000) shows that for the 

lost sales case the optimal production and rationing policies can be characterized 

with a single-state variable called work storage level. Work storage level is the num-

ber of completed Erlang stages for the items in the system and it captures all the in-

formation regarding to the inventory level and the status of the production. Ha 

(2000) proves that optimal production and rationing policies are threshold work sto-

rage level policies. It is optimal to produce until a target work storage level (a base-

stock policy) and for each customer class, there exists a threshold work storage level 

such that it is optimal to satisfy the demand of this class only above this level. On the 

other hand, in addition to the work storage level, Gayon et al. (2009b) also keep 

track of the number of backorders from each class. For the setting that Gayon et al. 

(2009b) consider, the full characterization of the optimal policies is problematic be-
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cause of the curse of dimensionality. Therefore, they provide a partial characteriza-

tion. However, they succeed to show that optimal rationing policy is a work-storage 

type policy when excess production can be diverted to a salvage market.    

Huang and Iravani (2008) extend the findings of Ha (1997a) to a random batch 

demand setting. They also consider the backorder case with two demand classes and 

fixed (deterministic) order sizes. Mayorga et al. (2006) consider a two-class make-to-

stock system with adjustable exponential service rate. They study both the finite and 

infinite horizon problems. They show that optimal service rate adjustment and ra-

tioning policies are monotone in the inventory and backorder levels. They also prove 

that the optimal production policy turns into a bang-bang type policy when the pro-

duction cost is a concave function of the production rate. That is, it is optimal to pro-

duce with full capacity (with the highest available service rate) until a threshold in-

ventory level is reached and then leave the server idle (set the service rate to zero). 

There are other works in the literature that consider settings in which other 

sources of information such as advanced demand and assembly component inventory 

levels are available.  For these settings, additional information is incorporated to the 

state definition and it is shown that the optimal policies are state-dependent.  Iravani 

et al. (2007) study the production control and rationing problem when advance de-

mand information is available. They prove that the optimal policies are monotone 

with respect to the critical customer’s order quantity, which is a random variable. 

Gayon et al. (2009a) also consider a setting with advance demand information. How-

ever, in their case, the advance demand information is imperfect because the custom-

ers who announce their orders ahead of the due date may decide to order prior to or 

later than the due date or to cancel the order altogether. In addition to the production 

decision, the controller must specify whether or not to satisfy an order that becomes 

due from on-hand inventory.  Gayon et al. (2009a) show that the optimal production 

and rationing policies are monotone in the number of announced orders. Benjaafar 
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and ElHafsi (2006) analyze a single-item, multi-component assemble-to-order sys-

tem. They assume that the assembly is instantaneous and each assembly unit requires 

one unit of each component. If any of the components is out of stock, demands to the 

assembly are lost. The authors show that the optimal policies for each component, 

i.e., a state-dependent base-stock and a state-dependent threshold rationing policy, 

are monotone in the inventory level of all the other components.     

Apart from the control literature on production-inventory systems, there is also a 

vast literature that considers queueing control problems, which involve mechanisms 

such as admission control, capacity control and pricing.  Queueing control problems 

find application in the areas of service, telecommunication, and make-to-order manu-

facturing systems.   We direct the reader to the recent works of Cil et al. (2009) and 

Gans and Savin (2007) for the related literature.  We would like to point out that 

multiple-exponential-server models are also used for service systems as in Gans and 

Savin (2007). 

 All the above mentioned studies in production environments assume a single 

server replenishment channel. Our works presented in Chapter 3 and 4 are mostly 

related to the works of Ha (1997a) and Ha (2000), respectively. We extend their stu-

dies to the multi-server cases. We characterize the properties of the optimal produc-

tion and rationing policies and show that they are state-dependent and monotone in 

the state variables.  

 In this thesis, we work on the continuous time control of production-inventory 

systems.  Hence, we would like to conclude this chapter with Table 2.1 which pro-

vides the list of main works that consider the problem of production control and/or 

stock rationing in continues-time. In the table, we classify the studies on the basis of 

the shortage cost structure and the capacity of the processing (replenishment) chan-

nel. While the classical inventory systems assume uncapacitated replenishment 



Chapter 2 Literature Review 
 

 20

channels, i.e., infinitely many parallel servers, the production systems are capacitated 

and all the works in the literature handle this capacity constraint with a single server.        

        Table 2.1 Related Literature on Continuous-Time Systems  

 

Stock Rationing in  
Continuous-Review 
Inventory Systems 

Production Control and 
 Stock Rationing in  

Make-to-Stock 
Production Systems 

Backordering 

Nahmias and Demmy (1981) 

Dekker et al. (1998) 

Moon and Kang (1998) 

Deshpande et al. (2003) 

Melchiors (2003) 

Zhao et al. (2005) 

Kocaga and Sen (2007) 

Arslan et al. (2007) 

Teunter and Haneveld (2008) 

Fadiloglu and Bulut (2008) 

Ha (1997b) 

Vericourt et al. (2002) 

Gayon et al. (2006) 

Mayorga et al. (2006) 

Gayon et al. (2009b) 

Lost Sales 

Melchiors et al. (2000) 

Dekker et al. (2002) 

Melchiors  (2003) 

Ha (1997a) 

Ha (2000) 

Benjaafar and ElHafsi (2006) 

Iravani et al. (2007) 

Hung  and Iravani (2008) 

Gayon et al. (2009a) 

 

 



 

Chapter 3 

M/M/s Model with multiple-demand 
classes and lost sales 
 

 

In this chapter, we characterize structural properties of the optimal cost function, and 

the optimal production and stock rationing policies for a single-item, multi-

exponential-server make-to-stock production system with multiple-customer-classes 

and lost sales. We assume that each customer class generates demand according to a 

stationary Poisson process independent of the other classes, and the servers – parallel 

production channels-- have independent exponential processing times with identical 

rates. In effect, we model the production system as an M /M /s make-to-stock queue. 

 To the best of our knowledge, with the exception of Zipkin (2000), there is no 

work in the literature that considers production control and/or stock rationing in a 

multi-server make-to-stock production system. Our work is most related to the work 

of Ha (1997a). We extend his study to the multi-server case using a two-dimensional 

state space. Along with a characterization of the optimal rationing policy, we also 

provide properties of the optimal production control policy and show that the optimal 

policy is not a base-stock policy for the multiple-servers case.  

 Section 3.1 introduces our primary model and, provides the dynamic program-

ming formulation and the characterization of optimal policies under discounted cost 
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criterion. Section 3.2 discusses variations on the primary model including the exis-

tence of order-cancellation flexibility and the fixed costs. In Section 3.3, we consider 

average cost criterion then in Section 3.4 provide the stationary analysis of the sys-

tem under both base-stock and bang-bang policies.  Section 3.5 is devoted to a nu-

merical study in which we quantify the benefit of the optimal policy and assess the 

value of order-cancellation flexibility. The chapter concludes with an Appendix 

(Section 3.6) that includes the proofs of the lemmas and theorems presented in the 

chapter. 

3.1 Primary Model 

3.1.1 Model Formulation 

Consider a single-item make-to-stock production system with s identical servers hav-

ing exponential production times with mean 1 / µ. Demand is generated by 2n ≥  

customer classes according to independent Poisson processes with rates iλ , 

{ }1, 2,...,i n∈ . We suppose that any unmet demand is lost and a lost sales cost of ic  

is incurred for each unit of class i demand that is lost. Without loss of generality, we 

assume that 1 2... nc c c≥ ≥ . Let h be the inventory holding cost rate, p be the produc-

tion cost rate and α be the discount rate. This setting can also be applied to a retailer 

environment where the retailer has s identical suppliers and can order single units 

from any of them. For such an inventory setting, it would be more appropriate to as-

sume that p is zero.   

 The state of the system is defined with two variables. Let X(t) be the inventory 

level at time t and Y(t) be the number of the operational servers at the time of the last 

event occurrence prior to time t. The events are production completion and demand 

arrivals for each customer class. Y(t) can also be considered as the number of the 
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outstanding replenishment orders at the time of last event occurrence prior to time t.  

This elaborate state definition is necessary to eliminate instantaneous state transitions 

at decision epochs, which causes problems at the application of the uniformization 

technique.  

 At any time point t, the control specifies whether to keep the number of active 

servers at the same level or to increase it. We denote the production decision at time t 

as up(t) where ( ) { }( ), ( ) 1,...,pu t Y t Y t s∈ +  . When a class i demand arrives at time t, 

the control specifies whether to satisfy the demand or not. We denote the rationing 

decision for class i at time t as ( )
ir

u t  such that ( ) { }0,1
ir

u t ∈ , { }1, 2,...,i n∈ . If 

( ) 0
ir

u t = , an arriving ith class demand is rejected, otherwise it is satisfied.  The 

complete policy for our model can be represented as ( ) ( ) ( )( ){ }1
, ,..., | 0

np r ru t u t u t t ≥ . 

Since the model is Markovian, optimal policies are also Markovian.  Thus, it is suffi-

cient to consider the set of admissible Markovian policies, i.e.,  

( ) ( ) ( )( ),p pu t u X t Y t=  and  ( ) ( ) ( )( ) { }, , 1,...,
i ir ru t u X t Y t i n= ∈ . 

Starting at state (x, y), under the policy π, the infinite horizon expected dis-

counted system cost is  

( )( , ) 0 0
1

( ( )) ( ( )) ( )
n

t t
x y i i

i

E e h X t p Y t dt e c dN tπ α π π α π∞ ∞− −

=

⎡ ⎤+ +⎢ ⎥⎣ ⎦
∑∫ ∫             (1) 

where ( )iN tπ  be the number of class i customers who have been rejected up to 

time t, { }1, 2,...,i n∈ . Given a control policy π, the process ( ) ( )( ){ }, | 0X t Y t tπ π ≥  

is a continuous time Markov chain where the transition rate at state (x, y) is 

( ),
1

i

n

i r px y
i

u uν λ µ
=

= +∑ .  
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Using the uniformization technique proposed by Lippman (1975) we can analyze 

our model within the discrete-time framework. Uniformization is a conversion me-

thod that provides a discrete-time version of the original continuous-time optimiza-

tion model. The conversion is achieved by first constructing a new Markov process 

that is statistically equivalent to the original one. This new process should have a 

uniform transition rate, which is same for all states and controls, and allow fictitious 

self transitions.  The uniform rate can be anything that is greater than or equal to the 

maximum of the transition rates of the original process.  Here statistical equivalence 

means that for any given policy π, initial state ( ) ( )( )0 , 0X Y , time t, and state ( ),x y    

( ) ( ) ( ) ( ){ }, | 0 , 0P X t x Y t y X Yπ π= = is identical for the original process and its uni-

form version. Once the uniform process is obtained, continuous-time control prob-

lem can be easily converted to an equivalent discrete-time problem as explicitly ex-

plained in Volume II-Chapter 5 of the book of Bertsekas (2000).  

Let us define the uniform rate as 
1

n

i
i

sν λ µ
=

= +∑ . Without loss of generality, we 

rescale the time and assume that 1α ν+ = . Then, the optimal cost-to-go function can 

be expressed as  

( ) ( ) ( ) ( ) ( ){ }, min , 1, 1 ,Rs u y
J x y hx pu s u J x y u J x u T x uµ µ

≥ ≥
= + + − + + − +  (2) 

where ( ) ( )
1

, ,
i

n

R R
i

T x y T x y
=

= ∑ and for { }1, 2,...,i n∈ , 

( )
( ) ( ){ }

( )( )
min 1, , , , 0

,
0, , 0i

i i
R

i i

J x y c J x y x
T x y

c J y x

λ

λ

⎧ − + >⎪= ⎨
+ =⎪⎩

  (3) 

In (2), the minimization operation corresponds to the production decision, i.e., decid-

ing the number of operational servers when there are x units on hand and y servers 
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are operational. The term ( ) ( ),s u J x yµ−  corresponds to the fictitious self-

transitions due to uniformization, while the term ( )1, 1u J x uµ + −  corresponds to 

production completion event that takes place at one of the u active production chan-

nels with probabilityuµ . The minimization operator ( ),
iRT x y corresponds to the ra-

tioning decision for class i.  With probability iλ  a demand arrival event for class i 

occurs and at this decision epoch the controller should decide whether to satisfy or 

reject the arriving demand. At the boundary, when there is no stock on-hand, all the 

arriving demands are lost.  

For notational purposes, we provide equations (4), (5) and (6) below. In (5), 

( , )u x y∗  is defined as the optimal number of operational production channels for the 

given state ( , )x y . Equation (6) defines a base-stock level for each inventory level x.    

( ) ( ) ( ) ( ) ( ), , , 1, 1 ,Rf x y u hx pu s u J x y u J x u T x uµ µ= + + − + + − +         (4)                 

( ) ( )
       

, arg min , ,
s u y

u x y f x y u∗

≥ ≥
=       (5) 

( ),0xS x u x∗= +      (6) 

We also define the following operators on a function ( ),v x y : 

( ) ( ) ( ), , 1 ,yv x y v x y v x y∆ = + −  

( ) ( ) ( ), 1, ,xv x y v x y v x y∆ = + −  
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3.1.2 Characterization of the Optimal Production and Rationing 

Policies 

This section provides a detailed characterization of the optimal production and ra-

tioning policies in three theorems and a corollary.  The three theorems are proven via 

the methodology formalized by Porteus (1982). This approach is based on identify-

ing a set of structural properties and then showing that these properties are preserved 

under the optimization operator. For the M/M/s model described in the previous sec-

tion, the optimization operator is  

( )( ) ( ), min , ,
s u y

T J x y f x y u
≥ ≥

= .               (7) 

We define ϑ  as a set of functions on the integers such that if v ϑ∈ , then 

                ( ) ( ), 1 ,x xv x y v x y∆ + ≥ ∆    (8) 

                             ( ) ( ), 1, 1x xv x y v x y∆ ≥ ∆ − +   (9) 

Note that,  (8) can also be written as ( ) ( )1, ,y yv x y v x y∆ + ≥ ∆ . 

 In Theorem 3.1 and its corollary, we characterize the behavior of the optimal 

cost function and the optimal production policy with respect to the number of opera-

tional servers. 

Theorem 3.1.  If J ϑ∈ , for given inventory level x,  

i. ( ) ( ),0 ... , ( ,0)J x J x u x∗= =  

ii. For ( ),0y u x∗≥ , ( ),J x y  is a convex-increasing function of y. That is, 

( ) ( ), 1 , 0y yJ x y J x y∆ + ≥ ∆ > . 
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Corollary 3.1.  For given state (x, y),  

i. ( ) ( ) ( )
( )

,0 , ,0
,

, ,0
u x y u x

u x y
y y u x

∗ ∗
∗

∗

⎧ ≤⎪= ⎨ >⎪⎩
 

ii. ( ) ( ) ( ){ }, min ' : , ' 1 , ' 0, 'u x y y J x y J x y s y y∗ = + − > ≥ ≥  

iii. ( ) ( ) ( )
( )

, , , 1
, 1

1, ,
u x y u x y y

u x y
y u x y y

∗ ∗
∗

∗

⎧ ≥ +⎪+ = ⎨ + =⎪⎩
 

 Theorem 3.1 implies that the optimal cost function is constant with respect to the 

number of operational servers in the region where the number of operational servers 

is less than or equal to the optimal number of operational servers at state (x, 0). On 

the other hand, in the complementary region, the optimal cost function is convex-

increasing in the number of operational servers.  

 The first part of Corollary 3.1 indicates that if the current inventory posi-

tion, x y+ , is less than the base-stock level xS , then it is optimal to increase the num-

ber of operational servers to ( ,0)u x∗ in order to raise the inventory position to the 

base-stock level. Otherwise, it is optimal not to change the number of operational 

production channels. It is optimal to set the number of operational servers to ( ,0)u x∗  

when it is possible, i.e., the number of currently operational servers is less or equal to 

( ,0)u x∗ . Hence, the optimal costs for all the states in which ( ,0)u x∗  are feasible are 

the same as stated in the first part of Theorem 3.1.  

As the numerical study in the next section illustrates, ( ,0) ( 1,0) 1u x u x∗ ∗= + +  

does not hold in general.  Consequently, a single order-up-to level that is indepen-

dent of the inventory position is not optimal and the optimal production policy is a 

state-dependent base-stock policy. As stated in the literature (Erhardt, 1984), the op-
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timality of a simple base-stock policy cannot be guaranteed when replenishment or-

ders cross in time.  In our model, order crossing is possible due to parallel production 

channels.  In the single server case, order crossing does not occur since stock-units 

are produced one by one.  In this case, base-stock policy is optimal as shown by Ha 

(1997a). 

 The second part of Corollary 3.1 provides an alternative definition for the optim-

al number of operational servers. It is optimal to increase the number of operational 

servers until the optimal cost function starts to increase. Finally, the last part of the 

corollary exhibits how the optimal number of operational channels changes with the 

number of currently operational servers. The optimal number of servers at state 

( , 1)x y +  is either equal to the optimal number of servers at state ( , )x y  or one more.    

  In Theorem 3.2, we characterize the behavior of the optimal cost function, and 

the optimal production and rationing policies with respect to the inventory level.  We 

also characterize the effect of the number of operational servers on the optimal ra-

tioning policy. 

Theorem 3.2.  If J ϑ∈ , then  

i. ( ),J x y  is convex in x. 

ii. ( ) ( )1, ,u x y u x y∗ ∗+ ≤ .  

iii. ( ) ( ) ( ) 11, , 1,x J x y J x y J x y c∆ − = − − ≥ − , and so ( ) ( )
1 1, 1,RT x y J x yλ= − . 

That is, it is always optimal to satisfy a class 1 demand when there is stock 

on hand. 

iv. There exists a threshold inventory level ( )i
xK y  for class 2i ≥ , which is a 

function of operational servers, y, such that it is optimal to satisfy a class i 
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demand above ( )i
xK y  and reject it otherwise. Moreo-

ver, 1 2( ) ( ) ... ( ) 0n n
x x xK y K y K y−≥ ≥ ≥ ≥ , and ( 1) ( )i i

x xK y K y+ ≤  for  

{ }2,...,i n∈ .   

v. There exists a threshold number of operational servers ( )i
yK x  for class 

2i ≥  as a function of inventory level such that it is optimal to satisfy a class 

i demand above ( )i
yK x  and reject it otherwise. Moreo-

ver, 1 2( ) ( ) ... ( ) 0n n
y y yK x K x K x−≥ ≥ ≥ ≥ , and ( 1) ( )i i

y yK x K x+ <  for  

{ }2,...,i n∈ .   

 Theorem 3.2 states that the optimal cost function is x-convex and the optimal 

number of production channels that should be used is non-increasing in the inventory 

level. The last three parts of the theorem characterize the optimal rationing policy, 

which is of threshold type. If there is stock on hand, it is always optimal to satisfy an 

arriving class 1 demand independent of the observed state. For each of the other cus-

tomer classes, given the number of the operational servers, there exists a rationing 

inventory level, which is non-decreasing in the class index. Similarly, for each class, 

given the inventory level, there exists a rationing level for the number of operational 

servers, which is non-decreasing in the class index. Furthermore, the rationing inven-

tory levels are non-increasing in the number of operational channels, and the ration-

ing levels for the number of operational production channels are decreasing in the 

inventory level. The latter statement means that if it is optimal to satisfy an arriving 

class i demand at state ( , 1)x y + , then it is optimal to satisfy an arriving class i de-

mand at state ( 1, )x y+ . Moreover, a class i demand arriving at state ( ), ( )i
yx K x  should 

be rejected, but it is optimal to satisfy an arriving class i demand at state 

( )1, ( )i
yx K x+ .  
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 Theorem 3.3 states that J ϑ∈ , that is, the optimal cost function is an element of 

the function space characterized by  (8) and (9).  Since J ϑ∈  is the hypothesis of the 

previous two theorems, Theorem 3.3 is needed to ensure that the results of the pre-

vious two theorems apply to our model without any restriction. 

Theorem 3.3. J ϑ∈ , that is   

i. ( ) ( ), 1 ,x xJ x y J x y∆ + ≥ ∆  

ii. ( ) ( ), 1, 1x xJ x y J x y∆ ≥ ∆ − +  

3.2 Variations on the Primary Model 

3.2.1 Model with Full Order-Cancellation Flexibility 

In this section, we consider a variation on the previous model in which cancellation 

of all previously placed production orders is permitted. The rationale behind this 

model is twofold. Firstly, this model enables us to characterize the optimal policy for 

make-to-stock queues where the outstanding orders can be cancelled at a negligible 

cost. Secondly, this model permits us to quantify the value of the full flexibility to 

cancel orders. The difference between the performances of the primary model and 

this model is the value of the full order-cancellation flexibility.  In many systems, 

order cancellations are only possible at a cost.  In such cases the cost of canceling 

orders should be compared with the value of order-cancellation flexibility. 

Given that order cancellation is possible, at each decision epoch the number of 

operational servers can be chosen from the set { }0,1,..., s . As previously discussed, 

for the primary model the feasible set is { }( ), ( ) 1,...,Y t Y t s+  where Y(t) is the number 

of operational servers at the time of the last event occurrence prior to time t. There-
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fore, for the model with order cancellation, there is no need to keep track of the 

number of operational servers and it is possible to model the system evolution with a 

single state variable, which is the inventory level.  

