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ABSTRACT

LOSSLESS COMPRESSION OF MEDICAL IMAGES

Belıiç Fırat Kılıç
M.S. in Electrical and Electronics Engineering 

Supervisor; Assoc. Prof. Dr. Ahmet Enis Çetin
July 1991

The digital imaging techniques are used more and more in various diag­
nostic modalities, including computed tomography (CT), Digital Subtraction 
.A.ngiography (DSA), etc. As a result, a huge amount of digital images are 
being generated. Therefore, techniques to compress these images into a more 
compact form for storage and transmission become more important and anyone 
involved with the storage of medical images in a Picture Archiving and Com­
munication System (PACS) should first apply compression (lossy or lossless 
depending on the characteristics of the digitized data) on them. There are im­
age coding methods which reduces the storage size of an image b}' an amount of 
1/10 without any visual degradation. But in some medical applications lossless 
coding of medical images is necessary.

Multiresolution coding techniques have been used for lossy image and speech 
coding, in this thesis we developed multiresolution techniques for the lossless 
image compression. We observed that the use of multiresolution techniques in 
lossless compression is as advantages as in lossy compression schemes.

Ill



ÖZET

MEDIKAL g ö r ü n t ü l e r in  KAYIPSIZ OLARAK
SAKLANMASI

Behiç Fırat Kılıç
Elektrik ve Elektronik Mülıendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç Dr. Ahmet Enis Çetin 
Temmuz 1991

Sayısal görüntüleme tekniklerinin tomografi, anjiografi vs. gibi alanlarda 
her geçen gün daha fazla kullanılmaya başlanmasıyla, çok fazla yer kaplayan 
medikal görüntülerin saklanması önemli bir sorun olmuştur. Bu görüntülerin 
daha yoğun bir şekilde saklanmasını sağlayan teknikler de önem kazanmıştır. 
Bazı geliştirilen az kayıplı metodlarla bu görüntülerin kapladığı hafıza 1/10 
oranında azaltılabilir. Fakat, medikal alandaki bazı kullanımlardan dolayı hiç 
kayıpsız saklama önemli bir araştırma alanı olarak kalmı.ştır.

Bugüne kadar çok çözünüldü teknikler kayıplı saklamalarda kullanım alanı 
bulmuştur. Bu tezde ise çok çözünüldü teknikler kayıpsız görüntü saklamasında 
kullanıldı. Çok çözünüldü tekniklerin, en az kayıplı saklamada olduğu kadar 
kayıpsız saklama alanında da başarılı olabileceği yapılan deneylerle de gözlendi.

IV
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Chapter 1

Introduction

1.1 Introduction

The digital imaging techniques such as Computed Tomography (CT), Digital 
Subtraction Angiography (DSA), ultrasound, nuclear medicine and computed 
radiography are used increasingly in various diagnostic modalities. Therefore, a 
huge amount of digital images are being generated, for which compression into 
a more compact form for storage and transmission become more important.

Medical images are usually digitized in large rasters. For instance, a chest 
X-Ray is scanned in a raster of size 2048 lines and 2048 columns (or 1024 x 1024 
in some cases) with pixel depth of 12 bits and digital subtraction angiogrciphy 
(DSA) images are digital images of size 512x512 (in most machines) with pixel 
depth ranging from 8 bits to 12 bits. These figures stress the fact that, any 
type of image consumes a huge amount of storage media. Furthermore, if we 
consider storing huge amount of medical images in a hospital Picture Archiving 
and Communication System (PACS) the importance of the data compression 
becomes even clearer. Hence, anyone involved with the storage of mediccil 
images in an archive or the transmission via a telecommunication system should 
first apply compression (lossy or lossless depending on the characteristics of the 
digitized data) on them. We believe that the image compression unit must be 
an integral part of any PACS [2].



CHAPTER 1. INTRODUCTION

Image compression methods can be classified into two main categories: 
Lossy (irreversible) and lossless (error-free) coding methods. Although the 
techniques developed in this thesis can be applied to all kinds of images, we 
will be mostly concerned with error-free (lossless) coding of medical images due 
to legal reasons commonly used; lossy image coding methods can not be used 
in compressing medical images.

Many irreversible image coding techniques have been developed during the 
past two decades for applications ranging from tele-conferencing to the trans­
mission of digital TV  images [7],[8]. Recently, multiresolution image coding 
techniques become popular [4]-[7]. In gray-scale High Definition Television 
(HDTV) images a comiDression ratio of three can be achieved without intro­
ducing any visual degradation using multiresolution image coding (in fact some 
HDT\' standard proposals are based on multiresolution image coding) and for 
other images compression ratios of as high as ten can be achieved by using mul­
tiresolution coding methods. However it should be noted that, visually lossless 
is a term to describe a lossy coding technique in which the reconstructed image 
is visually indistinguishable. As the name irreversible implies some numerical 
loss on the image pixel values are introduced in the irreversible coding. In 
some medical applications any loss however harmless it may seem may not 
be tolerable. Therefore, in these cases medical images should be compressed 
by numerically lossless image coding techniques. In this thesis we developed 
multiresolution lossless image compression methods for medical images.

Most of the lossless techniques are based on a lossy technique plus an error- 
correction unit. So, we will first examine lossy techniciues in order to extend 
the study to lossless cases, as well.

We also review multirate signal processing, transform domain coding, Huff­
man coding, run-length codirrg etc. in Chapters 2 and 3. These concej^ts are 
extensively used in our coding schemes. In Chapter 4 we present the newly 
developed multiresolution medical image coding methods and some simulation 
examples.



Chapter 2

An Overview of Some Multirate Techniques

2.1 Introduction

The key idea of multirate signal processing (MSP) based coding methods is 
to represent the signal in lower resolutions, and to encode each of these com­
ponents separately. By dividing the signal into sub-signals we wish to remove 
redundancies and obtain a number of uncorrelated sub-signals.

These uncorrelated sub-signals can be coded more efficiently than the cor­
related ones [14], [15]. Indeed, optimum coding can be achieved if the signal 
can be decomposed into perfectly uncorrelated sub-signals [16].

In our case, the signals will be two dimensional and Avill be referred as 
images. The decomposition of images to several sub-images in lower resolutions 
has the advantage that, the number of bits used to encode a sub-image which 
corresponds to a frequency component of the original image can be variable. So, 
the encoding accuracy is always placed wherever it is needed in the frequency 
domain. In fact, bands with little or no energy may not be encoded at all in 
some lossy coding techniques.

