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Abstract

SUPERCURRENTS AND PERSISTENT CURRENTS IN
STRONGLY CORRELATED ELECTRON SYSTEMS

Huseyin Boyac

M. S. in Physics
Supervisor: Prof. I . O. Kulik

September 1995

The full understanding of the solution for the 1-d Hubbard model is of interest
in its own right, and may provide clues to the understanding of higher dimensional
systems. We have found the exact solution of the model for two clectrons, with
a magnetic flux applied, and showed some new results, We have also made
calculations for more than two clectrons on a loop with a magnetic flux through
it, using the Bethe-ansatz equations. Within the assumption that oxygen orbitals
may play a fundamental role in the superconductive prbperties of Cu—0 high T,
materials, exact calculations ol the ground-state energy for two clectrons in the
contraction mechanism have been performed. To test the beginning assumption,

some numerical calculations have been presented.

Keywords: strongly correlated electron systems, 1-d Hubbard model,

contraction model, high T, superconductivity, mesoscopics.
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KUVVETLI ETKILESEN ELEKTRON SISTEMLERINDE
USTUN AKIM VE KALICI AKIM

Hiseyin Boyaci
Fizik Yuksek Lisans
Tez Yoneticisi: Prof. 1. O. Kulik
Eylil 1995

1-b Hubbard modelinin ¢ozumitiniin tam olarak anlagilmas kendi bagina ilgi
¢ekicidir ve daha yiiksek boyutlu sistemlervin anlagihmasi icin ipuclar saglayabilir.
Modelin, bir manyetik aki uygulanarak iki elektron i¢in kesin ¢oziamlerini bulduk
ve bazi yeni sonuglar gosterdik. Ayrica, icinden manyetik aki gegen bir halkada,
iki elektrondan fazlasi i¢in Bethe-ansatz denklemlerini kullanarak hesaplamalar
yaptik. Oksijen yoringelerinin Cu — O yiiksek T, malzemeleriuin stperiletkenlik
ozelliklerinde temel bir rol oynayabileceg varsaymmyla, iki elektron icin biziilme
mekanizmasinda temel-durum enerjisinin kesin hesaplamalan yapaildis Baglangiq

varsayimini test etmek icin bazi sayisal hesaplamalar gosterildi.

Anahtar
sozciikler: kuvvetli etkilesen clektron sistemleri, 1-b Hubbard modeli,

bliziilme modeli, yuksek T, stiperiletkenligi, mezoskopik.
) l b
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Chapter 1

INTRODUCTION

Much of solid state theory and statistical physics is concerned with the properties
of macroscopic systems. These are often calculated using the ‘thermodynamic
limit’ (system’s volume €, and particle number N, tending to infinity with n ~
N/ constant) which is a convenient mathematical device for obtaining bulk
properties. Usually, the system approaches the macroscopic limit once its size
is much larger than some correlation length, € i most cases € is of the order
of a microscopic length (c.g., ~ 1="*), but iu some special cases, such as in
the vicinity ol a second-order transition, € can hecome very large and one may
observe behavior which is diflerent from the macroscopic limit for a large range of
sample sizes.m? The elfective length scale dividing microscopic from macroscopic
behavior becomes very large when the conducting (or semiconducting) systems
are small and at low temperatuves. Here, onee an clectron can propagate across
the whole system without inelastic scattering, its wave function will maintain a
definite phase and it will, thus, be able to exhibit a variety of novel interesting
interference phcnorﬁerm.

The interest in studying these systems in the intermediate size range
between microscopic and macroscopic- sometimes referred to as the ‘mesoscopic’
(a word coined by Van Kampen, 1976, as derived from the Greek prefix meso =
middle) range- is not only for understanding the macroscopic limit, and how it

is achieved by, say, building up larger and larger clusters to go from a ‘molecule’
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to the ‘bulk’. The term mesoscopic corresponds to a length scale for which
the averaging properties of the macroscopic world does not take place, and the
reversible and perfect mechanics of microscopic objects are applicable,3:63:61

Formal definition of mesoscopic object is that the phase scattering length of
electron should be larger than the size of specimen, d. Elastic scattering length
may be much smaller (diffusive mesoscopic regime) or larger (hallistic mesoscopic
regime) than d.

