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Abstract

SUPERCURRENTS AND PERSISTENT CURRENTS 
STRONGLY CORRELATED ELECTRON SYSTEAIS

Hüseyin Boyacı 
M. S. ill Physics 

Supervisor; Prof. I . O. Kiilik 
September 1995

The lull understanding· ol’the solution Гог the 1-tl Hubbard model is of interest 
in its own right, and may provide clues to the understanding of higher dimensioned 
systiMiis. We have found tin? exact solution of tlie model for tw<j eh'ctrons, with 
a magnetic flux ар[)Н(ч1, and showed some new results. We have also made 
calculations for more than two electrons on a looj) with a magnetic flux through 
it, using the Bethe-ansatz equations. Within the assumption that oxygen orbitals 
may play a fundarnentid role in the superconductive properties of Си —О high IT 
matc.'iials, exact calculaticnis ol the ground-stat<' eu<‘igy for two electrons in the 
contraction mechanism have been performed, do test the beginning assumption, 
some numerical calculations have been i)resent(;d.

K eyw ords: strongly correlated electron systems, 1-d Hubbard model, 

contraction model, high IT superconductivity, mesoscopics.
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k u v v e t l i  e t k il e ş e n  e l e k t r o n  SİSTEMLERİNDE 
ÜSTÜN AKIM VE KALICI AKIM

Hüseyin Boyacı 
Fizik Yüksek Lisans 

Tez Yöneticisi: Prof. I . ü. I 
Eylül 1995

l-b Hubbard modelinin ^öznıniinün tanı olarak anlaı^ılması kendi ba.-5ina ilgi 
(jekicidir ve daha yüksek boyutlu sisten ilerin anla.sılıuası i<;in i|)u<;ları sağlayabilir. 
Modelin, bir manyetik akı uygulanarak iki eh'kiron iî in kesin (^özünderini bulduk 
ve bazı yeni sonuçlar gösterdik. .'Vi'rıca, içinden manyetik akı geçen bir halkada, 
iki elektrondan fazlası için Bethe-ansatz denklemlerini kullanarak hesaplamalar 
yaptık. Oksijen yörüngelerinin Cu — O yüksek malzemelerinin süperiletkenlik 
özelliklerinde temel bir rol oynayabileceği varsayımıyla, iki elektron için büzülme 
mekanizmasında teiııel-durnm em'ijisiııiıı kesin h('sa.|)laıııala.rı yapıldı. Ibujlangıç 
varsayımını test etmek için bazı sayısal hesaplamalar gösterildi.

A nah tar
sözcükler: kuvvetli etkileı^en elektron sistemleri, l-b Hubbard modeli,

büzülme modeli, yüksek Tc süperiletkenliği, mezoskopik.
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Chapter 1

INTRODUCTION

Much of solid stelle tlieoiy and statistical j)li3 sics is concerued with the properties 
ol' macroscopic systems. These are often calculat(‘d using the *lhermodynamic 
limit’ (system’s volume Q, and particle numl)er ;V, lending to infinity with n ~  
N/Ü constant) which is a convenient malhemalical device for obtaining bulk 
properties. Usually, the system approaches the macroscopic limit once its size 
is much larger than some cornHation h'liglh, In most cases  ̂ is of the order 
of a microscopic length (<‘.g., ~  but in some special ease's, such as in
the vicinity of a .s(;cond-order transition, can beee)m(' very large and one may 
observe behavior which is different from tlu' macroscojíic limit for a large range of 
sample s iz e s .T h e  elfective h'ligtb scah' dividing microscopic from macrosco])ic 
behavior becomes very' large when the conducting (or semiconducting) sy'stems 
are small and at low tc'inperatiires. Ih're, once' an e'h'ctron can |)re>|)agate across 
the whole system without inelastic .scatte'iing, its wave function will maintain a 
definite phase and it will, thus, be able to e'xhibit a variety of nove?l interesting 
interference phenomena.

The interest in studying these systems in the intermediate size range 
betw'een microscopic cind macroscopic- sometimes referred to as the ‘mesoscopic’ 
(a word coined by Van Kämpen, 1976, as derived from the Greek prefix meso = 
middle) range- is not only for understanding the macroscopic limit, and how it 
is achieved by, say, building up larger and larger clusters to go from a ‘molecule’
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to the ‘bulk’. The term me.soycopic eoiT('.spoiKls to a length scale for which 
the averaging properties of the macroscopic world does not take place, and the 
reversible and perfect mechanics of microscopic objects are applicable.

Formal definition of mesoscopic object is that the phase scattering length of 
electron should be larger than the size of specimen, d. Elastic scattering length 
may be much smaller (dilfusiv<' mesosco|)ic regime) or larger (ballistic mesoscopic 
regime) than d.

Formally mesoscopic objc;cts are those not possc'ssing the property of self­
averaging, that is, independent from specific microscopic parameters of their 
properties, which are defined by average ciuantities like impurity concentration. 
However, small systems with d less than, say, 1/cm are often considered as 
‘mesoscopic’.

The special phenomena that exists in this range are of great interest in 
them.selves. Another interesting aspect is the d i s t i n c t i o n ' b e t w e e n  
enscmble-av(‘raged j)roperties and thos(> spc'cific to a particulai· given small 
system prepared under the same macrosco|)ic consti-aints as with all the enseñable 
members. The specific ‘fingerprint’ of such a small system is of interest and may 
be used to obtain some statistical information on the particular arrangement of 
the constituents in the system."’ Many of tlie usual rules that one is used to 
in macroscopic physics may not hold in ’nu'soscoinc’ syst(*ms. l''or exampl«' tlie 

rules for addition of resistances, l)oth in series“ ’"’ and in ])arallel''’''’ are different 
and more complicat<'d. 'I’lie c'lectron motion is wav(’-like and is similar to that 
of electromagnetic radiation in waveguide structur('s, except for complications 
due to di.sorder. These effects imiy set fumlanuMital limits on how snuill various 

eh'ctronic d(‘vic<.‘s can go. On the other hand, ideas for new devices, such as 
those operating in analogy '·̂ ’·̂ '’ with various optical ¿ind waveguide ones, as w'ell 
as with SQUIDs (Superconducting Quantum Interference Devices), and other 
Jose])hson-effect system s,m ay  emerge for small normal conductors.

Tlie technology'^ for the fabrication of structures with very small sizes, using 
advanced optical or x-ray lithographic techniques, as well as electron-beam, 
is advancing very quickly, and has ri'ached the stage where many theoretical



precliclions can now be* conlronled l̂ y t‘X|H‘riin(Mital results.
lo achieve higher operation s|)e('ds ami h'ss [HJWi'r consninplion, one of the 

most important objectives of the electronics technolog}· became miniaturizing 
ot the devices. Yet, small can not be beautil'nl unless the device op<?rates 
according to the expectations. 'L’here are physical limitations in addition to the 
technological ones opposing the miniaturization trend. After all, a smaller ohmic 
contact has to be an ohmic contact with smaller conductance and so on.

One of the most im[)ortant featuri's of the small systems is their sample 
specific properties. For small s3'stems the rule due to our ■mac/’e.scep/c’everyday 
experience, telling macroscopically idcmtical systems have to yield the same 
results under identical experimental conditions br(.‘aks down. .-Vs an example, 
ohmic contacts fabricated on the same wafer using the same chemical and physical 
modilication steps may have wid<dy spnxid resistance values. For a large contact, 
there is a Uirge number of grains (the metal-semiconductor contact is not ordered 
and is made ol grains) and the measured resistance is essentially an average of 
resistance ol these grains. While, a small contact has only a small number of 
grains and this averaging can not be complete.

Another important as|)ect of small systems is the giiometry-specific properties. 
Miniaturizing the devices furtlu'r, one reaches to a limit for which the device 
does not contain any impurities at all. For this case, the material properties are 
stippres.sed lor a large extent, while (luanlum mechanical propagation along the 
sample becomes essential.

For further reading, see the reference by I. 0 . Kulik‘‘” and the references 
therein.

1.1 Aharanov-Bohm  Effect

Chapter I. INTRODUCTION 3

According to standard (luantnm mechanics, the motion of ¿.i charged i)aitichi 
can sometimes be iniluenced by electromagnetic licdds in regions from vvhicli the 
particle is rigorously excluded.·^’’·' d'his pluMiomenon has come to be calhxl 
the Aliariuiov-Bohm elfect (AB elfect), after the seminal 1959 paper entitled
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'Significance of Electronlagnelic I’oteiitials in llie Quantum Theory’, b}· Y. 
Aharonov and D. Boliin.'^' VVliat AB effect teacher; us about tlie significance 
of the electromagnetic potentials has since been discussed from several points of 

on the assumption that standard (luanturn is indeed a correct 
description of nature.

The experimental (|uantizal.iuii of the fluxoid in sipx'rcondiicting rings and 
in Jose[)hson junctions has IjtX'ii interi)r(’t('il as an e.xperimenial confirmation 
of AB effect.In terfe ience  expeniments on electron beams have been carried 
out to provide more direct information, with increasing precision and especiall}' 
with increasing control ol stray fi<>lds that might oijscure the implications of the 
experiments.

In the magnetic version of lh<‘ AB (‘Meet, a slatiouary magiuUic field is 
introduced in the region between the two beams, as in Figure 1.1. The electrons 
are forever rigorously excluded from that ixigion by some baffles. Similarlj·, 
magnetic flux is nuide to avoid the regions where the electrons are permitted. 
The Hamiltonian 7/ and the time independent wave function (/’(x) are given by

f
= -riin L

—/ h T “ A-(.c -  o Voix)

ф{х) = фо{х) exp
-v'.S’fx)'

( 1 . 1)

( 1.2)

where /le(x) is tlie vector potential due to the excluded magnetic field and S{x) 
is the line integral

S{x) = - “ У Ae(x') · dx' (1.3)

and the path of integration is taken along tin* arm of the interferometer containing 
the point X . ipo(^) wave function in the absence of the excluded magnetic
field pr(;sented by A,.(x), and V'h repii'sents po.ssil)le electrostatic potentials to 
steer the beam which do not depend upon the excluded magnotic field.

If the magnetic flux Ф through the coil is non\’anishing, the vector potential 
Ле(х) cannot vanish everywhere in the sup|)ort of у’и(х), because /  Ae(x) · dx on 
a closed path drawn around the coil through the two arms of the interferometer 
is equal to Ф.
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Figui'e 1.1; Magnetic AB elfect.
The axis of the solenoid^icl is porpeiulicnlar to the page. The wave function is a split 
plane wave.

In the interference rt'gion, the pha.s(.‘ .shift between the two bt'ams is

- - J - =
(1.4)

where S> and S'l are the action integrals of E([. (1.3), calculated along the upper 
and lower arms of the interferometer.