For this model, the optimal cost-to-go function of this model can be expressed as  

( ) ( ) ( ) ( ){ } ( )
0

min 1 Rs u
J x hx pu s u J x u J x T xµ µ

≥ ≥
= + + − + + +          (10) 

where ( ) ( )
1

i

n

R R
i

T x T x
=

= ∑ and for { }1, 2,...,i n∈ , 

( )
( ) ( )( )

( )( )
min 1 , , 0

0 , 0i

i i
R

i i

J x c J x x
T x

c J x

λ

λ

⎧ − + >⎪= ⎨
+ =⎪⎩

        (11) 

Let ( )u x∗  be the optimal number of operational production channels at state x. 

Then,  

( ) ( )( ){ }
       0
arg min

s u
u x u p J xµ∗

≥ ≥
= + ∆    (12) 

It should also be noted that for 1s =  the model is the same with the one analyzed 

in Ha (1997a). Thus, the below theorem that provides the properties of the cost func-

tion and the optimal policy extends the results presented in Ha (1997a) to a multiple-

servers setting.  

Theorem 3.4. 

i. ( )u x∗ is either s or 0 

ii. ( )J x  is a convex function of x 
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iii. There exists a threshold inventory level iK  for class i such that it is optimal to 

satisfy a class i demand above iK and reject it otherwise. 

iv. For 0x > , ( ) 11J x c∆ − ≥ − , and so ( ) ( )
1 1 1RT x J xλ= − . That is, 1 0K =  and it 

is always optimal to satisfy a class 1 demand when there is stock on hand. 

v. Optimal production policy is a bang-bang type policy. That is, there exists a 

threshold inventory level x  such that ( )u x s∗ = , for { }0,1,...,x x∈  and 

( ) 0u x∗ = , for { }1, 2,... .x x x∈ + +  

Theorem 3.4 states that the optimal production policy when order cancellations 

are permitted is a bang-bang policy.  Up to a certain inventory level the policy pre-

scribes using all available production channels.  Beyond that level all of the produc-

tion channels are idled.   A static stock-rationing policy is employed for stock alloca-

tion. The rationing levels are threshold inventory levels and fixed, because we cha-

racterize the system only with the inventory level.   

3.2.2 Model with Partial Order-Cancellation Flexibility 

In this section, we consider a variation on the primary model in which cancellation of 

only a limited number of previously placed production orders is permitted.  This 

model allows us to quantify how much value can be captured via order cancellation, 

when there is a limitation on the number of orders that can be cancelled.  Although a 

manufacturer may desire to reduce its operating costs by cancelling some orders, it 

may not be willing to use this flexibility in an indiscriminate fashion. The optimal 

policy under full flexibility is a bang-bang policy that utilizes all available produc-

tion channels until the inventory reaches a threshold level.  When one of the orders is 

completed at that level, the rest of the orders have to be cancelled.  For many manu-

facturers, this drastic cancellation practice would not be desirable.  If it is possible to 
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capture most of the value available via order cancellation while espousing a smooth-

er production policy that involves fewer cancellations, this could be the avenue of 

choice for those manufacturers.   

We define the cancellation flexibility index f as the maximum number of servers 

that can be shut down.  At each decision epoch, the control selects the number of ac-

tive servers from the set ( ){ }( ) ,...,Y t f s+−  where ( )Y t  is the number of active serv-

ers at the time of the last event occurrence prior to t.   This model has the versatility 

to cover both the primary model and the model with full-cancellation flexibility.  The 

primary model and the model with full-cancellation flexibility can be obtained by 

setting 0f = , and f s= , respectively.  The optimal cost-to-go function for this 

model is a straight-forward extension of the one for the primary model given in (2) 

and can be expressed as  

    ( )
( )

( ) ( ) ( ) ( ){ }, min , 1, 1 ,R
s u y f

J x y hx pu s u J x y u J x u T x uµ µ
+≥ ≥ −

= + + − + + − +      (13) 

The optimal policy for the model with partial order-cancellation flexibility fully con-

forms to the characterization provided for the primary model. 
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3.2.3 Model with Fixed Production and Order Cancellation Costs 

We now consider a setting under the existence of fixed costs: the fixed costs of acti-

vating an idle production channel (setup) and deactivating a busy channel (order 

cancellation). Let us define 1w and 2w  as the setup and cancellation costs, respective-

ly. Then, the optimal cost function can be expressed as 

( )
( ) ( ) ( ) ( )
( ) ( ){ }( ) ( )

1 2

0

,
, min

min 1, 1 , 1, ,s u
R

hx pu w u y w y u s u J x y
J x y

u J x u J x u T x u

µ

µ

+ +

≥ ≥

⎧ ⎫+ + − + − + −⎪ ⎪= ⎨ ⎬
+ + − + +⎪ ⎪⎩ ⎭

 (14) 

In (14), it is possible to choose any number of active servers, i.e., 0s u≥ ≥ , because 

we allow order cancellation. In addition to this flexibility and the fixed cost terms, 

compared to the cost function of the primary model , (14) has one more minimization 

operator. The new operator, ( ) ( ){ }min 1, 1 , 1,J x u J x u+ − + , ensures that the activa-

tion cost is not paid if it is optimal to continue keeping the channel active at which 

production of a job has just finished.  

When 1 0w =  and 2w  is very large (goes to infinity), (14) gives the same results 

with the primary model. And obviously if we set 1 2 0w w= = , we get the model with 

full-order-cancellation flexibility. For the other cases, the optimal production policy 

is not monotone in the number of operational channels, because 

( ) ( )( )1 2w u y w y u+ +− + −   is not a monotone function of y.  
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3.3 Average Cost Criterion  

This section provides the analysis of the primary model and its variations with partial 

and full order-cancellation flexibility under the infinite horizon expected average 

cost criterion. Let ( ),g x yπ  be the average cost function under policy π  starting 

from state ( ),x y . Then,   

( )
( )( , ) 0 0

1

( ( )) ( ( )) ( )
, lim

n

x y i i
i

E h X t p Y t dt c dN t
g x y

τ τπ π π π

π

τ τ
=

→∞

⎡ ⎤+ +⎢ ⎥⎣ ⎦=
∑∫ ∫

  (15) 

The following theorem characterizes the structural properties of the optimal control 

policy under the average cost criterion. 

Theorem 3.5. Consider the primary model and its variations with partial and full or-

der-cancellation flexibility. Under infinite horizon average cost criterion, for each of 

these models: 

i. There exists an optimal stationary policy and the optimal average cost is 

finite and independent from the initial state.  

ii. The optimal stationary policy possesses all the structural properties of the 

optimal policy under the discounted cost criterion.     

Theorem 3.5 implies that the optimal production and rationing policies that minimize 

expected average cost are also state-dependent base-stock and state-dependent thre-

shold type policies, respectively (see Corollary 3.1 and Theorem 3.2). Moreover, the 

optimal production policy turns into a bang-bang policy under full order cancellation 

flexibility as in the case of discounted cost criterion (see Theorem 3.4).     
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We prove Theorem 3.5 using the results outlined by Cavazos-Cadena and Sen-

nott (1992). In this work, the authors compare the conditions proposed by Borkar 

(1984), Borkar (1989), Weber and Stidham (1987), Cavazos-Cadena (1989), and 

Sennott (1989) for the existence of an average cost optimal stationary policy. All 

these works follow the approach of analyzing average cost models as “the limit of 

discounted models”. Here “the limit of discounted models” stands for the analysis of 

models as the discount rate goes to zero. Cavazos-Cadena and Sennott (1992) show 

that the conditions proposed by Sennott (1989) are the weakest, i.e., they are implied 

by the other condition sets. In the proof we opt to use the two necessary conditions 

by Cavazos-Cadena and Sennott that are equivalent to the larger set of conditions of 

Weber and Stidham (1987). These conditions, which are explicitly stated within the 

proof provided in the appendix, are the existence of a stationary policy that induces 

an irreducible and ergodic Markov chain with finite average cost, and the finiteness 

of the number of states for which stage cost is less than this average cost.      

3.4 Stationary Analysis  

3.4.1 Stationary Analysis under Base-stock 

In Sections 3.1 and 3.3 we show that the optimal production and stock allocation pol-

icies are state-dependent under both discounted and average cost criteria.  There is 

no fixed target inventory level and the rationing levels are dependent on the number 

of operational servers.  Yet, if we operate under a simple base-stock policy with a 

fixed target level S, the number of operational servers is known for each inventory 

level, i.e., ( ){ }min ,S x s+− .   In this case, the stock allocation decision is solely de-

termined by the inventory level.  In this section, we provide the average cost of the 

system for this setting.  
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    Figure 3.1 Birth-Death Process for ( ),S K Policy 

Let ( ),S K  denote the base-stock policy with rationing whose fixed target inven-

tory level is S and fixed threshold rationing levels are ( )1 2, ,..., nK K K K=  . Under 

( ),S K policy the inventory level, x, evolves according to a Birth-Death Process de-

picted in Figure 3.1.  Births correspond to production completions whose rate is 

( ){ }min ,S x sµ +− ; whereas deaths correspond to inventory depletion by demand 

whose rate is 
1

m

i
i

λ
=
∑ if 1m mK x K +< ≤  for { }1,...,m n∈ . Note that 1nK +  is set to S for 

convenience of notation.  The stationary probability that the inventory level is j 

where 1m mK j K +< ≤  for { }1,...,m n∈  can be expressed as 

( )
1

1

0
01

1 11

min ,

m r r

j
j

i
j j K K Kmm r

i i
i ir

S i s
P P

µ

λ λ
+

−

=
− −−

= ==

−
=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏

∑ ∑∏
    (16) 

where   
( )

1

1
1

0
0 11

1 11

min ,
1

m r r

j
j

S
i
j K K Kmm rj

i i
i ir

S i s
P

µ

λ λ
+

−
−

=
− −−

=

= ==

⎛ ⎞
⎜ ⎟−
⎜ ⎟= +⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∏
∑

∑ ∑∏
. 
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Hence, the expected inventory level, the fill rate for each class and the expected cost 

of the system are respectively 

[ ]
0

S

j
j

E X jP
=

= ∑ ,     (17) 

1

, 1
i

S

i j
j K

P i nβ
= +

= ≤ ≤∑      (18) 

( ) [ ] ( )
1

, 1
n

i i i
i

C S K hE X cλ β
=

= + −∑ .    (19) 

In order to find the optimal policy parameters, for each fixed S, we can first find the 

optimal K  vector that minimizes ( ),C S K  by performing an exhaustive search on 

each iK  (starting from 2i = ) over { }1,...,iK S− for 2 i n≤ ≤ . Note that Theorem 3.2 

states it is always optimal to satisfy a class 1 demand when there is stock on hand, 

therefore 1K  is set to 0. Let us denote ( )*K S  as the vector of optimal rationing levels 

for a fixed S.  Starting from 0S =  we can search for the optimal S, denoted as *S , 

that minimizes ( )( )*,C S K S . We suggest to perform an extensive search on S while 

keeping track of the first difference of the expected cost function, 

( )( ) ( )( )1, 1 ,C S K S C S K S+ + − , until ( )( )*,C S K S  is sufficiently larger than the 

current minimum and the first difference continues to remain positive over a large 

range.  Ha (1997a) also proposes a similar algorithm for the case where 1s =  and 

shows that the cost function is not convex in general.  The non-convexity result ap-

plies to our problem which is a generalization of Ha (1997a). 

 The discussion above outlines a general method for the analysis of the system 

under base-stock. We now consider a special case with infinitely many servers and 
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denote the optimal base-stock for this special case as *
infS .  This would provide us a 

bound on the number of servers beyond which the system is equivalent to a system 

with exogenous leadtimes, i.e., uncapacitated replenishment channel. If the number 

of available servers is greater or equal than *
infS , then the system never utilizes more 

than *
infS  servers because it is the optimal base-stock level for the problem with no 

constraint on s. We can also find an upper bound on the value of *
infS  by considering 

the ( ),0S  policy, i.e., the stock allocation is performed on FCFS basis. The optimal 

base-stock level for the ( ),0S  policy would obviously constitute an upper bound on 

*
infS , since we do not ration the inventory and the effective demand increases.  By 

letting 
1

n

i
i

λ λ
=

= ∑ , the performances measures for an ( ),0S policy can be expressed as  

( )

1

0
0

!
!

jS

j
j

SP
S j

µ
λ

−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

∑ , 01 Pβ = − , [ ]E X S λ β
µ

= −   (20) 

( ) ( )
1

,0 1
n

i i
i

C S h S cλ β β λ
µ =

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
∑     (21) 

 

Lemma 3.1.  ( ),0C S  is a convex function of S. 

Using Lemma 3.1, it is easy to find the optimal base-stock for the ( ),0S  policy, 

which is the smallest S that satisfies ( ) ( )1,0 ,0 0C S C S+ − ≥ .   It is also interesting 

that the cost function, which is not convex for finite number of servers, becomes 

convex when the number of servers tends to infinity.  The reader may also refer to 

Jaarsveld and Dekker (2009) for a discussion on different algorithms proposed in the 
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literature for finding *
infS and the corresponding optimal rationing levels.   We also 

would like to point out that in this setting with ample servers the provided analysis is 

valid for general service times as well due to Palm’s theorem (Takacs 1962, p.160).    

3.4.2 Stationary Analysis under Bang-Bang Policy 

In Section 3.2 (for the discounted cost objective) and Section 3.3 (for the average 

cost objective), we show that the optimal policy is of bang-bang type when order 

cancellations are allowed.  In this section, we provide stationary analysis for the op-

timal bang-bang policy.  Note that this policy is only possible when there is flexibili-

ty to cancel all outstanding orders. 

The bang-bang policy is characterized with a threshold inventory level x below 

which all servers are utilized.  Once this target level is reached, all the servers are 

shut down. Under this policy, the inventory level, x, corresponds to the number of 

customers in an M /M /1 / x queue where the arrival rate (the rate of production com-

pletion) is sµ  at levels and the departure rate (the rate of inventory depletion) is 

1

m

i
i

λ
=
∑ when 1m mK x K +< ≤  for { }1,...,m n∈ . Here, 1nK +  is set to x for convenience of 

notation.  The stationary probability of having j units of on-hand inventory where 

1m mK j K +< ≤  for { }1,...,m n∈ is 

( )
1 01

1 11

m r r

j

j j K K Kmm r

i i
i ir

s
P P

µ

λ λ
+− −−

= ==

=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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∑ ∑∏

    (22) 
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where    ( )
1

1

0 11

1 11

1
m r r

jx

j K K Kmm rj
i i

i ir

s
P

µ

λ λ
+

−

− −−
=

= ==

⎛ ⎞
⎜ ⎟
⎜ ⎟= +⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑
∑ ∑∏

. 

Hence, the expected inventory level, the fill rate for each class and the expected cost 

of the system are respectively 

[ ]
0

x

j
j

E X jP
=

= ∑ ,     (23) 

1

, 1
i

x

i j
j K

P i nβ
= +

= ≤ ≤∑      (24) 

( ) [ ] ( )
1

1
n

i i i
i

C x hE X cλ β
=

= + −∑ .    (25) 

In order to find the optimal policy parameters, the methodology described in Section 

3.4.1 is directly applicable. Furthermore, the system under bang-bang policy is 

equivalent to the single server system of Ha (1997a) when sµ  is set to be service 

rate.  This is due to the fact that for single server systems base-stock and bang-bang 

policy are equivalent.  
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3.5 Numerical Study 

In this section, we illustrate the results obtained in the previous sections, and quanti-

fy the impact of the system parameters on the performance of the optimal production 

and rationing policies. Under different scenarios, we compare the optimal production 

policies (for the primary model and its variations) with the base-stock policy, which 

is the one suggested in the literature for systems with a limited number of processing 

channels (see Zipkin (2000) pp. 261-263), and the optimal rationing policy with the 

first-come-first-served (FCFS) policy. We quantify the benefit of the optimal produc-

tion and rationing policies as the percent cost reduction obtained by operating the 

system under the optimal policies instead of the base-stock and FCFS policies. We 

also present a graph illustrating the impact of the cancellation flexibility index on the 

performance of the optimal production policy. We obtain the numerical results pre-

sented in this section via a value iteration algorithm coded in MATLAB.      

 In order to illustrate the properties of the optimal policies, let us consider a two-

class system with ( ) ( )1 2 1 2, , , , , , , 15, 1, 5, 1, 1, 1, 4, 1s h p c cµ λ λ = . For the discounted 

cost criterion with 0.6α = , Table 3.1 and Table 3.2 show the optimal production and 

rationing policies, respectively.  A continuous discount rate of α corresponds to a 

periodic discount factor of ( )
1 1

n n

i i
i i

s sν α ν λ µ α λ µ
= =

⎛ ⎞ ⎛ ⎞+ = + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ , once unifor-

mization is performed. Thus, the corresponding discount factor is 0.97. In the tables, 

rows indicate the on-hand inventory level (0 to 4) and columns indicate the current 

number of operational servers (0 to 15). In Table 3.1, the value corresponding to the 

state (x, y) is the optimal number of operational servers, ( ),u x y∗ , which is bounded 

below by y (the current number of operational servers) and above by s (the total 

number of available servers).  Table 3.1 is in agreement with Corollary 3.1, which 

states, if ( ),0y u x∗≤ , then ( ) ( ), ,0u x y u x∗ ∗= , otherwise ( ),u x y y∗ = . Moreover, 
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in parallel with Theorem 3.2, the optimal number of operational servers at state (x, 0) 

decreases by one or more units, for each unit increase in the on-hand inventory level, 

and then it remains constant at 0. It is also observed that the base-stock level for each 

inventory level, ( ), 0xS x u x∗= + ,  varies with the inventory level. The reader should 

also note that the region ( ) ( ){ }0, | , 0,0x y x S y u∗≤ ≤ is recurrent whereas all the oth-

er states in the state space are transient. Since it is optimal not to activate any of the 

servers beyond the target inventory level, which is the base-stock level at 0x = , even 

if the system starts to operate in the transient region it will definitely visit the recur-

rent region and never turns back.   

    Table 3.1 Optimal Production Policy under Discounted Cost Criterion 

    y   
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 10 10 10 10 10 10 10 10 10 10 10 11 12 13 14 15 

1 6 6 6 6 6 6 6 7 8 9 10 11 12 13 14 15 

2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

    Table 3.2 Optimal Rationing Policy For Class 2 under Discounted Cost Criterion 

    y   
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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 Theorem 3.2 states that it is always optimal to satisfy an arriving class 1 demand 

as long as there is inventory on-hand. Therefore, we only provide the optimal ration-

ing policy for class 2 (Table 3.2). A zero in the cell corresponding to state (x, y) indi-

cates that an arriving class 2 demand should be rejected at state (x, y), and a one indi-

cates that the demand should be satisfied. As can be easily observed from the table, 

the threshold inventory rationing levels for class 2, which are non-increasing in the 

number of operational servers, are: ( ) ( )2 20 1 3,x xK K= =  ( ) ( )2 22 ... 7 2x xK K= = = , 

( ) ( )2 28 ... 14 1x xK K= = = , and ( )2 15 0xK = . The rationing thresholds for the number 

of operational servers, which are decreasing in the on-hand inventory level until hit-

ting -1 as shown in Theorem 3.2, are:  ( ) ( ) ( )2 2 21 14, 2 7, 3 1y y yK K K= = = , and 

( )2 1yK x = −  for 4x ≥ .    

 For the same setting, Table 3.3 and Table 3.4 illustrate the optimal policies under 

average cost criterion, i.e., 0α = . As discussed in Section 3.3 the structure of the 

average cost optimal policies are the same with the ones exhibited in Tables 3.1 and 

3.2.  

    Table 3.3 Optimal Production Policy under Average Cost Criterion 

    y   
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 9 9 9 9 9 9 9 9 9 9 10 11 12 13 14 15 

1 6 6 6 6 6 6 6 7 8 9 10 11 12 13 14 15 

2 3 3 3 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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    Table 3.4 Optimal Rationing Policy For Class 2 under Average Cost Criterion 

    y   
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

 

 In this study we primarily consider the infinite-horizon discounted cost as the 

objective function. Therefore, in the remaining part of the section, we compare the 

performance of different policies under this criterion. Since the optimal discounted 

cost depends on the initial state, the reader should note that the comparisons will be 

for state ( )0,0 .   

 In order to assess the value of the optimal production policy relative to the op-

timal base-stock policy, we suppress the effect of rationing and consider a setting 

with a single customer class by letting ( ) ( ), , , , , 10, 2,0.2,0.2,10,0.6h p cλ µ α = . In 

this setting, Figure 3.2 exhibits the effect of the number of available production 

channels s, on the cost reduction. As seen from the figure, the optimal policy does 

not provide any cost reduction for small values of s. This is due to the fact that when 

available processing channels are scarce, both of the optimal production and the op-

timal base-stock policies, try to use all of the limited capacity. For 1s = , Ha (1997a) 

already showed that the optimal policy is base-stock. However, for moderate values 

of s, the benefit of the optimal policy over the base-stock policy increases rapidly 

with s, because the optimal policy has flexibility to adjust the number of operational 

servers at each inventory level. In contrast, the base-stock policy dictates a fixed pro-

duction target for all states. The percent cost reduction stabilizes after s exceeds the 
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optimal number of operational processing channels at state ( )0,0 , which is 23 for the 

considered setting. When 23s > , the system is equivalent to a system with exogen-

ous exponential leadtimes, i.e., uncapacitated replenishment channel, because it al-

ways operates with less than the available s processing channels and therefore addi-

tional channels do not provide further gain. 