The rest of this section describes two multirate signal processing techniques 
which are subband and pyramidal decomposition methods.
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Figure 2.1: A'(e·’^) is the shifted and scaled sum of XaiJO.)

2.1.1 Subband Decomposition

Let us assume that we have a bandlimited analogue signal Xa{t) with the con­
tinuous time Fourier transform (CTFT)

Xa{t) XaijO) (2.1)

It is well known from the Nyquist theorem that the discrete time Fourier trans­
form (DTFT) of the signal Xa{nTs) is given as follows^

:.(nr.)'Si? AV”) =
k=—oo Ts s

(2.2)

In Fig.2.1 we plot X{e^'^) and Xa{jO) where DTFT X{e^^) of the analog signal 
Xa{t) sampled at nT̂  intervals is the shifted and scaled sum of it’s CTFT 
XaUn).

Note that H =  lo/Ts and Tj =  1 / / ,  in Fig.2.1. Aliasing occurs if sampling 
rate is lower than the Nyquist rate.

Having mentioned the frequency domain behavior of a bandlimited signal 
under sampling we can introduce the concept of digital decimation and digital 
interpolation.

The digital in terpolation  by a factor of L is the operation of padding L-1 
zeros between the consecutive samples of the time domain signal x[n) and then

rivhere Xa{nTs) is the samples of Xa{t) taken at nT, time intervals and n is an integer
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jw

x(n)

raicf

1 2 3 4 5 6 7 8

JW

-e-e- -B-e-

Figure 2.2: Interpolation operation

JW

X (n) 1 x(n)0♦ 1
rate Lf s ^ / l raioLfs

filtering it with a low-pass filter cut-off at tt/L . Padding L-1 zeros increases the 
rate by a factor of L and represented by the symbol L | to indicate an increase 
in rate by a factor of L This increase in the rate causes a proportional 
redundancy in the frequency content of the signal. The original signal can 
exactly be extracted from its’ aliases by low-pciss filtering with cut off tt/L . 
The described operation of interpolation (both in time and frequencj'· domain) 
can be summarized by the Fig.2.2. Note that in Fig.2.2 the zero padded signal 
X,(e·’ “') can be represented in terms of the input signal as follows^:

AT(e'·^) =  X{e^^^) (2.3)

T he digital decim ation  is a complementary operation of the digital inter­
polation. That is, if certain constraints are satisfied a decimated signal can 
exactly be reconstructed by interpolation. In decimation, rate of the signal is 
reduced by a factor of M  and represented by M  J, . We filter the signal by a 
low-pass filter at cut-off tt/M  and drop M-1 samples out of every M  samples“’ . 
Prefiltering by a low-pass filter (sometimes called the decimation filter) with 
cut off at 7t/M  avoids the possibility of aliasing which may occur after decima­
tion. Unlike to interpolation, decimation operation increases the bandwidth 
of the signal and may cause aliasing. The decimation operation (both in time 
and frequency domain behavior) can be seen in Fig.2.3.

^This is known as “upsampling”
^It is assumed that wq < tt in Fig.2.2 
^This is known as “downsampling”
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jw
Input

У 4 ^

ifM=3

1 2 3 4 5 6 7

Figure 2.3: Decimation operation

Also note that
1_

M

M-l • w-2nk Чe*' M )
k=0

(2.4)

In subband decomposition the input signal is decomposed to sub-signals in 
lower resolutions according to their frequency contents. A typical subband 
decomposition structure is shown in Fig.2.4.

This structure decomposes the input signal x{n) into two sub-signals xi 
and Xu- After decimation by 2 (i.e., 2 |), these two sub-signals are fed into the 
encoder and then to the channel. The receiver decodes the received signal and 
interpolates it. In this way, the input signal x{n) can be reconstructed at the 
receiver.

Now let us derive the necessary conditions on the filters (in Bhg.2.4) for 
excict reconstruction of the signal at the receiver part. Бог this purpose we 
will exclude the encoder,decoder and the channel. The structure will be as in 
Fig.2.5.

The formulation of the subband structure (in Fig.2.5) begins as follows:

from Eq.2.4

(2.6)

X„(e^·"') =  Я„(е>)Х(е^·” ) (2.6)

ï)(e ’ ” ) =  i [X (e 'ï )+ A ', ( e '4 = ^ ) l (2.7)

(2.8)
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Figure 2.4: Subband decomposition by 2

Figure 2.5: Ideal subband decomposition structure 

and from Eq.2.3

1

The output is 

where

Z j e n  ^  y;(e^'2“ ) =  - [ X u ( e n  +

= Uiiê ·̂ ) + Uu{ t^

=  //b(e>)^[A:„(e^"^) +  A'4e^(“'+"))]

(2.9)

( 2 .10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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inserting and Xu{e '̂ )̂ values (Equations 2.5,2.6) we get

(2.16)

L\{e^^) =  -^ ^ - \ lR{e '̂ '̂)X{e '̂ )̂ +  ii„(e^’(“'+^))X(e^>+’ )̂)] (2.17)

so the output is

X{e l'û\ — X{eN)
[IU{enHi{e^'^) +  ii6(e^-)//„(e^-)]

A2(ei'‘

A(ê '“ ) = (2.19)

By examining Eq.2.19 we observe that, the output is composed of two 
terms where is an aliasing term which should be canceled for exact
reconstruction of A'(e·^“') at the output.

In order to reconstruct the input signal at the output of the subband de­
composition structure we need to have:

1) Ai(e·^^) =  where 6 °̂'̂  only introduces a time delay of ko units;
and

2) A'ife· '̂ )̂ =  0 to cancel the aliasing term.

There are many filter design algorithms [3]-[5],[10],[ll] to satisfy these condi­
tions and hence, reproduce exact replica of x{n) at the receiver.

One such design with FIR filters is obtained as follows:

• Choose hi[n) of order N (N is even) linear phase FIR low pass filter®.

• Choose hu{n) — ( - l ) ” /i;(?r). ®

SNote hi{n) =  hi{N -  n -  1) => f/fie^'“') =  \Hi{U' )̂\̂
®Note that if /i;(n) is a low pass filter then hu{n) is a high pass filter
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It can be easily shown that =  Hi(eA^+^)J with the above choice of the
filters.