Formally mesoscopic objects are those not possessing the property of self-
averaging, that is, independent from specific microscopic parameters of their
properties, which are defined by average quantities like impurity concentration.
However, small systems with d less than, say, | pm are often considered as
‘mesoscopic’.

The special phenomena that exists in this range are of great interest in
themselves.  Another interesting aspect is the distinction!!131161613 hetveen
ensemble-averaged properties and those specific to a particular given small
system prepared under the same macroscopic constraints as with all the ensemble
members. The specific ‘ingerprint’ ol such a small system is of interest and may
be used to obtain some statistical information on the particular arrangement of
the constituents in the system.!® Many of the usual rules that one is used to
in macroscopic physics may not hold in “mesoscopic’ systems. For example the

RYA U

rules for addition of resistances, both in series 1718

and 1 paralle are different
and more complicated. The electron motion is wave-like and is similar to that
of clectromagnetic radiation in waveguide structures, except lor complications
due to disorder. Thesce eflects may set [undamental limits on how small various
clectronic devices can go. On the other hand, ideas for new devices, such as
those operating in analogy**?” with various optical and waveguide ones, as well
as with SQUIDs (Superconducting Quantum Interference Devices), and other
Josephson-effect systems,™ may emerge lor small normal conductors.

The technology!? for the fabrication of structures with very small sizes, using
advanced optical or x-ray lithographic techniques, as well as electron-beam,

is advancing very quickly, and has rcached the stage where many theoretical
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predictions can now be confronted by experimental results.

To achieve higher operation speeds and less power consumption, one of the
most important objectives of the electrouics technology became miniaturizing
of the devices. Yet, small can not be beautiful unless the device operates
according to the expectations. ‘Lhere are physical limitations in addition to the
technological ones opposing the miniaturization trend. After all, a smaller ohmic
contact has 1o be an ohmic contact with smaller conductance and so on.

One of the most important features of the small systems is their sample
specific properties. For small systems the rule due to our ‘macroscopic’ everyday
experience, telling macroscopically identical systems have to yield the same
results under identical experimental conditions breaks down. As an example,
ohmic contacts labricated on the same waler using the same chemical and physical
modification steps may have widely spread resistance values. For a large contact,
there is a large number of grains (the metal-semiconductor contact is not ordered
and is made of grains) and the measured resistance is essentially an average of
resistance of these grains. While, a small contact has only a small number of
grains and this averaging can not be complete.

Another important aspect of small systems is the geometry-specific properties.
Miniaturizing the devices further, one reaches to a limit for which the device
does not contain any impurities at all. For this case, the material properties are
suppressed for a large extent, while quantum mechanical propagation along the
sample becomes essential.

For further reading, sce the relerence by 1. O. Kulik' and the relerences

therein.

1.1 Aharanov-Bohm Effect

According to standard quantum mechanies, the motion of a charged particle
can sometimes be influenced by electromagnetic ficlds in regions from which the
particle is rigorously excluded.***! This phenomenon has come to be called

the Aharanov-Bohm eflect (A effect), after the seminal 1959 paper entitled
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‘Significance of LElectromagnetic Potentials in the Quantum ‘Theory’, by Y.
Aharonov and D. Bohm.** What AB effect teaches us about the signilicance
of the electromagnetic potentials has since been discussed from several points of
view, 20298538188 o) he assuniption that standard quantum is indeed a correct
description of nature.

The experimental quantization ol the fluxoid in superconducting rings and
in Josephson junctions has been interpreted as an experimental confirmation
of AB effect.®® Interference experiments on electron beams have been carried
out to provide more direct information, with increasing precision and especially
with increasing control ol stray fields that might obscure the implications of the
experiments. 32757

In the magnetic version of the AB effect, a stationary magnetic field is
introduced in the region between the two beams, as in Figure 1.1, The clectrons
are [orever rigorously excluded from that region by some balffles.  Similarly,
magnetic flux is made to avoid the regions where the electrons are permitted.
The Hamiltonian JI and the time independent wave function »(x) are given by

| . ¢ 2
u=;—va+fmJ—«mu) (1)
2im ¢
—1.5(x)

- (1.2)

P(x) = o(x) exp

where A.(x) is the vector potential due to the excluded magnetic field and S(x)
is the line integral .