 

 
  Figure 3.2 Optimal production policy vs. Base-stock policy:  
  Impact of number of available servers 

 

     When we allow cancellation of previously placed production orders, the system 

operates under full flexibility. For small values of s, all optimization models (base-

stock, primary, and models with order cancellation) try to use the whole capacity 

and, thereby, their performances are indistinguishable.  For larger values of s, the 

savings obtained by using the optimal policy under order cancellation instead of us-

ing the best base-stock policy, or the optimal policy for the primary model, is posi-

tive and grows until hundred-percent with s. This is due to the fact that the optimal 

policy under order cancellation is a bang-bang type policy (as discussed in the pre-
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vious section). As s tends to infinity, it is optimal to utilize all available servers at the 

time of each demand arrival in order to satisfy the arriving demand instantaneously 

(because the replenishment rate tends to infinity) and then to cancel all the other pro-

duction orders after the first unit is produced.           

 In Figure 3.3, we use the same setting with Figure 3.2 with the exception that s is 

fixed to 46 and the demand rate is a variable. The figure illustrates the impact of traf-

fic intensity on the cost reduction provided by the optimal policy. As the demand rate 

increases the benefit of the optimal policy over the best base-stock policy first in-

creases and then decreases all the way down to zero. In parallel with the discussion 

related to Figure 3.2, the percent cost reduction increases until the optimal number of 

operational servers (at zero inventory level) hits s, which is observed when demand 

rate is 28. As demand rate increases beyond 28, the optimal policy is unable to open 

more servers at lower inventory levels, which would be needed to realize its full po-

tential. Therefore, when the demand rate is sufficiently large, both policies start to 

behave in a similar manner by utilizing all the available capacity at most of the in-

ventory levels, and thereby the cost of the optimal policy converges to the cost of the 

base-stock policy. As discussed above, the optimal policy under the flexibility of the 

order cancellation, outperforms both the optimal policy of the primary model and the 

best base-stock policy for small to moderate demand rate values, and it also becomes 

identical with the other policies for high demand rates. For sufficiently small s val-

ues, one would not observe the region in which the cost reduction increases. Thus, 

for small values of s the optimal base-stock policy can be used as a good approxima-

tion of the optimal policy and this approximation performs better at high demand 

rates.  
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 Figure 3.3 Optimal production policy vs. Base-stock policy:  
 Impact of demand rate  

  

 Figures 3.2 and 3.3 illustrate the effect of the number of available servers and the 

arrival rate on cost reduction, respectively. Figure 3.4 investigates the joint effect of 

these two system parameters. For different s and traffic intensity values –traffic in-

tensity is denoted by ρ  and is equal to sλ µ –, the figure compares the optimal pro-

duction policy with the best base-stock policy. The arrival rate and the number of 

servers are scaled up proportionally such that ρ  remains constant while the number 

of servers increases. The figure exhibits the results for the case where µ  is fixed to 

unity and ( ) ( ), , , 0.2,0.2,10,0.6h p c α = . For all ρ  values, the percent cost reduction 

increases with s (and λ ). That is, the benefit of having additional production chan-

nels (illustrated in Figure 3.2) is much more pronounced than the detriment of heavi-

er traffic (illustrated in Figure 3.3) when traffic intensity is kept constant.  The main 

advantage of the optimal policy over the base-stock policy is its flexibility in adjust-

ing the number of operational servers at each inventory level and this flexibility in-

creases with the number of available servers. The figure also illustrates that, for 

small values of s, the cost reduction is more significant at lower ρ  values. Further-
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more, there exists an s value for each traffic intensity beyond which the cost reduc-

tion at this intensify is higher than the cost reductions achieved at lower intensities. 

When the traffic intensity is kept constant, the number of servers used specifies at 

what proportions of the traffic intensity, the system provides service, ie., it effective-

ly discretizes the control space.  The higher the number of available servers, the finer 

is the discretization.  This ability to adjust the instantaneous utilization more precise-

ly is especially instrumental when the system capacity is tight.   

 Figures 3.2 and 3.3 compare the performance of the optimal policies for the pri-

mary model ( 0f = ) and the model with full-cancellation flexibility ( f s= ) with the 

optimal base stock policy.  Figure 3.5, which uses the same setting with Figure 3.2 

with the exception that s is a variable, illustrates the impact of cancellation flexibility 

index. As stated in the discussion related to Figure 3.2, the benefit of order cancella-

tion under full flexibility increases with the number of available servers. Figure 3.5 

reveals that this is also true at any given cancellation flexibility index. It is obvious 

that more flexibility is better as manifested in the figure.  Moreover, as the flexibility 

index increases, the rate of increase in the percent cost reduction obtained via order 

cancellation decreases sharply all the way down to zero. Thus, a little flexibility goes 

a long way and captures most of the value that can be realized via order cancellation. 

For 26s = , while a 27% cost reduction can be obtained with full order cancellation 

flexibility, having the flexibility of cancelling only one of the previously placed or-

ders captures 67% of this potential gain. Moreover, at 6f = , 93% of the potential is 

captured.  As the number of available servers increase, more flexibility is necessary 

to secure most of the potential gain.  However, for all s values, having a little flex-

ibility --compared to full flexibility ( f s= )-- is sufficient to obtain a significant cost 

reduction as seen in the figure.  As the flexibility index increases, the optimal policy 

becomes jitterier, i.e., it frequently shuts down operating servers.  Due to this tra-
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deoff, a manufacturer is likely to opt for little flexibility that enables a significant 

reduction in operating costs while keeping the production relatively smooth. 

  

 
 Figure 3.4 Optimal production policy vs. Base-stock policy:  
        Constant traffic intensity 

 
 Figure 3.5 Value of Order Cancellation Flexibility  
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 For different demand mixes and number of available servers, Table 3.5 compares 

the optimal rationing policy with the FCFS policy. The comparison is performed un-

der the respective optimal production policies. The table assumes that there are three 

customer classes and ( ) ( )1 2 3 1 2 3, , , , , , , 30, 2,0.2,0.2,10,6, 2,0.6h p c c cλ λ λ µ α+ + = . 

The demand mix is specified using the class 1 and class 2 ratios which are 

( )1 1 1 2 3p λ λ λ λ= + +  and ( )2 2 1 2 3p λ λ λ λ= + + , respectively. 

   Table 3.5 Optimal Rationing Policy versus FCFS policy: impact of  demand mix 
    p2   
p1 

0.00 0.17 0.33 0.50 0.67 0.83 1.00     p2   
p1 

0.00 0.17 0.33 0.50 0.67 0.83 1.00 

0.00 0.00 15.55 23.40 22.29 14.96 6.97 0.00 0.00 0.00 3.99 10.27 13.30 13.22 9.61 0.00 

0.17 28.58 31.43 27.63 19.48 11.27 4.22  0.17 13.06 15.91 17.96 16.60 11.45 0.00  

0.33 37.38 31.60 22.98 14.85 8.05   0.33 21.70 21.68 19.36 12.97 0.79   

0.50 31.94 23.19 15.55 9.10    0.50 25.10 21.68 15.04 3.31    

0.67 19.82 12.97 7.16  

s = 6 
 0.67 23.96 16.67 3.73  

s = 16 
 

0.83 8.81 3.70    0.83 16.83 2.84    

1.00 0.00       1.00 0.00       

    p2   
p1 

0.00 0.17 0.33 0.50 0.67 0.83 1.00     p2   
p1 

0.00 0.17 0.33 0.50 0.67 0.83 1.00 

0.00 0.00 0.01 0.00 1.36 2.09 1.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 

0.17 0.00 1.82 3.15 3.10 1.97 0.00  0.17 0.00 0.00 0.00 0.52 0.55 0.00  

0.33 4.23 4.68 3.97 2.33 0.00   0.33 0.00 0.77 1.08 0.80 0.00   

0.50 6.00 4.72 2.83 0.00    0.50 1.64 1.61 1.03 0.00    

0.67 5.37 3.35 0.00  

s = 26 
 0.67 2.07 1.23 0.00  

s = 36 
 

0.83 3.81 0.00    0.83 1.44 0.00    

1.00 0.00       1.00 0.00       
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 The table exhibits that the cost reduction obtained via the optimal rationing poli-

cy is much more pronounced at smaller values of s, which in contrast with our ob-

servations for the production policy. When s is small, base-stock policy provides a 

good approximation for the optimal production policy and cost reduction is achieved 

mainly through rationing. On the other hand, when production capacity is not scarce, 

the optimal production policy utilizes a large number of servers at lower inventory 

levels, and thereby replenishes the inventory rapidly. In such settings, the optimal 

rationing policy reserves limited stock for the customers from more critical classes 

and satisfies arriving demands on a FCFS basis at most of the inventory levels. 

Hence, the stock allocation policy is not very critical at larger values of s.  Table 3 

also shows that when the demand rate of one of the classes is zero, i.e., a two-class 

system is under consideration, the gap between the performance of the FCFS policy 

and the optimal rationing policy is maximized when the demand rates of the remain-

ing classes are close to each other. This is an expected result since for a two-class 

system when one class dominates the other and the value of class differentiation di-

minishes. Moreover, the benefit of the optimal rationing policy over the FCFS policy 

is maximized when only the classes with the highest and lowest lost sales costs are 

present, i.e., when the medium class vanishes.  When the differential between the 

lost sales costs is significant, there is more value to be captured via class differentia-

tion. 

 We also provide Figure 3.6 in order to better illustrate the performance of optim-

al rationing policy for a two-class system. The two classes considered in the figure 

are the class 1 and class 3 of Table 3.5, i.e., the graph as-

sumes ( ) ( )1 2 1 2, , , , , , 30, 2,0.2,0.2,10, 2,0.6h p c cλ λ µ α+ = .  
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 Figure 3.6 Optimal rationing policy vs. FCFS Policy:  
 Impact of demand rate 

 

 
   Figure 3.7 Optimal production and Base-stock policies with or without rationing  
   Impact of total demand rate 
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 Figure 3.7 compares the performance of the production/inventory system under 

four different policy combinations related to production control and stock allocation 

over a range of values for the total demand rate. For production control, it considers 

the optimal base stock and the optimal production policy derived in this paper; whe-

reas, for stock allocation, it considers the FCFS and the optimal rationing policies.  

The results in the graph pertain to the case where class 1 ratio is fixed to 0.5 and 

( ) ( )1 2, , , , , , 56, 2,0.2,0.2,10, 2,0.6s h p c cµ α = . As expected, the combination of the 

optimal production policy with the optimal rationing policy provides the lowest cost 

at all total demand rates. The base stock policy with the FCFS policy yields the high-

est cost. For a given production policy, the performance gap between the FCFS and 

the optimal rationing policies grows with the total demand rate. Thus, the value of 

rationing increases with the traffic intensity. For a given stock allocation policy, as 

total demand rate increases the cost reduction obtained via the optimal production 

policy first increases and then goes down all the way to zero. Under high traffic, the 

optimal production policy behaves in a similar fashion to the optimal base stock pol-

icy. The figure shows that the costs of the optimal base stock and the optimal pro-

duction policies converge as the traffic intensity increases irrespective of the stock 

allocation policy. The figure also illustrates that, for small to moderate values of the 

total demand rate, the optimal production policy yields more significant cost savings 

compared to the optimal rationing policy. However, the opposite is true for higher 

values of the total demand rate.  
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3.6 Appendix 

Proof of Theorem 3.1: In order to prove that parts i and ii of Theorem 3.1 hold, it is 

enough to show that the optimization operator preserves these structural properties. 

Thence, suppose parts i and ii hold. We will first show that 

( ) ( ) ( )
( )

,0 , ,0
,

, ,0
u x y u x

u x y
y y u x

∗ ∗
∗

∗

⎧ ≤⎪= ⎨ >⎪⎩
. 

Now, for ( ,0)y u x∗≤ assume that ( , ) ( ,0)u x y u x∗ ∗≠ . Then, by the hypothesis and 

the assumption we have  

( ) ( )
( )
( )
( )

,0, ( ,0) , , ( ,0)

, , ( , )

,0, ( , )

,0, ( ,0)

f x u x f x y u x

f x y u x y

f x u x y

f x u x

∗ ∗

∗

∗

∗

=

>

=

>

 

 which is a contradiction. Therefore, ( , ) ( ,0)u x y u x∗ ∗= , for ( ,0)y u x∗≤ .  

In order to show that ( , )u x y y∗ = , for ( ,0)y u x∗> , we will first show that  

( , ( ,0) 1, ( ,0) 1) ( , ( ,0), ( ,0)) 0u uf x u x u x f x u x u x∗ ∗ ∗ ∗∆ + + ≥ ∆ >  holds where  

( ) ( )
( )

( , ( ,0) 1, ( ,0) 1)

, ( ,0) 1, ( ,0) 2 , ( ,0) 1, ( ,0) 1

( , ( ,0) 1) ( ,0) 1 ( 1, ( ,0))

( , ( ,0) 1)

u

x y

y
R

f x u x u x

f x u x u x f x u x u x

p J x u x u x J x u x

T x u x

µ µ

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

∆ + +

= + + − + +

= + ∆ + + + ∆ +

+ ∆ +

 

and 

( ) ( )( , ( ,0), ( ,0)) , ( ,0), ( ,0) 1 , ( ,0), ( ,0)

( , ( ,0)) ( ,0) ( 1, ( ,0) 1)
( , ( ,0))

u

x y

y
R

f x u x u x f x u x u x f x u x u x

p J x u x u x J x u x
T x u x
µ µ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗

∆ = + −

= + ∆ + ∆ + −

+ ∆
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We can immediately say that ( , ( ,0), ( ,0)) 0u f x u x u x∗ ∗∆ > , because 

( , ( ,0)) ( ,0)u x u x u x∗ ∗ ∗= as shown just above. Besides, 

( , ( ,0) 1) ( , ( ,0))x xJ x u x J x u xµ µ∗ ∗∆ + ≥ ∆ holds by property (8), 

( )( ,0) 1 ( 1, ( ,0)) ( ,0) ( 1, ( ,0) 1)y yu x J x u x u x J x u xµ µ∗ ∗ ∗ ∗+ ∆ + ≥ ∆ + − holds by the hy-

pothesis. For each { }2,...,i n∈ , ( , ( ,0) 1) ( , ( ,0))
i i

y y
R RT x u x T x u x∗ ∗∆ + ≥ ∆ is shown by 

considering all the possible cases: 

Case1. ( , ( ,0) 1) ( 1, ( ,0) 1)
i

y y
R iT x u x J x u xλ∗ ∗∆ + = ∆ − + , 

( , ( ,0)) ( 1, ( ,0))
i

y y
R iT x u x J x u xλ∗ ∗∆ = ∆ −  

Then,  ( , ( ,0) 1) ( , ( ,0))
i i

y y
R RT x u x T x u x∗ ∗∆ + ≥ ∆ holds by the hypothesis. 

Case2. ( , ( ,0) 1) ( 1, ( ,0) 1)
i

y y
R iT x u x J x u xλ∗ ∗∆ + = ∆ − + , and 

( )( , ( ,0)) ( 1, ( ,0) 1) ( , ( ,0))
i

y
R i iT x u x J x u x J x u x cλ∗ ∗ ∗∆ = − + − − . 

Then, ( , ( ,0)) ( , ( ,0))
i

y y
i RJ x u x T x u xλ ∗ ∗∆ ≥ ∆ by the definition of ( , ( ,0) 1)

iRT x u x∗ +  , 

and ( 1, ( ,0) 1) ( , ( ,0))y yJ x u x J x u x∗ ∗∆ − + ≥ ∆  by the property  

( 1, 1) ( , )y yv x y v x y∆ − + ≥ ∆ . Thus, ( , ( ,0) 1) ( , ( ,0))
i i

y y
R RT x u x T x u x∗ ∗∆ + ≥ ∆ . 

Case3. ( )( , ( ,0) 1) ( 1, ( ,0) 2) ( , ( ,0) 1)
i

y
R i iT x u x J x u x J x u x cλ∗ ∗ ∗∆ + = − + − + − , and   

( , ( ,0)) ( , ( ,0))
i

y y
R iT x u x J x u xλ∗ ∗∆ = ∆ . 

Then, ( , ( ,0) 1) ( 1, ( ,0) 1)
i

y y
R iT x u x J x u xλ∗ ∗∆ + ≥ ∆ − +  by the definition of 

( , ( ,0) 1)
iRT x u x∗ + , and ( 1, ( ,0) 1) ( , ( ,0))y yJ x u x J x u x∗ ∗∆ − + ≥ ∆  by the property  

( 1, 1) ( , )y yv x y v x y∆ − + ≥ ∆ . Thus, ( , ( ,0) 1) ( , ( ,0))
i i

y y
R RT x u x T x u x∗ ∗∆ + ≥ ∆ . 

Case4. ( , ( ,0) 1) ( , ( ,0) 1)
i

y y
R iT x u x J x u xλ∗ ∗∆ + = ∆ + , 

( , ( ,0)) ( , ( ,0))
i

y y
R iT x u x J x u xλ∗ ∗∆ = ∆  
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Then,  ( , ( ,0) 1) ( , ( ,0))
i i

y y
R RT x u x T x u x∗ ∗∆ + ≥ ∆ holds by the hypothesis. 

The results of above four cases imply that 

1 1

( , ( ,0) 1) ( , ( ,0) 1)
i i

n n
y y

R R
i i

T x u x T x u x∗ ∗

= =

∆ + ≥ ∆ +∑ ∑ , i.e., 

( , ( ,0) 1) ( , ( ,0))y y
R RT x u x T x u x∗ ∗∆ + ≥ ∆ . 

(Here it should be noted that following the steps of the above four cases, we can also 

conclude that ( , 1) ( , )y y
R RT x y T x y∆ + ≥ ∆ holds for any y. That is, ( , )RT x y is y-

convex.) 

Thus, ( , ( ,0) 1, ( ,0) 1) ( , ( ,0), ( ,0)) 0u uf x u x u x f x u x u x∗ ∗ ∗ ∗∆ + + ≥ ∆ > holds. Moreover, 

having ( , )J x u  is a convex-increasing function of u and ( , )RT x u  is u-convex implies 

that ( , , ) ( ) ( , ) ( 1, 1) ( , )Rf x y u hx pu s u J x y u J x u T x uµ µ= + + − + + − +  is a convex 

function of u. Therefore, for any ( ,0) 2u u x∗≥ + , 

( , ( ,0) 1, ) ( , ( ,0) 1, ( ,0) 1) 0u uf x u x u f x u x u x∗ ∗ ∗∆ + ≥ ∆ + + > , that is 

( )( ,0) 1 ( ,0) 1u u x u x∗ ∗ ∗+ = + . Following the same logic used in the proof of 

( )( ,0) 1 ( ,0) 1u u x u x∗ ∗ ∗+ = + , it is easy to show also that ( , )u x y y∗ = , for 

( ,0) 2y u x∗≥ + . Hence, we conclude that ( ) ( ) ( )
( )

,0 , ,0
,

, ,0
u x y u x

u x y
y y u x

∗ ∗
∗

∗

⎧ ≤⎪= ⎨ >⎪⎩
  

holds. Using this fact, we will show that the optimization operator preserves the 

properties stated in Theorem 3.1. Now, first consider 

( )( ) ( )( ) ( )( )
( )( ) ( )( )

, , 1 ,

, 1, , 1 , , ,

yT J x y T J x y T J x y

f x y u x y f x y u x y∗ ∗

∆ = + −

= + + −
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For ( ),0y u x∗< , ( ) ( ) ( ), , 1 ,0u x y u x y u x∗ ∗ ∗= + =  (as shown above) and 

( ) ( ), , 1J x y J x y= +  (by the hypothesis). Then, 

( )( ) ( )( ) ( )( ), , , , , , , 0yT J x y f x y u x y f x y u x y∗ ∗∆ = − = .  

For ( ),0y u x∗≥ , ( ) ( ), , , 1 1u x y y u x y y∗ ∗= + = +  and ( ) ( ), , 1J x y J x y< + . Then,  

( )( ) ( ) ( ) ( ) ( ), , 1, 1 , , , , 1 , ,yT J x y f x y y f x y y f x y y f x y y∆ = + + − > + − . Moreo-

ver, since ( ), ,f x y u is u-convex and  ( ),u x y y∗ = , ( ) ( ), , 1 , , 0f x y y f x y y+ − ≥ . 

Hence,  ( )( ), 0yT J x y∆ > .  

We will finally show that for ( ),0y u x∗≥ , ( )( ) ( )( ), 1 ,y yT J x y T J x y∆ + ≥ ∆ , i.e., 

( ),J x y is y-convex. For ( ),0y u x∗≥ , ( ),u x y y∗ = , ( ), 1 1u x y y∗ + = + and 

( ), 2 2u x y y∗ + = + .  

Therefore, 

( )( ) ( )( )
( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )

, 1 ,

2 , 1 ,

1, 1, 1 2 1, ,

, 1 ,

y y

y y

y y y y

y y
R R

T J x y T J x y

s y J x y J x y

y J x y J x y J x y J x y

T x y T x y

µ

µ µ

∆ + − ∆

= − + ∆ + − ∆

+ ∆ + − ∆ + − + ∆ + − ∆

+ ∆ + − ∆
 

Where ( )( ) ( ) ( )( )2 , 1 ,y ys y J x y J x yµ− + ∆ + − ∆ and 

( ) ( )( )1, 1, 1y yy J x y J x yµ ∆ + − ∆ + − are greater or equal to zero by the hypothesis, 

and ( ) ( )( )2 1, , 0y yJ x y J x yµ ∆ + − ∆ ≥  by the property (8) . Moreover, it is shown 

above that ( ) ( ), 1 , 0y y
R RT x y T x y∆ + − ∆ ≥ . Thus, we conclude that 

( )( ) ( )( ), 1 , 0y yT J x y T J x y∆ + − ∆ ≥ , i.e., ( ),J x y is y-convex.   