The phase shift Ao between the beams in the two iirms of the interferometer 
is gauge invariant, as it must be, depending only upon the magnetic flux through 

th(* excluded region, 'i he inti'rferenci' |)altern is therefore a pi'riodic function of 
that magnetic flux, with period e([ual to bondon’s unit, a flux (piantnm

'hi he he
e<hu = (1.5)

However, there is no .Aharonov-Bohm (‘fleet in chissical ])hysics. AB elfc'ct 
enters quantum mechanics through the ap[)earance of electromagnetic potentials 

Ve and Ae ill the Hamiltonian and con.s(‘(iuently in the Schroedinger equation. 
The local Maxwell fields E and B appears only in the discussion, never in the 

equations of motion.
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When classical theory is presenletl in the. Lagrangian or Hamiltonian 
lonnulation, the potentials ap]>ear just as they do in quantum theory. Ho\ve\er, 
vvc know that those formulations of classical ph} sics iire equivalent to Newton's 
laws, so the motion of a charged particle» is completcdy determined by the local 
electric and magnetic fields acting upon it. Newton’s second law and the Lorentz 
Inrce eejuation give

in
<1^
ili^ E + -  X B (l.G)

and nothing more is neech;d. 'id remove this feature of the classical theory in the 
ca.se of a multiply connected rc'giou is not a promising enterprise because the local 
conservation of energy and momentum betw('en the |)articles and fields tlept'nds 
upon it. Therefore, it is no surprise that the .A B el feet depends upon flux or the 
action in units proportional to Planck’s constant //, which is peculiar to quantum 
theory. Attempts have uevertlu'less l.x'en mad<‘ to (jbtain AB (»fleet from classical 
or semiclassiccd th(-»ory.'’'‘

Quantum theory unavoidably reli(»s upon tin» Hamiltonian or Lagrangian 
formulation of the dynamics, where the local electromagnetic fields disappear 
from the equations of motion in favor of the scalar and vector potentials. The 
classical argument that tlu» eciuations of motion arc» (»cpaivalent to Newton’s second 
law with the local E and B fields doc»s not aj)ply to quantum mechanics, and 
remote fields may have observable effects in sonui cases. For instance, if a 
magnetic field Be(x) is confined to the int(»rior of a torus from which electron 
is excluded,'^*’ the vector pot(.»ntial A,>(x) cannot vanish throughout the region 
outside the torus, and it appears in the Scliro(»dinger equation. The vector 
potential can not be r(»mo\'(»d from the domain of the electron by a gauge 
transformation because

y  Ao(x) · i/x = (1.7)

where the i)ath of integration link.s the torus and <!>,. is the magnetic flux through 

the torus.
In the absence of the excluded magnetic li(»ld,

«  ^  =/ioV.„(x.0 = ^ -i/).V + -Ao(x,/)c i/)o -  el'ü(x,O0o (1-8)
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where l'o(x,/) and Ao(x,i) are tlie potenlials due to ordinary electromagnetic 
fields that may exist within the domain of the electron. With the addition of an 
excluded stationary magnetic field who.se v(‘ctor |)otential is A<.(x)

ill = H4ix , i )  = — ih y  + y( A()(x, /) + Ae(x)j t;.' -  e l'o(x,i)v'

(1.9)
Formally, H and Ho are related by the gauge* transformation

f^(x) = exp J  Ao(x') · i /x 'l ( 1. 10)

( 1. 11)

(1.12)

(/. = U

II = UIloU''

It follows that II and Ho describe* the* same pln'sics and the* exclueh'd magnetic 
field Bo(x) has no observable inllue*nce* on the* dynamics of the electron, if Eejs. 
(1.10)-(1.12) apply.

IIowe*ve*r, lor EeiH. (1.!())-(1.12) lo be· me'aningful and </’ = Utpo to be a 
single* valued .sedutieni e)f the* Schien'dinger espial ie)ii (1.9), / ' must be* a single 
valued (unctie)ii of x, inde'pe'iident ed the path e>l inte'gratiejii in the e.\i>ejne‘nt 
in Ec[. (1.10). When the domain of .r is simply conne.'ctexl, it is sullicient for 
Bc(.r) = V X Ae(x) to vanish everywhere within it. Then Ao(x') · e/x' is 
inde'penelent of the path of inte'gration, l ‘(x) is single* value*d, and the*re can be 
no observable elfeict of the exclueh'd magnetic field. Hut when the domain of the 
electron is multiply connectexl as in l-dgure* 1.2, and the magnetic field is confineel 
to a reigion whose topology is that of an e*xcludeel e:ylinder or torus, Eq. (1.10) 
shows that U(x) may not be single* valued e*ven if Bo(x) vanishes everywhere* in 
the doiiuiin of the electron. Then there is no gauge transformation to connect Ho 
with / /, and an edxservable,* AH eflect is pe ŝsible; (he* motion of the elc'ctron may 
de*])einel upeni the magnetic flux <1*, threnigh the* hole* in the e'le*ctre>n’s elejinain.

There is cUi exceptional e-ase*. Hee’ause only U has to be single valued, not 
/  A„(x) · e/x, the AH effoct disappe'ars whe*n the e*xclueled flux <l>, = /  A,.(x) · dx 
is an integer multiple of <l>o, i.e*. when

( 'In hc\
<1> . (1.13)



Chapter 1. INTRODUCTION

/* е '

Fig¡R'ure 1.2: AB effect on a single electron

In that case integriiting around the excluded flux changes U by the factor 
ехр(2л·^), cind it remains single valued.

More generally, all observabh' phenoiiKMia depend only ui)on the (lux Ф,, 

through the excluded i4‘gioii, and have period Фи-
The simplest exactly solvable example of .\B effect exhibits all the general 

features of the bound state problem. Consider an electron constrained to move 
on the circumference of a circle of radius r in the .vy plane, as in Figure 1.3..\n 
external magnetic flux Ф goes up the .:· axis and returns uniformly along the 
surface of a cylinder whose radius is greater than r, so that there is no magnetic 
field at radius r where the electron movi's.

In the gauge where V · A vanishes,

<1>

Ao —
2л r

/Ip = /I. = 0 (1.14)

The Hamiltonian for an electron of mass ni is

/ /  =
I

2inr'^ c 2wr‘ i .  +
еФ
2л c (1.15)
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Figure 1.3: An exactly solvable example of AB effect.

The bound state \va\-e fuiictioiis and energies are

1
liMO) = - ^ e x p l U O )

V'-iz

TV = 2/m·*’
c‘l)th + -—
iTTC

I r
<l>oJ

(1.16)

(1.17)

vvlieie L aie integers. Ihe state î v has definite canonical angular momentum L~ 
and kinetic angular momentum K-, givani bv

= Ui (I.IS)

C<1> \ , (, \
(1 .0 )

I'lmrU
F.yCjuations (1.17) and (1.19) clearly display the flux dependence of the 

energy spectrum and kinetic angular momentum, both measurable quantities 
in princi|)le. Both spectra are periodic in ‘l> with p(niod <l)o, as expected.

'I’he first experiments using sidid state devices were carried out by .Sharvin 
and Sharvin®*’ and Al’tshuler and coworkers.·*·' It took a few years for the western 
experimentalists to reproduce tlie.se results. Strikingly the period of oscillations
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was iouiid to be 0o/-, and not <1̂0 as <‘X|>(‘cted. d'liis point was clarified by 
M ’tshuler cuid coworkers.■*·*■'*■* .According to I licir e.xplanation, the <J>o/2 oscillation 
arise due; to the interler(*nce ol elect rons enclosing the cylindc'r onc<' clockwise' and 
counterclockwise. Then the phase diilerence is twice of the e.xpe'cteel value' anel 
thus, the' |)e;riod halve-s.

In a pure ring, the e'le.-ctrejii wave· turns ene'r the· ring just one· time' {hc/c 
oscilUitions-noii-seir-averaging ellect changing sign e>f current in the ring from 
sample to siunple), but in a dirty ring two e'le'ctron wave's with clockwi.se 
and counterclockwise re.'volutions both contribute' to tlu.x-dependent e:onduction 
{lic/2e oscillations-seir-averaging; w'e'ak localization e'lh'ct not changing sign from 
sample to sample.) (i\<J> = 27r<l>/d>(j and •l/r<l>/<l)o re'spe.'ctively).

In the interesting paper of T. If. Boyer^" it is j)ointed out that accounts in the 
literature sometimes misinterprete'd the' Aharanov-Bohm effect. For additional 
reading, one can refer to the book by Pesldvin and dbnomura.^ '

1.2 Persistent Currents in M esoscopic 
Structures

When someone talks al)out a non-decaying or dx’i'^istent’ current, the question 
‘how can a current in an isolated metallic ring flow' inlinitely ?’ arise's immediately. 
Our common experience tells us that any non-deenj ing curn'iit needs a driving 
force to supply the necessary ('iiergj' to compensate the losses due to the transfer 
of ('iiergy (‘Joule heating’) from moving electrons to atomic vibrations (phonons) 
and other elementary excitations in tlu' solid. If the metal is superconducting 
and the temperature and magnetic field aie b('low the critical values, these losses 
vanish. However, in a normal, nonsuperconducting metal loop a persistent current 
can also flow without dissipation for inlinitely long time. For such a flow of 
current, it is required that the metal loop be small enough and temperature be 
low enough to enter into the domain of quantum physics.

At low enough temperatures, a small metallic loop behaves similar to an atom
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or a molecule like benzol molecule. Although the atom in question is quite large 
(approximately 1 micrometer in (liani('t('r uiiicli is more than 10’ times of the 
size of normal atoms), but still small for the standards of everyday life.

The possibility of persistent current in a h)oj> ari.ses due to .Aharonov-Bohm 
effect, which is a peculiar prop(‘rty of (|uantiim im'chanical world. .As we explicitly 
showed in the previous .section, the wave function of an (‘h'Ctroii senses the 
magnetic field well away from tlu' eh'ctron (this is called nonlocality). The 
v(‘ctor |)otential rath(‘r than IIk* magnetic li<‘ld itself (Miters tiu' <M|uations of the 
quantum mechauics and changes the |diase of the electron wave function in such 
away that the elc'ctron (Miergy Ix'conu's a p(M Íodic function of flux with a period 
4>o = hc/e, which is calhxl ‘flux (luantum’. .Although the quantum is quite small 
(<l>o = 1.10~'^T.//t^) since it is proportional to Planck constant It, it changes 
electron energy drastically. Therefore the laws of electromagnetism suggest that 
a current should appear which is the derivati\e of energy with respect to flux-<I>. 
Unlike the conventiona.1 Ohmic current in melids or semiconductors, this current 
is absolutely stable and can flow at zero voltage' w'ithout dissii)ation. .At a given <l>, 
persistent cuiKMit minimizes the looj) ('lu'igy irrele\aiit to whether the magnetic 
field is Z(;ro or nonzero at the place wlu're electrons are. In particular W'e can 
place; our ring in an external homejgeiu'exis magne'tic field and get the value of 
the persistent current appropriate' to the amount ol’ flux enclose'd by the ring.

In a ])ure metallic sample ol (inite size, cui reiit arises as a consequence of the 
depende;nce of the energy on t he vector potential A in a ring. 'Phis curre'iit is 
equal to

i  =  -  ( a·,, -  ~ )  (1.20)
I I I  \  h e /

where 7v„ = (jiTrfLjn.
In large system, K  changes in such a way that ‘paramagnetic’ contribution

to the current, etiKIni, compensates for the ‘diamagnetic’ term, —{e^frnc)/{.
«·

However, in small system, K  is epiantized and therefore j  cannot be zero. This 
property remains even if both ehistic and inelastic scattering is introduced.

The theoretical prediction of the effect goe.'s back to 1970 when the 
phenomenon was substantiated in the Kharkov Physico-Technical Institute.
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Figure 1.4: Experiment ciuried out to observe the persistent current 
Actually the current itself is not observed, rallier the magnetic moment of the tiny 
golden loop produced by the persistent current was observed

Later, the effect was rediscovered by IBM scientists in 1983, again theoretically,'^^ 
but it took almost next 10 years to actually observe this phenomenon which was 
accomplished in the IBM Laboratory.’̂ ' What was observed was not a current 
itself but a magnetic moment of a tiny g(<lden lo<jp produced by a persistent 
current in the loop, oscillating as a fuiiciion of magnetic field with the jicriod 
<l>o/.S’, where S  is the cross section of the loo)).