5“):‘2/ Ao(x) - dx’ (1.3)
and the path ol integration is taken along the arm of the interferometer containing
the point x. ¥y(x) is the wave [unction in the absence of the excluded magnetic
field presented by Ag(x), and Vg represeuts possible electrostatic potentials to
steer the beam which do not depend upon the excluded magneotic field.

If the magnetic flux ¢ through the coil is nonvanishing, the vector potential
A.(x) cannot vanish everywhere in the support of 3(x), because [ Ae(x)-dx on
a closed path drawn around the coil through the two arms of the interferometer

is equal to @.
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Figure 1.1: Magnetic AB elfect.
The axis of the solenoid®id is perpendicular to the page. The wave function is a split
plane wave.

In the interference region, the phase shift between the two beams is

,‘.;"-3 - 51 C

where 5y and S) are the action integrals of Eq. (1.3), calculated along the upper
and lower arms of the interferometer.

The phase shilt Ao between the beams in the two arms of the interferometer
1s gauge invariant, as it must be, depending ouly upon the magnetic flux through
the excluded region. The interlerence pattern is therefore a periodic function of
that magnetic flux, with period equal to London’s unit, a flux quantum

-)‘.'_ N .
O, = 2rhe _ he (1.5)

¢ (o4

However, there is no Aharonov-Bohm effect in classical physics. AB effect
enters quantum mechanics through the appearance ol electromagnetic potentials
V. and A in the Hamiltonian and consequently in the Schroedinger equation.
The local Maxwell fields E and B appears only in the discussion, never in the

equations of motion.
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When classical theory is presented in the Lagrangian or Hamiltouian
formulation, the potentials appear just as they do in quantum theory. However,
we know that those formulations of classical physics are equivalent to Newton’s
laws, so the motion of a charged particle is completely determined by the local
electric and magnetic fields acting upon it. Newton's second law and the Lorentz
[orce equation give

M= = =~ [E + %,- b B] (L.G)
and nothing more is needed. 'To remove this feature of the classical ticory in the
case ol a multiply connected region is not a promising enterprise because the local
conservation of energy and momentum between the particles and fields depends
upon it. Therelore, it is no surprise that the AB eflect depends upon flux or the
action i units proportional to Planck’s constant /i, which is peculiar to quantum
theory. Attempts have nevertheless heen made to obtain A3 effect from classical
or semiclassical theory.™

Quantum theory unavoidably relies upon the [Hamiltonian or Lagrangian
formulation of the dynamics, where the local electromagnetic fields disappear
from thé equations of motion in favor of the scalar and vector potentials. The
classical argument that the equations ol motion are equivalent to Newton’s second
law with the local E and B fields does not apply to quantum mechanics, and
remote fields may have observable cffects in some cases. For instance, il a
magnetic field Be(x) is confined to the interior of a torus from which electron
is excluded,* the vector potential Ag(x) cannot vanish throughout the region
outside the torus, and it appears in the Schroedinger equation. The vector
potential can not be removed from the domain of the electron by a gauge
transformation because

/ Ao(x) - dx = b, (1.7)

where the path of integration links the torus and @, is the magnetic flux through
the torus.

In the absence of the excluded magnetic lield,
iy

. 2
in ( SE2) = Hopulx, 1) = [-i/;,v+§A(,(x,t)] o — eVol(x, bo (L.8)

2,
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where Vo(x,t) and Ag(x,t) are the potentials due to ordinary electromagnetic
fields that may exist within the domain ol the electron. With the addition of an
excluded stationary magnetic field whose vector potential is Ac(x)

)

Y 1 . ¢ ,
ih (m) = HP(x,0) = 5= [=7 + U0 1)+ Agb)] 0= Vil )y
(1.9)

Formally, H and [y are related by the gauge transformation

lf —_ - { (1() .xA R l 7 l )

(x) = exp e / (,(,\)-(x} (1.10)
l/’ = l[l,/’u (11 l)
I=unu! (1.12)

[t Tollows that # and Iy describe the same physies and the excluded magnetic
ficld B¢(x) has no observable influence on the dynamics of the electron, if Eqs.
(1.10)-(1.12) apply.