Proof of Corollary 3.1: 
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i. It is shown in the proof of Theorem 3.1 that ( ) ( ) ( )
( )

,0 , ,0
,

, ,0
u x y u x

u x y
y y u x

∗ ∗
∗

∗

⎧ ≤⎪= ⎨ >⎪⎩
  

holds. 

ii. Theorem 3.1 indicates that 

( ) ( ) ( ) ( ),0 ... , ( ,0) , ( ,0) 1 ... ,J x J x u x J x u x J x s∗ ∗= = < + < < . Using this result 

and part-i of Corollary 3.1, we can alternatively define the optimal number of op-

timal number of operational servers at state ( ),x y as the number of operational 

servers beyond which the optimal cost function starts to increase. 

iii. It is apparent from part-i of Corollary 3.1.  

Proof of Theorem 3.2: 

i. Immediate conclusion from properties (8) and (9).  

ii. By definition of ( , )u x y∗ , ( , ( , ) 1) ( , ( , )) 0J x u x y J x u x y∗ ∗+ − > . From property  

(8) we have 

( 1, ( , ) 1) ( 1, ( , )) ( , ( , ) 1) ( , ( , ))J x u x y J x u x y J x u x y J x u x y∗ ∗ ∗ ∗+ + − + ≥ + − . There-

fore, ( 1, ( , ) 1) ( 1, ( , )) 0J x u x y J x u x y∗ ∗+ + − + > . Thus, we  conclude that 

( 1, ) ( , )u x y u x y∗ ∗+ ≤ . 

iii.  It will be enough to show that the optimization operator preserves the property 

1( 1, )x J x y c∆ − ≥ − .  Suppose 1( 1, )x J x y c∆ − ≥ − . Now, for any u y≥ , 

( )

1

( , , ) ( 1, , ) ( 1, ) ( , 1) ( 1, )

( 1, )
i

x x x

n
x

R
i

f x y u f x y u h s J x y u J x u J x y

T x u

µ µ

=

− − = + ∆ − + ∆ − − ∆ −

+ ∆ −∑
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In the above equation 0h ≥ and ( )( , 1) ( 1, ) 0x xu J x u J x yµ ∆ − − ∆ − ≥  by properties 

(8) and (9). Moreover, by the fact that 
1

1
n

i
i

sµ λ
=

= − ∑ and the hypothesis, 

1
1

( 1, ) 1
n

x
i

i

s J x y cµ λ
=

⎛ ⎞∆ − ≥ − −⎜ ⎟
⎝ ⎠

∑ . Therefore, 

( ) 1
1

( 1, ) ( , 1) ( 1, ) 1
n

x x x
i

i

h s J x y u J x u J x y cµ µ λ
=

⎛ ⎞+ ∆ − + ∆ − − ∆ − ≥ − −⎜ ⎟
⎝ ⎠

∑ .  

By the hypothesis, 
1 1 1 1( 1, ) ( 2, )x x

RT x u J x u cλ λ∆ − = ∆ − ≥ − . For each { }2,...,i n∈ , 

1( 1, )
i

x
R iT x u cλ∆ − ≥ −  can be shown by considering all the possible cases: 

   Case1. ( , ) ( 1, ),  ( 1, ) ( 2, )
i iR i R iT x u J x u T x u J x uλ λ= − − = −  

 Then,  1( 1, ) ( ( 1, ) ( 2, ))
i

x
R i iT x u J x u J x u cλ λ∆ − = − − − ≥ −  by the hypothesis. 

   Case2. ( , ) ( 1, ),  ( 1, ) ( ( 1, ))
i iR i R i iT x u J x u T x u c J x uλ λ= − − = + −  

 Then,  1( 1, ) ( ( 1, ) ( 1, ) )
i

x
R i i i i iT x u J x u J x u c c cλ λ λ∆ − = − − − − = − ≥ −  be-

cause 1 ic c≥  

   Case3. ( , ) ( ( , )),  ( 1, ) ( ( 1, ))
i iR i i R i iT x y c J x u T x u c J x uλ λ= + − = + −  

 Then,  1( 1, ) ( ( , ) ( 1, ))
i

x
R i iT x u J x u J x u cλ λ∆ − = − − ≥ −  by the hypothesis. 

  Hence, we have 1
1 1

( 1, )
i

n n
x

R i
i i

T x u c λ
= =

∆ − ≥ −∑ ∑ , and so 1( , , ) ( 1, , )f x y u f x y u c− − ≥ − . 

Having 1( , , ) ( 1, , )f x y u f x y u c− − ≥ − , u y≥ , implies that 

1( , , ( , )) ( 1, , ( , ))f x y u x y f x y u x y c∗ ∗− − ≥ − .Since  

( 1, , ( , )) ( 1, , ( 1, ))f x y u x y f x y u x y∗ ∗− ≥ − − , we conclude that 

1( , , ( , )) ( 1, , ( 1, ))f x y u x y f x y u x y c∗ ∗− − − ≥ − , i.e., 

1( ( , )) ( ( 1, ))T J x y T J x y c− − ≥ − . Thus, 1( 1, )x J x y c∆ − ≥ − .  
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iv. For { }2,...,i n∈ , let us define { }( ) min : ( , )i x
x iK y x J x y c= ∆ ≥ − . Since 

1 2...n nc c c−− ≤ − ≤ −  and ( , )x J x y∆ is non-decreasing in x (from part-i), 

1 2( ) ( ) ... ( ) 0n n
x x xK y K y K y−≥ ≥ ≥ ≥  holds.  

From property (8), ( ( ), 1) ( ( ), )x i x i
x x iJ K y y J K y y c∆ + ≥ ∆ ≥ − ,  and since  

( , )x J x y∆ is non-decreasing in x (from part-i)  ( 1) ( )i i
x xK y K y+ ≤  holds. 

v.   For { }2,...,i n∈ , let us define { }( ) min : ( 1, ) 1i x
y iK x y J x y c= ∆ − ≥ − − . Having 

( ) 1i
yK x = −  implies that it is optimal to satisfy an arriving class i demand at all y 

levels when the on-hand inventory level is x. Since 1 2...n nc c c−− ≤ − ≤ −  and 

( , )x J x y∆ is non-decreasing in y), 1 2( ) ( ) ... ( ) 0n n
y y yK x K x K x−≥ ≥ ≥ ≥  holds.  

Property (9) implies that if  ( , 1)x
iJ x y c∆ + ≥ − , then ( 1, )x

iJ x y c∆ + ≥ − . That is, if 

( 1, ) ( , 1)x x
iJ x y J x y c∆ + ≥ ∆ + ≥ −  and ( , )x

iJ x y c∆ < −  then ( ) 1i
yK x y= +  and 

( 1)i
yK x y+ < . Therefore, we can conclude that ( 1) ( )i i

y yK x K x+ < . 

Proof of Theorem 3: 

Suppose ( , 1) ( , )x xJ x y J x y∆ + ≥ ∆  and ( , ) ( 1, 1)x xJ x y J x y∆ ≥ ∆ − + . We will show 

that the optimization operator T preserves this structure.  

We will first show that  

( , 1, 1) ( , , )x xf x y y f x y y∆ + + ≥ ∆     (26) 

 ( , , ) ( 1, 1, 1)x xf x y y f x y y∆ ≥ ∆ − + +     (27) 

then ( ) ( )( , 1) ( , )x xT J x y T J x y∆ + ≥ ∆ =  
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( 1, ( 1, 1), ( 1, 1)) ( , ( , 1), ( , 1))
( 1, ( 1, ), ( 1, )) ( , ( , ), ( , ))

f x u x y u x y f x u x y u x y
f x u x y u x y f x u x y u x y

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

+ + + + + − + +

≥ + + + −
  (28) 

and ( ) ( )( , ) ( 1, 1)x xT J x y T J x y∆ ≥ ∆ − + =  

( 1, ( 1, ), ( 1, )) ( , ( , ), ( , ))
( , ( , 1), ( , 1)) ( 1, ( 1, 1), ( 1, 1))

f x u x y u x y f x u x y u x y
f x u x y u x y f x u x y u x y

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

+ + + −

≥ + + − − − + − +
 (29) 

From the hypothesis and part-iii of Theorem2; 

( )
( )

( )

1

2 2

1

2 2

( , 1, 1) 1 ( , 1)

1 ( 1, ) ( 1, 1)

( 1, 1) ( , 1)

1 ( , ) ( 1, 1)

( 1, 1) ( 1, )

( 1, 1) ( , 1)

i i

i i

x x

x x

n n

R R
i i

x x

x x

n n

R R
i i

f x y y h s y J x y

y J x y J x y

T x y T x y

h s y J x y y J x y

J x y J x y

T x y T x y

µ

µ λ

µ µ

µ λ

= =

= =

∆ + + = + − − ∆ +

+ + ∆ + + ∆ − +

+ + + − +

≥ + − − ∆ + ∆ + −

+ ∆ + − + ∆ −

+ + + − +

∑ ∑

∑ ∑

 

( )

( )
( )

1

2 2

1

2

( , ) ( 1, 1)

( 1, 1) ( 1, )

( 1, 1) ( , 1) ( 1, 1) ( , )

( , ) ( 1, 1)

( 1, 1) ( 1, )

( 1, 1) ( , 1)

i i

i i

x x

x x

n n
x x

R R
i i

x x

x x

n

R R
i

h s y J x y y J x y

J x y J x y

T x y T x y J x y J x y

h s y J x y y J x y

J x y J x y

T x y T x y

µ µ

µ λ

µ

µ µ

µ λ

= =

=

= + − ∆ + ∆ + −

+ ∆ + − + ∆ −

+ + + − + + ∆ + − − ∆

≥ + − ∆ + ∆ + −

+ ∆ + − + ∆ −

+ + + − +

∑ ∑

∑
2

n

i=
∑

 

In order to conclude that the right hand side of the above inequality is greater 

than ( , , )x f x y y∆ , we need to show that 

{ } ( ) ( ) ( ) ( )2,..., , 1, 1 , 1 1, , ,
i i i iR R R Ri n T x y T x y T x y T x y∀ ∈ + + − + ≥ + −  



Chapter 3 M/M/s Model With Multiple Demand Classes and Lost Sales 
 

 63

i.e., ( ) ( ), 1 ,
i i

x x
R RT x y T x y∆ + ≥ ∆ . We will consider three cases in order to show that 

the inequality holds.  

 Case1. ( 1) 1i
xK y x+ ≤ − . Then, ( ), 1 ( 1, 1)

i

x x
R iT x y J x yλ∆ + = ∆ − +  

i. ( ) 1i
xK y x≤ −   

( ), ( 1, )
i

x x
R iT x y J x yλ∆ = ∆ − . Thus, ( ) ( ), 1 ,

i i

x x
R RT x y T x y∆ + ≥ ∆ .  

ii. ( )i
xK y x=  

( ) ( ) ( )( ), , ,
i

x
R i i i iT x y J x y c J x y cλ λ∆ = − − = − .  

( 1, 1) iJ x y c− + ≥ − because ( 1) 1xK y x+ ≤ − . Thus, 

( ) ( ), 1 ,
i i

x x
R RT x y T x y∆ + ≥ ∆ . 

iii. ( ) 1i
xK y x≥ +  

This case is not possible, because the hypothesis 

( , ) ( 1, 1)x xJ x y J x y∆ ≥ ∆ − +  implies that if ( 1, 1)x
iJ x y c∆ − + ≥ − , then 

( , )x
iJ x y c∆ ≥ − . In words, if we satisfy an arriving class i demand 

when there are x units of inventory and (y+1) active servers, we 

should satisfy an arriving class i demand when there are (x+1) units 

of inventory and y active servers. 

Therefore, ( )i
xK y x≤  whenever ( 1) 1i

xK y x+ ≤ − . 

Case2. ( 1)i
xK y x+ = . Then, 

( ) ( ) ( )( ), 1 , 1 , 1
i

x
R i i i iT x y J x y c J x y cλ λ∆ + = + − − + = −  

i. ( )i
xK y x=   

( ) ( ) ( )( ), , ,
i

x
R i i i iT x y J x y c J x y cλ λ∆ = − − = − . Thus, 

( ) ( ), 1 ,
i i

x x
R RT x y T x y∆ + = ∆ .  
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ii. ( ) 1i
xK y x= +  

( ) ( ) ( )( ) ( ), 1, , ,
i

x x
R i i i iT x y c J x y c J x y J x yλ λ∆ = + + − − = ∆ .  

And, ( ),x
i i ic J x yλ λ− ≥ ∆  because ( ) 1i

xK y x= + . Thus, 

( ) ( ), 1 ,
i i

x x
R RT x y T x y∆ + ≥ ∆ . 

Case3. ( 1) 1i
xK y x+ ≥ + . 

Then, 

( ) ( ) ( )( ) ( ), 1 1, 1 , 1 , 1
i

x x
R i i i iT x y c J x y c J x y J x yλ λ∆ + = + + + − − + = ∆ + .  

Since we have ( 1) ( )i i
x xK y K y+ ≤ , it is true that  

( ) ( ) ( )( ) ( ), 1, , ,
i

x x
R i i i iT x y c J x y c J x y J x yλ λ∆ = + + − − = ∆ . Then by the 

hypothesis ( ) ( ), 1 ,
i i

x x
R RT x y T x y∆ + ≥ ∆ . 

We have just shown that (14) holds. Showing (15) is equivalent to show that 

( 1, , ) ( , 1, 1) ( , , ) ( 1, 1, 1)f x y y f x y y f x y y f x y y+ − + + ≥ − − + + , where 

( ) ( )
( ) ( )1

2 2

( 1, , ) ( , 1, 1)
1 ( 1, ) ( , 1)

( 2, 1) ( 1, ) ( , ) ( 1, 1)

( 1, ) ( , 1)
i i

n n

R R
i i

f x y y f x y y
h p s y J x y J x y

y J x y J x y J x y J x y

T x y T x y

µ

µ λ

= =

+ − + +

= − + − − + − +

+ + − − + + − − +

+ + − +∑ ∑
and 

( ) ( )
( ) ( )1

2 2

( , , ) ( 1, 1, 1)
1 ( , ) ( 1, 1)

( 1, 1) ( , ) ( 1, ) ( 2, 1)

( , ) ( 1, 1)
i i

n n

R R
i i

f x y y f x y y
h p s y J x y J x y

y J x y J x y J x y J x y

T x y T x y

µ

µ λ

= =

− − + +

= − + − − − − +

+ + − − + − − − +

+ − − +∑ ∑

 

Using the hypothesis it is easy to show that the terms of the right hand side of the 

first equation are greater or equal to the respective terms of the right hand side of the 
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second equation expect the terms related to the rationing decision for each class other 

than class 1. Therefore, we need to show that 

{ }2,..., , ( , ) ( 1, 1)
i i

x x
R Ri n T x y T x y∀ ∈ ∆ ≥ ∆ − + . 

 Case1. ( 1) 2i
xK y x+ ≤ − . Then, ( )1, 1 ( 2, 1)

i

x x
R iT x y J x yλ∆ − + = ∆ − +  

 In this case we have ( ), ( 1, )
i

x x
R iT x y J x yλ∆ = ∆ − . Thus, by the hypothesis  

 ( , ) ( 1, 1)
i i

x x
R RT x y T x y∆ ≥ ∆ − +  

 Case2. ( 1) 1i
xK y x+ = − . Then,        

  ( ) ( ) ( )( )1, 1 1, 1 1, 1
i

x
R i i i iT x y J x y c J x y cλ λ∆ − + = − + − − − + = −  

i. ( ) 1i
xK y x= −   

( ), ( 1, )
i

x x
R iT x y J x yλ∆ = ∆ − , and ( 1, )x

iJ x y c∆ − ≥ −  since 

( ) 1i
xK y x= − . So, ( , ) ( 1, 1)

i i

x x
R RT x y T x y∆ ≥ ∆ − + .   

ii. ( )i
xK y x=  

( ) ( ) ( )( ), , , ( 1, 1)
i i

x x
R i i i i RT x y J x y c J x y c T x yλ λ∆ = − − = − = ∆ − +  

 Case3. ( 1)i
xK y x+ ≥ . Then,     

( ) ( ) ( )( ) ( )1, 1 , 1 1, 1 1, 1
i

x x
R i i i iT x y c J x y c J x y J x yλ λ∆ − + = + + − − − + = ∆ − +  

i. ( )i
xK y x=  (possible if ( 1)i

xK y x+ = )  

( ),
i

x
R i iT x y cλ∆ = − , and ( 1, 1)x

iJ x y c∆ − + ≤ − because we do not sa-

tisfy class 2 demand at state ( ), 1x y + . Thus, 

( , ) ( 1, 1)
i i

x x
R RT x y T x y∆ ≥ ∆ − + .   

ii. ( ) 1i
xK y x≥ +  
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( ) ( ), ,
i

x x
R iT x y J x yλ∆ = ∆ , and by the hypothesis 

( ) ( ), 1, 1x xJ x y J x y∆ ≥ ∆ − + . Thus, ( , ) ( 1, 1)
i i

x x
R RT x y T x y∆ ≥ ∆ − +  

We have also shown (15). Now, we need to show that (16) holds in order to com-

plete the proof of part-i of the theorem. 

From Corollary3.1 and part-ii of Theorem 3.2, we have  

 ( ) ( ) ( ), 1 , 1,u x y u x y u x y∗ ∗ ∗+ ≥ ≥ +   

 ( ) ( ) ( ), 1 1, 1 1,u x y u x y u x y∗ ∗ ∗+ ≥ + + ≥ +  

  ( ) ( ), 1 , 1u x y u x y∗ ∗+ ≤ +  and ( ) ( )1, 1 1, 1u x y u x y∗ ∗+ + ≤ + +  

Case1. ( ) ( ) ( ) ( ), 1 1, 1 , 1,u x y u x y u x y u x y∗ ∗ ∗ ∗+ ≥ + + ≥ ≥ +  

i. ( ) ( ) ( ) ( )1, , 1, 1 , 1u x y u x y u x y u x y∗ ∗ ∗ ∗+ = = + + = +  

Trivial case. 

ii. ( ) ( ) ( ) ( )1, , 1, 1 , 1 1u x y u x y u x y u x y∗ ∗ ∗ ∗+ = = + + = + −  

Since ( ) ( )1, 1, 1u x y u x y∗ ∗+ = + + , we should have ( )1,0 1u x y∗ + ≥ +  and 

so ( ),0 1u x y∗ ≥ + . Therefore, ( ) ( ), , 1u x y u x y∗ ∗= +  should hold. Thus, this 

case is not possible. 

iii. ( ) ( ) ( ) ( )1, , 1, 1 1 , 1 1u x y u x y u x y u x y∗ ∗ ∗ ∗+ = = + + − = + −  

Then,  ( ) ( )1,0 ,0u x u x y∗ ∗+ ≤ ≤ . So, ( ) ( )1, ,u x y u x y y∗ ∗+ = =  and 

( ) ( )1, 1 , 1 1u x y u x y y∗ ∗+ + = + = + . Thus, (16) holds because (14) holds. 

iv. ( ) ( ) ( ) ( )1, , 1 1, 1 1 , 1 1u x y u x y u x y u x y∗ ∗ ∗ ∗+ = − = + + − = + −  
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Then, ( )1,0u x y∗ + ≤ , ( )1,y x y y∗ + = . And, 

( ) ( ) ( ), 1, 1 , 1 1u x y u x y u x y y∗ ∗ ∗= + + = + = + . 

Therefore, the left hand side of (16) becomes 

( ) ( )1, 1, 1 , 1, 1f x y y f x y y+ + + − + +  and the right hand side becomes 

( ) ( )1, , , 1, 1f x y y f x y y+ − + + . Since ( )1,0u x y∗ + ≤ , due to Theorem 3.1 

we have ( ) ( )1, 1, 1 1, ,f x y y f x y y+ + + ≥ +  and (16) holds. 

Case2. ( ) ( ) ( ) ( ), 1 , 1, 1 1,u x y u x y u x y u x y∗ ∗ ∗ ∗+ ≥ ≥ + + ≥ +  

i. ( ) ( )1, 1, 1u x y u x y∗ ∗+ = + +  and ( ) ( ), , 1u x y u x y∗ ∗= +  

Trivial case. 

ii. ( ) ( )1, 1, 1 1u x y u x y∗ ∗+ = + + −  and ( ) ( ), , 1 1u x y u x y∗ ∗= + −  

In this case (16) holds due to (14). 

iii. ( ) ( )1, 1, 1u x y u x y∗ ∗+ = + +  and ( ) ( ), , 1 1u x y u x y∗ ∗= + −  

Then, ( ) ( )1, 1, 1u x y u x y∗ ∗+ = + +  implies that 

( ) ( ),0 1,0 1u x u x y∗ ∗≥ + ≥ + and so ( ) ( ), , 1u x y u x y∗ ∗= + . Thus, this case is 

not possible. 

iv. ( ) ( )1, 1, 1 1u x y u x y∗ ∗+ = + + −  and ( ) ( ), , 1u x y u x y∗ ∗= +   

Then, ( )1,0u x y∗ + ≤ , and so ( )1,u x y y∗ + = , ( )1, 1 1u x y y∗ + + = + . 

