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A NOTE ON RADON-NIKODÝM DERIVATIVES
AND SIMILARITY

FOR COMPLETELY BOUNDED MAPS

Abstract. We point out a relation between the Arveson’s Radon-Nikodým derivative and
known similarity results for completely bounded maps. We also consider Jordan type de-
compositions coming out from Wittstock’s Decomposition Theorem and illustrate, by an
example, the nonuniqueness of these decompositions.
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1. INTRODUCTION

In this note we indicate a relation between the Arveson’s Radon-Nikodým derivative
and known similarity results for completely bounded maps as obtained by E. Chris-
tensen [3], U. Haagerup [5], and D. Hadwin [6]. This is done by reformulating the
Paulsen’s Decomposition Theorem, cf. [7]. To this end we first recall the construc-
tion of Radon-Nikodým derivatives for operator valued completely positive maps on
C∗-algebras which is based on the Minimal Stinespring Representation.

Also, we consider Jordan type decompositions coming out from Wittsock’s De-
composition Theorem [9] and illustrate, by an example, the nonuniqueness of these
decompositions.
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2. RADON-NIKODÝM DERIVATIVES OF COMPLETELY POSITIVE MAPS

2.1. COMPLETELY POSITIVE MAPS

Assume A is a unital C∗-algebra and let H be a Hilbert space. A linear mapping
ϕ : A → B(H) is positive if ϕ(A+) ⊆ B(H)+, that is, it maps positive elements into
positive operators.

For n ∈ N let Mn denote the C∗-algebra of n × n complex matrices, identified
with the C∗-algebra B(Cn). The C∗-algebra A ⊗Mn identified with the C∗-algebra
Mn(A) of n × n matrices with entries in A, has natural norm and order relation for
selfadjoint elements, induced by the embeddingMn(A) ⊆ B(H⊗Cn) = B(Hn), where
Hn denotes the Hilbert space direct sum of n copies of H. Using these considerations,
a linear mapping ϕ : A → B(H) is completely positive if for any n ∈ N the mapping
ϕn = ϕ⊗In : A⊗Mn → B(Hn) is positive. Note that, with respect to the identification
A⊗Mn = Mn(A), the mapping ϕn is given by

ϕn([aij ]ni,j=1) = [ϕ(aij)]ni,j=1, [aij ]ni,j=1 ∈Mn(A). (2.1)

A linear map ϕ : A → B(H) is called positive definite if for all n ∈ N, (aj)nj=1 ∈ A,
and (hj)nj=1 ∈ H, we have

n∑
i,j=1

〈ϕ(a∗jai)hi, hj〉 ≥ 0. (2.2)

Since for any (aj)nj=1 ∈ A the matrix [a∗jai]
n
i,j=1 is a nonnegative element inMn(A), if

ϕ is positive definite then it is completely positive. Conversely, because any positive
element in Mn(A) can be written as a sum of elements of type [a∗jai]

n
i,j=1, it follows

that complete positivity is the same with positive definiteness.
CP(A;H) denotes the set of all completely positive maps from A into B(H). If

ϕ,ψ ∈ CP(A;H) one writes ϕ ≤ ψ if ψ − ϕ ∈ CP(A;H); this is the natural partial
order (reflexive, antisymmetric, and transitive) on the cone CP(A;H). With respect
to the partial order relation ≤, CP(A;H) is a strict convex cone.