Finally choose

which implies that 

A2(e '̂“') =

= 2H,(e^^) and 

=  -2Hu{e^'^)

0

J W \

(2.20)
(2.21)

(2.22)

(2.2.3)

(2.24)

and

note that

so if

Ai(ê '"') -  Hi{e^ )̂Ha{e '̂ )̂ P Hk{ê ' )̂l·h{ê ' )̂ (2.25)
= Hi{ê ' )̂2Hi{ê ' )̂ -  2Hu{e^")IL{e^^) (2.26)
= 2[Hi{e '̂^f -  Hu{e '̂^f\ (2.27)

Hi{t^'^f = \Hi{ê ' )̂\̂  (2.28)

= _  |F/,(e-''(“+̂ ))|̂ e“ '̂“'(^“ )̂ (2.29)

Ai(ê '“') = 2[|/7,(ê '̂ ")f + |77,(ê '(“̂ +̂ ))f (2.30)

|Ff,(ê '"’)p + |i/,(e'(“'+’̂ )̂|" -  1 (2.31)

then we satisfy the exact reconstruction condition.

One dimensional (1-D) subband decomposition structures can be general­
ized to two dimensions (2-D) in many ways [7]. VVe now consider two different 
subband decomposition methods to decompose the image into sub-images at 
different resolutions. In the first method, we use diamond shaped exact recon­
struction filter banks [4],[11] and in the second one we use rectangular exact 
reconstruction filter banks [5],[9],[10].
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Figure 2.6: Cuin-cunx downsampling structure 

N onrectangular Subband D ecom position

The nonrectangular decomposition is a subband decomposition method where 
nonrectangular filters are used for separation of the input image into sub-images 
(see Fig.2.7). The simplest way is the separable 2-D filters where the filters are 
constructed from 1-D filters such that;

Hij{wi,W2) =  Hj {1Ü2) (2.32)

But other non-separable 2-D structures can also be used. Apart .from filters 
the decimation and interpolation operations can also be generalized to the 2-D 
case in the same manner. This time decimation and interpolation factors M  
and L, respectively turn into matrices. The sampling rate is either decreased or 
increased by a factor of |dei(M)| or |dei(L)|, respectively. A simple decimation 
operation by a factor of M  in 2-D space can be seen in Fig.2.6 where

M =
1 1
1 -1

(2.33)

In Fig.2.6 y{n) — x(M n). This decimation scheme is also known as the 
“quin-cunx” downsampling where only half of the samples are retained and the 
rest is dropped [17].

Our nonrectangular subband decomposition scheme consists of two stages. 
In the first stage the medical image is filtered by two filters. One of these 
filters is a lowpass filter with a diamond shaped' passband. The other filter 
is a high pass filter with a diamond shaped stopband. The outputs of these 
filters are downsampled by a factor of 2 on a line quin-cunx grid. In this way 
two sub-images are obtained. The sub-image coming from the lowpass filter 
is decomposed and downsampled once again by the same filterbank. In effect

^Among many other possible nonrectangular filter structures “diamond shape” is a spe­
cific filter (see Fig.2.7) which we used in our simulations.
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Figure 2.7: Nonrectangular subband decomposition

the procedure splits the image information into three regions in the frecpiency 
domain, ideally as shown in Fig.2.7. In this way a low resolution sub-image 
LL and two dilference sub-images (LH and H) are obtained from the original 
image.

In Chapter 3 we make use of the special characteristics of these sub-images 
in our coding algorithms to lower bitrate or equivalently to improve data com­
pression.

In order to perform the multiresolution subband decomposition the follow­
ing HR filters described in [4] are used:

= ^ + 2{-iye^^^T{io,+U2)T{u, -C02), 1 = 0,1 (2.34)

where
n . ) = ‘ (2.35)

2 ■ 1/3 -f-
is an all-pass section. The filter with subscript i = 0 (i =  1) is the lowpass 
(highpass) filter. In order to reconstruct the coded image from the sub-images 
the synthesis filter bank of [4]

Yi{wi,W2) = 2  Hi{-Wi,-W2),  i =  0,l (2.36)

which provides exact reconstruction is used. The reconstruction structure can 
be seen in Fig.2.8.
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Figure 2.8: Reconstruction stage for nonrectangular decomposition

During this process no loss is introduced by the chosen filter bank of [4]. 
Hence, by the proper choice of filter bank the frequency content of the im­
age can be split into lower resolutions and then can be reconstructed again 
without any distortion. This method is called as the nonrectangular subband 
decomposition.

Rectangular Subband Decomposition

The second subband decomposition method which we consider is the well 
known rectangular decomposition method [3],[6]. It is another subband de­
composition method in which exact reconstruction filters of rectangular shape 
(see Fig.2.9) are used.

A splitting ¡procedure similar to the nonrectangular case is applied to the 
image. But this time, the filters in the structure are rectangular cind instead 
of applying a tree like structure for decomposition we use the structure shown 
in Fig.2.9. The image is split into 4 sub-images instead of three as in the case 
of nonrectangular subband decomposition.

In our work, we use the separable IIR*̂  filter bank of [5] which introduce no 
loss to the image. The filters used are

(2.37)

where
i / i H  =  -[1 +  ( - l ) V "  T{2u,)l (2.38)

^Infinite impulse response
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LL

LH

HL

HH

and

Figure 2.9: Rectangular subband decomposition

+  1
r ( 2 c )

1 /3  +
(2.39)

The low resolution sub-image (LL in Fig.2.9) carries the highest information 
among other sub-images LH, HL, HH. Later on, this property will be e.xploited 
to improve the compression ratios of the images.

Reconstruction of the original image from the sub-images is carried out by 
the synthesis filter bank of [51

i-;W = j ( l + ( - ! ) '  r(-2«;)], ! = 0,1
with the reconstruction structure of Fig.2.10.

(2.40)

These decompositions of the image into sub-images (either rectangular or 
nonrectangular) enable us to make use of particular code-books to encode par­
ticular frequency ranges. As it will be discussed in detail later on, this improves 
data compression.
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Figure 2.10: Reconstruction stage for rectangular decomposition

2,1.2 Pyramidal Decomposition

Pyramidal decomposition is another multirate signal decomposition scheme. A 
typical pyramidal coding structure is shown in Fig.2.11.

The image a;(n) (where .x’(n) =  a;(ni,n2)) is filtered and down sampled, on 
a rectangular grid, to a;i(n) where the number of pixels are reduced by a factor 
of 4 during the process^. The image a;i(n) corresponds to the low frequency 
range hence, carries more information. After it is being coded this quantized 
and encoded sub-image a,’6(n) is then upsampled and interpolated to form a;2(n) 
(which is of the original image size). Then the error image ;r(n), is obtained by 
subtracting the reconstructed image o:2(n) from the original image o:(n), i.e. ,

.r’ (n) =  ,T(n) -  0:2(11) (2.41)

This completes one full cycle through the pyramidal structure. The error 
image a;(n), is either entered to a similar structure once more or transmitted 
to the receiver after being quantized and coded.