Therefore, the left hand side of (16) becomes 

( ) ( ) ( )( )1, 1, 1 , ,0 , ,0f x y y f x u x u x∗ ∗+ + + −  and the right hand side be-
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comes ( ) ( ) ( )( )1, , , ,0 , ,0f x y y f x u x u x∗ ∗+ − . Since ( )1,0u x y∗ + ≤ , due to 

Theorem 3.1 we have ( ) ( )1, 1, 1 1, ,f x y y f x y y+ + + ≥ +  and (16) holds. 

Finally we will prove (17) where 

( )

( )

1

( , ) ( 1, , ( 1, )) ( , , ( , ))

( 1, , ( 1, )) ( , , ( 1, ))

( 1, ) ( , ) ( 1, ) ( 1, ( 1, ) 1)

( , ( 1, ))
i

x

x x

n
x

R
i

T J x y f x y u x y f x y u x y

f x y u x y f x y u x y

h s u x y J x y u x y J x u x y

T x u x y

µ µ

∗ ∗

∗ ∗

∗ ∗ ∗

∗

=

∆ = + + −

≥ + + − +

= + − + ∆ + + ∆ + + −

+ ∆ +∑

and 

( )

( )

1

( 1, 1) ( , 1, ( , 1)) ( 1, 1, ( 1, 1))

( , 1, ( 1, 1)) ( 1, 1, ( 1, 1))

( 1, 1) ( 1, ) ( 1, 1) ( , ( 1, 1) 1)

( 1, ( 1, 1))
i

x

x x

n
x

R
i

T J x y f x y u x y f x y u x y

f x y u x y f x y u x y

h s u x y J x y u x y J x u x y

T x u x y

µ µ

∗ ∗

∗ ∗

∗ ∗ ∗

∗

=

∆ − + = + + − − + − +

≤ + − + − − + − +

= + − − + ∆ − + − + ∆ − + −

+ ∆ − − +∑

 

We multiply the second inequality by -1 and add to the first one. Then,  

( ) ( )
( ) ( )

1 1

( , ) ( 1, 1)

( 1, ) ( , ) ( 1, 1) ( 1, )

( 1, ) ( 1, ( 1, ) 1) ( 1, 1) ( , ( 1, 1) 1)

( , ( 1, )) ( 1, ( 1, 1))
i i

x x

x x

x x

n n
x x

R R
i i

T J x y T J x y

s u x y J x y s u x y J x y

u x y J x u x y u x y J x u x y

T x u x y T x u x y

µ µ

µ µ

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

= =

∆ − ∆ − +

≥ − + ∆ − − − + ∆ −

+ + ∆ + + − − − + ∆ − + −

+ ∆ + − ∆ − − +∑ ∑

For { }1, 2,...,i n∈ , we have 

( 1, ( 1, 1)) ( 1, ( 1, 1))
i i

x x
R RT J x u x y T J x u x y∗ ∗∆ − − + = ∆ − + + due to part-i of Theorem 

3.1 and part-iii of Corollary 3.1.  
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 Therefore, by the hypothesis 

1
2

1
2

( 1, ( 1, )) ( , ( 1, ))
0

( 2, ( 1, 1)) ( 1, ( 1, 1))

i

i

n
x x

i R
i

n
x x

i R
i

J x u x y T J x u x y

J x u x y T J x u x y

λ λ

λ λ

∗ ∗

=

∗ ∗

=

⎛ ⎞∆ − + + ∆ +⎜ ⎟
⎜ ⎟ ≥
⎜ ⎟⎛ ⎞− ∆ − − + + ∆ − − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑

∑
.  

Moreover, 

( )
( ) ( )

( 1, ) ( , )

( 1, 1) ( , ) ( 1, 1) ( 1, ) ( , )

x

x x

s u x y J x y

s u x y J x y u x y u x y J x y

µ

µ µ

∗

∗ ∗ ∗

− + ∆

= − − + ∆ + − + − + ∆
 

and ( ) ( )( 1, 1) ( , ) ( 1, ) 0x xs u x y J x y J x yµ∗− − + ∆ − ∆ − ≥ . The remaining terms of the 

right hand side is greater or equal to the zero which can be shown by applying the 

operator technique once more. 

Proof of Theorem 3.4: 

i. If ( ) 0p J xµ+ ∆ < , then it is optimal to have ( )u x s∗ =  in order to minimize 

cost function as much as possible. Otherwise, ( )u x∗ should be zero because 

having a positive number of operational servers would inflate the cost.  

ii. Under maximization objective, Cil et al. (2009) show that both the production 

and the rationing operators are concave. It is easy to adapt their results to our 

case (where the value functions are cost-to-go functions) and show that ( )J x is 

a convex function of x. 

iii. Since ( )J x∆ is non-decreasing (from part ii), there exists a threshold rationing 

inventory level { }: min : ( )i
iK x J x c= ∆ ≥ −    
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iv. For a specific value of L, Cil et al. (2009) show that ( ) ( )1v x v x L− − ≥  where 

( )v x is the reward function. Letting ( ) ( )J x v x= −  and 1L c= −  is sufficient to 

show that  1( 1)J x c∆ − ≥ − . 

v. Immediately follows from parts i and ii. 

Proof of Lemma 3.1:  

We have ( ) ( )

1

0
0

!
!

jS

j

SP S
S j

µ
λ

−

=

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∑ , 

( ) ( ) ( ) ( )0
1

,0 1,0 ,0
n

i i
i

hC S C S C S h c P Sλ λ
µ =

⎛ ⎞
∆ = + − = + + ∆⎜ ⎟

⎝ ⎠
∑ , and 

( ) ( ) ( ) ( )2 2
0

1

,0 1,0 ,0
n

i i
i

hC S C S C S c P Sλ λ
µ =

⎛ ⎞
∆ = ∆ + − ∆ = + ∆⎜ ⎟

⎝ ⎠
∑ . To conclude that 

( )2 ,0 0C S∆ >  we first need to compute ( )0P S∆ and then ( )2
0P S∆ : 

( ) ( ) ( )
( )

( ) ( )

0 0 0 1

0 0

1 11
1 ! !

1 ! !

j jS S

j j

P S P S P S
S S

S j S j
µ µ
λ λ

+

= =

∆ = + − = −
+ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠
∑ ∑

 

( )
( )

( ) ( )

( )
( ) ( )

1

0

1

0 0

1 !! 1 !
! 1 !

1 ! !
1 ! !

j SS

j

j jS S

j j

SS S
S j S j

S S
S j S j

µ µ
λ λ

µ µ
λ λ

+

=

+

= =

⎛ ⎞+ ⎛ ⎞ ⎛ ⎞− − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− + − ⎝ ⎠ ⎝ ⎠⎝ ⎠=
⎛ ⎞⎛ ⎞+ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑

∑ ∑
. That is, 
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( ) ( )
( )( )

( )( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

1

0
0 1

0 0

1

0

1

0

1 !! 1 !
! 1 !

1 ! !
1 ! !

!
!

1 ! !
1 ! !

j SS

j

j jS S

j j

jS

j
j jS

j j

S SS S
S j S j S j

P S
S S

S j S j

S j
S j

S S
S j S j

µ µ
λ λ

µ µ
λ λ

µ
λ

µ µ
λ λ

+

=

+

= =

+

=

+

= =

⎛ ⎞+ ⎛ ⎞ ⎛ ⎞− − +⎜ ⎟⎜ ⎟ ⎜ ⎟− + − − ⎝ ⎠ ⎝ ⎠⎝ ⎠∆ =
⎛ ⎞⎛ ⎞+ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞− ⎜ ⎟− ⎝ ⎠=
⎛ ⎞+ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

∑ ∑

∑

∑
0

S⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑

 

( ) ( ) ( )

( )
( )

( ) ( )

( )
( ) ( ) ( )

( )
( )

( )
( )

2
0 0 0

2

0 0

2 1

0 0

2

0

1

1 !!
! 1 !

2 ! !
2 ! !

2 ! 1 !
2 ! 1 !

j jS S

j j

j jS S

j j

jS

j

P S P S P S

SS j
S j S j

S S j
S j S j

S S
S j S j

µ µ
λ λ

µ µ
λ λ

µ µ
λ λ

+

= =

+ +

= =

+

=

∆ = ∆ + − ∆

⎛ ⎞⎛ ⎞+⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− + −⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞+ ⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠=

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

∑ ( )
1

0 0

!
!

j jS S

j j

S
S j

µ
λ

+

= =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑

 

( )
( )

( )
( ) ( )

( )
( )

( ) ( )
( )

( )

( )
( )

21

0 0

1 2 1

0 0

2

0

1 !!
2 !

! 1 !

2 ! !
2 ! 2 !

2 ! !

2 !
2 !

j j SS S

j j

j S S jS S

j j

jS

j

SS
j S

S j S j

S S
S S j

S j S j

S
S j

µ µ µ
λ λ λ

µ µ µ µ
λ λ λ λ

µ
λ

++

= =

+ + +

= =

+

=

+
− − +

− + −

+
− + + + + −

+ − −

+

+ −

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠=
⎛ ⎞⎛ ⎞
⎜ ⎜ ⎟

⎝ ⎠⎝

∑ ∑

∑ ∑

∑ ( )
( ) ( )

1

0 0

1 ! !
1 ! !

j jS S

j j

S S
S j S j

µ µ
λ λ

+

= =

+

+ − −

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎠⎝ ⎠⎝ ⎠
∑ ∑
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( )

( )( )
( )( )( )

( )
( ) ( )

( )
( )

( )
( )( ) ( )

( ) ( )
( ) ( ) ( )

1

0 0

1

0 0

2 1

0

2
0

2 1 ! !
2 1 ! !

! 1 !
! 1 !

! !
2 !

!

j jS S

j j

j jS S

j j

S jS

j

S S S S
j

S j S j S j S j

S S S
j

S j S j S j

S S
S j

S j S

P S

µ µ
λ λ

µ µ
λ λ

µ µ
λ λ

+

= =

+

= =

+ +

=

⎡⎛ ⎞⎛ ⎞+ + ⎛ ⎞ ⎛ ⎞⎢⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ − + − − −⎝ ⎠ ⎝ ⎠⎢⎝ ⎠⎝ ⎠⎣
⎤⎛ ⎞⎛ ⎞+⎛ ⎞ ⎛ ⎞− ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− + − −⎝ ⎠ ⎝ ⎠ ⎥⎝ ⎠⎝ ⎠⎦

⎛ ⎞ ⎛ ⎞+ + −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∆ =

∑ ∑

∑ ∑

∑ ( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

0

1 1

0

2 1

0 0 0

!

!
2 !

!

2 ! 1 ! !
2 ! 1 ! !

jS

j

S jS

j

j j jS S S

j j j

j

S
S j

S j

S S S
S j S j S j

µ
λ

µ µ
λ λ

µ µ µ
λ λ λ

=

+ +

=

+ +

= = =

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞⎛ ⎞⎛ ⎞+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ − + − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∑

∑

∑ ∑ ∑
 

It can be easily concluded that all the terms in brackets are positive, i.e. 

( )2
0 0P S∆ > . Thus, ( ),0C S is a convex function of S .  

Proof of Theorem 3.5: 

We provide the proof only for the primary model, because the same steps are appli-

cable for the proof of the models with order-cancellation flexibility.  

In order to prove the theorem we will first show that the following two condi-

tions hold (see Cavazos-Cadena and Sennott (1992)): 

1) there exists a stationary policy π  inducing an irreducible and ergodic Mar-

kov chain with finite average cost gπ  

2) the set ( ) { }{ }, | there exists a decision ,..., such thatG x y u y s hx pu gπ= ∈ + <  

is finite. 

Let us consider ( ),S K policy described in Section 3.4.1 where S, which is finite, de-

notes the fixed target inventory level and ( )1 2, ,..., nK K K K= denotes the fixed thre-
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shold rationing levels. The corresponding continuous time process is depicted in 

Figure 1. If we apply the uniformization technique and obtain an equivalent discrete 

time model, there will be self-transitions and the chain will be irreducible positive 

recurrent and aperiodic with the stationary distribution given in (16). Moreover, the 

average cost of ( ),S K policy given in (19) is finite for finite system parameters. 

Hence, condition 1 holds. It is easy to verify that condition 2 holds since the stage 

cost ( )hx pu+  is increasing in x and u. Therefore, the cardinality of the set G is fi-

nite.  

Under the above conditions, Weber and Stidham (1987) show that the optimal 

average cost g∗ , which is the same for all initial states, and a function ( ),r x y  satisfy 

Bellman’s equation for the average cost problem (w.l.o.g assume 0x > ):  

( )
( ) ( ) ( )

( ) ( ){ }
1

, 1, 1
, min

min 1, , ,
n

s u y
i i

i

hx pu s u r x y u r x u
g r x y

r x u c r x u

µ µ

λ
∗

≥ ≥

=

+ + − + + −⎧ ⎫
⎪ ⎪+ = ⎨ ⎬
+ − +⎪ ⎪

⎩ ⎭
∑

 

The minimizer of the right-hand side is an optimal stationary policy (see page 386 of 

Bertsekas (2000)). Hence, the structural properties of the optimal policy under aver-

age cost criterion are determined through ( ),r x y just in the same way as the proper-

ties of discounted cost optimal policy are determined through ( ),J x y (see (2) and (3)

). Thus, the optimal stationary policy under average cost criterion possesses all the 

properties of the optimal policy under discounted cost criterion.  

 



 

Chapter 4 

M/Ek/s Model with multiple-demand 
classes and lost sales 
 

 

In this chapter we study the Erlangian-servers extension of the M /M /s model.  This 

extension also allows us to derive conclusions for the systems with deterministic 

processing times. In order to develop a general method for the analysis of the M /Ek 

/s model, we first consider the M /Ek /2 model. Using the results for the two-server 

case, we then extend the model to the multi-server case. We also code the value ite-

ration algorithm and obtain numerical results and insights. For the two-server case, 

we present the model formulation in Section 4.1 and the analysis in Section 4.2. In 

Section 4.2, we also discuss how the formulation for M /Ek /2 model can be used to 

obtain the formulation for the general model.  The main body of the chapter con-

cludes with a numerical study.  The proofs of the theoretical results presented in this 

chapter are provided in the Appendix (Section 4.3). 

4.1 Model Formulation 

The setting considered in this part is same as the one stated in Section 2.1 with the 

exceptions that 2s =  and the production times consist of 2k ≥  identical and inde-

pendent exponentially distributed stages. The expected production time of a part is 
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1
µ

, i.e., the expected length of each stage is 1
kµ

.  The state of the system is defined 

with three variables. As in Section 2, X(t) is the inventory level at time t. Let S1(t) 

and S2(t) denote the stage of the current production at servers 1 and 2, respectively, at 

time t. We have ( ) { }0,1, 2,...,iS t k∈ , { }1, 2i ∈ , where stage 0 denotes that there is 

no production at the server at time t. At state ( ) ( ) ( )( )1 2, ,X t S t S t , the production 

control specifies whether to initiate production at server-i if ( ) 0iS t = , and the ra-

tioning control specifies whether to satisfy an arriving demand or not. Ha (2000) stu-

dies the M /Ek /1 model and formulate the problem with a single state variable called 

the work storage level which is the total number of completed production stages. 

Specifically, ( ) ( ) ( )Y t I t kX t= + is the work storage level defined in Ha (2000), 

where ( )I t is the number of stages completed for the job under production at time t 

(a part in the inventory already completed all of the k stages of the production) .  

However, in a setting with parallel servers, the controller should make the production 

decision for a specific server by considering the current states (stages) of the other 

servers. Thus, we keep track of the state of each server.          

Following the same approach discussed in Section 2.1, we obtain an equivalent 

discrete-time formulation of the problem using the uniformization technique. Let us 

define the uniform rate as 
1

2
n

i
i

kν λ µ
=

= +∑  and (without loss of generality) rescale 

the time and assume that 1α ν+ = . Then, the optimal cost-to-go function can be ex-

pressed as      

( ) ( ) ( ) ( )
1 21 2 1 2 1 2 1 2, , , , , , , ,P P RJ x s s hx k T x s s k T x s s T x s sµ µ= + + +   (1) 
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where ( )
( ) ( ){ }

( )
( )

1

2 2 1

1 2 1 2 1

2 1

min ,0, , , 2, , 0

, , , 1, , 0
1,0, ,  

P

J x s p J x s s

T x s s J x s s p k s
J x s p s k

⎧ + =
⎪⎪= + + > >⎨
⎪ + + =⎪⎩

 , 

( )
( ) ( ){ }

( )
( )

2

1 1 2

1 2 1 2 2

1 2

min , ,0 , , , 2 , 0

, , , , 1 , 0
1, ,0 ,  

P

J x s p J x s s

T x s s J x s s p k s
J x s p s k

⎧ + =
⎪⎪= + + > >⎨
⎪ + + =⎪⎩

, 

( ) ( )1 2 1 2
1

, , , ,
i

n

R R
i

T x s s T x s s
=

= ∑ and for { }1, 2,...,i n∈ , 

( )
( ) ( ){ }

( )( )
1 2 1 2

1 2
1 2

min 1, , , , , , 0
, ,

0, , , 0i

i i
R

i i

J x s s c J x s s x
T x s s

c J s s x

λ

λ

⎧ − + >⎪= ⎨
+ =⎪⎩

 

The operators 
1PT and 

2PT correspond to the production decisions at servers 1 and 2, 

respectively. When a specific production channel is idle, the controller decides 

whether to initiate production or keep the channel idle. On the other hand, when 

there is a job under production, the controller has nothing to do; cancellation of pre-

viously placed production orders is not allowed.  As in Chapter 3, the operator 

iRT corresponds to the rationing decision for class i.  

We show in Lemma 4.1 that the optimal cost function is symmetric with respect 

to the production stages of the servers.   

Lemma 4.1. For any given inventory level x and for all 1s , 2s values, we have 

( ) ( )1 2 2 1, , , ,J x s s J x s s= . 

Lemma 4.1 implies that ( ) ( )
2 11 2 2 1, , , ,P PT x s s T x s s= because,  
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( )

( ) ( ){ }
( ) ( ){ }

( ) ( )

( ) ( )

2

1 1

2

1 1

1 2
1 2 2 1 2

1 1 2

min , ,0 , , , 2
, 0

min ,0, , , 2,

, ,
, , 1 , 1, , 0

1, ,0 1,0, ,  

P

J x s p J x s
s

J x s p J x s

T x s s
J x s s p J x s s p k s

J x s p J x s p s k

⎧ +
⎪ =

= +⎪
⎪
⎪= ⎨ + + = + + > >⎪
⎪
⎪

+ + = + + =⎪
⎩

 

 which is equal to ( )
1 2 1, ,PT x s s .  Then, by defining a single production operator 

( ) ( ) ( ) ( ) ( )
1 2 1 11 2 1 2 2 1 1 2 2 1, , , , , , , , , ,P P P P PT x s s T x s s T x s s T x s s T x s s= + = + , we can rewrite 

(1)  as 

( ) ( ) ( )1 2 1 2 1 2, , , , , ,P RJ x s s hx k T x s s T x s sµ= + +   (2) 

where   

( )

( ) ( ){ }

( ) ( ){ }
( )

{ } { } { }

( ) ( ){ }
( ) { } { } { }

( ) ( )

( )

1 2

1 2

1 2

1 2 2 1

0, 0, 1, 2 , 1, 2 \

0

,

0, , 1, 2 , 1, 2 \

0, 0

2min ,0,0 , , 2,0 ,

min , ,0 , , , 2

, 1,0

min , ,0 , , , 2
,

1,0,0
, ,

, 1, , 1,
,

2

, 1, 1

i j

i j

i i

i

P

i

k s s i j i

s s

s s k i j i

k s k s

J x p J x

J x s p J x s

p J x s

J x k p J x k

p J x
T x s s

J x s s J x s s
p

J x s k J x

> > = ∈ ∈

= =

= = ∈ ∈

> > > >

+

+

+ + +

+

+ + +
=

+ + +
+

+ + +( )
{ } { } { }

( ) 1 2

0, , 1, 2 , 1, 2 \
, ,0

,
2

2 1, ,0 2 ,

i j

i
k s s k i j i

s s k

s
p

J x k p

> > = ∈ ∈

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ = =⎩

+

+ +  
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4.2 Characterization of Optimal Production and Rationing Policies 

As in Section 3.1.2, we identify some structural properties of the optimal cost func-

tion. Using these properties we characterize the optimal production and rationing 

policies. Let us first define the following operators on a function ( )1 2, ,v x s s  such 

that ( ) ( )1 2 2 1, , , ,v x s s v x s s=  :  

( ) ( ) ( )1 2 1 2 1 2, , 1, , , ,xv x s s v x s s v x s s∆ = + −  

( ) ( ) ( )1
1 2 1 2 1 2, , , 1, , ,s v x s s v x s s v x s s∆ = + −  

( ) ( ) ( )1 2 1 2 1 2, , 1, , , ,xx x xv x s s v x s s v x s s∆ = ∆ + − ∆  

( ) ( ) ( )1 1 1
1 2 1 2 1 2, , 1, , , ,xs s sv x s s v x s s v x s s∆ = ∆ + − ∆  

( ) ( ) ( )2 1 1 1
1 2 1 2 1 2, , , , 1 , ,s s s sv x s s v x s s v x s s∆ = ∆ + − ∆  

We define ϑ  as a set of functions on the integers such that if v ϑ∈ , then for any 

( )1 2, ,x s s  

( )2 1
1 2, , 0s s v x s s∆ ≥ ,     (3) 

( ) ( )1 1
1 11, ,0 , ,0 0s sv x s v x s∆ + − ∆ ≥ ,    (4) 

     ( ) ( ) ( ) ( )1 2 1 2 1 2 1 22, , 1, , 1, , , ,v x s s v x s s v x s s v x s s+ − + ≥ + − , for any 1s and 2s , (5) 

   ( ) ( )1 2 1 2, 1, , , 1x xv x s s v x s s∆ + ≥ ∆ + , for 1 2 0s s≥ > .     (6) 

Note that by symmetry (3) is equivalent to saying ( )1 2
1 2, , 0s s v x s s∆ ≥  and (4) is to 

( ) ( )2 2
2 21,0, ,0, 0s sv x s v x s∆ + − ∆ ≥ .  