Tlie effect may look as purely academic at prc'senl. Nevertheless, it promises 
some new possibilities to the up-to-date microeh-ctrouics. This is a new kind of 
nonlinearity, the properl}· which is necessar}’ for the operation of any computer 
of electronic sensor. .And extremely fast oiud The other possibility is the 
measurement of the' magmAic held in a very large range from very small 
to extremely large values, by just counting the flux ciuanta. This Ccin be 
accomplished more easily by measuring the transverse; resistance of a loop vs flux 
(Figure 1.5). Resistance change is due to a persistent current, winch in the upper 
branch adds to and in the lower branch extracts from an Ohmic current, and due 
to the nonlinearity of the interiiction between both currents. The device of Figure
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Figure 1.5; Normal state quantum interferometer.
Measurenioiit of the Iraiisverso resistance of a loop.

1.5 IS nominated normal state Cjuantum mterlerometer'since conductance \'s flux 
oscillations result due to the interlerence between two electronic waves coining bv 
upper and lower parts resjK'ctively. Depmıding on the value of the enclosed flu.x, 
the mteileience between the two paths can lie either constructi\’c‘ or destructi\'e, 
thus increasing or decreasing the probability of electron transfer from left to right.

Persistent current is an equilibrium current not decaying in time. In large 
systems, the magnitude of this current becomes unobservably small.

Persistent current is a sample sensitive phenomenon. Its value and even sign 
depends on properties such as position ol specific impurities, number of electrons 
(odd or even), etc. Flux enters to the Hamiltonian through the phase increment 
between adjacent sites.

a =
<1>

Aa <l>o
where is the number of atoms in a loo|).

A«
II = - t ' ^  exp(ia) + exp(-ia)

/1=1

( 1.21)

( 1.22)
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and

-·- -'21 ro.s( /v'„ -I- n )

II \v<' iiiclu<l(' tlx* »'Heel i>l l lic iiiipiiril irs

V.

(1.2dj

(1.21)

The solution of the problem is identical to the solution of the wave function in 
a crystal with a |)eriodic potential. .Allowance' lor elastic scattering changes the 
T’(4>) dependence by opening a gap at <l> = //<l>o. 7i(<l>) dependence is similar 
to the emergy (momentum) depeiuh'iice in the* e.vtended zone scheme (the Bloch 
problem), see Figure i.ti. <J> serves as (piasi-momenlum. Scattering of electrons 
does not result in decaying of curreiit, as in the case of superconducti\it}^ 
However the reasons for zero I'esistance in both cases are different. In a 
superconductor, current-carrying state is stabilized by virtue of finite binding 
of two electrons making a Ixrsonic pair so called ‘Coojrer pair’. In a 
nonsLipercoiiducting metal there is iio sucli binding, but the .Aharonov-Bohm 
effect in combination with tin; energy (piantization in macroscopically small and 
microscopically large (mesoscopic) system does the same. Scatt<>ring results in 
the redistribution of electrons ovt'r dillerent states, yet total current remains 
nonzero. This is an e.xact statement. 'I'lierefore, due to Aharanov-Bohm effect, 
there appears a current which is nonth'iajing in time, a p('rsist('iit current. 
Scattering influences the magnitude cd' tin.' persistent current. The current 
oscilhites as a function of niagin'tic fhi.x with a period hc/c (fhi.x cpiantum for 
normal, nonsuperconducting sam])le). If the ring is superconducting, it can 
carry a supercurrent. Unlike the persistent current, the latter persists in large 
system. Supercurrent state is metastabh', but rela.xation times of its dcca}' are of 
cosmological value. In very small sample's, de'cay time becomes measurable, and 
the system shows the characteristics of persistent current only. Sec the reference 
by I. 0 . Kulik'*  ̂pages 2-11 and the references therein.

In the next section we briefly present some models of high-Tc superconduc­
tivity. We use two of these models in chapter 2 and chapter 3.
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pure system

maximum dependence 
on Q (i. e.(i> )

impurities 

(impurity scattering 

create energy gaps)

very strong impurity 
concentration. 
Dependence on Q is 
very weak.

Figure 1.6: The eil’cct of the iiu))iiritie.s on tlie energy in tlie extended zone 
scheme.

1.3 strongly Correlated M odels of High-Tc 

Superconductivity

The BCS theor}''^  ̂employs an effective int(n‘action, energ}  ̂transfer of order Debye 
Irequeiicy in plionon oxcliaiige, and other siin|)liiicatioiis . It is a quasiparticle 
description with a constant eilective interaction. However, in realitj^ the electron- 
phonon interaction causes a mass ('nhanc(Muent near the Fermi energy and a finite 
lifetime of a qucisiparticle. W'ith the excitation encngy in the order of Debj^e 
frequency, the liletime ol a qua.sii)art ich' is short and its lev('l width is of the 
order of the excitation energy. That is, its damping is very strong and a well- 
defined quasiparticle no longer exists. Hence, tlie qiuisiparticle picture becomes 
invalid. More detailed (onsid(n*ations of electron-i^lectron interaction, fre(|uency 
dependency in energy transfers, and other refinements are needed. The theory of 
strongly coupled su[)erconductors was thus developed.

Since the discovery of the phenomenon of superconductivity, constant effort 
has been made to search for a new iiuiterial with a higher transition point.
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Nevertlieless, even aiter more tiuui a hall' century, the higho ŝt critical temperature 
until 19S6 was still in the region ol' 20 K. It ai)pearecl as if the 7’,- of 23.3 K in 
Nb„iGe was a limit. However, in the Toth anniversary .year of superconductivity, 
that is in I08G, Ik'dnorz iind Mhller“’ discu\cre(l that LalUt('uC) can Ix' a 
supercondnctor at 35 K. 'I’his was a lolal surprise not only hecaiise of high valiu' 
of 7'c, but because the com|)oiind is a ceramic and is entirely ililfen'iit from all 
the previously known sn|)(,>rconducting matcnials. 'I'lie discov(>ry triggered an 
exciting search for new materials in th new domain, causing a flood of reports on 
the subject, including new materials with 7|, as high as 90 K. The number of new 
materials has reached a,p))roximately hn ty. Hc'low we pre.sent two n'pre.sentative 
families.

(1) 2-1-4 com pounds.

Related to the first high % superconductor is a family of compounds with the 
atomic structure L(i2 -xMxCuO.\-,j, where M is Ba, Sr, or Ca, x is of the order 
0.15, and y is nearly zero. The fiimily is commotdy called the 2-1-1 copper oxide 
in correspondence to the atomic composition ratio of the basic case in which 
X  = y = 0. This family has Tc of the order 10 K, and strontium appears to yield 
the highest.

Figure 1.7 shows the structure in which Ca, O and La or M  atoms are 
represented respectively by black, white and hatched circles. The CU — O2 planes 
are hatched lor distinction. With this layered structure the compounds are highly 
anisotropic, and superconductivity is as.sociated with the Cu — O2 planes.

The compounds have the body centered tetragonal structure at high 
temperatures and the orthorhombic structure at low temperatures. These two 
structures and also the superconducting phase depend sensitively on oxygen 
doping. Figure 1.8 illustrates the phase diagram as a fiinction of x in 
La2 -xSrxCtiO.\-y. Below a cxntaiu t('inperatur<' the orthorhombic phase is 
metallic , and above insulating. There is a tiny antiferromagnetic phase, which 
is enhanced as y is increased. The graph shows the plane at t/ =  0. The 
antiferromagnetic phase is insulating.
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Figure 1.7: Crystal slnu tu reor La^C'uO.i..,,
White ( irclos are oxygen atoms and black circles represent coppc'r atoms, hatched 
circles repre.seiit lanthanum atoms.

Figure 1.8: I^hase diagram of La2-xSrj.Cu0.i^.y

The parent cotnpotmd La-yCu0.i_y is not sitperconductive. In its ground state, 
the charges on La^'^ and arc balancetl by 0~~. When doped with M, that 
is, in La^-xMxCuOi-y. wliere M  can be Sr. then* are .v — 2y holes per cell. These
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Figure 1.9: Struclun* of IWajCu-iO-.
C rossed circles at the corners ol tlie unit cell (j 1 ortliorlioiiibic structure rei)resent /¿, 
which can be 1', Eu, etc. White circles are oxygen atoms.

holes are considered to go into 0(2p) stal(>s and move about on eaeli TnOj plane.

(2) 1-2-3 com p ou n d s

This family has the general structure RBa^Cu-.iOT-i,. where R is Y, Eu, Gd and 
so on. Figure 1.9 shows the structure. The C'u — 0> planes are hatched lor clarity. 
Between these two planes are two iBa -  10 planes. .Above .500°C. the insulating 
tetragonal phase is stable.

The pha.se diagram of Y B a ^ C is shown in Figure 1.10 as a function of 
the oxygen content parameter 6. Note that as 6 decreases, the hole concentration 
increases; the hole concentration is given by (1 — 2(!)) per cell. The critical 
temperature can be its high as 93 K for 6 = 0. The antiferromagnetic insulating 
phase appears when 8 is al)ove around 0.7. Below this value, the compounds are 
metallic.

Both 1-2-3 and 2-1-1 compounds have an insulating iintiferrornagnetic phase 
below a certain temperature. The antiferromagnetic phase is due to the unpaired 
spins of copper electrons. Doping converts them into spin liquids, metals, itnd
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Figure 1.10; Plias<> (nau.ram of Vlia^C

then supercoiicluctors.

Ihc C uOi planes play an imporlani role for superconcluclivii\·, even ihou‘'li 
tlieie ait copptiless inateiials. In fact, the eniieal ti'inperature is sensiti\"e to 
the OX} gen atoms in these planes. l:.aeh copper atom has ten electrons in the 3</ 
shell, which consists of one d{x- -  ¡/-) orlhtal and one d(z'-) orbital. The former 
lias toui lobes cliiectecl towaid I li<? lour o.\\’gen atoms in the same xij plane, wliile 
the latter has two lobes pointed to tlie two oxygen atoms abovi' and below the 
plane and one tiiciilai oibital in tlu.' xij |.>lane. 1. 1k:‘ .single -l.s (dectron and oiu‘ 
ot the ten -id (dectrons ol copper hybridize' with the oxygen '2/> eh'ctrons to form 
/.a >C uOi, keeping the d{x~ — y~) orbital partially empty while tlu' </(-*) orbital is 
filled. The remaining nine electrons in the d{x'--  y-) orbital invite o.xygens in the 
same plane to come closer. On the other hand, the (‘lectrons in the filled d{:'-) 
oibital (ixpel the oxygc.'iis above' and Ix'low the xy plane. d'h(.'.si' configurations 
are illustrcvted in Figure 1.11 in which th d{:-) orbital is shaded.

Note tliat eight of nine electrons in the Cu d(x- -  y-) are paired, while one is 
unpaired. Thus, at each Cu site there is a hole with a localized spin. Since the 
d{x^ - orbital is strongly coupled with the 0(2/;) orbital, one can talk about
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Figure 1.11: Copper cl-orbitals.
The four lobes of d{x'  ̂ -  ij-) orbital are white and the d{z' )̂ orbital is hatched. The 
locations of the neighboring oxygen atoms are indicated. The top and bottom oxygens 
are at a greater distance tlian those on the horizontal plane.

0(2p) or C’u(;W) holes.

1 he localized spin ol the ninth, called t/9, electron ol copper cainses 
antilerromagnetism. It is difficult for an unpaired spin to move about in an 
antileiiomagnetic configuration due to tuiergy costs. However, this configuration 
can easily be destioyed by' doping or by some other disorder, particularİ3"in two 
dimensions.

The replacement of by ,Ş'r'-+ in La^-^Sr^.CuO^^y creates [ x - 2 y )  holes 
per cell. The copper atoms appear to kee]> the same valance state, Cu'-+, even 
alter doping. Hence, the holes seeni to be on the oxygen sites, creating 0 ~ . 
There are (1 -  28) holes per cell in the 1-2-3 compounds НВа^СизОт-в with 
/С+. Accordingly, the 1-2-3 compounds can luive more holes lhan the 2-1-4. 