Given θ ∈ CP(A;H) we consider its Minimal Stinespring Representation
(πθ;Kθ;Vθ) (cf. W.F. Stinespring [8]). Recall that Kθ is the Hilbert space
quotient-completion of the algebraic tensor product of the linear space A⊗H endowed
with the inner product

〈a⊗ h, b⊗ k〉θ = 〈θ(b∗a)h, k〉, for all a, b ∈ A, h, k ∈ H. (2.3)

πθ is defined on elementary tensors by πθ(a)(b⊗h) = (ab)⊗h for all a, b ∈ A and h ∈ H,
and then extended by linearity and continuity to a ∗-representation πθ : A → Kθ. Also,
Vθh = [1⊗h]θ ∈ Kθ, for all h ∈ H, where [a⊗h]θ denotes the equivalence class in the
factor space A⊗H/Nθ, and Nθ is the isotropic subspace corresponding to the inner
product 〈·, ·〉θ. The Minimal Stinespring Representation (πθ;Kθ;Vθ) of θ is uniquely
defined, modulo unitary equivalence, subject to the following conditions:
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(i) Kθ is a Hilbert space and Vθ ∈ B(H,Kθ);
(ii) πθ is a ∗-representation of A on Kθ such that θ(a) = V ∗θ πθ(a)Vθ for all a ∈ A;
(iii) πθ(A)VθH is total in Kθ.

In case θ is unital, the linear operator Vθ is an isometry and hence, due to the
uniqueness, one can, and we always do, replace V with the canonical embedding
H ↪→ K.

2.2. RADON-NIKODÝM DERIVATIVES

Let ϕ, θ ∈ CP(A;H) be such that ϕ ≤ θ and consider the Minimal Stinespring
Representation (πϕ;Kϕ;Vϕ) of ϕ, and similarly for θ. Then the identity operator
Jϕ,θ : A⊗H → A⊗H has the property that Jϕ,θNθ ⊆ Nϕ, hence it can be factored
to a linear operator Jϕ,θ : (A⊗H)/Nθ → (A⊗H)/Nϕ and then can be extended by
continuity to a contractive linear operator Jϕ,θ ∈ B(Kθ,Kϕ). It is easy to see that

Jθ,ϕVθ = Vϕ, (2.4)

and that
Jθ,ϕπθ(a) = πϕ(a)Jθ,ϕ for all a ∈ A. (2.5)

Thus, letting
Dθ(ϕ) := J∗θ,ϕJθ,ϕ (2.6)

we get a contractive linear operator in B(Kθ). In addition, as a consequence of (2.5),
Dθ(ϕ) commutes with all operators πθ(a) for a ∈ A, briefly, Dθ(ϕ) ∈ πθ(A)′ (given
a subset T of B(H) we write T ′ = {B ∈ B(H) | AB = BA for all A ∈ T } for the
commutant of T ) and

ϕ(a) = V ∗θ Dθ(ϕ)πθ(a)Vθ = V ∗θ Dθ(ϕ)1/2πθ(a) Dθ(ϕ)1/2Vθ for all a ∈ A. (2.7)

The property (2.7) uniquely characterizes the operator Dθ(ϕ). The operator Dθ(ϕ)
is called the Radon-Nikodým derivative of ϕ with respect to θ.

It is immediate from (2.7) that, for any n ∈ N, (aj)nj=1 ∈ A, and (hj)nj=1 ∈ H, the
following formula holds

n∑
i,j=1

〈ϕ(a∗jai)hi, hj〉 = ‖Dθ(ϕ)1/2
n∑
j=1

πθ(aj)Vθhj‖2. (2.8)

This shows that for any ϕ,ψ ∈ CP(A;H) with ϕ,ψ ≤ θ, we have ϕ ≤ ψ if and only
if Dθ(ϕ) ≤ Dθ(ψ).

In addition, if ϕ,ψ ∈ CP(A;H) are such that ϕ,ψ ≤ θ then for any t ∈ [0, 1] the
completely positive map (1− t)ϕ+ tψ is ≤ θ and

Dθ((1− t)ϕ+ tψ) = (1− t) Dθ(ϕ) + tDθ(ψ). (2.9)

The above considerations can be summarized in the following Theorem 2.1.
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Theorem 2.1 (W.B. Arveson [1]). Let θ ∈ CP(A;H). The mapping ϕ 7→ Dθ(ϕ)
defined in (2.6), with its inverse given by (2.7), is an affine and order-preserving
isomorphism between the convex and partially ordered sets

(
{ϕ ∈ CP(A;H) | ϕ ≤

θ};≤
)
and

(
{A ∈ πθ(A)′ | 0 ≤ A ≤ I};≤

)
.