At this stage, we conjecture that the optimal cost function is an element of the func-

tion space ϑ . 
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Conjecture 4.1. J ϑ∈ , that is ( )1 2, ,J x s s  satisfies (3), (4), (5) and (6). 

In the Appendix (Section 4.3) we prove that  ( )1 2, ,J x s s  satisfies (3). However, we 

are still working on the proofs of the other properties. Based on Conjecture 4.1, we 

state Theorem 3.4.1 that characterizes the optimal policies.  

Theorem 4.1. If J ϑ∈ , then 

i. ( )1 2, , 0xx J x s s∆ ≥ , i.e., ( )1 2, ,J x s s is x-convex. 

ii. For an idle server-i, { }1, 2i ∈ , there exists a threshold inventory level 

( )i
x jN s , which is a function of the state of server-j, { } { }1, 2 \j i∈ , such 

that it is optimal to trigger the production at server-i below ( )i
x jN s  and 

leave server idle otherwise. Moreover, ( )i
x jN s is non-increasing in js  and 

( ) ( )1 2
x xN s N s= .   

iii. For an idle server-i, { }1, 2i ∈ , there exists a threshold state of server-

j, { } { }1, 2 \j i∈ ,   ( )
j

i
sN x , which is a function of the inventory level, such 

that it is optimal to trigger the production at server-i below ( )
j

i
sN x  and 

leave server idle otherwise. Moreover, ( )
j

i
sN x is non-increasing in x and 

( ) ( )
2 1

1 2
s sN x N x= .   

iv. It is always optimal to satisfy a class 1 demand when there is stock on 

hand. That is, ( ) ( )
1 1, 1,RT x y J x yλ= − .  
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v. There exists a threshold inventory level 1 2( , )d
xK s s  for class 2d ≥ , which 

is a function of the states of the servers, such that it is optimal to satisfy a 

class-d demand above 1 2( , )d
xK s s  and reject it otherwise. 1 2( , )d

xK s s is 

non-increasing in 1s and 2s , and for 1 2s s≥ , 1 2 1 2( 1, ) ( , 1)d d
x xK s s K s s+ ≤ + , 

which means that the outstanding order that is more close to arrive has 

more value in terms of the rationing decision. Moreover,  
1 2

1 2 1 2 1 2( , ) ( , ) ... ( , )n n
x x xK s s K s s K s s−≥ ≥ ≥  and 1 2 2 1( , ) ( , )d d

x xK s s K s s=  also 

hold. 

vi. There exists a threshold stage of server-i, { }1, 2i ∈ , ( , )
i

d
s jK x s  for class 

2d ≥ , which is a function of the inventory level and stage of server-

j, { } { }1, 2 \j i∈ ,  such that it is optimal to satisfy a class-d demand above 

( , )
i

d
s jK x s  and reject it otherwise. ( , )

i

d
s jK x s  is non-increasing in x and js .  

Moreover, 1 2( , ) ( , ) ... ( , )
i i i

n n
s j s j s jK x s K x s K x s−≥ ≥ ≥ ,  

1 2
( , ) ( , )d d

s sK x s K x s= .   

 

Theorem 4.1 implies that the optimal production and rationing policies are state-

dependent and monotone.  These results are also applicable to multi-server case, i.e., 

to the M/Ek /s model, because the model formulation given in Section 4.1 can be di-

rectly extended to this case. For the general case with 2s ≥  servers, with uniform 

rate 
1

n

i
i

skν λ µ
=

= +∑ , the optimality equation  - the modified version of Equation 4.1- 

can be expressed as   

    ( ) ( ) ( )1 1 1
1

, ,.., , ,.., , ,..,
i

s

s P s R s
i

J x s s hx k T x s s T x s sµ
=

= + +∑   (7) 
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where ( )

( )
( )

( )

( )

1 1

1 1

1
1 1

1 1

, ,.., ,0,.., ,
min , 0

, ,.., , 2,..,

, ,.. ,..,
, ,.., , 1,.., , 0

, ,.., ,0,.., ,  

i

i s
i

i s

P i s
i i s i

i s i

J x s s s
s

p J x s s s

T x s s s
J x s s s s p k s

J x s s s p s k

−

−

−

−

⎧ ⎧ ⎫⎪ ⎪ =⎪ ⎨ ⎬
+⎪ ⎪ ⎪⎩ ⎭

⎪
⎪= ⎨ + + > >⎪
⎪
⎪

+ =⎪⎩

 

Moreover, by following the same steps of the proof of Lemma 4.1 we can conclude 

that the optimal cost function is symmetric with respect to the production stages of 

the servers, i.e.,  

( ) ( )1 1 1 1 1 1 1 1 1 1, ,.., , , ,.., , , ,.., , ,.., , , ,.., , , ,..,i i i j j j s i j i j i j sJ x s s s s s s s s J x s s s s s s s s− + − + − + − += . 

Therefore, we can define a single production operator and rewrite the optimality eq-

uation with this operator as we did at the end of Section 4.1. For this formulation, we 

can conjecture on properties 4.3 through 4.6 for any two of the servers.          

 We illustrate the properties of the optimal policies for a two-class system with 

( ) ( )1 2 1 2, , , , , , , , 3,3, 4, 4, 1, 1, 1, 10, 2s k h p c cµ λ λ =  in Tables 4.1 and 4.2.  For the 

discounted cost criterion with 0.6α = , Table 4.1 and Table 4.2 show the optimal 

production and rationing policies, respectively. For this three-server setting, Table 

4.1 illustrates the optimal production decisions at each state ( )1 2, , ,0x s s for 4x ≤ . 

While a zero cell value indicating that it is optimal to leave server-3 idle, one indi-

cates that server-3 should be activated. Table shows that the production decision at 

server-3 depends on the stages of the other servers and the inventory level (1 corres-

ponds to activating the server and 0 to leaving idle). Due to the symmetry, we would 

also observe the same policy for any of the other two servers.   

Table 4.2 is drawn for x = 3. A zero in the cell corresponding to anyone of the 

states indicates that an arriving class 2 demand should be rejected, and a one indi-
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cates that the demand should be satisfied.  We see that threshold rationing levels are 

non-increasing in the stages of the servers. Furthermore, while an arriving class 2 

demand is not satisfied at states ( ) ( )1 2 3, , , 3,1, 2,1x s s s =  and ( ) ( )1 2 3, , , 3, 2, 2,1x s s s = , 

it is satisfied at ( ) ( )1 2 3, , , 3,1,3,1x s s s = . That means, a unit increase in the stage of 

server 1 does not change the rationing level. However, a unit increase at stage of 

server 2 (instead of server 1) makes it possible to satisfy the demand. This fact, 

which is also stated in Theorem 4.1, supports the rationale behind the dynamic ra-

tioning policy that we propose in Chapter 5: the outstanding order that is more close 

to arrive has more value in terms of the rationing decision. 

It should be also noted that by following almost the same steps of the proof of 

Theorem 3.5, it is straightforward to show that the properties of the optimal policies 

that are stated in Theorem 4.1 are also preserved under the average cost criterion.     

   Table 4.1 Optimal Production Policy under Discounted Cost Criterion 

   s1   
s2 

0 1 2 3 
   s1   
s2 

0 1 2 3 

0 1 1 1 1 0 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 2 1 1 1 1 

3 1 1 1 1 3 1 1 1 0 

x = 0 x = 1 
   s1   
s2 

0 1 2 3 
   s1   
s2 

0 1 2 3 

0 1 0 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 0 0 

2 0 0 0 0 2 0 0 0 0 

3 0 0 0 0 3 0 0 0 0 

x = 2 x = 3 
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   Table 4.2 Optimal Rationing Policy under Discounted Cost Criterion  

       for x = 3. 

   s1   
s2 

0 1 2 3 
   s1   
s2 

0 1 2 3 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 0 1 

2 0 0 0 0 2 0 0 0 1 

3 0 0 0 0 3 0 1 1 1 

s3 = 0 s3 = 1 
   s1   
s2 

0 1 2 3 
   s1   
s2 

0 1 2 3 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 1 1 0 1 1 1 

2 0 0 1 1 2 0 1 1 1 

3 0 1 1 1 3 0 1 1 1 

s3 = 2 s3 = 3 
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4.3 Appendix 

Proof of Lemma 4.1: Let T be the optimization operator. That is,  

( )( ) ( ) ( )1 2 1 2 1 2, , , , , ,P RT J x s s hx k T x s s T x s sµ= + + . 

In order to show that the property holds, it is enough to show that the optimization 

operator preserves the property. Suppose ( ) ( )1 2 2 1, , , ,J x s s J x s s=  holds and let us 

define ( )( ) ( )( )1 2 2 1, , , ,T J x s s T J x s sδ = − . We will show that 0δ = . 

 ( ) ( )( ) ( ) ( )( )1 2 2 1 1 2 2 1
1

, , , , , , , ,
i i

n

P P R R
i

k T x s s T x s s T x s s T x s sδ µ
=

= − + −∑ . Let us write 

1
i

n

p R
i

δ δ δ
=

= + ∑  where ( ) ( )( )1 2 2 1, , , ,p P Pk T x s s T x s sδ µ= − , 

( ) ( )( )1 2 2 1, , , ,
i i iR R RT x s s T x s sδ = − . Now, we will separately show that pδ and 

iRδ are 

both zero.  

Let us start with showing 0pδ = : 

For the cases 1 20, 0k s k s> > > > ; { } { } { }0, , 1, 2 , 1, 2 \i jk s s k i j i> > = ∈ ∈ ; and 

1 2s s k= =  the production decision operator ( )1 2, ,PT x s s only contains the optimal 

cost functions and the unit production cost (there is no minimization operator in con-

trast to the remaining cases). Therefore, using the hypothesis (supposition) we direct-

ly conclude that 0pδ = .   

For the other cases the definition of ( )1 2, ,PT x s s includes a minimization operator, 

but due to the hypothesis and the symmetric region (with respect to 1,s s ) of  each 

case we again directly conclude that 0pδ = .  

Now, we will show that 0 :
iRδ =  
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By the hypothesis,  ( )
( ) ( ){ }

( )( )
1 2 1 2

1 2
1 2

min 1, , , , , , 0
, ,

0, , , 0i

i i
R

i i

J x s s c J x s s x
T x s s

c J s s x

λ

λ

⎧ − + >⎪= ⎨
+ =⎪⎩

  

is equivalent to  ( )
( ) ( ){ }

( )( )
2 1 2 1

1 2
1 2

min 1, , , , , , 0
, ,

0, , , 0i

i i
R

i i

J x s s c J x s s x
T x s s

c J s s x

λ

λ

⎧ − + >⎪= ⎨
+ =⎪⎩

 

which is exactly ( )2 1, ,
iRT x s s . Therefore,  0

iRδ = .  

Thus, we conclude that ( ) ( )1 2 2 1, , , ,J x s s J x s s= . 

Proof of Property (3) – A partial proof of Conjecture 4.1: We will show that the 

optimization operator preserves ( )1 2
1 2, , 0s s J x s s∆ ≥ . Suppose ( )1 2

1 2, , 0s s J x s s∆ ≥  

holds. Now, 

 ( )( )1 2
1 2, ,s s T J x s s∆ = ( ) ( )1 2 1 2

1 2 1 2
1

, , , ,
i

n
s s s s

P R
i

k T x s s T x s sµ
=

∆ + ∆∑ .  

Showing that ( )1 2
1 2, , 0s s

PT x s s∆ ≥ : 

Case1. 1 2 0s s= = . 

In this case, 

( )
( ) ( ) ( ) ( ){ }

( ) ( ){ }
1 2

, 2,1 , 2,0 min ,0,1 , , 2,1
,0,0 2

min ,0,0 , , 2,0
s s

P

J x J x J x p J x
T x

J x p J x

⎛ ⎞− − +
⎜ ⎟∆ =
⎜ ⎟+ +⎝ ⎠

. Then, we 

should analyze the following sub-cases: 

i. Produce at server-1 at 2 0s =  and at 2 1s = : 

Then, 

( ) ( ) ( ) ( ) ( )( )1 2 , 0,0 2 , 2,1 , 2,0 , 2,1 , 2,0 0s s
PT x J x J x p J x p J x∆ = − − − + + =

 

ii. Do not produce neither at 2 0s =  and nor at 2 1s = : 
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Then, ( ) ( ) ( ) ( ) ( )( )1 2 , 0,0 2 , 2,1 , 2,0 ,0,1 ,0,0 0s s
PT x J x J x J x J x∆ = − − + ≥  

holds by the hypothesis, because property (3) implies 

 ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, 2, 1 , 2, , , 1 , ,J x s s J x s s J x s s J x s s+ + − + ≥ + −  

iii. Produce at 2 0s = , do not produce at 2 1s = : 

Then,  

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

1 2 , 0,0 2 ,2,1 ,2,0 ,0,1 ,2,0

                      =2 ,2,1 ,2,0

s s
PT x J x J x J x p J x

J x p J x

∆ = − − + +

+ −
,  

which is greater or equal to zero because it is optimal not to produce at 

2 1s = . 

Here note that, property (3), i.e., ( )1 2
1 2, , 0s s J x s s∆ ≥ , guarantees that it is not possible 

(optimal) to produce at any  2 2s s′ >  level while not producing at 2s .  

Case2. 1 20, 1 0s k s= − > > . 

In this case,  

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ){ }
( ) ( ){ }

1 2

2 2 2 2 2

2 2

2 2

2 2

,0, , 2, 1 , 2,1 ,2, , 1,1

, 2,0 , 1,0

                           min ,0, 1 , , 2, 1

min ,0, , , 2,

s s
PT x s J x s J x s J x s J x s

J x s J x s

J x s p J x s

J x s p J x s

∆ = + + + − − +

⎛ ⎞+ − +
⎜ ⎟
⎜ ⎟− + + + +
⎜ ⎟
⎜ ⎟− +⎝ ⎠

. 

By the hypothesis, we 

have ( ) ( ) ( ) ( )2 2 2 2, 2,1 , 2,0 , 1,1 , 1,0 0J x s J x s J x s J x s+ − + − + + + ≥ . Therefore, we 

only need to show  

( ) ( )
( ) ( ){ } ( ) ( ){ }

2 2

2 2 2 2

, 2, 1 , 2,
0

min ,0, 1 , , 2, 1 min ,0, , , 2,

J x s J x s

J x s p J x s J x s p J x s

+ −⎛ ⎞
≥⎜ ⎟

⎜ ⎟− + + + + +⎝ ⎠
. It 

is easy to show that this inequality holds by following the same steps of “Case 1”.  



Chapter 4 M/Ek/s Model With Multiple Demand Classes and Lost Sales 
 

 87

Case3. 1 21 0, 1 0k s k s− > > − > > . 

In this case, 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2
1 2

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

, ,

, 2, 1 , 2, 1 , 2, , 1, 1

              , 1, 1 , 2, , 1, , 1,

s s
PT x s s

J x s s J x s s J x s s J x s s

J x s s J x s s J x s s J x s s

∆

= + + + + + − + − + +

− + + + + − + − +
 

is greater or equal to zero by the hypothesis (group first two and last two terms of 

each parenthesis).   

 

For the other cases ( )1 2

1 2, , 0s s
PT x s s∆ ≥  also holds due to the symmetric definition 

of ( )1 2, ,PT x s s .  

Showing that ( )1 2

1 2, , 0
i

s s
RT x s s∆ ≥ : 

For x > 0,  

( )
( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

1 2
1 2 1 2

1 2

1 2 1 2

1 2 1 2

1 2 1 2

min 1, 1, 1 , , 1, 1
, ,

min 1, 1, , , 1,

min 1, , 1 , , , 1

min 1, , , , ,

i

is s
R

i

i

i

J x s s c J x s s
T x s s

J x s s c J x s s

J x s s c J x s s

J x s s c J x s s

⎛ ⎞− + + + + +
⎜ ⎟∆ =
⎜ ⎟− − + + +⎝ ⎠

⎛ ⎞− + + +
⎜ ⎟−
⎜ ⎟− − +⎝ ⎠

 

Case1. Satisfy an arriving demand at levels 1s and 2s . 

This means it is optimal to satisfy at all levels ( ) ( )1 2 1 2, ,s s s s≥ by the property (4). 

Then,  

( ) ( )1 2 1 2
1 2 1 2, , 1, , 0

i

s s s s
RT x s s J x s s∆ = ∆ − ≥  holds by the hypothesis. 

Case2. Do not satisfy an arriving demand at levels ( )1 1s + and ( )2 1s + . 

This means it is optimal not to satisfy at all levels ( ) ( )1 2 1 2, ,s s s s≤ by the property 

(4). Then,  
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( ) ( )1 2 1 2

1 2 1 2, , , , 0
i

s s s s
RT x s s J x s s∆ = ∆ ≥  holds by the hypothesis. 

 

Therefore, we conclude that ( )1 2
1 2, , 0

i

s s
RT x s s∆ ≥ and so ( )( )1 2

1 2, , 0s s T J x s s∆ ≥ . 

 



 

Chapter 5 

Dynamic Rationing Policy for Con-
tinuous Review Inventory Systems 
 

 

For inventory systems with distinct customer classes demanding the same item, stock 

rationing is a well-known tool to differentiate customer classes. Different customers 

may have different service level requirements or different shortage costs. In such 

cases, stock rationing allows prioritization of demand classes in order to provide dif-

ferent levels of service and to achieve higher operational efficiency. It is possible to 

maintain high service levels for certain demand classes while keeping inventory 

costs at bay by providing lower service levels to certain other demand classes. De-

mand classes are categorized on the basis of their shortage costs. The highest priority 

class is the one with the largest unit shortage cost, and the lowest priority class has 

the smallest unit shortage cost.  

It is possible to come up with different rationing policies. Yet, the mechanism 

through which any rationing policy is implemented is to stop serving a lower priority 

class when the on-hand inventory drops below a certain critical level. The unsatisfied 

demands are either backordered or lost depending on the nature of the system. Under 

the critical level only higher priority classes are served and this results in higher ser-

vice levels for those classes. If there are more than two demand classes, then there 
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has to be more than a single critical level. The critical level for the highest priority 

class may be assumed to be zero. The critical levels may change dynamically accord-

ing to the number and the ages of outstanding orders or static threshold levels may be 

used.  

In backordering environments, to completely define the stock rationing policy 

the way that the backorders are cleared should also be defined. The clearing mechan-

ism specifies how the replenishment orders should be allocated between increasing 

the stock level and clearing the backorders. The natural way to perform the clearing 

is to employ the same critical levels for clearing the backorders, i.e., the backorders 

for a certain customer class are not cleared until the inventory level reaches to the 

critical level which is associated for that customer class. This mechanism is referred 

as the priority clearing in the literature.  

In the continuous review setting, there are only a couple of studies that consider 

a dynamic adjustment of the critical levels for rationing.  Since the analysis of ration-

ing systems is complicated even for the static policy, this is a difficult setting.  Under 

the at-most-one-outstanding-order assumption, Teunter and Haneveld (2008) consid-

er a dynamic rationing policy for the backordering environment and Melchiors 

(2003) considers a so-called time remembering policy for the lost sales case. Except 

these works, the common practice in the literature is to assume static (time invariant) 

rationing levels with clearing mechanisms other than the priority clearing. Priority 

clearing and/or adjusting the critical levels dynamically complicates the analysis 

considerably.  

In this chapter, we propose a dynamic rationing policy together with the asso-

ciated dynamic priority clearing mechanism for continuous-review backordering sys-

tems with constant lead-time and unit Poisson demands for two demand classes. The 

replenishment orders are placed according to the ( , )Q r policy.   The ( , )Q r policy dic-

tates that a batch of Q units is ordered whenever inventory position hits the reorder 
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level r. The proposed policy uses the age information for all the outstanding orders in 

order to decide whether a lower priority demand should be satisfied instantaneously 

or should be backordered (or lost depending on the setting). More specifically, the 

policy incorporates the outstanding replenishment orders into the on-hand inventory 

as if they arrive continuously within the lead-time. With the currently available in-

formation technologies, it is easy to monitor the status of the outstanding orders and 

to incorporate the information that they carry into the decision mechanism. There-

fore, the proposed policy should not suffer from implementation issues in today’s 

environment. 

We conduct a simulation study to evaluate the performance of the proposed poli-

cy. Since the analytical evaluation of the policy is not tractable without simplifying 

assumptions, simulation is the only available tool. In spite of the popularity of simu-

lation in the broader area of operations research and operations management, there is 

no work in the stock rationing literature that uses simulation to analyze complex, dy-

namic policies, which outperform static ones. One should also point out that simula-

tion can also be used to estimate any long-run performance measures of the invento-

ry systems under static rationing that are discussed in the literature. Still, authors 

usually resort to simulation not for direct performance analysis of their models but 

only for testing their results (e.g., Dekker et al. (1998), Deshpande et al. (2003),). 