However; for Eqs.  (1.10)-(1.12) to be meaninglul and ¢ = {1y to be a
stngle valued solution of the Schrdedinger equation (1.9), 7 st be a single
valued function of x, independent of the path of integration in the exponent
in Bq. (1.10). When the domain of .« is simply connected, it is sullicient for
Be(r) = V x Ag(x) to vanish everywhere within it. Then [* Ae(x') - dx' is
independent ol the path of integration, {/{x) is single valued, and there can be
no observable effect of the excluded magnetic field. But when the domain of the
clectron is multiply connected as in Figure 1.2, and the magnetic field is confined
to a region whose topology is that of an excluded cylinder or torus, Eq. (1.10)
shows that [/(x) may not be single valued even if By(x) vanishes everywhere in
the domain of the clectron. Then there is no gauge transformation to connect
with H, and an observable A3 effect is possible; the motion ol the electron may
depend upon the magnetic flux @, through the hole in the electron’s domain.

There is an exceptional case. Because only U has to be single valued, not
JAe(x) - dx, the AB cflect disappears when the excluded flux @, = § Ag(x) - dx

is an integer multiple of @y, i.c. when

5 P AN
o, = 1 (.Jl'/t(.) (1.13)

¢
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‘\/,—e\ e EXCLUDED MAGNETIC
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e
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Figure 1.2: AB effect on a single electron

In that case integrating around the excluded flux changes 7 by the factor
exp(27:), and it remains single valued.

More generally, all observable phenomena depend only upon the flux ¢,
through the excluded region, and have period .

The simplest exactly solvable example of AB ellect exhibits all the general
features of the bound state problem. Consider an clectron constrained to move
on the circumference ol a circle of radius r iu the vy plane, as in Figure 1.3.An
external magnetic flux ¢ goes up the = axis and returns uniformly along the
surface of a cylinder whose radius is greater than r, so that there is no magnetic
field at radius r where the electron moves.

In the gauge where V - A vanishes,

¢
Ag = —
YT o
Ay =i, =0 ' (1.14)

The Hamiltonian for an electron of mass m is

# : P :
= — [L3+/-%A,,] - [/ +-"-] (1.15)

2mr? et LT 2we
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Figure 1.3: An exactly solvable example of AB eflect.

The bound state wave functions and energies are

o |
we(0) = Ver: exp(ld) (1.16)
| cd 1’ I* L
1;‘( = — (h ——-] —_— [[ _} 07
2mr? [ Lt Ire ST + ™ (L.17)

where € are integers. The state ¢, has definite canon;cal angular momentum L.

and kinetic angular momentunm A, given by

L.=(h (1.18)
) 5 P e ¢ .
K. = mrtl = ([J“_TT?) ) <(+¢—O> (1.19]

and the Hamiltonian is cqual to the A2/2nu2.

Equations (1.17) and (1.19) clearly display the flux dcbondeucc of the
energy spectrum and kinetic angular momentum, both measurable quantitics
in principle. Both spectra are periodic in ¢ with period @y, as expected.

The first experiments using solid state devices were carried out by Sharvin
and Sharvin® and Al'tshuler and coworkers.™ It took a few vears for the western

experimentalists to reproduce these results. Strikingly the period of oscillations
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was found to be ¢¢/2, and not ¢y as expected. ‘This point was clarified by
APtshuler and coworkers.?*t According to their explanation, the ¢y /2 oscillation
arise due to the interference of clectrous enclosing the eylinder once clockwise and
counterclockwise. Then the phase difference is twice of the expeeted value and
Lhus, the period halves,

In a pure ring, the clectron wave turns over the ring just one time (hefc
oscillations-non-self-averaging ellect changing sign of current in the ring from
sample to sample), but in a dirty ring two clectron waves with clockwise
and counterclockwise revolutions both contribute to flux-dependent conduction
(he/2e oscillations- self-averaging; weak localization elfect not changing sign from
sample to sample.) (AP = 27¢ /Dy and Axd/dy respectively).

