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A NOTE ON RADON-NIKODYM DERIVATIVES
AND SIMILARITY
FOR COMPLETELY BOUNDED MAPS

Abstract. We point out a relation between the Arveson’s Radon-Nikodym derivative and
known similarity results for completely bounded maps. We also consider Jordan type de-
compositions coming out from Wittstock’s Decomposition Theorem and illustrate, by an
example, the nonuniqueness of these decompositions.
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1. INTRODUCTION

In this note we indicate a relation between the Arveson’s Radon-Nikodym derivative
and known similarity results for completely bounded maps as obtained by E. Chris-
tensen [3], U. Haagerup [5], and D. Hadwin [6]. This is done by reformulating the
Paulsen’s Decomposition Theorem, cf. [7]. To this end we first recall the construc-
tion of Radon-Nikodym derivatives for operator valued completely positive maps on
(C"*-algebras which is based on the Minimal Stinespring Representation.

Also, we consider Jordan type decompositions coming out from Wittsock’s De-
composition Theorem [9] and illustrate, by an example, the nonuniqueness of these
decompositions.
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2. RADON-NIKODYM DERIVATIVES OF COMPLETELY POSITIVE MAPS

2.1. COMPLETELY POSITIVE MAPS

Assume A is a unital C*-algebra and let H be a Hilbert space. A linear mapping
¢: A — B(H) is positive if p(A") C B(H)*, that is, it maps positive elements into
positive operators.

For n € N let M,, denote the C*-algebra of n x n complex matrices, identified
with the C*-algebra B(C™). The C*-algebra A ® M,, identified with the C*-algebra
M,,(A) of n x n matrices with entries in .4, has natural norm and order relation for
selfadjoint elements, induced by the embedding M, (A) C B(H®C") = B(H™), where
‘H™ denotes the Hilbert space direct sum of n copies of H. Using these considerations,
a linear mapping ¢: A — B(H) is completely positive if for any n € N the mapping
on = eI, AQM,, — B(H") is positive. Note that, with respect to the identification
A® M, = M,(A), the mapping ¢,, is given by

Wn([aij]?,j:l) = [@(aij)]?,j:b [aijmjzl € M, (A). (2.1)

A linear map ¢: A — B(H) is called positive definite if for all n € N, (a;)}_; € A,
and (h;)}_; € H, we have

n
Z (@(ajai)hi, h]> > 0. (22)
i,j=1
Since for any (a;)7_; € A the matrix [a}a;]}';_; is a nonnegative element in M, (A), if
i is positive definite then it is completely positive. Conversely, because any positive
element in M,,(A) can be written as a sum of elements of type [a}a;]};_;, it follows
that complete positivity is the same with positive definiteness.

CP(A;H) denotes the set of all completely positive maps from A into B(H). If
»,1 € CP(A;H) one writes ¢ < 1 if ©» — ¢ € CP(A;H); this is the natural partial
order (reflexive, antisymmetric, and transitive) on the cone CP(A;H). With respect
to the partial order relation <, CP(A;H) is a strict convex cone.

Given 0§ € CP(A;H) we consider its Minimal Stinespring Representation
(mo; Ko; Vo) (cf. W.F. Stinespring [8]). Recall that Ky is the Hilbert space
quotient-completion of the algebraic tensor product of the linear space AQH endowed
with the inner product

(a®@h,b®k)g = (0(b*a)h, k), for all a,b € A, h,k € H. (2.3)

g is defined on elementary tensors by mp(a)(b®h) = (ab)®h for alla,b € Aand h € H,
and then extended by linearity and continuity to a #-representation my: A — ICy. Also,
Voh = [1® hlp € Ky, for all h € H, where [a ® h]g denotes the equivalence class in the
factor space A ® H /Ny, and Ny is the isotropic subspace corresponding to the inner
product (-,-)g. The Minimal Stinespring Representation (mg; Kg; Vp) of 8 is uniquely
defined, modulo unitary equivalence, subject to the following conditions:
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(i) K is a Hilbert space and Vi € B(H, Ky);
(i) mg is a *-representation of A on Ky such that 6(a) = V'mg(a)Vp for all a € A;
(ili) me(A)VeH is total in Ky.

In case @ is unital, the linear operator Vj is an isometry and hence, due to the
uniqueness, one can, and we always do, replace V' with the canonical embedding
H— K.