Pyramidal decomposition structure produces samples (5/4 times) more 
than the input image sarhples whereas in subband decomposition structures

®H is a separable 2-D Lagrange filter of length 7 and 21 j is a rectangular 
' 1 0 “downsampling matrix /  = 0 1
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x(n)
b

^n)

x(n) lo receiver

Figure 2.11: The pyramidal coding stage

x(n)

Error image

Figure 2.12: Reconstruction stage of the pyramidal coder

the number of output samples are equal to the input samples. The pyramidal 
structure is suitable for compression purposes as the error sequence x’ (n) which 
is of the original image size carries very low information.

The receiver part of the pyramidal coder is shown in Fig.2.12. The recon­
struction is error free without considering the transmission errors that may 
occur in the channel.



Chapter 3

Review of Some Waveform Coding Methods

3.1 Introduction

The main purpose of any image coding method is to reduce the redundancies 
in the image as much as possible so that one either communicates in lower bit 
rates or stores the image in less memory. We try to assign symbols to pixels 
in an image, in such a way that we achieve this goal.

Image coding methods can be classified in tAvo main categories; irreversible 
(lossy) coding and lossless coding. Irreversible coding methods add distortion 
to the image during the compression of the data which can not be exactly 
recovered afterwards. That is, some amount of information is lost forever. 
The amount of information loss during the process also determines the amount 
of compression. The more information (visual qualit}'·) one loses the more 
compression one gets. Depending on the technique used, the relation between 
these two criteria difldr. That is, for one method one loses to much from 
visual quality to reach a certain compression ratio where as for another one 
does not lose that much from visual quality (information) to reach the same 
compression ratio. The aim is to achieve visuall)'  ̂lossless images with minimum 
loss of information.

In lossy image compression visual quality is a vital criteria. Hence there 
has to be an objective measure to decide on the distortion introduced to the 
image. Although there is not yet such a mathematical expression which is in 
full correlation with the human visual system, there are still expressions that 
somehow give a measure of the quality of the restored image. This way, we use 
both subjective measures as well as the objective ones to indicate the visual 
quality of the image.

16
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Some very common objective distortion measures are

E [ x ( n )  -
iV2

M.S.E.

M S E ^

MSEdh =  -2 0  Locjw (

^ [x (n )  -  y(n)]2

. / y7[x(n)-v(n)P
V m )

(3.1)

(3.2)

(3.3)

where x(n) and p(n) are input and output images to the image compression 
scheme, respectively and is the dimension of the images. The summations 
are over all image and x(n)„гαa: is the maximum gray-level value of the input 
image.

In lossless coding, however, there is no loss at all. That is all the gray-level 
values of the image are restored back exactly. The problem in lossless coding 
is to propose such a method that a considerable compression can.be achieved 
while no distortion is introduced at all.

In the next sections we introduce some coding strategies which we exten­
sively use in our image compression schemes.

3.1.1 Transform Domain Coding

The term image transform usually refers to a class of unitary matrices for rep­
resenting images [7]. Just as a 1-D signal can be represented by an orthogonal 
series of basis functions, an image can also be represented in terms of a discrete 
set of basis arrays called basis images. These basis images can be generated by 
unitary matrices.

A unitary transform is represented by a matrix, A. The transform y of a 
1-D sequence { ti(n), 0 < < A'' — 1 } is given by

N - l

V = All = >  v{k) =  ^  a[k,n)u{n), 0 < k < N — 1 (3.4)
n=0

where A~  ̂ =  A*'  ̂ (as in all unitary transforms) then

N - l

u — A*^v u{n) =  v{k)a*{k, n), — 1 (3.5)
k=0

The columns of A*  ̂ are called the basis vectors of A. Depending on the trans­
formation used these basis vectors differ.
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Figure 3.1: Reconstruction of the image from basis images

In 2-D the situation is quite similar and an image of size vV x N can be 
represented by the transformation of the form

N - i  N_i

v{k,l) =  EE u{rn,n)ak,t(m,n) , 0 < k,l < N — 1 (3.6)

and

m =0 n=0

N - l N - 1

u{m,n) = ,  0 < m , n < N  — l (3.7)
k =0  1=0

where ak,i{m,n) is a set of complete orthonormal discrete basis functions sat­
isfying the properties

i) Orthonormality ak,i{m,n)al,,,{m,n) S{k -  k',l -  I')

ii) Completeness Yk=o (‘'k,tim,n)al i{m',n') =  8{m — m',n — n')

Most of the unitary transforms used in image processing are separable that is.

Uk,i{m,n) = ak{m)bi{n) — a(k,m)b[l,n) (3.8)

where { ak{m),k =  0, . . . , fV— 1 } { 6/(n),/ =  0, . . . , iV— 1 } are 1-D complete 
orthonormal sets of basis [7].

The 2-D transformations can be summarized as the representation of an 
image by the scaled sum of basis images. That is basis images form such a set 
that if they are scaled and summed properly they can construct any image. 
The situation can be seen in Fig.3.1. where u^j’s are the scaling coefficients.

In transform coding, we only transmit the scaling coefficients and not the 
image. The receiver reconstructs the original image from the basis images by
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only using the scaling coefficients. By storing (or transmitting) the relatively 
large scaling coefficients, in magnitude, of the basis images we can remove 
the redundancies in the original image. For instance, a very small coefficient 
in magnitude implies a very small information for that specific basis image. 
Hence, we usually drop or give less emphasis to such coefficients in coding. 
In this way, we improve our compression results without much distorting the 
visual quality.

A transformation should have the ability to represent an image by as less 
scaling coefficients as possible^ In image coding Discrete Cosine Transform is 
the most popularly used transform which is described ne.xt.

Discrete Cosine Transform

The NxN discrete cosine transform F{u,v)  of an image f { j ,  k) is defined as

A ^ - l  N - l

F{u,v)  =
iC{u)C{v)

Y  f { j ,  k) . cos
j=0 k=0

{2j +  l)u7r
2N

. cos
(2k +  l)u7T

2N

for u, u =  0,1, · ■ ·, — 1 where

, , I f o i '  w=0C(w) =  ^
1 for w =l,2,...,N -l

(3.9)

(3.10)

The inverse transform is given by 

N - l  N - l

f ( j ,k)  = Y^Y^C(u)C{v)F(u ,v ) . cos
u=0 v=0

for =  0,1, · · ·, — 1.