In the interesting paper of I'. 1I. Boyer®® it is pointed out that accounts in the
literature sometimes misinterpreted the Aharanov-Bohin effect. For additional

reading, one can refer to the book by Peshkin and Tonomura.®

1.2 Persistent Currents in Mesoscopic

Structures

When someone talks about a non-decaying or ‘persistent’ current, the question
‘how can a current in an isolated metallic ring flow infinitely 7’ arises immediately.
Our common cxperience tells us that any non-decaying current needs a driving
force to supply the necessary energy to compensate the losses due to the transfer
of energy (‘Joule heating’) from moving clectrons to atowmic vibrations (phonons)
and other clementary excitations in the solid. If the metal is superconducting
and the temperature and magnetic field are below the critical values, these losses
vanish. lowever, in a normal, nonsuperconducting metal loop a persistent current
can also flow without dissipation for infinitely long time. For such a flow of
current, it is required that the metal loop be small enough and temperature be
low enough to enter into the domain of quantum physics.

At low enough temperatures, a small metallic loop behaves similar to an atom
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or a molecule like benzol molecule. Although the atom in question is quite large
(approximately 1 micrometer in diameter which is more than 10 times of the
size of normal atoms), but still small for the standards of everyday life.

The possibility of persistent current in a loop arvises due to Aharonov-Bohm
effect, which is a peculiar property of quantum mechanical world. As we explicitly
showed in the previous section, the wave function of an electron senses the
magnetic field well away from the electron (this is called nonlocality). The
veetor potential rather than the magnetic field itsell enters the equations of the
quantum mechanics and changes the phase of the electron wave function in such
away that the electron energy becomes a periodic function of flux with a period
bo = hefe, which is called ‘fux quantum’. Although the quantum is quite small
(bo = £.107"°T.an?) since it is proportional to Planck constant h, it changes
clectron energy drastically. Therefore the laws of electromagnetism suggest that
a current should appear which is the derivative of energy with respect to flux-®.
Unlike the conventional Olhmic current in metals or semiconductors, this current
is absolutely stable and can [low at zero voltage without dissipation. At a given ®,
persistent current miuimizes the loop energy irrelevant to whether the magnetic
field is zero or nonzero at the place where electrons are. In particular we can
place our ring in an external homogencous magnetic field and get the value of
the persistent current appropriate to the amount of flux enclosed by the ring.

In a pure metallic sample of {inite size, current arises as a consequence of the
dependence of the encrgy on the vector potential A in a ring. T'his current is

cqual to

jo e (/\',, _ ‘—1) (1.20)

m he
where K,, = (27/L)n.

In large system, A changes in such a way that ‘paramagnetic’ contribution
to the current, eAK/m, compensates for the ‘diamagnetic’ term, —(e*/me)A.
However, in small system, K is quantized and therefore j cannot be zero. This
property remains even il both clastic and ineclastic scattering is introduced.

The theoretical prediction of the effect goes back to 1970 when the

phenomenon was substantiated in the Kharkov Physico-Technical Institute.??
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Figure 1.4: Experiment carried out to observe the persistent current
Actually the current itsell is not observed, rather the magnetic moment of the tiny
golden loop produced by the persistent current was observed

Later, the effect was rediscovered by IBM scientists in 1983, again theoretically,?
but it took almost next 10 years to actually observe this phenomenon which was

accomplished in the IBM Laboratory.™

What was observed was not a current
itsell but a magnetic moment of a tiny golden loop produced by a persistent
current in the loop, oscillating as a [unction of magnetic field with the period
$y/.S, where S is the cross section of the loop.

The effect may look as purely academic at present. Nevertheless, it promises
some new possibilities to the up-to-date microelectronies. This is a new kind of
nonlinearity, the property which is necessary for the operation of any computer
of electronic sensor. And extremely fast one!l  The other possibility is the
measurcment of the magnetic field in a very large range from very small
to extremely large values, by just counting the {lux quanta. This can be
accomplished more easily by measuring the transverse resistance of a loop vs flux
(Figure 1.5). Resistance change is due to a persistent current, which in the upper
branch adds to and in the lower branch extracts {rom an Ohmic current, and due

to the nonlinearity of the interaction between both currents. The device of Figure
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(a)

Figure 1.5: Normal state quantum interferometer.
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Measurement of the trausverse resistance of a loop.