2.2. RADON-NIKODYM DERIVATIVES

Let ¢,0 € CP(A;H) be such that ¢ < 6 and consider the Minimal Stinespring
Representation (m,;/K,;V,,) of ¢, and similarly for 6. Then the identity operator
Jo9: A®H — A® H has the property that J, ¢Nyg C N, hence it can be factored
to a linear operator J, g: (A ® H)/Ny — (A® H)/N, and then can be extended by
continuity to a contractive linear operator J, 9 € B(Kg,/C,). It is easy to see that

Jo, o Vo =V, (2.4)
and that
Jo omo(a) = my(a)Js,, for all a € A. (2.5)
Thus, letting
Do(p) == Jg ,Jo, (2.6)

we get a contractive linear operator in B(Ky). In addition, as a consequence of (2.5),
Dy(p) commutes with all operators mp(a) for a € A, briefly, Dg(p) € mp(A)’ (given
a subset 7 of B(H) we write 7/ = {B € B(H) | AB = BAfor all A € T} for the
commutant of 7°) and

o(a) = Vy Do(@)me(a)Vy = V; Dy(p)/>mg(a) Dg(p)'/?Vy for all a € A. (2.7)

The property (2.7) uniquely characterizes the operator Dy(¢). The operator Dy(p)
is called the Radon-Nikodym derivative of ¢ with respect to 6.

It is immediate from (2.7) that, for any n € N, (a;)7_; € A, and (h;)}_; € H, the
following formula holds

n

> {plajaihi,hy) = | Do(0)'/? Y mo(a;)Vahyl*. (2.8)

ij=1 j=1

This shows that for any ¢, 1 € CP(A;H) with ¢,1 < 0, we have ¢ < ¢ if and only

if Do(p) < Dg(¥)).
In addition, if p,% € CP(A;H) are such that ¢, < 6 then for any ¢t € [0, 1] the
completely positive map (1 — ¢)p + t¢ is < 6 and

Do((1 = t)p +th) = (1 — ) Do() + 1 Dy (). (2.9)

The above considerations can be summarized in the following Theorem 2.1.
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Theorem 2.1 (W.B. Arveson [1]). Let § € CP(A;H). The mapping ¢ — Dg(p)
defined in (2.6), with its inverse given by (2.7), is an affine and order-preserving
isomorphism between the convex and partially ordered sets ({p € CP(A;H) | ¢ <
0};<) and ({A € m(A) |0< AL T} ).

One says that ¢ uniformly dominates ¢, and we write ¢ <, 1, if for some ¢t > 0
we have ¢ < 1. This is a partial preorder relation (only reflexive and transitive). It
is immediate from Theorem 2.1 the following

Corollary 2.2. For a given 8 € CP(A;H), the mapping ¢ — Dg(p) defined in (2.6),
with its inverse given by (2.7), is an affine and order-preserving isomorphism between
the convex cones ({¢ € CP(A;H) | ¢ <y 0};<) and ({A € mp(A) |0 < A} <).

3. SIMILARITY FOR OPERATOR VALUED COMPLETELY BOUNDED MAPS

In this section we show that the Radon-Nikodym derivatives can be naturally related
with similarity problems in the operator spaces theory.

Given two C*-algebras A and B, and a bounded linear map p: A — B, for arbitrary
n € N one counsiders the bounded linear map p,,: M, (A) — M, (B) defined by

pn(laiz]) = [p(aij)],  [ai] € Mn(A),

and let
lpllew == sup || pnl|- (3.1)
neN

If ||plleb < o0, pis called a completely bounded map. The set of all completely bounded
maps CB(A, B) has a natural structure of vector space, || - ||cb is a norm on it, and
(CB(A,B); || - |leb) is a Banach space, e.g. see [4,7].

We first reformulate the Paulsen’s Decomposition Theorem, see [7] and the bibli-
ography cited there.

Theorem 3.1. Let ¢ : A — B(H) be completely bounded. Then there exists a Hilbert
space G, a unital x-homomorphism m: A — B(H® G), and R € n(A)" such that

¢(a) = PyRr(a)|H, for alla € A. (3.2)