One says that ψ uniformly dominates ϕ, and we write ϕ ≤u ψ, if for some t > 0
we have ϕ ≤ tψ. This is a partial preorder relation (only reflexive and transitive). It
is immediate from Theorem 2.1 the following

Corollary 2.2. For a given θ ∈ CP(A;H), the mapping ϕ 7→ Dθ(ϕ) defined in (2.6),
with its inverse given by (2.7), is an affine and order-preserving isomorphism between
the convex cones

(
{ϕ ∈ CP(A;H) | ϕ ≤u θ};≤

)
and

(
{A ∈ πθ(A)′ | 0 ≤ A};≤

)
.

3. SIMILARITY FOR OPERATOR VALUED COMPLETELY BOUNDED MAPS

In this section we show that the Radon-Nikodým derivatives can be naturally related
with similarity problems in the operator spaces theory.

Given two C∗-algebrasA and B, and a bounded linear map ρ : A → B, for arbitrary
n ∈ N one considers the bounded linear map ρn : Mn(A)→Mn(B) defined by

ρn([aij ]) = [ρ(aij)], [aij ] ∈Mn(A),

and let
‖ρ‖cb := sup

n∈N
‖ρn‖. (3.1)

If ‖ρ‖cb <∞, ρ is called a completely bounded map. The set of all completely bounded
maps CB(A,B) has a natural structure of vector space, ‖ · ‖cb is a norm on it, and
(CB(A,B); ‖ · ‖cb) is a Banach space, e.g. see [4, 7].

We first reformulate the Paulsen’s Decomposition Theorem, see [7] and the bibli-
ography cited there.

Theorem 3.1. Let ϕ : A → B(H) be completely bounded. Then there exists a Hilbert
space G, a unital ∗-homomorphism π : A → B(H⊕ G), and R ∈ π(A)′ such that

ϕ(a) = PHRπ(a)|H, for all a ∈ A. (3.2)

Proof. By the Wittstock’s Decomposition Theorem, ϕ = ϕ1−ϕ2+i(ϕ3−ϕ4) for some
ϕi ∈ CP(A,B(H)). We may assume that ϕ1(1)+ϕ2(1)+ϕ3(1)+ϕ4(1) = tI, for some
t > 0. Indeed by Arveson’s Extension Theorem ([1,7]), for any K ∈ B(H)+ there is a
ψ ∈ CP(A,B(H)) with ψ(1) = K. So, if necessary, by writing ϕ = (ϕ1+ψ)−(ϕ2+ψ)+
i(ϕ3−ϕ4) we may assume that the latter condition holds. Since (ϕ1 +ϕ2 +ϕ3 +ϕ4)/t
is completely positive and unital it has a Stinespring representation (π, V,K) where
V ∈ B(H,K) is an isometry. Let Aj be the Radon-Nikodým derivative of ϕj with
respect to (ϕ1 + ϕ2 + ϕ3 + ϕ4)/t for j = 1, 2, 3, 4. Set R = A1 − A2 + i(A3 − A4).
Since each Aj ∈ π(A)′, it follows that R ∈ π(A)′ and then (3.2) holds.
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We also remark that in the representation (3.2), the set π(A)(H ⊕ 0) is total in
H⊕ G. Since R ∈ π(A)′, it is uniquely determined.

Next we exemplify the use of the Radon-Nikodým derivative technique in proving
the similarity result of E. Christensen [3], U. Haagerup [5], and D. Hadwin [6].

Theorem 3.2. Let ρ : A → B(H) be a unital homomorphism which is completely
bounded. Then there exists an invertible operator S ∈ B(H)+ such that S−1ρS is a
unital ∗-homomorphism.