(2j -f- l)ri7T nr\ Q (2k -f l)v'K
2N

. CUo
2N

(3.11)

DCT is a separable transform and it has very high energy compaction prop­
erty for images with high correlations among neighboring pixels [7].

As it is well known Karhaunen-Loeve transform (KLT) is the optimum 
transform in terms of energy compaction. However, KLT is dependent on the 
statistics of the input signal hence it has a signal dependent coefficient matrix 
and not very convenient forjnost practical image processing applications. DCT 
has a constant transform matrix (independent of the input signal statistics) 
so it is suboptimum however, much easier to implement. DCT is a very good

nThis is equivalent to having high energy compaction property
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approximation to the KLT for the order highly correlated Markov sequences. 
An N x N  DCT matrix is very close to the KLT matrix of a first order stationary 
Markov sequence of length N whose covariance matrix is given by

R =

1

P
9
1

P

P

r.N-1

r.N-2

^N-1 „N-2

(3.12)

p‘ '  ̂ r   ̂ p 1

when the correlation parameter p is close to unity [7]. Hence, it is widely 
accepted and even used in some image transmission standardization proposals 
[18]. Fast DCT algorithms can also be implemented by using FFT algorithms. 
DCT of a vector of N elements can be calculated in 0{Nlog2N) operations via 
an N-point FFT [19] which we used this property in our DCT implementations.

The adaptive DCT coder that we implemented for image compression pur­
poses performs transform domain coding. The algorithm is a modified version 
of the study by [1] and by itself a lossy coding scheme.

We first divide the image in small sub-blocks of typical size 8x8 pixels 
then take the DCT of each sub-block and put a threshold (T) on the trans­
form domain coefficients. This threshold can be adjusted to eliminate sriiall 
amplitude coefficients which do not carry much information. The coefficients 
with amplitudes less than the predefined threshold (T) are made zero, where 
the others are scaled by the threshold amount T. In this way the number of 
zero amplitude coefficients are increased and longer run-lengths are obtained^. 
While doing so we do not touch the luminance value of the sub-block which is 
the (0,0)’th coefficient of the DCT transformed sub-block because this value 
determines the intensity of the “blocking effect” which is easily observed vi­
sually (Mean values of the consecutive blocks change, if the luminance value 
is harshly quantized). Blocking effects occur due to the quantization of the 
transform domain coefficients and appears as small blocks of different intensi­
ties on the image. It destroys the visual quality and mean square error of the 
image. In order to avoid “blocking effect” we do not threshold the luminance 
value (this is the dominating factor in “blocking effect” ) of the transformed 
sub-block and quantize it to full range which is 9 bits.

Rest of the transform domain coefficients are then quantized by the user 
defined quantization step (.S'). While doing so we quantize the small amplitude 
coefficients in better precision regardless of the user defined quantization step
(S). This in return preserves the visual quality of the image.

^Run-length concept will be explained in Section 3.1.3
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Figure 3.2: Zig-zag scan

A modified Huffman coclebook and a run-length codebook (explained in Sec­
tions 3.1.2,3.1.3) are then adaptively constructed according to the quantization 
step S.

The quantized block of coefficients are “zig-zag” scanned as seen in Fig.3.2. 
This zig-zag scanning structure optimizes the number of run-lengths of ze­
ros and end-of-blocks. (During zig-zag scanning “zero-bridging^” is also per­
formed). Because among many functions which model the probability density 
of the cosine transform coefficients F'(u,u), the Laplacian density has shown 
to provide the best fit [1]. This function can be written as

p{x]u,v) =
y/2<r{u,v)

exp (3.13)

W/here a{u^v) denotes standard deviation of a coefficient.

After run-lengths of zeros are determined and other coefficients are zig-zag 
scanned a predefined range is variable length coded, and the rest is fixed length 
coded (detailed explanation of the coding procedure is given in Section 3.1.3).

The performance of the coder is quite good in terms of mean square error 
and subjective evaluations. For instance, a compression ratio of 10 can be 
achieved without any visual degradation (subjective measure) for some images 
including the well known “Lena” . Typical codebook pairs used for coding 
transform domain coefficients and run-lengths are given in Fig.3.3.

^Zero-bridging is explained in the Section 3.1.3
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NUMBER OF
AMPLITUDE CODE BITS HUFFMAN CODES

-6 8 00000000
-5 8 01100000
-4 7 0000001
-3 5 01101
-2 4 0111
-1 1 1
1 3 001
2 5 00001
3 6 011001
4 7 0110001
5 8 00000001
6 8 01100001

EOB 4 0001
RL PREFIX 3 010

[ 38.-38] 2 +6 11+6 BITS

[255,-255] 3+9 101+9 BITS
RUN-LENGTH

1 3 on

2 4 0101

3 4 0011

4 5 01000

5 5 10010

6 5 01001
7 5 10001
8 5 10011

9 5+9 1 00010+9 BITS 1

Figure 3.3: Huffman codebook for the DCT algorithm

3.1.2 The Huffman Coding

Let us assume that a discrete memoryless source U has a K letter alphabet 
ai, 02, Ojt with probabilities P (o i), P (a2) , P ( a r - ) .  Each letter can be rep­
resented l)y a codeword from a prescribed codebook'^. Let the number of differ­
ent symbols in the codebook be D (which is 2 in binary case; 0 and 1) and the 
number of symbols in the codeword corresponding to cik be nk (i.e., if a;t=0111 
then rik=4:).

The average number of symbols per source letter h is defined as follows:

K

= Y ^ P (a t).n ,  (3.14)n
k=l

Any useful codebook must be uniquely decodable. We can intuitively argue 
that, if we can assign longer codewords to source letters with less probability

C o d e b o o k  is  a  l is t  o f  c o d e w o r d s  u s e d  in  c o d in g
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P(a )k
0.3 a

0.25 a

0.25 a

Codewords

0.55

0.1

0.1 a 0.2 0.45 1.00

Figure 3.4: Optimum code assignment procedure

and the shorter codewords to source letters with high probability then we can 
represent our alphabet with less bits than the codebook which assigns fixed 
length codewords to each symbol. This is meaningful as most of the time the 
more probable source letters occur and since we assign shorter codewords to 
them, on the average we decrease the number of symbols transmitted.

In information theory, the well known concept of “source codiiig” says that 
[14]

n > II(U) (3.15)

at all times, where H(U) is the entropy of the source U and given by

K
II{U) =  Y^P{ak)log2

k=l P (“k)
(3.16)

That is, the minimum possible symbol assignment is lower bounded by the 
entropy (H) of the source. By proper code assignment we try to achieve the 
entropy value of the source alphabet.