13

1.5 is nominated ‘normal state quantum interferometer’ since conductance vs flux

oscillations result due to the interference between two electronic waves coming by

upper and lower parts respectively. Depending on the value of the enclosed flux,

the interference between the two paths can be either constructive or destructive,

thus increasing or decreasing the probability of electron transfer from left to right.

Persistent current is an equilibrium current not decaying in time. In large

systems, the magnitude of this current becomes unobservably small.

Persistent current is a sample sensitive phenomenon. Its value and even sign

depends on properties such as position of specific impurities, number of electrons

(odd or even), ete. Flux enters to the Hamiltonian through the phase increment

between adjacent sites.

Q=

20 ¢ .

N, Py

where N, is the number of atoms in a loop.

H=—t Z ala,‘H exp(ia) + alﬂau exp(—ia)
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and

L == =21 cos(N, + (f) (1.23)

H we include the effect of the impurities
Hp=VY"¢ula, (L.21)

‘The solution of the problem is identical to the solution of the wave function in
a crystal with a periodic potential. Allowance [or elastic scattering changes the
L(¢) dependence by opening a gap at ¢ = by, L(d) dependence is similar
to the energy (momentum) dependence in the extended zone scheme (the Bloch
problem), see Figure 1.6. @ serves as quasi-inomeuntum. Scattering of electrons
does not result in decaying of current, as in the case of supcreonductivity.
However the reasons for zero resistauce in both cases are different. In a
superconductor, current-carrying state is stabilized by virtue of finite binding
of two electrons making a bosonic pair so called *Cooper pair’.  In a
nonsuperconducting metal there is no sucli binding, but the Aharonov-Bohm
effect in combination with the cnergy quantization in macroscopically small and
microscopically large (mesoscopic) system does the same. Scattering results in
the redistribution of electrons over different states, yet total current remaius
nonzero. This is an exact statement. Therelore, due to Aharanov-Bohm eflect,
there appears a current which is nondecaying in time, a persistent current.
Scattering influences the magnitude of the persistent current.  The current
oscillates as a function of magnetic flux with a period hefe (flux quantum for
normal, nonsuperconducting sample). 1f the ring is superconducting, it can
carry a supercurrent. Unlike the persistent current, the latter persists in large
system. Supercurrent state is metastable, but relaxation times of its decay are of
cosmological value. In very small sanples, decay time becomes measurable, and
the system shows the characteristics of persistent current only. Sec the reference
by I. O. Kulik” pages 2-1.1 and the relerences therein.

In the next section we briefly present some models of high-T. superconduc-

tivity. We use two of these models tn chapter 2 and chapter 3.
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Figure 1.6: The ellect of the impuritics on the cnergy in the extended zone
scheme.

1.3 Strongly Correlated Models of High-T,
Superconductivity

The BCS theory®® employs an effective interaction, energy transfer of order Debye
[requency wp in phonon exchange, and other simplifications . It is a quasiparticle
description with a constant effective interaction. However, in reality the electron-
phonon interaction causes a mass enhancement near the Fermi energy and a finite
lifetime of a quasiparticle. With the excitation energy in the order of Debye
frequency, the lifetime of a quasiparticle is short and its level width is of the
order of the excitation energy. ‘That is, its damping is very strong and a well-
defined quasiparticle no longer exists. Ilence, the quasiparticle pictuie becomes
invalid. More detailed considerations of electron-clectron interaction, frequency
dependency in energy transfers, and other refinements are needed. The theory of
strongly coupled superconductors was thus developed. 195

Since the discovery of the phienomenon of superconductivity, constant elfort

has been made to search for a new material with a higher transition point.
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Nevertheless, even after more thau a hall century, the highest critical temperature
until 1986 was still in the region of 20 K. [t appeared as if the 7% of 23.3 K in
NbsGe was a limit. However, in the T5Uh anmiversary year of superconductivity,
that is in 1986, Bednorz and Miller™ discovered that Lal3al'w@ can be a
superconductor at 35 K. This was a total surprise not only hecause of high value
of 1¢, but because the compound is a ceramic and is entirvely different from all
the previously known superconducting materials. The discovery triggered an
exciting search for new materials in th new domain, causing a flood of reports on
the subject, including new materials with 75 as high as 90 K. The number of new
materials has reached approximately forty. Below we present two representative

families.