Note that their critical points ar<' also higher. Since' the supc'rconductiv'e phase' 
stretches l)eyond 8 ~ 0.5, .some C’u*+ might be conve'rted into C'«+ ¿is the hole 
concentration in the plane incretises.

It becomes etisier lor the holes on сорре'г (or oxyg('ii) sites to move ¿il)out once
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the cintiferromagnetio regularity is destroycxl. The high critical point indicates 
that a certain process involving high (uiergy j)lays a role in pairing of holes. The 
destruction of tlie antiferroinagiielic coniiguration by doping cannot be neglected 
in this respect, particularly boicause the resultant sj)in glass phase is not metallic 
but is insulating. The superconductive transition in the 2-1-4 compounds is 
preceded by an insulator-metal transition, l)ut a direct transition from a spin 
glciss state to a superconducting state without entering a metallic phase appears 
to take place in the 1-2-3 compounds near absolute zero.

The holes created by doping are i)riiuarily on the 0~  sites in the Cu — O-j 
planes. In consideration of their hopping from site to site, including copper sites 
we express the Hamiltonian of a single Cii — 0> plane cis follows:

(1.25)
t , <r

The operator cj  ̂ creat('s a hole* with spin a in tlu' 2/>.,. or 2p  ̂orbital at the сор|)(“Г 
sit(‘ i. The hole is in the 3(/(,r“ — //") orbital of copper. The diagmial energies will 

be either {s¡j,U¡,) or (c,/,//,/) for the 2/> or 3d stat(‘ respectively.
The choices

u  = u1. ,J L .'

simplify the Hamiltonian. In addition, if

Ua if 

= 0

the above Hamiltonian is reduced to a single band Hubbard Hamiltonian:

II = - l Y ^  clcj^ + i ^ Y  'b i’bi (1-2^)
( b )  j

The same Hamiltonian can of course describe electron hopping. Its properties 
depend on the relative strength of i and U. The first term represents hopping
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bc'lwecii iicigliboriiig site's (ij), and llu.· second lei in represents the interacliou at 
the same site j. 11 this interaction is repulsive and large sucli that U ^  t, no 
two electrons can he on the sanic' site'. Hence, ('ach site is trUven by only a single 
electron with a certain spin. As a cons('e|uence, the I'lectrons can hardly mo\’e. 
Due to large U, the band is split into two with a gap between. That is, a half 
filled Hubbard model corresponds to an insulator with an energy gap between 
the lower occupied and up|)er unoccu])ied stati's. Thus, this Hamiltonian may be 
adopted for the insulating phase of high 7',, materials.

It is conv('ni('nt to start with tin' above' Hamillonian, not distinguishing tlu' 
copper and oxygen sites from (,'ach other. Howeve'r, the single Irand model is 
symmetric under a particle-hole transformation, d ims, removing holes from the 
Си —0-2 l)lanes is eciuivah'iit to aelding ihem. d'his symmetry can be broken by a 
more elaborate соррсг-ол-уиси modt I. In this modc'l, t 1k' r('moval of holes from tlu' 
copper sites produces CtC. ddu' e'uergy ed’ CiC can be' higher or lower than c,; of 
C u ^ .  If it is higher, and if erxygen’s is leK'atc'd belweien the two energies, any 
additional hole will go into oxygen sites. Only in the opposite case, in'which is 
higher than £p, can the holes go into the copper sites. .Sjiectroscopic observations 
of excfiss holes on oxygen site's favor the' eo[)per-e)xyge'n model, d'liese excess holes 
are the charge carriers.

Doping supplies aelditional oxygens and w<'akens magnetic coupling. Thus 
spin flipping takes i)lace, causing local sıjin-pai'allel configurations. This 
occurrence can be seen by examining the interaction of spins Si and S2 on the 
neighboring C u ^  with spin cr of an oxygen hole:

II ■= - J ( S i  + S2)'cr (1.27)

In order to minimize this energ}·, a prefers to be parallel (antiparallel) to both 
Si and S2 \i J > 0 { J < 0). That is, regardless of the sign of J , Si and S2 are 
preferably parallel. Moreover, sijice the oxygen hole is presumably located closer 
to copper than the original Cu — 0  distance, the above energy would overcome 
the anti ferromagnetic energy.

The local parallel-spin configurations created by doping stir up spin
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Iruslralion, so that the mal<‘rial heciancs a <iuaiitmn s|)iii liiiiiid. 'I his li(|iii(.l state' 
is iiisLilatitig, hut may l><’ cotisidi'icd as a parent state lor supe'recaidiietivity. Note 
that tlic ground state ol a Itl IJethe lattice conespouds to a spin licpiid. On the 
other hand, Hainan scattering studie's’“ liave rex'ealed that spin lluctuations in 
nonsuperconducting La^CuO.i are characterized l>y an (ixtrenu'ly higli exchatig«' 
constant J ~  1100cm“ * = 137mcl'. A similar magnitude J  ~  9Ô0cm“* has lieen 
ibund in YBa^Cu-jOr-a. 'rherelbri' eix'igies of order 1000 K may he involved for 
jiairing. Increasing theoxygc'ti conce'iitratieni cause's hroadening and weakening of 
the spin pair peak and e:lilution of the spin system in the planes. That is, spins are 
removed as the oxygen concentration is increased. This indicates tliat magnon 
exchange may not he responsihle for pairing. In fact, there are perovskites such 
as DaPhOz that do not show any special magne.'tic properties, hut have Tc of the 
order 30 K. It is also known that the excitations from the Bethe state are not 
sj)in waves but ¿ire <iuasi-fermions called spinous.

The existence of the 0  — Cu — O configuration before doping requires a 
close examination of energy changes due to excess oxygen atoms in relation to 
their motion in the Cu — O2 planes. For instance, Emery and Reiter** solved 
a model in which an o.xygen hole moves through a ferromagnetic copper spin 
background. This model suggests that jiairing of these holes is medicited by 
enhanced sujjerexchauge coujiling.

On the other luind, noting that a metal-insulator transition is close to the 
superconducting transition, Anderson*'* siiggesti'd that the insulating phase is 
an RVB (resonating valance hand state). With suflicient doping, the magnetic 
singlet pairs in the insulating state* become charged superconducting pairs. His 
model may be described in a simiile way by staiting with a half-filled Mott 
insulator in a simple scpiare lattice;. 'Phis system corre;sponds to a Heisenberg 
antiferromagiKit and is represented by the Hamiltonian

w = . / x : ( S i S j ) - i
(b)

( 1.28)

In terms of Hubbard’s t and U the exchange constant J  = ‘iC/U. The spin
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(1.29)

with the local (:onstraiiit.s //,| + 'i,| -- 1. llcr<> the .singlet operators 6  ̂ are delined

i->y
¿t, _ ) (1..3Û)

It is interesting tliat the new llaiiiiltoniaii has the local gauge S3'inmetry for 
> e.xp(¿¿l)c· .̂ Л similar gaiigci ŝ  inim'liy has becui discussed for the fractional 

ciuantimi lla.ll effect. 'I'he sj)ins beha\ing as lerinions art' spinous. İfan elect rtni is 
removed by doping a hole, called holon, is created. 'I he holons do not carry spins 
but only charges. The effective Ilainillonian for a tlo|n‘d material can be expressed 
in terms of holon and spinon ojx'rators of the BC.S case. At temperatures below 
J ~  10Ü0 Iv, the spinons do not ho|). 'I he dominant proct'ss is tunneling of ci 
holon pair, which involves a virtual excitation of a spinon.

In the investigation of unusual electronic proixirties of metal-oxide, com­
pounds it was p r o p o s e d t h a t  the ik4v h'atures in the electronic band 
conduction should be included. 'Пи* first is the possibilit}' that intrinsic-hole 
rather than intrinsic-electron carriers may |)1з' the game. The second one is 
that, provided ‘intrinsic-holes’ are at work, one-particle picture' of the electronic 
transport is not fully ade(|uate. Bticause the interaction between holes (re[)ulsive 
or attractive) has to be included, and the fact that hopping of holes in itself cannot 
be considered as a constant and is stronglj' dependent upon site occupation 
should be taken into account. Hence, anion network in the CuO-2 i^lane of metal- 
oxide compound is considered'’* as an intrinsic-hole metal with holes rather than 
electrons comprising a Fermi li([uid immersed in the background of negative 0~~ 
ions. Due to the contraction of p—orbital of oxygen as a result of occupation 
by a hole, hole hopping between nearest lU'ighbor sites (t, j)  is dependent upon 
opposite-spin hole occupation number. It has 1к'еп proposed to consider, in the 
second quantization representation, the hopi)ing matrix element t¡j as an operator 
depending on the occupation operators n, and nj of the atomic sites /?,· and 7?j.‘***
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There are three indepeudenl inalrix elemeiil.s /„, and corresponding to,
in the case of two oxygen anions

/u: 0 -  + Oj- r O'-  1- o j

/. : 0, T o;· -̂ X ) j  iO , (1.31)

2̂ · 0, + 0 - ^  07  + Oj

whidi r(‘snlt in

Uj ^o(f *i<,-cr)(l· ^̂ ./,-(7 ) T d ( I // ;.-fT ) T 7< j,_(T ( 1 - +

hni-alli -a

Tlie occupation dependence of the hop|)ing can be represented in another 
form:

lij — —t +  l · ' - | -  I I  ( / / ; , _ ^  +  ( l . d d )

where from Eq. (1.31)

t — —/o, E — — 211 11, 11 — t-i — l{) (l.Tl)

Hence, Id version ol interacting holes in an anion network is rej)r<'sented by 
Hamiltonian including, along with tin' contraction int<‘raction, the Hubbard term

/ /  =  -  ^  O Xp(/n) +  h.C. -I- U iA

“I" ^ 1 ,(T i, — o i-\-\ j — a H~ i /-f-1, —<T p( / //.r.( i .·{') )
i,C7

The ciFecl of c6uj>ling Icriii IT has b(‘i‘ii roiisicler(?d in mucli detail in the 
paper of Hirsch and Marsiglio,' as well as of I. 0 . Kidik.'‘'‘̂’®‘̂ Both tj'pes of the 
contraction pairing are considered.^*

Our model Hamiltonian in chapter 2 will be that of Eq. (1.26), and in chapter 
3, it will be that of Eq. (1.35).

In addition to above three models there are several other models. However, 
a convincing description at a finite value of doping is still lacking and the basic 
mechanism is yet to be disclosed. For further reading see section 7.2 of High- 
Temperature Superconductors by N. M. Idakida*** and the references therein.



Chapter 2

1-D H UBBARD MODEL

We coiiskler a loop of yV„ lattice sites, which in fact is ec|ui\'aleiit to a one 
diinensioiial chain, with a total nuinlx'r of N,. electrons. We will assume that 
there is a magnetic flux <l> through the loop. Suppose that electrons can hop 
between neighboring lattice sites, and at ('ach site at most two electrons with 
opposite spins can sit togethei· with an interaction energy U. 'i’he Hamiltonian 
for this system has the following form:

( 2 . 1)
I , a

where and c,_(, are, n'spectively, the cia'alion and annihilation operators for 
an electron of spin projection a at the lattice' site*; / is the ('l('ctron hoi)ping 
ainplitiide; о = where <l>o is the magnetic Ilux (|uantnin; is the
occupation number ope'iator. 'I'lu' eiK'igy spectrum of // is invariant under the 
replacement of I by —I. So, we- will take / — -|1 in appropriate units.