The optimum code assignment for source letters can be achieved by Huff­
man coding. In this assignment algorithm source letters are given source sym­
bols beginning from the least probable two symbols, in a tree like structure. 
The coded two symbols and their probabilities are allied and a new source 
alphabet is formed. Then the same procedure, coding two least likely symbols, 
is applied recursively until we come up with one source letter. An example is 
given in Fig.3.4. A nice property of the Huffman coding is that, the output 
codewords are prefix conditioned (instantaneous). In other words, no codeword 
is a prefix of another codeword. Hence, decoding can be accomplished in real 
time without any storage requirement.

In our compression (coding) schemes we use codebooks designed by the 
Huffman coding algorithm. But sometimes the number symbols increase so
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-6
-5
-4
-3
•2
•1
1

2

3
4
5

6
БОВ
RLPREHX 
i 3β,-38] 
[255,-255]
RUN-LENOTH

NUMBER OF 
CODEBITS

>
8

7
5
4 
1

3
5
6
7
8 

8

4 
3 
2

Ji-9

4
5 
5 
5 
5 
5
5̂·9

HUFFMAN CODES
00000000

01100000
0000001 

01101 

0111

1

001

00001
011001

0110001
OCOOOOOl

01100001 

0001 

010

11-6 BITS 
10Ь9 BITS

on
0101

ООП

01000

10010

01001

10001

icon
OC010f9BITS

NUMBER OF
AMPLITUDE CODE BITS HUFFMAN CODES
116.-1« 1+5 1+5 BITS

P55,-255] 2+9 01+9 BITS
RL PREFIX 3 000

EOB 3 001
RUN-LENGTH

1 2 00
2 2 10
3 4 1100
4 4 1101
5 5 11100
6 5 1Г101
7 5 11110
8 5 mil
9 2t9 01+9 вгге

Figure 3.5: Modified Huffman codebook pair

much that instead of paying the cost of a very long and complicated Huffman 
codebook, we pay the price of a little worse compression by making use of a 
modified Huffman codebook. This time, source letters within the predefined 
range (especially the high probable ones) are variable length coded and the 
remaining source letters are fixed length coded. This modification does not 
degrade the compression ratios (equivalently average bit per source letter) more 
than 5% in most cases [8]. Two such modified codebooks which we also used 
in our compression schemes is shown in Fig.3.5.

3.1.3 Run-length Coding

If a certain source symbol occurs consecutivel}^ in a sequence of symbols, then 
it is more efficient to encode this repeated symbol sequence in one codeword. 
For instance in a binary image sequence like facsimile, there is a great potential 
for intraframe redundancy reduction by means of a subsequent operation called 
riin-length coding. In a text the binary symbol 0 (1) representing black (white) 
occurs with long runs so that consecutive runs of zeros or ones can be coded.

In gray-level images (2-D sequences) although there are more than 2 levels, 
in smooth regions we expect to have runs of pixels. Especially, in medical im­
ages there are frequent runs of constant gray-level values which can be encoded 
by run-length coding.
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Run-length coding must be an essential part of any compression unit since 
it is very effective in reducing the primary redundancies (Other methods such 
as transform coding, subband coding is necessary to reduce secondary redun­
dancies). A simple but popular gray-level lossless image coding is the shift and 
subtract scheme, in which we shift the image by one pixel to the right or left 
and subtract from itself to make use of repetitions in different gray-level values 
[20]. In this way, neighboring pixels with the same gray-level value subtract to 
zero and we obtain a new sequence with frequent runs of zeros®.

If “zero” valued samples are repeated consecutively then they can be en­
coded together by means of run-length coding. For this purpose we can reserve 
a special prefix called the run-length prefix and encode the number of repeti­
tions of zero valued samples by either fixed length or variable length codes. 
The receiver recognizes run-length prefix and decodes the codeword attached 
to it as the number of repetitions of zeros.

Run-length coding is very convenient in eliminating the redundancies in 
smoothly varying images. Medical images are smoother than the typical images 
of natural scenes. Because of this higher compression ratios can be achieved in 
medical image coding than the coding of natural scenes.

We can further improve the results by the concept of end-of-block (EOB) 
and zero-bridging (ZB).

EOB is a reserved codeword to indicate that runs of zeros continues till the 
end of encoded block. This saves lots of bits especially in DOT coding which 
will be explained in Chapter 4.

ZB can also be used if we perform lossy coding. The aim is to smooth out 
the isolated variations in the gray-level values and increase the number of run- 
lengths and EOB’s. In zero-bridging, an isolated non-zero sample in between 
two zero valued samples is bridged over and converted to zero. In this way, we 
increase the number of run-lengths with the cost of loosing some information 
which can not be recovered forever.

®Note that by subtracting the image from itself we increase the range of encoding from 8 
bits to 9 bits



Chapter 4

Lossless Multirate Image Coding

4.1 Introduction to Subband Coding

In this chapter, we present our lossless multiresolution medical image coding 
methods. In Chapters 2 and 3 we summarized background material which is 
necessary for our lossless coding schemes.

In subband decomposition, either rectangular or non-rectangular^ most óf 
the information is localized in the low frequency range which is denoted by 
LL in Figs.2.7,2.9. This is due to the natural characteristics of the ordinary 
images. Especially, for medical images which have very little high frequency 
contents, the sub-images Lli, HL, HU, H contain very little information.

LL sub-image is a lower resolution version of the original image. In typical 
images including medical images, this sub-image contains most of the infor­
mation content of the original image. The rest of the sub-images carry detail 
information and by themselves do not even clearly represent the original image.

In order to obtain a good compression ratio, the low frequency portion sub­
image (LL) of the original image should be encoded very efficiently. A good 
compression in this range effects the overall compression ratio significantly.

In many subband coding schemes, because of the importance of the LL 
sub-image, DCT based compression schemes are applied and usually no visual 
degradation is introduced to the LL sub-image. In detail images LH, HL, HH, 
H where there is less information than LL other techniques such as PCM with 
run-length coding which are computationally less costly, are used.

In the following Sections 4.1.1. 4.1.2, 4.1.3 the coding of three sample images

26
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N U M B E R  O F

A M P L IT U D E C O D E  BITS H L W M A N  CO D E S

[1 .4] 1+2 1+2 B ITS

[0 .128] 2+7 01+7 BITS

R L  P R E F IX 3 000

EO B 3 001

R U N -L E N G T H

1 2 00

2 2 10

3 4 1100

4 4 1101

5 5 11100

6 5 l l l O l

7 5 11110

8 5 11111

9 2+9 01+9 B r r s

Figure 4.1: Codebook for low information sub-images

with different methods is explained. The “Lena” image, although it is not a 
medical image, is used to compcire our results with the ones reported in the 
survey of M. Rabbani and P.W. Meln^mhuck [8].