Proof. By the Wittstock’s Decomposition Theorem, ¢ = p1 — o +i(p3 —p4) for some
i € CP(A,B(H)). We may assume that ¢1 (1) +@2(1) +¢3(1) +@4(1) = ¢, for some
t > 0. Indeed by Arveson’s Extension Theorem ([1,7]), for any K € B(H)™" there is a
¥ € CP(A,B(H)) with ¢(1) = K. So, if necessary, by writing ¢ = (p14+%)—(p2+v)+
i(p3 — @4) we may assume that the latter condition holds. Since (1 + w2+ @3+ p4)/t
is completely positive and unital it has a Stinespring representation (7, V,K) where
V € B(H,K) is an isometry. Let A; be the Radon-Nikodym derivative of ¢; with
respect to (1 + p2 + w3 + )/t for j = 1,2,3,4. Set R = A1 — Ay +i(As — Ay).
Since each A; € w(A)’, it follows that R € m(.A)" and then (3.2) holds. O
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We also remark that in the representation (3.2), the set m(.A)(H @ 0) is total in
H @ G. Since R € w(A)’, it is uniquely determined.

Next we exemplify the use of the Radon-Nikodym derivative technique in proving
the similarity result of E. Christensen [3], U. Haagerup [5], and D. Hadwin [6].

Theorem 3.2. Let p : A — B(H) be a unital homomorphism which is completely
bounded. Then there exists an invertible operator S € B(H)" such that S™'pS is a
unital *x-homomorphism.

Proof. Since p is completely bounded it has a representation as in Theorem 3.1. Let
V' denote the embedding H — H & G. We first observe that

p(ab) = p(a)p(b) = V*Rmw(ab)V = V*Rr(a)VV*Rr(b)V,
= V*r(a)Rr(b)V = V*r(a)RVV*Rr(b)V,
= V*r(a)(R— RVV*R)7(b)V =0 for all a,b € A,
= R=RVV*R.

Also p(1) = V*RV = 1. So it is easy to see that

k= { é ZYY ] (3:3)

for some Y : G — H and Z : H — G. Clearly, I + Z*Z is positive and invertible in
B(H), and it satisfies
(I+2*Z)"' O)R*R=V*R.

Hence, for any a € A we have
pla)=[I+2*Z)"" OJR*Rn(a)H.
Here R* € w(A)". Therefore, letting S = (I + Z*Z)~/? we get the result. O

We now consider Jordan decompositions. A linear map p: A — B is selfadjoint if
p(a*) = p(a)* for all a € A. According to the Wittstock’s Decomposition Theorem [9],
if p € CB(A; H) is selfadjoint then there exists py+ € CP(A; H) such that p = py—p—.
Note that, since any p € CB(A; H) can be (uniquely) decomposed p = p,e+ipim, where
Pre, Pim € CB(A; H) are selfadjoint, it follows that CB(A; H) is linearly generated by
its cone CP(A; H).

Let ¢ and ¥ be two completely positive maps from A into B(H). ¢ is called
-singular if the only map p € CP(A;H) such that p < ¢, is 0. Note that ¢ is
w-singular if and only 9 is p-singular and, in this case, we call ¢ and @ mutually
singular.

Proposition 3.3. In the Wittstock Decomposition, one can always choose p+ such
that they are mutually singular.

Proof. To see this, by Wittstock’s Decomposition Theorem, let ¢,% € CP(A, H) be
such that p = ¢ — ¢. Let (m,V,K) be the Minimal Stinespring Representation for
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p+1, and let F and I —F be the Radon-Nikodym derivatives of ¢ and v, respectively,
with respect to ¢ + 1. Then, clearly,

p=p—=V"@2F - (V.

Let 2F — I = X — Y be the Jordan decomposition of the positive operator 2F — I,
that is, X, Y > 0 and XY = 0, equivalently, they have orthogonal supports. By
continuous functional calculus both X and Y are in C*(I, F') and consequently, they
commute with 7(a) for all a € A. Therefore, p; := V*X7(-)V and p_ :=V*Yr(-)V
are completely positive and clearly p = p; — p_. Then pi are mutually singular, e.g.
by Theorem 2.1. O

A different approach to get this remark, within the Krein space theory, can be
found in [2]).

Jordan decompositions in this non-commutative setting, unlike the Jordan decom-
position for signed measures, are not unique.

Example 3.4. Consider the projections P = [} §] and @ = £[11] in M. Let A be
the commutant of the C*-algebra generated by I, P and Q. For X € B(C?) we define
px : A— B(H) by px(Y) = XY. Then ps—p, pg, pr—¢ and pp are all completely
positive. Now it is easy to show that p;_p is pg-singular and py_¢g is pp-singular.
This means that the completely bounded selfadjoint map p;—p_g has two distinct
Jordan decomposition pur_p_q = pr—p — ftg = Hr—Q — Hp-
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