Proof. Since ρ is completely bounded it has a representation as in Theorem 3.1. Let
V denote the embedding H ↪→ H⊕ G. We first observe that

ρ(ab) = ρ(a)ρ(b) ⇒ V ∗Rπ(ab)V = V ∗Rπ(a)V V ∗Rπ(b)V,
⇒ V ∗π(a)Rπ(b)V = V ∗π(a)RV V ∗Rπ(b)V,
⇒ V ∗π(a) (R−RV V ∗R)π(b)V = 0 for all a, b ∈ A,
⇒ R = RV V ∗R.

Also ρ(1) = V ∗RV = I. So it is easy to see that

R =
[
I Y
Z ZY

]
(3.3)

for some Y : G → H and Z : H → G. Clearly, I + Z∗Z is positive and invertible in
B(H), and it satisfies

[(I + Z∗Z)−1 0]R∗R = V ∗R.

Hence, for any a ∈ A we have

ρ(a) = [(I + Z∗Z)−1 0]R∗Rπ(a)|H.

Here R∗ ∈ π(A)′. Therefore, letting S = (I + Z∗Z)−1/2 we get the result.

We now consider Jordan decompositions. A linear map ρ : A → B is selfadjoint if
ρ(a∗) = ρ(a)∗ for all a ∈ A. According to the Wittstock’s Decomposition Theorem [9],
if ρ ∈ CB(A;H) is selfadjoint then there exists ρ± ∈ CP(A;H) such that ρ = ρ+−ρ−.
Note that, since any ρ ∈ CB(A;H) can be (uniquely) decomposed ρ = ρre+iρim, where
ρre, ρim ∈ CB(A;H) are selfadjoint, it follows that CB(A;H) is linearly generated by
its cone CP(A;H).

Let ϕ and ψ be two completely positive maps from A into B(H). ϕ is called
ψ-singular if the only map ρ ∈ CP(A;H) such that ρ ≤ ϕ,ψ is 0. Note that ϕ is
ψ-singular if and only ψ is ϕ-singular and, in this case, we call ϕ and ψ mutually
singular.

Proposition 3.3. In the Wittstock Decomposition, one can always choose ρ± such
that they are mutually singular.

Proof. To see this, by Wittstock’s Decomposition Theorem, let ϕ,ψ ∈ CP(A,H) be
such that ρ = ϕ − ψ. Let (π, V,K) be the Minimal Stinespring Representation for
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ϕ+ψ, and let F and I−F be the Radon-Nikodým derivatives of ϕ and ψ, respectively,
with respect to ϕ+ ψ. Then, clearly,

ρ = ϕ− ψ = V ∗(2F − I)π(·)V.

Let 2F − I = X − Y be the Jordan decomposition of the positive operator 2F − I,
that is, X,Y ≥ 0 and XY = 0, equivalently, they have orthogonal supports. By
continuous functional calculus both X and Y are in C∗(I, F ) and consequently, they
commute with π(a) for all a ∈ A. Therefore, ρ+ := V ∗Xπ(·)V and ρ− := V ∗Y π(·)V
are completely positive and clearly ρ = ρ+− ρ−. Then ρ± are mutually singular, e.g.
by Theorem 2.1.

A different approach to get this remark, within the Krein space theory, can be
found in [2]).

Jordan decompositions in this non-commutative setting, unlike the Jordan decom-
position for signed measures, are not unique.

Example 3.4. Consider the projections P = [ 1 0
0 0 ] and Q = 1

2 [ 1 1
1 1 ] in M2. Let A be

the commutant of the C∗-algebra generated by I, P and Q. For X ∈ B(C2) we define
µX : A → B(H) by µX(Y ) = XY . Then µI−P , µQ, µI−Q and µP are all completely
positive. Now it is easy to show that µI−P is µQ-singular and µI−Q is µP -singular.
This means that the completely bounded selfadjoint map µI−P−Q has two distinct
Jordan decomposition µI−P−Q = µI−P − µQ = µI−Q − µP .
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