4.1.1 Coding with nonrectangular 
subband decomposition

In nonrectangular decomposition the image is split into 3 sub-images via di­
amond shaped filters (The decomposition procedure and the filters used are 
explained in detail in Section 2.1.1). These 3 images are referred as LL, LH 
and H ( see Fig.2.7 ). The rest of the work is to apply appropriate coding to 
each of these sub-images.

The sub-images LH and H contain very low information and full of zero 
valued samples. So we can reach very high compression ratios (in the order of 
lO’s) by run-length coding of these sub-images. As usual the sub-images LH, 
H do not carry much information and dominated with zero samples. Hence, 
we can very efficiently compress them by run-length coding the zero samples 
and variable length coding the non-zero samples.

A specially designed run-length codebook suitable for these sub-images (LH 
and H) is used. The codebook which we used is shown in Fig.4.1. In order 
to reduce the complexity of the coder without drastically decreasing the com­
pression ratio, we applied the modified Huffman code book design technique 
which was explained in Section 3.1.2.
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Figure 4.2: DCT coding structure

In our modified Huffman codebook we divided the source symbols into four 
main categories

1) The zero valued samples till the end of block which are encoded by FOB
code;

2) Consecutive zero valued samples which are encoded by variable length codes
after the run-length prefix (RL-pre);

3) Samples with low amplitudes which are encoded by fixed length codes after
the low amplitude prefix; and

4) Samples with high amplitudes which are encoded by fixed length codes after
the high amplitude prefix.

The assignment of these prefixes are made according to the frequency of 
occurance of such samples. That is, if low amplitude samples are the most 
probable ones then we assign short prefix to this range and etc.

The sub-image LL is encoded by two different algorithms. These algorithms 
are “DCT based coding” and “difference coding” .

D C T  based cod ing o f LL sub-im age: Commonly used DCT based 
coding schemes are lossy methods due to the quantization performed in the 
transform domain.
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Lena 512x512
Angio 512x512 
Chest 1024x1024

HL
2.82
3.61
6 . 1 1

H
3.01
3.97
4.53

DCT
5.28
4.67
17.56

Error
1.49
1.87
1.71

R
2.13
2.61
3.21

H
2.82
3.46
5.04

Table 4.1: DCT based results for nonrectangular decomposition

By retaining the error image, the difference between the original and the 
DCT coded images, the coding scheme becomes lossless and in this way the 
information loss introduced by DCT compression is compensated. The overall 
bits used to encode LL is the sum of the bits used for the encoding of “error 
image” and the “DCT coding” . However, because of the high quality com­
pression of the DCT the “error image” do not carry much information and 
dominated with consecutive zero samples so it is run-length coded as in the 
case of LPI and H sub-images.

At this point, we should note that DCT compression is an adaptive scheme 
and can compress the same image to varying ratios by the change of 
user-dependent inputs such as the threshold (T) and the quantization step (5). 
This change also effects the “error image” statistics, as the information loss due 
to DCT compression depends on the constants T amd S. Hence, an optimum 
point between DCT compression and “error image” compression can be found.

We performed many experiments with the structure of Fig.4.2 using the 
codebook of Fig.4.1 for sub-images LH, H and obtained results which are pre­
sented in Table 4.1.

In the table R  value is the realized total compression ratio and the H is the 
theoretical entropy value'. PIL, H are realized compression ratios for subbands 
HL and H respectively. DCT and Error cue the realized compression ratios for 
the DCT algorithm and error image respectively, for sub-image LL.

D ifference cod in g  o f LL sub-im age: This method is easier to implement 
than the DCT based method for coding the LL sub-image. This can be the 
shift and subtract method which was mentioned in Section 3.1.3. This time LL 
sub-image is shifted by one pixel to the right cuid subtracted from itself, and 
resulting difference image is variable length and run-length coded. The results 
of the shift and subtract ojoeration is presented under LL column. In this way 
we achieve the results of Table 4.2.

^One should note that the values in Tables 4.1-4.5 are the compression ratios not the 
average bits and the results of the DCT algorithm is obtained with codebook of Fig..3.3
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Lena 512x512
Angio 512x512 
Chest 1024x1024

LL
1.20
1.55
1.48

HL
2.82
3.61
6 . 1 1

H
3.01
3.97
4.53

R
2.16
2.81
3.10

H
2.53
3.25
4.50

Table 4.2: Difference based results for nonrecrangular decomposition

We obtained similar results for all the medical images we tried although 
there may be images where these two methods differ a lot from each other. The 
difference coding is faster and easier to implement than the DCT based coding 
besides there is no need to code the “error image” as the method is lossless 
from the start. However, DCT corni^ression achieves very high compression 
ratios in the case of lossy coding (with out considering the “error image” ), 
and in situations whei'e some loss can be tolerable it is superior to any other 
method.

4.1.2 Coding with rectangular subband decomposition

The coding scheme with rectangular decomposition is very similar to the “cod­
ing with nonrectangular decomposition” which was explained in the previous 
section. This time decomposition of the image into lower resolutions is done 
by rectangular exact reconstruction filters described in Section 2.1.1 and the 
image is split into four sub-images which will be referred as LL,LH,HL and HH 
(see Fig.2.9).

As usual the sub-images LH, HL, HH do not carry much information and 
dominated with zero samples. Hence, we can very efficiently compress them 
by run-length coding the zero samples and variable length coding the non-zero 
samples using a similar codebook of the previous coding scheme^.

The problem of coding the LL sub-image is handled as in the case of pre­
vious section. To code the LL sub-image we again use the same methods that 
we used in Section 4.1.1: DCT based coding and Difference coding .