(1) 2-1-4 compounds.

Related to the first high T. superconductor is a family of compounds with the
atomic structure Lay_, M, CuO,_,, where M is Ba, Sr, or Ca, 2 is of the order
0.15, and y is nearly zero. The family is commouly called the 2-1- copper oxide
in correspondence to the atomic composition ratio of the basic case in which
@ =y = 0. This family has T, of the order 40 K, aud strontium appears to yield
the highest.

Figure 1.7 shows the structure in which Cu, O and La or M atoms are
represented respectively by black, white and hatched circles. The Cu— O; planes
are hatched for distinction. With this layered structure the compounds are highly
anisotropic, and superconductivity is associated with the Cu — O, planes.

The compounds have the body centered tetragonal structure at high
temperatures and the orthorhombic structure at low temperatures. These two
structures and also the superconducting phase depend sensitively on oxygen
doping.  IPigure 1.8 illustrates the phase diagram as a function of 2 in
Laz-pSr,Cu0y4-y.  Below a certain temperature the orthorhombic phase is
metallic , and above insulating. There is a tiny antiferromagnetic phase, which
is enhanced as y is increased. The graph shows the plane at y = 0. The

antiferromagnetic phase is insulating.
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Figure 1.7: Crystal structure of Lay('uO, .,
White Circles are oxygen atoms and black circles represent copper atoms. hatehed
circles represent lanthanum atoms.
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Figure 1.8: Phase diagram of Lay_.Sr,.CuO,,.,

The parent compound La»('uO,_, is not superconductive. In its ground state,
the charges on La®*t and C'u** are balanced by O*~. When doped with )/, that

is, in Laa—, M,CuO,_,. where M can be Sr. there are r—2y holes per cell. These
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Figure 1.9: Structure ol £3ay( "1w;0-.
Crossed circles at the corners of the unit cell of orthorhombic structure represent 12,
which can be Y, £u, etc. White circles are oxygen atoms.

holes are considered to go into O(2p) states and move about on cach CuQy plane.

(2) 1-2-3 compounds

This family has the general structure RBayCusOr_s. where R is Y, Eu, Gd and
so on. Figure 1.9 shows the structure. The C'u—~ 0, planes are hatched for clarity.
Between these two planes are two L3¢ — 1O planes. Above 500°C, the insulating
tetragonal phase is stable.

The phase diagram of Y Ba,('uyO:_; is shown in Figure 1.10 as a function of
the oxygen content parameter §. Note that as § decreases, the hole concentration
increases; the hole concentration is given by (1 — 26) per cell.  The critical
temperature can be as high as 93 K for 6 = 0. The antiferromagnetic insulating
phase appears when § is above around 0.7. Below this value, the compounds are
metallic.

Both 1-2-3 and 2-1-1 compounds have an insulating antiferromagnetic phase
below a certain temperature. The antiferromagnetic phase is due to the unpaired

spins of copper electrons. Doping converts them into spin liquids, metals, and
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Figure 1.10: Phase diagram of Y Bas'usO-_,.

then supereonductors.

The CuO; planes play an iniportant role for superconductivity, even though
there are copperless materials. In fact, the critical temperature is sensitive to
the oxygen atoms in these planes. Fach copper atom has ten electrons in the 3d
shell, which consists of one d(«? — y?) orbital and one d(2?) orbital. The former
has four lobes directed toward the four oxyeen atoms in the same ry plane. while
the latter has two lobes pointed to the two oxygen atoms above and below the
plane and one circular orbital in the vy plane. The single 1s clectron and one
of the ten 3d clectrons of copper hybridize with the oxygen 2p clectrons to form
LayCuQy, keeping the d(w® —y*) orbital partially empty while the J(22) orbital is
filled. The remaining nine electrons in the d(w? — y?) orbital invite oxygens in the
same plane to come closer. On the other hand, the electrons in the filled d(=*)
orbital expel the oxygens above and below the ey plane. These configurations
are illustrated in Figure 111 in which th d(z%) orbital is shaded.