However, it is possible to obtain the performance measures in any desired confidence 

interval via simulation, and thus conduct the performance evaluation of the inventory 

policies under scrutiny.   

The rest of the chapter is organized as follows. In Section 5.1, we discuss the 

characteristics that the optimal policy should exhibit and proposes two new lower 

bounds on the optimal policy. In Section 5.2, we introduce a new class of dynamic 

rationing policies and discuss the properties a good dynamic rationing policy should 

exhibit.  Based on these properties, we develop a new policy called Rationing with 
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Exponential Replenishment Flow (RERF). In Section 5.3, we compare the perfor-

mance of RERF with the static rationing policy and quantify the gain obtained 

through RERF under different scenarios by simulation.  

5.1 Dynamic Rationing  

In the stock rationing literature, it is well documented that the performance of 

the static rationing policy can be improved by utilizing the information on the status 

of the outstanding replenishment orders. For a given set of policy parameters, al-

though the static policy would not allow it, one should prefer to satisfy an arriving 

lower priority customer instantaneously if an outstanding order is about to arrive and 

increase the inventory level. A similar scenario can also be entertained for the back-

order clearing mechanism of the rationing policy; it may be profitable to clear some 

backorders of lower priority class before the inventory level is increased above the 

threshold rationing level. Therefore, it should be clear that the optimal rationing pol-

icy should be a dynamic policy that allows the threshold rationing level to change in 

time depending on the number and ages of outstanding orders. However, the charac-

terization of this optimal policy structure would be quite hard, if possible at all. Such 

a policy would have to depend on the time-to-arrive of all outstanding orders, which 

is a random variable. Thereby, it is very hard to analyze, if possible, any dynamic 

policy without simplifying assumptions.  

Teunter and Haneveld (2008) consider dynamic stock rationing but the analysis 

is based on the assumption of at-most-one-outstanding-order and is computationally 

tractable only for limited settings. The difficulty in the analysis of dynamic policies 

mainly arises from the fact that one should incorporate the ages (or the time-to-arrive 

values) of all outstanding orders into the system state definition. Moreover, since the 

number of outstanding orders changes in time depending on the realizations of the 

demand processes and the policy parameters, the size of the state vector itself is a 
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random variable. Thus, we evaluate the performance of the policy we propose, which 

is called Rationing with Exponential Replenishment Flow (RERF), via simulation.  

Although the structure of the optimal rationing policy is unknown, we would like 

to tell something about the quality of the policy we suggest with respect to the op-

timal policy.  Since it is not possible to do the performance evaluation of an un-

known policy, we develop two lower bounds for any possible rationing policy (static 

or dynamic). Using these bounds, we are able to assess how much our policy realizes 

out of the maximum possible potential for the rationing policies.   Moreover, these 

bounds also point out the settings at which there is no meaningful gain to be obtained 

by applying any kind of dynamic policy. 

Consider the inventory system with parameters { }ˆ, , , 1, 2i i i iλ π π ∈ , and ,h A , i.e., 

the arrival rates, the unit backordering costs, the time-dependent backordering costs, 

the holding cost rate and the fixed ordering cost. Without loss of generality we as-

sume 1 2π π>  and 1 2ˆ ˆπ π>  , which means class 1 is the higher priority demand class. 

We denote this system with O. Based on this system; we can construct two related 

inventory systems, each of which is subject to a single demand class in order to ob-

tain lower bounds. The first system we propose is the one with demand rate 1 2λ λ+ , 

and backorder costs 2 2ˆ,π π . The second one is another single-demand class system 

with demand rate 1λ  and backorder costs 1 1ˆ,π π . We denote the first system with 1N , 

and the second one with 2N . For each of these new systems we assume that the hold-

ing cost rate and the fixed ordering cost are the same with the original two demand 

class system. Since 1N  is constructed using the minimum of the backorder costs of 

the two demand classes (while keeping the total demand rate constant), the optimal 

long-run average cost of 1N  is a lower bound on the long-run average cost of O us-

ing an optimal dynamic rationing policy. 2N  constitutes another lower bound, since 
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class 2 is completely disregarded and it is not possible for any rationing policy to op-

erate without experiencing any cost related to class 2.  Note that for both systems, 

since there is only a single demand class, there is no need for any kind of rationing.  

To obtain the above mentioned lower bounds, one only needs to optimize 1N  and 

2N  with respect to the parameters Q and r. 

Any one of the two bounds may be tighter than the other for a given problem in-

stance. Therefore, the strategy is computing both of the bounds and taking the maxi-

mum as the lower bound on the cost of the optimal policy. However, it is more likely 

that 1N  provides a tighter bound when a high proportion of the total demand is due 

to class 2.  Note that for a given total demand rate 1 2λ λ λ= + , the lower bound pro-

vided by 1N  is independent of the demand mix, i.e., it is the same for all 1 1p λ λ=  

values. On the other hand, when 1 1p =  the lower bound provided by 2N takes its 

maximum value (which is certainly greater than the lower bound obtained by 1N , 

because when 1 1p =  both of the systems experience the same demand rate but 2N  

assumes higher backorder costs) and it decreases down to zero as 1p  goes to zero. 

Therefore, depending on the values of the total demand rate and the cost parameters, 

the lower bounds obtained by the systems 1N  and 2N  should intersect at a 1p  value 

in [0, 1] . Thus, for the values of 1p  between zero and the intersection point the low-

er bound provided by 1N  should be tighter and for the other possible values of 1p  

(from the intersection point to 1) the lower bound obtained by 2N should be tighter.  

At this point, it should also be noted that Deshpande et al. (2003) provides a dif-

ferent lower bound on the cost of any rationing policy. Their bound is based on an 

approximate analysis for the priority clearing mechanism. However, the simulation 

study considered in Section 5.3 illustrates that our bound is tighter than the one sug-

gested by Deshpande et al. (2003).        
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5.2 Rationing with Continuous Replenishment Flow 

The current level of sophistication in information and computer technologies enables 

us to consider more elaborate policies. Although the analyses of these elaborate poli-

cies are difficult and mostly intractable, it is still possible to estimate the steady state 

behavior of the system with simulation in a reasonable amount of time with the cur-

rent computer speeds. Hence, we propose a dynamic rationing policy that makes use 

of all the available system information at any point in time and evaluate the perfor-

mance of the policy by a simulation study.  

In this section, we introduce our policy with its dynamic priority clearing me-

chanism in a continuously reviewed inventory setting where the replenishment or-

ders are placed according to the ( , )Q r policy.   The ( , )Q r policy dictates that a batch 

of Q units is ordered whenever inventory position hits the reorder level r.  Inventory 

position is the sum of inventory level (on-hand inventory minus the number of back-

orders) and ordered units that are in the replenishment channel.   This means that the 

inventory position increases at ordering points, whereas inventory level increases 

when the orders arrive. We assume two customer classes and a deterministic supply 

lead-time, 0L > . Demand arrivals are generated by two independent stationary Pois-

son processes with rates 1λ  and 2λ , respectively, for class 1 and class 2 customers.  

Static rationing policies, which are easier to analyze and implement, only utilize 

part of the information on system state. In the static policies, the replenishment and 

rationing decisions are based on the inventory position and the on-hand inventory 

level, respectively. However, unless the replenishment lead-time is memoryless, i.e., 

exponential, there is additional information available about the arrival times of the 

orders in the replenishment channel. In the case of deterministic lead-time we con-

sider, the arrival times are exactly known once the orders are placed. Thus, a “good” 

rationing policy should exploit this information to extract value. 
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Even if the on-hand inventory level is below the (static) critical level, it is better 

to instantaneously satisfy a class 2 demand if the outstanding replenishment orders 

are about to increase the on-hand inventory level.  If a replenishment arrival will 

happen after a short duration, the likelihood of a class 1 demand arrival before the 

replenishment is relatively small. Note that the higher is the class 1 arrival rate, the 

shorter the duration has to be.  Thus, the critical level should be lowered as the ages 

of the replenishment orders increase. 

Instead of defining the critical level as a function of the ages of outstanding or-

ders, we opt to use a constant critical level K and a modified on-hand stock level, 

which are adjusted dynamically utilizing the information on the outstanding reple-

nishment orders.  Note that although the two approaches are basically equivalent, the 

latter better lends itself to interpretation.   

We define a new class of policies called Rationing with Continuous Replenish-

ment Flow (RCRF) that uses a constant critical rationing level on the modified on-

hand inventory, which incorporates the outstanding orders to the on-hand inventory 

as if they are arriving continuously within the lead-time. The only difference be-

tween RCRF and the static rationing policy is the variable on which the rationing 

mechanism is defined. 

Let ( )X t  denote the number of outstanding replenishment orders at time t, ( )ia t  

denote the age of thi oldest outstanding replenishment order at time t where 

0 ( ) ,ia t L≤ ≤ 1 ( )i X t≤ ≤ , and ( )OH t  denote the on-hand inventory level at time t.  

We define the modified on-hand inventory level at time t , ( )mOH t , as  
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 ( ) ( ) ( )

( )

( )

1
( ( )), 0

0, 0

X t

i
im

OH t Q f a t OH t
OH t

OH t
=

⎧
+ >⎪= ⎨

⎪ =⎩

∑ . (1) 

We do not modify the on-hand inventory when it is zero, since any incoming demand 

has to be backordered.  Different RCRF policies correspond to different families of 

(.)f  functions, satisfying the following properties: 

1. ( )f t : [0, ] [0,1]L → , 

2. ( )f t  is an increasing function of t, 

3. ( ) 1f t =  for t L= . 

(1) implies that the contribution of thi outstanding order to the modified on-hand in-

ventory level at time t is ( )( )iQf a t . Thus, ( )( )if a t  should be considered as the frac-

tion of the replenishment order quantity that is incorporated to the on-hand inventory 

when the age of the outstanding order is ( )ia t . Obviously, as the age of the outstand-

ing order increases this fraction should increase up-to 1 (it should be 1 when the out-

standing order actually arrives, i.e., when ( )ia t L= ).     

According to RCRF, if there is no outstanding order at time t, we 

have ( ) ( )mOH t OH t= . In this circumstance, we compare the on hand stock level 

with the critical level to make the rationing decision as in the static critical level pol-

icy.  If ( )OH t K> , then ( )mOH t  is certainly greater than K. Thus an arriving class 2 

demand is satisfied. If 0 ( )OH t K< ≤ , the arriving class 2 demand is satisfied in-

stantaneously provided that ( )mOH t K> . For the other cases, class 2 demand is 

backordered. If the arriving demand belongs to class 1, it is satisfied instantaneously 

if ( ) 0OH t >  as in the case of the static policy. Otherwise, it is backordered. 
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In order to complete the definition of RCRF, the modified priority clearing me-

chanism should also be specified. Suppose a replenishment order arrives at time t. 

After clearing class 1 backorders (if there is any), the remaining replenishment order 

quantity (if any remains) first used to increase the modified on-hand level up-to K 

and then class 2 backorders are cleared.  

Any flow function ( )f t  that satisfies the stated three properties can be used to 

modify the on-hand inventory according to (1). However, at this stage, we take a fur-

ther step and propose to consider only the RCRF policies that assume strictly convex 

flow function. Because, the value of the information gained from the outstanding or-

ders should diminish as we go from the oldest to the youngest order. In other words, 

the change in the impact of the orders on modified on-hand as we move in time, 

should be greater for those orders that are closer to arrive.  Consequently, the differ-

ence between ( )mOH t  and ( )OH t  should be mostly due to the outstanding orders 

that are to arrive in the very near future. This fact also emerges in Part-v of Theorem 

4.1 stated in Section 4.2.    

The above reasoning can be clarified with an example.  Suppose that the flow 

function has the form ( ) ( )( )
n

i
i

a tf a t
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

and at time 't there are two outstanding or-

ders, ( ') 2X t = . Under these conditions, consider the following two cases: In the first 

case, 1( ') 0.9a t
L

= , 2 ( ') 0.1a t
L

=   and in the second one 1( ') 0.6a t
L

= , 2 ( ') 0.4a t
L

= . 

When 1n = , (1) returns the same ( ')mOH t  values for both cases, because 

( )

1

( ( ')) 1
X t

i
i

f a t
=

=∑  for both of them. However, when 2n = , i.e., when the flow function 

is strictly convex,  
( )

1
( ( '))

X t

i
i

f a t
=
∑  is 0.82 for the first case and it is 0.52 for the second 
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one. Thus, ( ')mOH t  is larger for the first case and the decision maker is more eager 

to satisfy a class 2 demand that arrives at 't . The unknown optimal policy would al-

so distinguish the two cases and would be less conservative in satisfying an arriving 

class 2 demand for the first case than for the second case. Because, in the first case, 

there is an outstanding order that is close to arrive (compared to the other outstand-

ing orders considered in the example), it is very likely that class 1 backorders in the 

near future can be avoided.  

Another important criterion in choosing an appropriate policy from the RCRF 

class is the value of the flow function for an outstanding order that is just placed. For 

the flow function discussed in the above example, we have ( )
( ) 0
lim ( ) 0

i
i

a t
f a t

+→
= . How-

ever, the flow function should assume a positive value right at the onset, because the 

information that there is an outstanding order should have a nonzero value. There 

may be situations where we would choose to satisfy an arriving class 2 demand if we 

know a replenishment order has just been placed and will arrive after a lead-time pe-

riod (for example if the lead-times are extremely small). 

In the light of the above discussion about the intuitive criteria, we propose (2) as 

the flow function and define the policy Rationing with Exponential Replenishment 

Flow (RERF). As a member of RCRF class RERF modifies the on-hand inventory 

according to (1).  

( ) ( )1 ( )( ) iL a t n
if a t e λ− −=       (2) 

In (2), ( )( )iL a t− is the remaining time to arrive for the thi oldest outstanding or-

der and ( )1 ( )iL a te λ− −  is the probability that there will be no class 1 demand arrivals until 

the arrival of the thi oldest outstanding order. Since (2) is a decreasing function of 1λ , 

i.e., the probability of zero class 1 demand arrival in a specific length of time de-
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creases as 1λ  increases,  if class 1 arrival rate is high the modified on-hand inventory 

is close to the real on-hand level and not many extra class 2 demands are satisfied 

compared to the static rationing. On the contrary, if 1λ  is low then much more class 2 

demands can be satisfied. That is to say, RERF updates the on-hand inventory by 

considering the risk of having class 1 backorders in the future.  

 
      Figure 5.1 Exponential flow function (L = 1, λ = 1) 

 

Power n is a parameter that is used to fine-tune the policy. It is a parameter to be 

optimized together with Q, r and K. As n increases the value of the information 

gained from the outstanding orders diminishes and the diminishing rate is faster for 

the younger orders. Figure 5.1 illustrates this situation for 1, 1L λ= = . As n → ∞ , 

RERF does not utilize any information that the outstanding orders carry. Thus, it be-

comes identical with the static critical level policy, i.e., ( ) ( )lim mn
OH t OH t

→∞
=  for all 

t. This observation implies that RERF would perform at least as good as the static 

policy. For the same system parameters, the optimal long-run average cost of the 



Chapter 5 A Dynamic Rationing Policy For Continuous Review Inventory Systems  
 

 101

static policy should be an upper bound for the optimal long-run average cost of 

RERF.   

It should be also noted that, for the same ( ), ,Q r K values, RERF increases class 2 

fill rate and decreases class 1 fill rate compared to the static policy.  Even though the 

real on-hand stock level is at or below K, RERF satisfies class 2 customers if the 

modified on-hand level is above K . Thus, the reserve stock allocated for class 1 de-

mands decreases.  

In this study, we only consider the case of two customer classes. However, it is 

straightforward to adapt RERF to the case with m customer classes by defining a dif-

ferent flow function for each class with the exception of class 1 (class 1 demands are 

always satisfied whenever there is stock on-hand). For { }2,3,...,j m∈ , (3) defines the 

flow function for class j that consider the risk of having backorders from the higher 

priority customer classes within the remaining lead-time of ith outstanding order 

( )
( )

1

1

( )

( )

j

k i
k

L a t n

j if a t e
λ

−

=

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎝ ⎠
∑

=     (3) 

This function is employed in computing the modified on-hand inventory level (see 

(1)) to be used for the rationing decision at the arrival time of jth class customer.  

There are m-1 critical levels for classes other than class 1.  The modified inventory 

level is compared with the critical level for class j to decide whether to ration or not. 

5.3 Performance Evaluation of RERF via Simulation 

Simulation is one of the best available tools for the analysis of complex systems for 

which analytical techniques are not tractable. It enables us to compute any perfor-

mance measure of interest for systems under the policy of consideration. For any pa-

rameter setting, it is possible to find the optimal policy parameters using simulation-
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optimization. Hence, to evaluate the performance of the policy proposed in the pre-

vious section, we developed a simulation model and programmed in C. We identified 

the optimum policy parameters and quantified the gain obtained through RERF under 

different scenarios by comparing the static critical level policy. To distinguish the 

cases where stock rationing is beneficial and to assess the relative value of RERF, we 

also simulated the common stock policy (FCFS policy), which provides an upper 

bound on the costs of the rationing policies, and compared its performance with the 

static policy. Moreover, to characterize the performance of RERF relative to all poss-

ible rationing policies and to identify the conditions under which dynamic stock ra-

tioning is valuable, for some problem instances we simulated the single-class sys-

tems 1N  and 2N  (described in Section 5.1) and obtained two lower bounds on the 

performance of the unknown optimal rationing policy.  

For each problem instance, we identified the policy parameters ( ( , , , )Q r K n  for 

RERF, ( , , )Q r K  for the static policy and ( , )Q r for the common stock policy) that 

provide the minimum long-run average cost estimate. We run the simulation model 

of each inventory system for 600,000 customer arrivals to ensure the stability of the 

estimates. To verify our results, we compared the exact class 2 fill rate attained under 

the static policy, which is provided by Deshpande et al. (2003), with the simulation 

estimate for each instance of our problem set. The largest deviation of simulation 

estimate from the exact value is 0.0044, i.e., class 2 fill rate estimate is exact to the 

second significant digit. Therefore, we concluded that for each problem instance 

“600,000 customer arrivals” provide a reasonable run-length to observe the steady 

state conditions of the inventory systems named above. 

For given policy parameters, the long-run average cost expression of any policy 

can be written as  
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1 2
1 1 1 2 2 2 1 1 1 2 2 2ˆ ˆ(1 ) (1 )C A hI

Q
λ λ π β λ π β λ π γ λ π γ λ+

= + + − + − + +  , (4) 

where A  is the fixed ordering cost, h  is the holding cost rate, iπ  is the unit back-

order cost and ˆiπ  is the time-dependent backordering cost. In addition, I  denotes 

the average inventory, iβ  denotes the fill rate for class i and iγ denotes the average 

backorder time per customer for class i (i = 1, 2). Let ,RERF SPC C  and CSC  denote the 

long-run average cost estimate of RERF, the static policy and the common stock pol-

icy correspondingly. Then, the performance gain of RERF as the percent cost reduc-

tion obtained by operating the system under RERF instead of the static rationing pol-

icy with the optimal policy parameters can be defined as  

 

( )
{ }

( )
{ }

( )
{ }

, ,

, , ,

, ,

min : 0, 1, 0,  all integer

min : 0, 1, 0, 1,  all integer
100
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C r Q K Q r n
G
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⎛ ⎞+ > ≥ ≥ ≥
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⎜ ⎟− + > ≥ ≥ ≥ ≥⎜ ⎟
⎝ ⎠=

+ > ≥ ≥ ≥
    (5) 

 

Similarly, the performance gain of the static rationing policy as the percent cost re-

duction relative to the common stock policy is 

( )
{ }

( )
{ }

( )
{ }

,

, ,

,

min : 1, 0,  all integer

min : 0, 1, 0,  all integer
100

min : 1, 0,  all integer
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⎜ ⎟
⎜ ⎟− + > ≥ ≥ ≥⎜ ⎟
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≥ ≥
  (6) 
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Since the simulation runs are very fast, we find the optimal policy parameters by 

complete enumeration under the constraints defined in (5) and (6). To obtain RCRFG  

and SPG  values for the settings that reflect the main trade-offs we generated 288 

problem instances varying in total demand rate, ratio of class 1 demand rate to the 

total rate, unit and time dependent backorder costs of both classes and the setup cost. 

For the lost sales case, we used the same problem instances excluding the time de-

pendent shortage costs. Since we considered different values of the other cost para-

meters, we fixed the unit holding cost to 5 without loss of generality. We also fixed 

the lead-time to the unit-time without loss of generality. The problem instances con-

sidered in the simulation study were formed from the elements of the following sets: 

( ) { } { } { } { }

{ } { } { } { } { }

1 1
1 2 1 1 1

2

1
1 1

2

25,5 ,   0.1,0.5,0.9 ,  2,10 ,   r 5,1.25 ,

ˆˆˆ 1,5 ,   r 5,1.25 ,   0, 2,10 ,  1 ,   5 .
ˆ

p

A L h

λ πλ λ λ π
λ π

ππ
π

= + ∈ = ∈ ∈ = ∈

∈ = ∈ ∈ ∈ ∈
 

5.3.1 Backordering Case 

Tables 5.1, 5.2 and 5.3 compare the performance of the policies for the backordering 

case. The data on each row of Table 5.1 (the maximum and the average percent gain) 

were obtained using 16 different settings varying in ( )1 2 1 2ˆ ˆ, , ,π π π π values. As seen 

from Table 5.1, for any given total demand rate and the setup cost, the benefit of the 

static rationing over the common stock policy is maximized when the total demand 

rate is evenly distributed among the classes, i.e., 1 2λ λ= . This is an expected result, 

because as 1p  goes to 0 or 1, the value of the static rationing should diminish. As 1p  

decreases, i.e., as the portion of class 2 demand gets higher and higher, the static pol-

icy lowers the threshold rationing level towards 0 in order to prevent large numbers 

of class 2 backorders. When 1 0.1p = , almost for all the cases the optimal rationing 
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level is 0. Therefore, cost reduction is obtained only through the priority clearing 

mechanism, which decreases 1γ  and increases 2γ  compared to the first-come-first-

served basis clearing. On the other extreme, as 1p  goes to 1, K  is increased and most 

of the stock is reserved for the class 1 customers. When 1 0p = or 1 1p = , the static 

rationing policy, RERF and the common stock policy all become identical, because 

in these cases there is only one customer class in the system and any kind of class 

differentiation is irrelevant.  