D C T  based cod in g  o f LL sub-im age: We code the LL sub-image by 
using the lossy DCT algorithm and compensate the information loss by the 
“error image” as in Section 4.1.1. The encoder extracts the “error image” by 
the structure defined in Fig.4.2. DCT coefficients are coded by the algorithm 
explained in Sections 4.1.1 and 3.1.1 is run length coded as usual due to low

^ C o d in g  w it h  n o n r e c t a n g u la r  d e c o m p o s i t i o n
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LH HL HH DCT Error R H
Lena 512x512 3.40 2.69 4.69 5.27 1.50 2.30 3.10
Angio 512x512 3.83 3.75 12.86 4.70 1.85 2.94 3.89
Chest 1024x1024 4.35 8.34 62.93 17.48 1.72 3.98 6.04

Table 4.3; DCT based results for rectangular decomposition

LH HL HH LL R H
Lena 512x512 3.40 2.69 4.69 1.20 2..34 2.76
Angio 512x512 3.83 3.75 12.86 1.53 3.17 3.65
Chest 1024x1024 4.35 8.34 62.93 1.47 3.82 5.39

Table 4.4: Difference based results for rectangular decomposition

information nature of it. These two iniciges ( “DCT coded" and “error image” ) 
together reconstructs the original LL sub-image e.xactly. We did similar exper­
iments on the same images which are shown in Fig.4.4 and, 4.5 and the results 
presented in Table 4.3 are obtained.

The results are about 14.8% better than the results of “nonrectangular 
decomposition” .

D ifference cod ing o f LL sub-im age: The same procedure of the Section 
4.1.1 is applied, that is we shift and subtract the LL sub-image from itself and 
variable length and run-length code the “difference image” . The results of the 
performed experiments is described in Table 4.4.

We note that both in rectangular and nonrectangular subband decompo­
sitions the LL sub-image coding results are the same. This is due to the fact 
that in both cases LL is rectangularly lowpassed and downsampled version of 
the original image. So, the main difference between the two methods come 
from the coding of other sub-images such as Lli, HL etc.

4.1.3 Pyramidal Coding

Pyramidal coding is a multirate coding scheme as described in Section 2.1.2. 
The image a’ (n) is low pass filtered and down sampled by 21 j. to a:6(n). The 
2-D low pass filter is a separable anti-aliasing filter and obtained by the mul­
tiplication of 1-D low pass filters as explained in Equation 2.32. The down
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x̂ n)

Figure 4.3: Pyramidal coding with lossy DCT 

sampling matrix is

2/  =
2 0 

0 2
(4.1)

and hence the resolution of the image is reduced by 4 (|<iei(2/)| ). This in 
return also reduces the size of the image by 4. In other words an image a;(n) of 
size 512 X  512 reduces to an image a;t(n) of size 256x256 as shown in Fig.4.3.

This low resolution sub-image is very similar to the LL sub-image of the 
previous subband coding methods. So it carries a lot of information in many 
typical images. We code .Tfc(n) by the DCT algorithm. The comiaressed image 
is denoted by ?/6(n) in Fig.4.3. DCT coding introduces some loss to this low 
resolution image i/6(n). We upsample the DCT coded sub-image y6(n) by 2 / | 
and low pass filter it with the same filter of the down sampling block, to y(n) 
whose size is the same as the size of the original image. The reconstructed image 
y(n) is not an exact replica of the input image a:(n) due to DCT coding and 
multirate signal processing operations. We obtain an “error image” .i'(n) which 
is the difference between the original image and the reconstructed image. The 
“error image” carries very little information and dominated with consecutive 
zero samples so, can be very effectively run-length coded. In lossy image coding 
the “error image” is coded by a dead-zone quantizer to increase the efficiency 
of the run-length coding. In our lossless coding method to achieve perfect 
reconstruction at the receiver we do not quantize the “error image” .

The ’’ error image” is dominated with low amplitude samples and many 
consecutive zeros, hence we use “modified Huffman” codebook concept for 
coding the nonzero samples, i.e.,Coding of the “error image” is carried out as
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DCT Error R H
Lena 512x512 2.87 1.48 1.31 1.81
Angio 512x512 5.13 1.71 1.58 2.10
Chest 1024x1024 17.56 1.68 1.64 2.41

Table 4.5: Pyramidal compression results

Figure 4.4: The sample image “Angio”

the coding of detail images LH, HH, etc. of subband decomposition structures.

The results obtained with the pyramidal coding cilgorithm are summarized 
in Table 4.5

Although the results are promising thej' are no better than the subband 
coding results. By comparing Tables 4.1-4.4 with Table 4.5 we observe that 
pyramid coding method is inferior to the subband decomposition structures.
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Figure 4.5: l /4 ’" ‘ of the sample image ‘'Chest” and “Lena”

4.2 Conclusion

Picture Archiving and Communication Systems (PACS) have recently been 
deployed in radiology departments. A PACS requires huge amounts of data to 
be stored in different storage media. The capacity of the memory of a PACS 
must be used as efficient as possible. The compression of medical images must 
be carried out in order to reduce the memory size. There are image coding 
methods which reduces the storage size of an image by an amount of 1/10 with 
out any visual degradation. But in some medical applications lossless coding 
of medical images is necessary. Although lossless coding can not achieve high 
compression ratios as lossy coding, any PACS should have the capability of 
storing medical images without introducing any loss.

Multiresolution coding techniques have been used for lossy image and speech 
coding, in this thesis we developed multiresolution techniques for the lossless 
image compression. We observed that the use of multiresolution techniques in 
lossless compression is as much advcintageous as in loss}'· compression schemes. 
The main application area of the new technique is the coding of medical images.

The most popular multiresolution signal representation method, subband 
decomposition^ plays a key role in our compression algorithms. We applied two 
different subband decomposition methods, rectangular and nonrectangular, in 
conjunction with DCT coding to compress the medical images. Although the 
compression schemes are adaptive and image dependent, we observe that the 
rectangular decomposition results are a little better than the nonrectangular 
decomposition.
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The results presented in Tables 1 to 4 in Chapter 4 are about 6.3% superior 
than the ones recorded in the work of M. Rabbani and P.W. Melnychuck [8]. 
The well known image “Lena 512x512” is used to compare our results with the 
previous studies of the same work reported in the survey of [8]. For this specific 
image the best result is obtained in the difference coding of the rectangular 
decomposition in Table 4 which is 11.4% better than the best result of [8].

Another popular multiresolution method “pyramidal decomposition” is also 
considered. The results of Table 5 are inferior to the subband coding based 
methods (Tables 1 to 4). This is due to the fact that pyramidal decomposi­
tion produces more samples than the number of samples of the image at each 
decomposition stage.

The results presented in this thesis are obtained with fixed code books of 
Fig.3.5 and 4.1 and can be improved about 5% by use of an adaptive code book. 
But adaptive code book assignment has the disadvantage of extra information 
for decoding at the receiver.

Arithmetic coding of LH, HL, HH and H sub-images can be considered 
to improve the results because arithmetic coding can produce results which 
arbitrarily closely approach the entropy value .

The algorithms proposed in this thesis can easily be extended to the 3-D 
compression of medical images by only adding an extra motion detection algo­
rithm.
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