The lattice sites of the loop can be' numl)e'red from 1 to Л'„. Hence we' use the 

lollowing wave' function Ibr the' .syste'iii:

|.i/)=  ^  / ( . ' · , , ■ ■ ■ < ! „ , (2-2)

Here, repre.sents the amplitude in the coordinate representation
for which the down spin electrons are' at sites :V\.. . .  , xm and up spin electrons

2G
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N

Figure 2.1: Sample coiiiiguialioii
There are lattice sites on the ring which can be numbered from 1 to УУц. Tlie flux 
Ф piercing the ring is produced by a solenoid inscuted in the ring.

are at sites .тл/+ь · · · > flic пишЬс'г of electrons with spin projection
down and — M  is the number of ehictrons with spin projection up). The 
amplitude function lias the following symmetry property: /(.ri + Ла, :t’2 · · · =
f { x i , x -2 + Na...XN,) = ■■■ = f{xi,x> ■ · · xy.  + 1̂ 'a) = f { x i , x -2 ■ ■ ■ xnJ- Using 
the commutation relation for fermions, which is [c,,a,cj^/]+ = the
definition of occupation number operator = с-„с,_(г, the eigenvalue ecjuation 
Я1Ф) = b’l'P) leads to:

— ^  У (.'Гь  .'Г2 , . . . , .г·; +  1, . . . , i f jv je ' ' · '  +  J  ( ; r i ,  . . . ,  .t ; — I , . . . ,  X y j c  +
1=1

^ { X i - X j ) f { x \ , X - 2, - - - ' , X N . ^  =  B f { x i , X 2, . . . , X N . )  (2-3)
¿=1j=A/+l

where

;r, =

•Г2= 1 ,2 , . . . , /V„

xn  ̂ = 1 ,2 ,..., N„
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S{.Vi,.Vj) = ( 2 . -1)

and,

^1 if .r, =
0 if 7̂  .ij

Nole that,, j\L_ electrons in tlie non-intinacliiig lattice {U = U) have an energy 
eigenvalue = -2Zcos{kj  + a), where the inoinenta of the :V; electrons are, 
kj = iviK-l nj = 1,..., Âu· I Ills shows that energy ol non-interacting electron
system has hc/c periodicitjc

2.1 Ground State Energy of Two Electrons

The Wcive function for two (.'lections, oiu' with s|hn u]) the other with si)in down, 
will b(.' the following:

I'K) = E  I |ü) (2.3)
j'l ,a’2

The eigenvalue equation //['•1̂ ) = leads to

+  l))ex i)(/o) -H ( /( ;ri  -  -|- / ( . r i ,X 2 -  1 ) ) +

U6{xi,X2)f{:Vl,X2) = Ef{Xi,X2)

We can translorm the above equation to momentum representation with the 
following substitutions:

( 2.0)

1
(i(;ri,a-2) = — Y^ex\){i.K{xi -  X2 ))

where K = n = 0 , 1 , 2 , yV„ — 1, and

f{xi ,  X2) = X) //c,,/v·, exp(i7M;<-i)<'xp(ï/v2.T2)'
Ki,K2

(2.7)

(2.8)

where A'1,2 = » 1,2 = ~ I kuI<2 7̂ assumed to satisfy
the periodicity condition //Ci+in-./v̂  = ./Ai./Vi+in· = JkuK-2 · After some calculations 
we get the following simplified ('quation for Jki ,K2

(E + 2 cos( A'l +  Of) + 2 cos( A'2 + (^̂ ))Iki ,K2 = - k ,K2 +k (2.9)
K
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SO tlial.

j  \ ,l\ о #t I Л':, h t-K.K.i-h
E + 2 cos[l\ I -|- Í)) + 2 ('os( / \2  4" ) 

Alin· a second siiinmatioii U4‘ c('l

(2.lÜj

J .

Л
_ ^  /· _  ________ .V„ , / y C i - A ________

^  ^ 4  2cos(/ú - / ,  + n) +2cos(A', - p  + a)

Realizing the fact tliat / а , - а'.л +̂Л' ^  function of Q = 7v | + /v -2
in mod 2тг, we arrive at

=  Ü (2.12)

(2.J;i)

I cos{ A'l — p + a) + 2 cos{J\ 2  + yj + a)^

Hence, eitlier the term iaside the pannithesis or <1>q is equal to zero.
(1) <1>Q Ф 0 case.

j_ _  J _ ^ _________________ 1_________________
U Na ■“  A + 2 cos( к  I — P A a ) + 2 cos(/\ 2 + P + n )

or shortly
i  = .s'(/v) (2.1-1)

The cdjove transcendental (X[uation can Ix' solved numerically and the value ol 
the energy E can be found. 'I'lie points wluue .S'(A') intersects with ^  are the 
eigenvalues E  of the system (see Fig. (2.2)). Th<‘ Ilux dependence of the energy, 
related to Ecp (2.14), is presented in Fig. (2.5).

We can apply Poisson summation formula,

f (" )  = Y .  /  f{n)cxp{27rins)dn (2.15)
7l = /ll .4=1-00

to Eq. (2.13) and we get

 ̂ ^  (ip
V ~  2 k  E5= —OO

So S{E) becomes

e.xp(iyj;V„s)
+ 4 cos(Q /2 -  J<) cos(Q/2 + o)

(2.16)

CO CO

S{E) = E  S.{E) = ¿Uu(b’) + E  -ЧЕ)  + S:{E) (2.17)
6-1
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CO

Figure 2.2: Plot ol tiaibsciMidcntal (‘(iiialion for l-d IIubl)ar(l model with 2 
electrons.
The points where S{E) intersects with p are llie eig(4ivalues E of the system. Here 
/V, = -1, Q = 0, о = 0.

VVe can calculate 5.,(/:/') in the сош|)1ех |)lane. L(>t ~ tlien dz = izdp,

1 '·
S (2.18)

2 m  J z'^{e‘‘̂ H- c - ‘(Q+··)) +  +  (, -(Q+^d +  t - ' “ )

This integral can be calculated with the use of tlie residue theorem. The poles 
of the denondiiator are

= _ z E m J E I â İ (2.19)

where /‘.'o = d cos(C^/2 + a). For lE < Ix̂ tli of tiu' poles Zi and z-> aia* on 
the unit circle, while for l‘E > oiu* of them is inside, the other one is outside 
of the unit circle. The oidy dilference between these two cases is that, 5's=o term 
vanishes for < Eq, while the same t(‘rm survives for the other one.

For both possibilities we get the following result

1 cx])(i{Q/2 -  k)Na) + 1
S(E) = —

li sin .r cos/:/ exp(i(f^/2 — A')jVo) ~ 1
(2.20)
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Figure 2.3: The poles of l;lie integral in the complex plane.
For < Eq, both of the pole.s arc on the unit circle, while for E~ > Eij, one of them 
is inside, the other is outside of the unit circle.

where

and

X  =
K if E- < E'  ̂

¿K if E~ > T'u

R = Q/2 A tt

(2 .21)

If we denote new momenta as

we ee

and

exp(i (A'l -  a )A'„) =

With the substitution
A =

 ̂ sin/ri — sinA-2 +  i U / 2

(2.2a)

(2.2-1)

(2.25)
sin k \  — sin l c 2 —  i  U ¡ 2

^ sin A‘2 — sin A'l +  i  U ¡ 2 (2.20)
sinA’j — sin ¿1 — i U / 2

sin A‘i +  sin A'2 (2.27)
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U > 0
n m O ,

Figure 2.4: Plot of tlie tran.sa'iidcntiil eqiiiition for U > 0 
When U > 0, E'  ̂ is always less than E'q. The inlerseclion of .$'(/’) with i / U  is always 
to the right of E(j.

and u = i//4, the Eqs. (2.25) iuid (2.2G) take the following form

I II \ \ r \  A.-1 — .V + iuexp(i(A'i -  o)A'„) = —

and

sin Ici — A — iu

 ̂ sin A-2 — a + lUexp{i(Ar2 -  a-)Â „) = ----------- -̂--- r-sm k-> — A — lu
We will see in the next .section that, Eqs. (2.28) and (2.29) are identical to the 
discrete Bethe Aiisatz equations lor two electrons.

As it is seen in Fig. (2.1), when U > 0, is always less Ilian E' .̂ On the 
other hand, for i/ < 0 there are two possibilities: (i) if the value of n is even, 
then for all values of //, the inequality E'  ̂ > E ’l  is always satisfied; (ii) if n is 
odd, then > Eq is not always satisfied. In this case, the absolute value of 
U should be large enough, otherwise, just as in the case of i7 > 0, E^ becomes
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u*o
П ш О ^

- ,--- ,--- ,-- ,— ^

Urn. :»

Л

-AO - 3 0  - 2 0  - 1 0  О го -АО - 3 0  - 2 0  -so о го

Figure 2.5: Ни? plot оГ i Ik' IraiisciMidciilal счриилон Гог U < 0 
VVlioii < О is not always larger than 'The iiiU‘rsectioii oi S{E)  with \ /U  is 
sometinies left to sometimes riglit to /'.’u, (lepeiidiiig on I lie value of |//|.

smaller than E^. It can be obstu vecl tluvt, foi* odd values of /¿, E“ is always larger 
than cos\Ql2  -  K )E l  not E^\

Let us try to find out the ex|>licit forms (d’ Lijs. (2.25) and (2.2(i). Let

siiiA’i — siii/ej
.s = 2

U
so tluit

Using the identity

ex[){i k'I Na) = ex p(/ a Na)
Ö + i
Ö — г

s +  i
s — i

7 = — exp(—2 / arctaii s)

(2.30)

(2.31)

(2.32)

we get the following equations for ki and k-z

/4  sin a; cos/3' 
— 2 a r r t a n  I ---------------kiNa = (2·«! + 1)7T + aNu — 2 arctan

\  ^
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= (2ii2 + l)7T + (\Na ~ 2 iircUm (2.34)

where rii and n -2 are integers.
If we add the two equations, we find that (Q+2a).Va = (ni + n  ̂+ I) 2TT+2 Q.Va. 

Hence we get a relation between all /i’s: ;ii + 112 + 1 = n (remember that 
Q = /i)· Subtracting the equation governing A-o from the first one and dividing
the result by four we get

N.a—  = ( /¡1 -  ,1 2 ) -  -  arctan
-1 sin X cos (i''V ,

Hence, it is possible to express the eigenvaliu;, /'A, of the system as

with ;i· (hitermined by

E = —1 cos .(· cos ¡:i

NaX / 4 sin .r cos/?
tan —  = -  <T '·) U

(■2M)

(2.37)

where cr = +1 for odd value of a and = — 1 for even Vcilue of n. Put x = k for 
E" < El  , and X = i ti for E'  ̂ > E^^ where k is a real quantity. Using above 
equations, it is possible to plot the ground-slate energy as a function of flux. The 
results are exactly the same as those found by iiiiinericall}  ̂solving Eq. (2.13) (see 

I'ig. (2..)).
(2) <l>g = 0 case'.
If d>g is equal to zero, we s(.'(* from Ec(. (2.9) that:

[E  +  2cos(Ai -f· u) +  2 cos(y\2 +  o ))7a'i ,A'o — Ü (2.;)S)

'id have' ('C|ua.l to /('ro, tlu‘ sum of flic //\,,/vjd should be x(mx). But all ol flic 
equal to z(uo, otherwise |'l̂ ) becomes zero. It is possible to 

show that we can put equal to zero only ii lor some two different
combiiicitions of (/vy, K 2 ), the quantitie's 2 cos( /v 1 + K + a) + 2 cos(7i2 -  K  + a) are 
equal to each other. Otherwise, all //v,,A',.d should be equal to zero which in turn
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U = 1 0 U=0,1

U=-l

0 .0  0 .2  0 .4  0 .6  O.B 1 .0

F ig u r e  2.G: 1мкм-^у v('rsiis lliix for Iwo electrons.
If tlio Ф д = 0 case is tak(4i into account, ik'W branches, which are the dotted linos 
for positive Î7, appear. This branch does not api)oar for negative //, since it is above 
tlie branch of first ])ossibility. In short tlie new brancli corresponding to the Ф д  = 0 
results in period halving for U > 0. The solution due to transcendental equation (Eq. 
(2.13)) and the analytical expression ( Eq. (2.3d)) are the same. In all the above graj)hs 
Na = 10. We present the behavior of energy for both small and large values off/. For 
large enough \U\ when U < 0, the minimum corresponding to Ф/Фо = l / ‘2 is almost 
equal to the one when Ф/Фо = 0 or 1. But when \ U\ gets smaller, this property vanishes, 
and the plot becomes similar to U = 0 case, in which there is only Фо periodicity.

means that I'f) is zero. If the above reciuiremeiit is fulfilled then the eigenvalue 
of the system becomes:

E = —2 cos(ry + a) — 2 cos(Q — g + a) (2.39)

with K\ = q and K 2 = Q — q· Further consideration shows that when £/ > 0,
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and n is odd the ininimuin eiieigy of tin.' system becomes (see J''ig. (2.6))

r  -  1 . ^ ^L· — —1 cos cos( —— -|- Cl)A' V* ' a —
(2 .-10)

It can eci-sily be seen that if this second po.ssibility is not included, the number 
of eigenvalues is less than it should, that is the set of solutions is incomplete.