 Table 5.1 Comparison of Policies for all possible shortage cost pairs 

 RERFG  SPG  
 Max Avg. Max Avg. 

λ 
= 

25
 

A = 0 
p1  =  0.10 10.10 5.43 4.49 1.26 

0.50 8.95 4.63 29.76 12.01 
0.90 1.35 0.79 12.45 6.39 

A = 2 
p1  =  0.10 3.67 1.46 2.90 0.58 

0.50 8.73 3.06 13.51 4.71 
0.90 1.13 0.55 6.84 2.99 

A = 10 
p1  =  0.10 1.49 0.52 3.47 0.83 

0.50 2.84 0.84 7.40 2.65 
0.90 0.46 0.19 3.27 1.29 

λ 
= 

5 

A = 0 
p1  =  0.10 2.21 0.51 6.88 1.18 

0.50 2.61 0.94 12.48 4.42 
0.90 0.64 0.23 5.55 2.34 

A = 2 
p1  =  0.10 0.51 0.25 1.72 0.28 

0.50 2.75 0.83 8.49 2.38 
0.90 0.88 0.32 3.60 1.41 

A = 10 
p1  =  0.10 0.21 0.18 1.98 0.53 

0.50 0.87 0.32 4.32 1.56 
0.90 0.17 0.09 2.02 0.89 

 

As expected, RERF outperforms the static rationing policy at each parameter set-

ting. Parallel to the above discussion about the static rationing, for given λ  and A , 

the benefit of RERF over the static rationing policy appears to be maximized when 
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1p  is far away from the extreme cases and close to 0.5.  The only exception is ob-

served when 25λ =  and 0A = .   In this case, RERF provides the most significant 

cost reduction, 10.10% in the best case and 5.43% on the average, when the large 

proportion of the demand is from class 2.  This shows that although the static ration-

ing seems to be a valuable policy when the demand rates of the classes are close to 

each other, rationing the stock dynamically can provide substantial extra benefit for 

such cases (especially when the class 1 backorder costs are much more higher than 

the class 2 backorder costs). In addition to that, dynamic rationing is also a valuable 

tool when 2λ  is high compared to 1λ . In general, when 1p  is lower, the static policy 

does not perform well as discussed in the previous paragraph.  However, for such 

cases RERF provides considerable additional savings especially when total demand 

rate is high. This is due to the fact that RERF has the capability of increasing 2β  and 

decreasing 2γ , i.e., decreasing 1β  and increasing 1γ , values that attained under the 

static policy. Naturally, this capability provides significant gain when 2λ  is high 

compared to 1λ .  

On the other hand, when 1p  is high, RERF does not provide noteworthy addi-

tional savings. This can be explained with the fact that when the demand is mostly 

generated by class 1, keeping 1γ  and 1β  values at the levels dictated by static policy 

is much more beneficial than decreasing them by satisfying some class 2 demands 

earlier. Hence, assuming continuous replenishment flow and modifying the inventory 

level accordingly (to satisfy some class 2 demands earlier) is not useful when 1p  is 

high. In such settings, the information that outstanding orders provide does not have 

any significance. However, this is true not only for RERF but also for all possible 

dynamic policies as demonstrated by the bounds in Figure 5.2.  
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 Figure 5.2 Impact of demand mix 

 

Figure 5.2 summarizes all the above discussions related to Table 1 for the 

case 1 2 1 2ˆ ˆ25, 10, 2, 1, 0.2, 5, 2h Aλ π π π π= = = = = = = . It clarifies the impact of 1p  

on the performance of RERF and the static policy.  In the figure, in addition to the 

optimal costs of common stock, static and RERF policies, the lower bounds obtained 

from the systems 1N , 2N  are exhibited. Lower Bound 1 and Lower Bound 2 are the 

optimal long-run average costs of systems 1N  and 2N , respectively. For each case, 

the lower bound we propose should be considered as the maximum of Lower Bound 

1 and Lower Bound 2. It can be seen from Figure 2 that when 1 0.7p ≥  none of the 

dynamic rationing policies can provide any extra gain over the static policy, which 

explains why RERF could not provide meaningful savings when 1 0.9p = . For the 

other cases, i.e., 1 0.7p < , the extra benefit of RERF (the benefit of RERF over the 

static policy) is almost same as the benefit of the static policy over the common stock 

policy.  The lower bound proposed by Deshpande et al. (2003) is also provided in 

Figure 5.2. It is apparent that the lower bound proposed in this paper is tighter than 

the one proposed by Deshpande et al. (2003).  
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  Figure 5.3 Impact of total demand rate ( 1 0.5p = ) 

Table 5.1 also shows that as the total traffic rate increases both the static ration-

ing and RERF provides considerable cost savings. Especially when 1p  is 0.1 or 0.5 

and the setup cost is low, i.e., A is 0 or 2, and 25λ = , RERF results in remarkable 

additional savings. Increasing the total traffic rate sharpens the trade-off between 

holding and shortage costs. Since the value of rationing is based on this trade-off, it 

increases with the traffic rate. Moreover, we observe that as λ  increases, /L Qλ , 

which is the expected number of outstanding orders, increases in most cases. Since 

RERF assumes continuous flow of the outstanding replenishment orders, it has more 

capability to re-optimize the parameters and to increase the cost saving as the num-

ber of outstanding orders increases. Figure 5.3 generalizes this discussion by consi-

dering ten different total demand rate values for the 

case 1 1 2 1 2ˆ ˆ0.5, 10, 2, 1, 0.2, 5, 2p h Aπ π π π= = = = = = = . As λ  increases, both the 

benefit of static policy over the common stock policy and the benefit of RERF over 

the static policy increase. Moreover, the gap between RERF and Lower Bound 2 is 

not very large, which means that our policy realizes most of the existing potential for 

the rationing policies. Here it should be also noted that the actual gap between RERF 
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and the unknown optimal policy should be much less than the gap between RERF 

and the lower bounds. If we consider the case where 1 0.9p = , the benefit of un-

known optimal rationing policy over the static policy is almost zero for all λ  values 

as shown in Figure 5.4, i.e., the curves corresponding to the static policy and Lower 

Bound 2 overlap. 

 
      Figure 5.4 Impact of total demand rate ( 1 0.9p = ) 

 

Setup cost is the other important cost parameter that affects the performance of 

the policies. In an environment with less setup cost the effect of the service level dif-

ferentiation is more important. As the setup cost increases, we observe that the aver-

age ordering cost appears to dominate the average holding and shortage costs. Since 

the rationing policies derive benefit from the trade-off between the average holding 

and shortage costs, the relative effect of rationing diminishes as the setup cost in-

creases. Moreover, as the batch size increases (due to the increase in the setup cost) 

the expected number of outstanding orders decreases and the benefit of RERF dimi-

nishes.  
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To summarize the results obtained from Table 5.1, we can say that rationing is a 

valuable tool when the total demand rate is high and the setup cost is low. In addi-

tion, if the demand rates of the customer classes are close to each other, the benefit 

of the static rationing over the common stock policy increases. In all such environ-

ments, RERF provides significant additional cost savings. Moreover, when the high 

portion of the demand is from class 2, the benefit of RERF over the static rationing 

policy is relatively high compared to the benefit of the static rationing over the 

common stock policy. Tables 5.2 and 5.3 detail the cases where RERF and the static 

policy provide high cost savings. Table 2 compares the policies for 25, 0Aλ = =  and 

Table 5.3 for 25, 2Aλ = = . For A = 0, the benefit of RERF over the static policy is 

maximized with the cost reduction of 10.10% when 

1 1 2 1 2ˆ ˆ0.1,  10, 2 and 1, 0.2p π π π π= = = = = ; and the benefit of the static rationing 

over the common stock is greatest with the reduction of 29.76% when 

1 1 2 1 2ˆ ˆ0.5,  2, 0.4 and 1, 0.2p π π π π= = = = = . For A = 2, cost savings are maximized 

when 1 0.5p = . In this case, 8.73% and 13.51% cost reductions are observed when 

1 2 1 2ˆ ˆ 10, 2,  1, 0.2π π π π= = = =  and 1 2 1 2ˆ ˆ2, 0.4,  1, 0.2π π π π= = = =  corresponding-

ly for RERF and the static rationing policy.  

As expected, cost reductions are greatest when 1 1
1 1

2 2

ˆˆr  and r
ˆ

π π
π π

= = are at their 

maximum value because service differentiation is meaningful when class 1 shortage 

costs are high compared to the class 2 shortage costs 2. But, in both cases RERF pro-

vides the maximum cost reduction over the static policy when 2 2π =  although the 

static policy provides when 2 0.4π = . This can be explained by the tendency of 

RERF to decrease the class 2 shortage costs. When the backorder cost of class 2 is 

high, RERF performs better. This fact can also be seen by comparing the cases 

( ) ( )1 1 1 1ˆ ˆ10, 5  and 2, 5π π π π= = = =  in Tables 5.2 and 5.3. 
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As discussed in the previous section, RERF assumes the exponential flow func-

tion ( ) ( )1 ( )( ) iL a t n
if a t e λ− −= where n is another policy parameter to be optimized with 

( ), ,Q R K values. In our simulation study we consider only integer values of  n to ob-

tain the optimal parameters in a reasonable amount of time. Interestingly, for 

both 25 and =5λ λ= , [ ]* 3,11n ∈  when 1 0.1p = , [ ]* 1, 4n ∈ when 1 0.5p = , [ ]* 1,3n ∈  

when 1 0.9p = , where *n  stands for the optimum value of the power n . Although n 

varies in small ranges, we observe that it is not effective to use an appropriate con-

stant n value and optimize the policy only over ( ), ,Q R K values because changes in 

n results in considerable cost savings. 

    Table 5.2 Comparison of Policies for λ=25, A=0 

 p1  =  0.10 p1  =  0.50 p1  =  0.90 
 RERFG SPG RERFG SPG  RERFG  SPG  

1

1

10,
ˆ 5

π
π

=
=

 1 1̂5, 5r r= =  8.81 2.53 7.79 18.60 0.76 8.08 

1 1̂5, 1.25r r= =  7.18 0.36 3.58 14.87 1.35 6.87 

1 1̂1.25, 5r r= =  3.23 0.09 3.96 1.69 1.00 1.97 

1 1̂1.25, 1.25r r= = 3.12 0.00 2.87 2.06 0.79 1.06 

1

1

10,
ˆ 1

π
π

=
=

 1 1̂5, 5r r= =  10.10 4.10 8.95 19.31 0.61 9.23 

1 1̂5, 1.25r r= =  8.65 3.70 8.49 17.86 0.40 8.92 

1 1̂1.25, 5r r= =  2.87 0.00 3.91 1.96 1.00 2.28 

1 1̂1.25, 1.25r r= = 2.47 0.51 3.17 3.02 0.33 2.77 

1

1

2,
ˆ 5

π
π

=
=

 1 1̂5, 5r r= =  5.12 4.49 3.60 25.02 0.63 10.96

1 1̂5, 1.25r r= =  0.82 0.79 0.42 9.87 1.14 3.90 

1 1̂1.25, 5r r= =  5.80 0.60 5.97 8.83 0.79 6.63 

1 1̂1.25, 1.25r r= = 2.19 0.52 2.40 2.94 0.97 2.37 

1

1

2,
ˆ 1

π
π

=
=

 1 1̂5, 5r r= =  9.86 1.92 3.67 29.76 1.03 12.45

1 1̂5, 1.25r r= =  4.42 0.00 3.18 21.22 0.32 10.17

1 1̂1.25, 5r r= =  7.15 0.00 7.11 8.29 0.74 8.00 

1 1̂1.25, 1.25r r= = 5.10 0.57 5.02 6.83 0.85 6.57 
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          Table 5.3 Comparison of Policies for λ=25, A=2 

 p1  =  0.10 p1  =  0.50 p1  =  0.90 
 RERFG SPG RERFG SPG  RERFG  SPG

1

1

10,
ˆ 5

π
π

=
=

 1 1̂5, 5r r= =  3.40 1.69 7.06 9.01 1.04 4.57 

1 1̂5, 1.25r r= =  3.13 0.46 3.98 7.05 0.95 3.51 

1 1̂1.25, 5r r= =  1.21 0.21 2.35 0.00 0.94 0.53 

1 1̂1.25, 1.25r r= = 1.23 0.00 2.01 0.00 1.08 0.00 

1

1

10,
ˆ 1

π
π

=
=

 1 1̂5, 5r r= =  3.45 2.90 8.73 9.52 0.53 5.84 

1 1̂5, 1.25r r= =  3.67 1.62 7.60 8.49 0.57 5.03 

1 1̂1.25, 5r r= =  0.98 0.00 2.10 0.37 0.56 0.24 

1 1̂1.25, 1.25r r= = 1.38 0.00 1.95 0.09 1.13 0.00 

1

1

2,
ˆ 5

π
π

=
=

 1 1̂5, 5r r= =  1.92 1.33 1.29 12.53 0.20 5.91 

1 1̂5, 1.25r r= =  0.39 0.00 0.96 3.02 0.00 2.20 

1 1̂1.25, 5r r= =  0.38 0.35 3.30 1.95 0.42 2.86 

1 1̂1.25, 1.25r r= = 0.18 0.00 0.80 0.33 0.37 0.77 

1

1

2,
ˆ 1

π
π

=
=

 1 1̂5, 5r r= =  0.90 0.88 0.57 13.51 0.17 6.84 

1 1̂5, 1.25r r= =  0.41 0.00 1.05 8.38 0.04 4.60 

1 1̂1.25, 5r r= =  0.24 0.00 3.49 0.94 0.44 2.84 

1 1̂1.25, 1.25r r= = 0.43 0.00 1.78 0.19 0.27 2.06 
 

As a final test of performance, we compare the results of Teunter and Haneveld 

(2008) with the results obtained through RERF. Under the at-most-one-outstanding-

order assumption, Teunter and Haneveld (2008) find the optimal critical remaining 

lead-time values. In their numerical analysis, they consider two cases. In Example 1, 

they assume 1 2
13 , 0.222, 1.444,
24

L λ λ= = =  1 21.4, 150, 6.5, 0.42.h Aπ π= = = =  For 

this case, they propose that only if the remaining lead-time is greater than 0.248, one 

item should be reserved for class 1 demand. The average total cost for their sug-

gested policy is 3951. However, for the same setting the minimum average total cost 

obtained through RERF is 3805 (the optimal parameters are 

( ) ( ), , , 2,1,1,15Q r K n∗ ∗ ∗ ∗ = ). As the second example they consider a setting in which 

1 21, 4, 10, 1,L hλ λ= = = =  1 2100, 10, 0.025.Aπ π= = =  In this setting, the authors 
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conclude that it is optimal to reserve at most five items for class 1 demand arrivals.  

The reserved number decreases with the remaining lead-time. The cost of applying 

this policy with the optimum reorder point, order quantity and rationing times is 

8777. Similar to Example 1, RERF provides a lower cost. With the optimal parame-

ters ( ) ( ), , , 2,19,2,5Q r K n∗ ∗ ∗ ∗ = , the cost of RERF is 8479.   

5.3.2 Lost Sales Case 

We performed a similar simulation study also for the lost sales case with the same 

data set. Since there is no time dependent lost sale cost, for this case we generated 72 

cases varying in 1 1
1 1 1

2

, , ,p rλ πλ π
λ π

= = .  The findings are summarized in Table 5.4, 

which is the counterpart of Table 5.1 for the lost sales case.  

It seems that the dynamic policy does not provide savings comparable to the ones 

in backordering environment. The benefit of RERF over the static policy is greatest 

with the reduction of 4.30% when 125, 0, 0.5A pλ = = = . As in the backordering 

case, the cost reduction obtained by RERF increases with λ and decreases with A . 

Similarly, the highest reductions are observed when 1p  is low or close to 0.5. On the 

other hand, it is not possible to say similar things to the backordering case for the 

behavior of the static policy. Table 5.4 illustrates that the static policy performs bet-

ter when the setup cost increases. Here, the rationing policy is mostly effective as a 

demand admission control mechanism.  Moreover, the highest cost reduction ob-

served when 25λ = and 1 0.1p = . Contrary to the backordering case, inventory posi-

tion does not change with the demands that are not satisfied (lost). In addition, there 

is no clearing issue in the lost sales case and so all the units of an arriving replenish-

ment order are used to increase the stock. Due to these facts it is not easy to charac-

terize the behavior of the performance of rationing strategy in the lost sales case.  
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  Table 5.4 Lost sales: Comparison of Policies for all possible shortage cost pairs 

 RERFG  SPG  
 Max Avg. Max Avg. 

λ 
= 

25
 

A = 0 
p1  =  0.10 3.73 1.67 0.15 0.04 

0.50 4.30 2.05 8.93 3.71 
0.90 0.80 0.43 3.20 1.34 

A = 2 
p1  =  0.10 3.79 1.15 0.46 0.22 

0.50 2.68 0.86 7.04 3.22 
0.90 0.46 0.13 2.32 1.11 

A = 10 
p1  =  0.10 1.45 0.53 8.58 2.65 

0.50 2.13 0.71 6.04 2.53 
0.90 0.52 0.26 1.65 0.92 

λ 
= 

5 

A = 0 
p1  =  0.10 0.47 0.31 0.08 0.02 

0.50 1.66 0.51 4.03 1.04 
0.90 0.38 0.16 1.48 0.45 

A = 2 
p1  =  0.10 0.60 0.34 0.10 0.03 

0.50 0.64 0.26 4.85 1.23 
0.90 0.43 0.15 0.83 0.34 

A = 10 
p1  =  0.10 0.25 0.16 21.27 9.96 

0.50 0.17 0.10 6.27 3.58 
0.90 0.38 0.19 1.37 0.62 

 



 

6.  Conclusion 

This work constitutes a significant extension of the literature in the area of control of 

make-to-stock queues, which considers only a single server.  We allow an arbitrary 

number of servers in our model.  We model the multi-exponential-server system as 

an M /M /s make-to-stock queue and show that the optimal production policy is a 

state-dependent base-stock policy. Furthermore, the optimal rationing policy is of 

state-dependent threshold type.  We also prove that the optimal production and 

rationing policies are monotone in the inventory level and the number of operational 

servers. We compare the optimal policy with the previously suggested base-stock 

policy and demonstrate there are settings where the optimality gap is significant. We 

also provide three variations on the primary model. The first two variations handle 

the partial and full order-cancellation flexibility. Our experiments demonstrate that a 

little flexibility goes a long way and captures most of the value that can be realized 

via order cancellation. We also discuss a setting with fixed production setup and 

order cancellation costs as the third variation. In such settings, the optimal policy is 

no more monotonic in the number of operational channels.   

We then consider Erlangian production times as an extension of the M /M /s 

model. We postulate for this case that the optimal policies are state dependent. The 

production decision for a specific server depends on the current states (stages) of the 

other servers. Furthermore, the outstanding production order that is more close to 

finish (the one that completes more stages) has more value in terms of the rationing 

decision. 

As the number of available servers increases, the optimal policy stops changing 

beyond a certain number of servers.  Therefore, our work also handles the case of 

infinitely-many servers, i.e., exogenous supply system. Moreover, based on the re-

sults of M/Ek/s model we propose a new dynamic rationing policy for the exogenous 
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supply systems (continuous-review inventory systems) with deterministic leadtimes. 

For both backordering and lost sales environments, we conduct simulation studies to 

compare the performance of the dynamic policy with the static critical level and the 

common stock policies and quantify the gain obtained. We also propose two new 

bounds on the optimum dynamic rationing policy that enable us to tell how much of 

the potential gain the proposed dynamic policy realizes.      

The multiple server extension provided by this work to the control of make-to-

stock queues has potential to open new research avenues.  There is a rich and well-

established literature in the area of make-to-stock queues.  It would be interesting to 

see how the previous findings in the literature would apply to this more general pro-

duction setting that considers multiple production channels.  This setting should ena-

ble us to address important issues such as the effect of pipeline inventory in rationing 

decisions.   

One can consider applying the semi-Markov control approach to analyze the sys-

tems with general processing times.  However, this would also be problematic in our 

setting with multiple servers, for the same reason that the analysis of M /G /s queues 

are.  Furthermore, the current literature does not even include the more tractable sin-

gle server models with general production times, which was suggested as future re-

search by Ha(1997a).   

The state-of-the-art in control of make-to-stock queues does not also address the 

set-up times/cost issue.  Extending our model to incorporate this set-up dynamics and 

costs would be a worthwhile effort.  However, in such a setting the monotonicity re-

sults of our work no longer hold as discussed in Section 3.2.   
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