Equations (2.28) and (2.29) at a = 0 coincide with the Lieb and Wu solution“̂  
of 1-d Hubbard model for two electrons. The pariuneter a generalizes this solution 
to the case of nonzero flux in the ring. Our analysis show that the Lieb and Wu 
solution is incomplete, because Eq. (2.-11) also determines possible values of the 
energy available for two electrons in the ring. This extra solution is a dependent 
iuid therefore it chango's whence flux in the ring is changed.

2 . 1 . 1  T h e  D e p e n d e n c e  o f  A m p l i t u d e  o f  E n e r g y  

O s c i l l a t i o n s  o n  t h e  N u m b e r  o f  S i t e s

We im'estigate AE{N)  in two dilfereiit case's: [/ > 0 and U < 0.

(i) U > 0

It is nece.ssary to find out the value of oi (Eig. (2.7)) in order to determine AEi  
and A E 2 . With some simple algebra we' find out the eepiation governing cvi

7T cos(oi — ^ )U
= ta.n AC /—  árceos cos ,̂

2 I AC cosn,
7T . 7T

cos- oi — cos  ̂ cos'^(ai — —)
AC

In the lim it AC 1
1 27T 7T

a I .1 ,¥ ■>i\
A - '  «  -  - ’  (I

Hence substituting this value, we find out AE¡ and AE)  as follows,

I TT '
AA’i

AE-2

1

2 yV-a

1 j r

Both AEi  and A E 2 behaves like and 1 for yV« >  1

y\C·
( 2. 11)

( 2 . -12)

(2.-13)

(2.44)
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Figure 2.7: The energy oscillations Ibr 2 electrons.

Figure 2.8: 'I'lie energy oscillations for /7 > 0 lor /V„ = 50

(ii) U <0

In all the following calculations \U\ is c.onsicleretl to be large enough. This time, 
For U < 0 the calculations are easier, since with large both tanh and
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Figure 2.9: Tlu· ainplil lulc of oscilhit ions for  U <Q with .'V„ = 50

coth ^  (Jiq. (2.37)) (|uickly approadie-s 1. VVc find oui thaï in this limiting case

¿TT 7TOi
-I .Va 2/V„

just like in the U > 0 case.
The final results for the amplitude of eneigy oscillations for [■ < 0 are

(2.15)

AEi = A E 2
v / / 7 -  +  if) 7T̂

8 Wi (2.-16)

As the number of sites increase we observe more pronounced <l>o/2 periodicit}', 
which resembles the pairing of electrons as in the superconductivity, but the 
amplitude of the energy oscillations decrease with inverse scjuare of the number 
of lattice sites. It is found tluit, both for the U > 0 and f/ < 0, the energy 
amplitude behaves as -¡L·. But there is a difference between these two cases, the 
amplitude of oscillations has a dependence on the value of U for t/ < 0, while 
there is no such dependence for U > 0.

It can be noted that for U < 0 and Na ^  I

y/LE + 16 cos'^/i
cosh

4 cos /3 (2.47)
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Figure 2.10: Tlie eurront .y(4>) for two electrons.

so that,

L· ~  — \JC^ -f" iOco.s"/.y 

both for even and odd values of n.

T he C urren t J

It is possible to write the current as

OE
Ocp

(c =  1 in dimensionless units.) For both U > 0 and U < 0 the behavior of current 
with large number of sites is as in Fig. (2.10).

First let us consider U > 0. In Fig. (2.7) we have, for even values of n.

and, for odd value of n,

r  1 IL· = —1 cos K cos I — + rv

E = —‘I cos cos

(2.50)
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For these two branches we get the lollowing currents for 1

j  ^  —la

lor even n, ¿ind,

j  —1 ( Q -  —
\ r  \  a

for 0(1(1 n. Hence it is easy to liiid out that

Ji‘ 'N

N(‘xt wc inv(;stigiit(i U < 0. 'I'his time we have

E  = —1 cosh K cos ( ^  + a

(2.52)

(2.53)

(2.5-1)

(2.55)

with K detiinnined according to the E(is. (2.19) and (2.50). This time the value 
of the current depending on a is as follows

J ^   ̂ 1G o. (2.56)

and.
j  «  - V i P  +  16 (o -  - ^ j (2.57)

SO we find out tluit
\ /U ‘- + 16 TT

.1

2 yv„ (2.58)

The amplitude of the current both for U >  0 and U <  0 has inverse Na
dependence. As it was in the energy oscillations, tlie amplitude for large 
has a dependence on U when U is attractive, yet, as in the energy oscillations 
this dependence on U disappears lor positive U.

2.2 D iscrete B ethe-A nsatz Equations

The exact solution to 1-d Hubbard model Wci s  found by Lieb and in 1968.
The energy eigenvalues are given by

E = - 2  ‘-■«s %
j=i

(2.59)
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wheie kj are the nioiueiita ol tlie l\L <‘lectroiis, which are cletermined by the 
discrete Bethe-ansatz equations,'’’̂

exp(i(iv -  o ) K )  = fi -  A- + iUI \
a  =  l “  A a  -  ¿ f / / 4

j-|· Л,  ̂ siiiAij +  l U/A ^  ^  A,., — i\ß i U/2

ß=i

(2.60)

(2.61)Л, -  siiiAv -  iU/  l Д  -  Aß -  iU/2

Periodic boundary conditions have lx.'en imposed to derive Eqs. (2.61) and (2.62). 
Here {At,} is a set oí AI spin repedities. I'lie к and .\ \'alues are in general comple.x 
numbers.

'I'liesc' (4iua.tions directly follow from secticni (2.1) for tlie cas(‘ ^̂ f two (dectrcjiis 
with AI — AI' = 1, wIk'I’í' w(‘ deri\’(4l tlnmi using Poisson snmmal.ion formula. In 
this section our objective is to (rac(‘ the dependenc<‘ ol the solution, and therefore 
the energy E  and the current j ,  in tlie loop for many (dectrons.

L(d. ns ma.k(i the following substituí ions to simplify thes(' <4|nations,

kj = ß -f a A Xj , with xj — 0
J =  l 

M
A„ = + Aa , with ^  A„ = 0

0.-1
Zj =ii\n kj -  A

a = Í//1

With the above substitutions, liqs. (2.61) and (2.62) take the form,

/ A¿,. -j- t IIM
exp(f {kj -  a)Na) = П

» = 1
N.

— — i a
M“l· ¿ \ß -f- 2 1 и

-~J  + -  i IÍ ßSi Ao -  Ай -  2 i u

(2.62)

(2.63)

If we take Eq. (2.61) for all different values of a  (cv = 1,2,. . .  M), and multiply 
them, we get unity. Then, for M = A/', it follows

Zi = -Z2 , Z3 = -z.,  , =  - ^ .V . (2 .6 4 )
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and

if iM is odd A.u+1 =  0.

— ~A.\/ , Ao — . . .

These results imply lluit,

and

A = (sill ki + sİll k'-̂ )

l-i'ıl -  = . . .  = |.r,vj (2.67)

Hence, -1  = C3 = . . .  = -z-z = -z.t = .. .  = sin .r cos/4 = With all of these, Eq. 
(2.64) for any cv tidies the following form.

z — — ill ;r + A,:, + ill''
At, + i u z A — i u

At, — Ai + 2¿u At, — Ajv; +  2İU
At, — A1 — 2 1 u At, — X_\i — 2i u

n Aq. — A·̂  +  2 / a  A,, +  X f j  +  2 i  u

Aá + X¡j — ‘2 i uI'j Aq Xfj 2 1 ti (2.CS)

From Eq. (2.G3), for /ĵ ’s we get, 

exp[/(/‘i -  a)Na] = (-l)''^exp /  — Ai z — X‘2—2 /, arelan---------- \- arctcui----------h
V a  a

z j- A j rj -f- AI
+  a r e l a n ----------f- a r e l a n -----------

a a
(2.(i!)j

e.\'p[¿{k-j, -  n)/V„] = (-1  )■'' <‘X1)
/ 3_A,  c-A,>

2 / I a r e l a n ----------f* a r e l a n -------------(-
a

z +  A _> c - |-  A|
+ arctan-------- -|- a rd a n -------- (2.7U)

Note that, it is not necessary to consider all the other kj's, because the equations 
governing every couple of A:2/+i and k-2 i are the same (1=1,2, ...,M -1). Since 
ki — ¿2  =  2x, we have,

^  (h  — h)  — iarctan^^^-----^  + ··· + arctan ~ (2-71)
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where E and are integers wlien M is ev<>n, or hall'-odd integers when M  is odd. 
We can take the tangent of both sides of tlie eqnation(2.72),

X  N u  f i r  \
t a i l  — — t a i i ( — //¿ — a j  =  — c r ( l a i i a ) ^

1  ̂ 4“ AIwhere a = a r c t a n ---------- +  · · · +  arctiin — ------^

(2.72)

u a
Next, we show how the ground state energy is dependent on for some

values of N^. First of all we stait with N, = 2. Before, we have found the 
energy eigenvcdue with our formulation. But this time our aim is to arrive at the 
eigenvalue equation via discrete Bethe-ansatz equations.

2 .2.1 N , =  2  ( T  J . )

We directly start with the Bethe-ansatz efjuations for the case of two electrons. 
We have = 2, M = M' = 1. From equation (2.6:1) we get.

(2.73)

(2.74)

. . . .  sin A_  /\7 1 _ I — A +  iu
—  . , 

Sin A

, . ,  , sill k/V \ _

1 — A — iu
2 — A +  i u

‘ * ,
Sin A2 — A — i u

These are the same as Eqs. (2.28) cuid (2.29), with one exception that A is yet 
unknown. There is only one A,,, so we let Ai = A. Eq. (2.74) and (2.75) take 
the following simpler forms with the substitutions described on page 43,

:i + i uexp( i {ki -  a) A'„) = 

cxp{ i{k -2 -  c\)N„) =

q -  / u

~2 + / W 
- 2 -  i LI

and.
—  Z i  +  i  l l  — Z-2 +  i  u

= 1
—  ~ l  —  /. (/. — Z-> —  I  U

From this last equation we lind out that S| = — z-j. Since Z\ = sin ki 
22 =  sin ¿2  — A, it immediately follows that,

^  sin ki + sin k-2

(2.75)

(2.76)

(2.77) 

A and

(2 .78)
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As it is easily seen, this result is c'xactly tlu,' same as lilq. (2.2o), which Wcis 
derived with our own I’ornmlation.

Next, let IIS litid out the <‘iieiL',y eirymaliies l·! ■ 2{c{)ski 1 cos/··..). (Isiiig
Ixq. (2./2) we are cd̂ le to extract all the inlcjiiiiatioii wc* need,

A·, -  k> N.. IT
are!an -  + - [I\ — ¡2 )

"h L > , 7Г
j -Vi = -V, + “  ( / 1  + L>)

(2.79)

(2.S0)

Equation (2.86) determines the· relation between ¡1 , /2, and n. Hence, the energy 
eigciiivalues of this system are.

E  = —1 cos ,r cos

with the following equation for .r.

j'V,,.r / sin .r cos ,9tan = - a  ---------- ^

(2.81)

(2.82)

with (T =  +1 lor odd values of //, and cr = — 1 for even values of n. So, we finally 
arrive at the same eciuations for ca.se of two electrons.

Next we investigate, whether the Jh-the-ansatz e<inations give the extra 
eigenvalue, which was found in section 2.1. Previously, we have shown that, 
if two roots w(!re coinciding, the common value of them was one of the ]K).ssible 
eigenvalucjs for the system,

E  = -1  coh{Q/2 -  E)  cos ¡i (2.83)

where ^  and K  = 4r n'. So the minimnin value of E  occurs at theZ i V Cl Cl
minimum value of Q/2 — K. Unless n is even, Q/2 — K  can never be equal to 
zero, it can at least be Hence, for even values of n we may have

E  = —1 cos ¡3 (2.84)

But observations show that this is not a candidate for minimum energy, since it 
is not a coinciding root. For odd values of n.

7Г
E = — i cos —- cos /3 

Na
(2.85)
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riiis niCciiis th(it X — 0 tiiicl x — rcspcctivcl}'. I'or even vivlucs ol /)., this energy 
Viilue is liiglier than otliei· possible eigenvalues, licMiee it can not be a candidate 
for the ground state energy. When we investigate tlie Bethe-ansatz equations 
carelully, we find out that x = ^  is not a solution. Moreover, the equations give 
X  = 0 for odd values of n, which actually is impossible (for U > 0, it is clear that 
E' < hence E is always larg(‘r than -  Icos/i).

During our lit('rature search, we lia\'e louiid sevi'iid mistakes in certain paf>ers. 
I'or e.\arnple, starting directly liom Ih'tlie-aiisatz ecpiations, Kusmartsev' et. al.“  ̂
have arrivc'd ¿it erroneous results. 4 he main mist<ik(' is, ol course, tlu*se eqmilions 
do not give th(‘ extra ('igenvMiK's that we have found, and the (xpiations also cover 
;r = 0, which should ¿ictinilly be e.xcludetl. luirthermore, people sttirt from E(j. 
(9) cUid Eq. (10) of Lieb and Wu’s paper'^" and consider the integers (/j ¿ind / 2 ) 
there ¿IS independent from ecicli other. Actuall}', if the calculations ¿ire carried 
out Irom the very beginning, it is soxmi that these integers tuive dependencies on 
etich other. So we concliule tliat there ¿ire smiie extr.i eigenv¿ılues which c¿ın never 
be obtained by Bethe-ansatz eiiuations. Besides, some eigenvalues given by the 
Scune equations ¿ire incorrect.

2 .2 . 2  K  =  4 ( T T t l )

If we start directly from Kq. (2.11), we get,

- ^  -  ( A - f  i  u f  
— ( A  — / 1 / ) ^

The viilue of A can be (.•¿ilculated from the above eciuation,
./2 _ ..2 ·>

A - f  /  i i  

A —  i  I I

A" =
— ir

± -- \/ii‘‘ -h u-z^ + z‘'

From Eq. (2.70) and Eq. (2.71),

(ki — a)Na = —2 ( ¿irc.tan — -  -f arctan ~ [ -|. 27T7ii
V u u I

a n d ,

— a)Na =  2 ^¿ircta( ¿2  — a)Na =  2 ( ¿irctan ^ + ¿irctiin “ ^  ^ j + 27rn2

(2.80)

(2.87)

(2.89)
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So, { k ' l  +  — 2 a N a  +  2 K { n  [ +  //;)), wliich means / / j  +  11-2 =  i t .  where n  is llie

integer in the Q = ^  n. 'I’lie eigenvalu<‘ (‘(|ua.tion is,

E = — S cos,/· cos/:/

witli X determined by the e(|uation.

tan ■r N„. = — a '2 a sin ,/.· cos ß
'2 y u'̂  — sin·̂  X ß +

with (T = +1 if n is even, otherwise u = — 1.

(2.9Ü)

(2.91)

2.2.3 N , =  6, 8, 10, .

For Ne = C (A/ = 3) we have.

X N,i TT (  z — X z z A- X—-— = — m — arctan------  + arctan — + arctan------
y ' a a a

with A determined by.

. ^ - ( A  + / /0- A -j" i ii A ~h 2i u
: -^-(A -  i . u ß \

and n i  is odd if n  is even, it is ov(mi if n is odd 

For yVe =  8 { M  =  4) we liave,

A — i a A -- 2 i 'll

xNa 7T i . - “ ^̂1 . , ^ - ^ 2—-— = -- i)i — arctan-------- + arctan--------
2 2 y a 'll

H“ Aj .IT 4" A] \+ arcta.n-------- + arctan--------
a u I

(2.92)

(2.93)

(2.9/)

where in is even if n is even, odd if// is odd. Also, Ai and A2 are determined by.

a n d

-  ( Al + i u )'̂  
z'̂  — ( A i  — i u ß

— ( Ai + i  U  Y
z'̂  -  ( A2 -  i  n )·̂

Aj — A2 “h 2/ a A[ “h A2 "f" 2i a Ai i u 
Ai — A2 — '2i a A] + A2 — 2iu Ai — iu

X2 — A] -j- 2/. a X2 "h Ai -f" 2i 'll X2 "h i u
A -2 — Ai — ‘2i u X > -l- A |  — 2i u X > — i n

(2.95)

(2.9Ö)
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N ^ = 10 ;  A / .^ 4 ;  U - - 2

Figure 2.11: The clcix'iukMicc of ciiorgy on the flux for N̂ . =  4.

And the equations go on like this for Л7 > 4. We can summarize the result as 
follows:

i) If M  is odd, A'l = 2/ + 1,

a· N„tan —— = — (T ( tan a)"'

where.

•2: Aj z z 4~ Л/
Ö = arctan-------- + · · · + arctan--------- 1- arctan--------- l· · ■ ■ + arctan

with,

er =
+ 1 if ii is odd 
— i if is even

Where the A’s are determined from Eq. (2.G9). 
ii) If M  is even, M  = 2/,

tan ■ “ = — cr ( tan a ) ‘

(2.97)

■2 + Ai
и

(2.99)

(2. 100)
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where,

AI  A/ I A/
e  ■ i u r l . a i i  ......... .........1 · · · | a i d  .ni  | a i r l a i i

« it a

with,

+  1 i f  // is ( 'Vei la —
— 1 if n is odd 

Where the A’s are delerniined I'roiu l'X|. (2.G9).

, ~ I A,
a i r  t a i l  —....—

(2J01)

( 2 . 102)



Chapter 3

CONTRACTION MODEL

In the introduction chapter we have described the idea of the intrinsic-hole metal 
as opposed to the conventional, intrinsic-electron metals, and introduced the new 
type of hole interaction called the ’contraction interaction’.

Intrinsic holes are not totally equivalent to the intrinsic electrons in the sense 
that they can not be fully removed from the parent atom. But the e.xternal atoms 
can provide a proper surrounding in which the hole may reside. The important 
thing is the possibility of hole hopping between different sites (¿, j)

( / I ,  +  h o l e ) ,  A j  => / l¿ , ( / I j  +  h o l e ) (3.1)

The difference between ’intrinsic-electron’ and ’intrinsic-hole’ type metals is 
illustrated in Fig. (3.1).

Normally two oxygen atoms have strong tendenej' to make covalent bonding, 
resulting in the formation of oxygen molecule, O2 · However in a proper chemical 
surrounding, this may not happen if the nearest neighbor atoms are not too 
close to each other. In such a ca.se, tlu' other scenario will apply, reminiscent of 
metallic oxygen. We may suppose that this is ju.;t what hal)pens in the metal- 
oxide superconductors. In the CuOi plane of the latter, due to large ionic ixidii 
of copper, oxygen orbitals overlap between themselves almost as strongly as the 
near site oxygen and copper orbitals. Then the O2 molecules are not formed, and 
the electrons derived from the shell are to conduct. The charge carriers are

1!)
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Figure 3.1: Inlrinsic-eloctron and iiitriiisic-liole type metals.
(a) Cation network with the intrinsic electrons condensing to a Fermi liquid, (b) The 
anion network with intrinsic holes as a Fermi liquid of positive charge.

holes in the shell, propagating from on<i o.xygen anion to the next nearest one 
by hopping.

As we have discussed before, the Hamiltonian for the contraction model is

/ /  = -  ^  cl^c,+i,„exp{ia) + h.c. + U ^  u..r"«-4
X,<7 i

+ ,_a + l'F(n, + n,+i,_^)]exp(m) + h.c. (3.2)
i , a

3.1 Bound States o f Two Electrons

As in section 2.1 the wave function for two elections, one with spin up the other 
with spin down, can be described as:

I * )  =  Y .  / ( • ‘■ i . ^ '2 ) d , j4 , i l o ) (3 .3 )
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' r i u '  r i g ( ‘i i v a . lu t ‘ ( • ( j u a l i i j i i  K - ad s  l.o

+ 1 )) <‘X1)(/Vl)

+ ~  -  l) )e x |j(- /o )]

;r 1, .Co)

+ + 1 )(^(·'’!. •'■2 ) + + 1))]

+ [y (-''i ~ I! ·''2)(<̂ (·'■| 1 •'■2) + — I, a'2))

+  /(· '■!,;i'2 -  l)(y>(-'’l,-''2) +  -  l))]('X|)(-/:<v)}

(.i-i,a-2)

Cliaiigiiig from coordinate n'prcseiitation to tlu* I'oiirii'r rcprcscutatioii (s(;<‘ I'xis. 

(2.7) and (2.8)), we obtain

{E + 2cos(Ai + o )  + 2 co.s(/\2 a

W
+ —  ^  2 (cos(/vi + cv) + cos(yv2 + rt) + co.s(yv'i -  K  + a) + coti{I\ 2  + E  + a)) x 

yVa
x / a'i-A',A'2+A· (3.5)

Letting = 2 cos k, we get

JKi ,K-2 ~
N„\T X̂ Â  ^ A 1 —7v,A2+A d" yy ] ^ A * A 1 +t'.v “b ^Ao+f-^ " b ^ A , —tv+a “b ^Ao +A+ a)^ / ! . ]  —A,A->+A

E  + (^A'l+a + fA'2+a)
(a.c)

For a short hand notation, let us iiuike the Ibllovving definitions

1

a n d ,

yy ^y/vi-A',/\2 + /\' — i'oiQ)
iVa ŷ'

yy 1-A'+a “H A'i> + A'+tr)yA'i-A',A'2+A' —
V̂a ŷ'

(3.7)

(3.8)
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which are functions of only Q = A'l + A'-j in mod ‘¿ir. After a second summation 
Eq.(3.6) becomes

fo№ ) = W ) ^ Z 7 T - 7 7 — 1— ------ r

I lA / An ^7\i—p4-a H"  ̂I\2-\-p+Oi+ ^'o(V)— -77—TT:-------— ---------rp r ĥ -p.\-cx "T CAj+p+ay

+ yT—j— -----  "■■;■ .------ r*'a p “T I,'-7v 1 —/.i+a I <-A2+p+l»/

and with multiplication by c/v,-;^+a + ¿'AV+/.+L. followed by a summation over p

U -yv'i-i>+.i d" - /\2+/'+<:>

Letting

and,

and,

¡MQ) = ■ •''r* ·'■̂'a p "T (' 'A]— r '-7\2+P+Lir/
I /' (■· AI —p+ii d” ^h>+p+a)

d- 2  ̂T~1T~ T ~ . \‘'a p * ~i \'~ l\ { T' * - 2 /

4- I ' i i) \ -— 'S~' 1\ i-p+̂ \ ~1~ ŷv2+;J+t>
A' + (cK-._,H.+i/vVh.+..)

= So{E)N, ?  E d- (c a-d- (c d· ¿K,+p-i; . )

 ̂ d~̂ /v2+/>+iir _  Cl (p\
N„ p  A' d- (c A'l-H-a d - t  /̂ +u)

f V~' ('^Ai—p+i> d"  ̂A j+i'+a )"” _ ¿> / 11̂
y L y t t z ---------- r - ------- : = 'M i )

p  · - ' d“ h I d" '̂ yv2+/>+“ )
Ecjs. (3.9) and (3.10) can be written in the following form:

EoiQ) = UFo(Q)So{E) -h li’Ao(/y).S',(/i) + \VFi{Q)So{E)

and.

A i ( Q )  =  UFoiQ)Si{E) +  WFu{Q).UE) + W F,{Q)Sx{E)

In the matrix form

1 -  USo{E) -  WSi{E) - l ' E 6 o ( A )

USx {E) + W S -2 (E) - 1 +  WSi ( E )
= 0

(3.10)

(3.15)

(3 .1 6 )
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or,
f\,{E) = L\{E) = 0 (3.17)

Tlie second solution, liri· (3.17), is j)o.ssible only il‘ the requirement, that two 
roots coincide, vvliich was presented in section (2.1), is fulfilled. In this ca.se the 
(“iiergy eigenvalue of the .system becomes

/'y =  —2 c u s {  h ' l  +  o ) — 2  c o s (  J \  ¿ -j- a )

Observing the fact that.

1O Í n\ __  ̂ ¿^A'l-i-+a +  ¿■ /v'j+;y+.i
-  NT 2^ A. Í- 7~- i”yv„  ̂ i-  tcA'i-yH-i. i ‘ -A'..+/y+al

_ 1 E d" (■̂yCi—p+u "b /v·.)+/.■+(: I )
Na I, 7:/’ +  (c /c ,- / . + , . + ¿7C..-|-/yt-,. )

= l - E S ó { E )

—  E -N.. e  E
I

“b /v I — “b  ̂ )
0

and with a similar procedure,

5',(70 = - E  + E-So{E

From Eq. (3.16), the transcendental equation is found as follows

U + \ V { W - 2 ) E

The plot of this transcendental equation is presented in Fig.(3.2). Eciuation (3.21) 
can be solved numericallj' and the value ol the energy E  can be found. If we set 
VF = 0 in this final ec[uation, we imm<*diately get the result in Td Hubbard 
Model (.see Eq. (2.14)). The points where ,Sü{E) intersects with the LHS, are 
the eigenvalues E ol the system (see b'ig. (.3.3)). In these solutions IF has great 

importance. The effect of it can be summarized as follows:
(i) Minimum energy is found by ı/^\γ^^yL2 )ı■: — ‘̂ o{E) tor all even n. But if n 

is odd this equation is adequate lor minimum energy in the case when

W (W  -  2 ) >  0 a n d  70,· >  Eo (3 .2 2 )
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N ,=  10, ф/ф,=0.5.  л = - Г ,  0 = 4 -1 5 , W = -1

10.0 , 10.0

N = 1 0 ,  ф ф,=и.5. n = ’ 1, U = + 2 . W = 1 .5

5.0

СЛ

- 10.0
• 10.0 •S-0 0 .0

Energy
5.0 10.0

N ,=  10, ф/фц=0.5. n = ‘>1, 0 = 4 -2 , W = -1 N ,=  10, ф/фц=0.5, n = -1 , 0 = -2 ,  W = 1 .5

Figure 3.2: Plot of the transcendental e(|iiation lor the contraction model 
In contrast to 1-d Hubbard model, there may l)e bound states with ener '̂ies less than 
Eq for positive U, with an appropriate value of IP. On the other hand, for U < 0, and 
some values of W, eigenvalue E can never be smaller than Eq, that is E '̂  < E l

or

W {W  -  2) < 0 and E,r < Eo
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N^miO, Um.2, Wm t.H

N m i Q ,  Um2, Wm-t

Figure 3.3: Energy versus flux for two electrons in the contrciction mechanism. 
The straight lines corresponds to Eq. (3.21), the dotted one corresponds to Eq. (3.18).

where

Ecr =
U

■, E’u = -1  cos(f^/2 -  K) cos(Q/2 + a) (3.2-1)
W {W  -  2)

(ii) Minimum energy can be E  = Eo when n is odd and the following 
conditions are satisfied,

\V{W  -  2) > 0 and E„ < Eo (3.25)

or
W{W -  2) < U and > Eo (3.26)

With the similar ciilculations (from Eq. (3.21)) as in section (2.1), we get the 
following result

sin k\ — A “t" iF¡A
exp(iA.-i W a) e x p (—¿tv) =

s i l l  — A — '¿/'Y'l
(3 .2 7 )
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and,

where,

and as before.

ехр(/1'2Л^а)ех1)(-/а) =   --------- --------—7 -
s m  k 2 —  \  —  i l

J·, _  U + \V{\V - 2 ) E 
( I K  -  1)·-̂

 ̂ sin k'l 4" sin k>

Also as before tlu' inoinenla of t he two e|('ctrons are

Q

where

/4  = — + о + .(·

L иk > ~  + о — ,r

Л· if 1:E < E^
¡K if /■;- > /’’j

Hence the eigenvalue equation is

I'j — —1 cos ,c cos ii

with X determined by

, NaX tan —̂— — —a — I )■ sin .(· cos /У
¿/ — 111 '( 11' — 2) cos X cos /4̂  

and (7 = 4-1 for odd valiu“ and a — — I foi· even value of n.

3.2 The Overlap Integral

To have an idea about the occupation dependent hopping, we investigate the 
anion network in the C 11O2 plane as in Fig. (3.-1). The hopping integral between 
oxygens is

i  =  J  ( C ( ? )  -  И .( 0 ) (3 .3 4 )
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Figure 3.4: The CuO^ network.

The functions, 'Pi and 'P2 arc very rapidl}' decaying with increasing r. While, 
i/(r) — Va{E) is a rather slow one. Hence, we can approximately write.

where

t «  /1 2  = V j

=  sindi.2COS(;>:>i.2/?(7-i,2)

(3.35)

(3.36)

A proper reference can be the one in Fig.(3.4). In this reference frame we write 
the above wave functions in terms of new coordinates. After some geometrical 
transformations, the wave functions take the following forms

and.

where

4*1 = \ / “  sin ¿̂ (cos 0̂ — sin C'))/{!(r) 
V bTT

/  3 ;· sin d(cos Q + sin (?) + a
= V s i ---------i

p =  \ +  2a r  s in i is in o  +  fl^

(3.37)

(3.3S)

(3 .3 9 )
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Figure 3.5: Overlapping orbit,al.s of llie oxygen atoms.

and a is the spacing between tlie oxygen atoms (see Fig. (3.5)).
Next we numerically calculate the overlap integral / 12 . We calculate the 

integral as follows,

I  tl/FPoi/l/ (3.40)
. j  к

VVe calculate the integrals for tlie following О atoms

to

ti

h

0 -  +  o j -  ^  a · -  +  0 -

0,- + o]~ 0 ?- : 0 ,

о  I + 0~  =Ф- 0~ + Oj

VVe use the Ilerrnan-.Skilmaim '* program to determine the radial parts of the 
wave functions. But this program is not very suitable for negative ions, and 
does not give very precise results, especially for the 0 ‘~ case. W'e believe that 
if it was possible to find a better computer program or a better procedure, the 
overlap integrals corresponding to to and ¿1 would be grater. The results of the 
integrations are discussed in the following section.
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N̂ :Ui, Û-1 V/sO.26

Ыл1й, U^2, IV-IJ.20

Figure 3.6: Energy versus flux vviLli the results of overlap integration.

3 . 2 . 1  I n t e r p r e t a t i o n  o f  t h e  R e s u l t s

We found that ¿o = 0.222 and l\ = 0.161. With the definitions (Eq. (1.31))

/, = -/o  = -0 .222  (3.11)

and,
[V = ¿1 -  /о = -0.058 (3.12)

If we let / = 1 then W = 0.26. That is, \V is in the range [0,2]. In this region, to 
have bound states. Ест should be smaller tluui Eo- For positive [/, Ест is always 
larger than 0, hence Ест > -F’o· In the case of negative U both are possible.
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Depending on tlie value of 1/, Ear nuiy eil luu· he laiger or smaller than Eq.
With this value of IK, vve do not g('t much new thing for U > 0. We still have 

no period halving for the situation when Kci· (•hl7) is not taken into account (just 
as in the 1-d Hubbard model). But for U < 0, we get a totally different picture. 
For some vcdues of negative U the ground state energy of the system becomes 
larger, and a periodic behavior, which is similar to the one for 1-d Hubbard model 
with > 0 appears.



Chapter 4

CONCLUSION

VVe have studied the strongly correlated models of electron systems. The major 
objective Wiis to secirch lor a mechanism ol' high '1\. superconductivit}'. The other 
objective was to see the eilect ol (|uantum ])henomena in mesoscopic structures. 
The key method lor the j)ossibility ol superconductivity is to look at the flu.K 
dependence of the energy and the amplitud(> of the.* nondecaying current. Ih is 
cui'rent is nominated as pensisle'iit curre'iit in small systems and supercurrent in 
larger systems. VVe have worked on Hubbard model with attractive interaction, 
Hubbard model with repulsive interact ion and contraction mod(‘l, which tabes 
the occupation at the sites into account.

In case of Hubbard model, by using the Poisson summation method, we 
d(.*riv(;d the* Ihdhe-ansatz e(|uat ions loi' attract ive and r<*pidsive int<*ra.ction for two 
electrons with a magnetic iln.x <l> a)>plied. I'or <1> = 0 our results have reduced to 
the Hethe-ansatz equations. However, w<* have found t hat Hethe-ansatx e(|uatit)iis 
give incomplete solut ions.

We have found that the oscillation of the energy hexs amplitude proportional 
to inverse square of Na for repulsive U. But it was not a supercurrent, it was 
rather a behavior do to the mesoscopic nature of the S3'stem. For attractive U the

I*

amplitude of oscillations are much larg(*r than the repulsive U case. When strong 
electron interactions are considered, becomes larger and the amplitude of
oscillations depend on tliis value. VV'e have also found the flu.x dependence of

Cl
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energy for the model with more than two eh-ctroiis.
VVe found the analytical .solution to coniraction mechanism for two electrons. 

The solutions do not ch.'pend on V, how('\’er they hecivily depend on IK. In 
contrast to 1-d Hubbard model, there may be bound states with energies less 
than Eo for positive U (intersection points to the left of Ец in Fig. (3.2)), with 
an appropriate value of IF. Still nidike the 1-d Hubl)ard Model, for U < 0, and 
some certain values of IF, E^ is always smaller than £ q (in J-d Hubbard model, 
for U < 0, E^ was always larger than /i,)̂ ).

We performed some numerical calculai ions, I о get an intuitive idea for the 
values of t and IF. With tlui calculated values of IF and £ we did not get 
much new thing for U > 0. We still have no i)eriod halving unless Eq. (3.17) 
is taken into account (just as in the Td Hubbard model). But for U < 0, we 
got a completel}^ different behavior. Fen· small absolute values of negative f/, the 
ground state energy of the .sysh'in In'conu's large'r, and a periodic behavior, which 
shows similar characte'ristics as the 1-d Hubbard model with U > 0 appears, that 
is period halving appears only if the solution corresponding to Eq. (3.17) is taken 

into account.
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