Note that eight of nine electrons in the ('u d(«* — y?) are paired, while one is
unpaired. Thus, at each C'u site there is a hole with a localized spin. Since the

d(2? — y*) orbital is strongly coupled with the O(2p) orbital, one can talk about
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Figure 1.11: Copper d-orbitals.
The four lobes of d(2? — y?) orbital are white and the d(=?) orbital is hatched. The
locations of the neighboring oxygen atoms are indicated. The top and bottom oxygens
are at a greater distance than those on the horizontal plane.

O(2p) or C'u(3d) holes.

The localized spin of the ninth, called d9, electron of copper causes
antiferromagnetism. It is difficult for an unpaired spin to move about in an
antilerromagnetic configuration due to energy costs. lowever. this configuration
can casily be destroyed by doping or by some other disorder, particularly in two
dimensions.

The replacement of La™* by Sr** in Lay_.Sr.CuO,_, creates (x — 2y) holes
per cell. The copper atoms appear to keep the same valance state, C'u®t, even
after doping. llence, the holes seem to be on the oxygen sites, creating O~
There are (1 — 26) holes per cell in the 1-2-3 compounds RBa,CuzO-_s with
R, Accordingly, the 1-2-3 compounds can have more holes than the 2-1-4.
Note that their critical points are also higher. Since the superconductive phase
stretches heyond 6 = 0.5, some Cu®t might be converted into Cut as the hole
concentration in the plane increascs.

It becomes casier for the holes on copper (or oxygen) sites to move about once
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the antiferromagnetic regularity is destroyed. The high critical point indicates
that a certain process involving high energy plays a role in pairing of holes. The
destruction of the antiferromagnetic configuration by doping cannot be neglected
in this respect, particularly because the resultant spin glass phase is not metallic
but is insulating. The superconductive trausition in the 2-1-4 compounds is
preceded by an insulator-metal transition, but a direct transition from a spin
glass state to a superconducting state without entering a metallic phase appears
to take place in the 1-2-3 compounds near absolute zero.

The holes created by doping are primarily on the O~ sites in the Cu — O,
planes. In consideration ol their hopping {rom site to site, including copper sites

we express the Haniltonian of a single C'u — O, plane as follows:

Il = ZS"J‘(‘E,(‘J", - -

£y

} —

Z (/i./('lt.:('in(l}a/(.'j‘,,: ( 12:—))

il./‘l"l""

~

t

The operator ¢f, creates a hole with spin o in the 2p, or 2p, orbital at the copper
site &, The hole is in the 3d(w® - ) orbital of copper. The diagonal energies will
be either (g,,U,) or (q, Uy) for the 2p or 3d state respectively.

The clioices

simplily the Ifamiltonian. In addition, if

U, =U;=U
Uy=20
the above Hamiltonian is reduced to a single band Hubbard Hamiltonian:
H = -l Zc:facja + U njmy (1.26)
)] J
The same Hamiltonian can of course describe electron hopping. Its properties

depend on the relative strength of ¢ and U. The first term represents hopping
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between neighboring sites (¢y), and the second term represents the interaction at
the same site j. 1f this interaction is repulsive and large such that U > ¢, no
two clectrons can be on the same site. Hence, cacli site is taken by only a single
clectron with a certain spin. As a consequence, the electrons can hardly move.
Due to large U, the band is split into two with a gap between. That is, a half
filled Hubbard model corresponds to an insulator with an eunergy gap between
the lower occupied and upper unoccupied states. Thus, this Hamiltonian may be
adopted for the insulating phase of high 7. materials.

It is convenient to start with the above Hamiltonian, not distinguishing the
copper and oxygen sites [rom cach other. lowever, the single band model is
symmetric under a particle-hole transformation. Thus, removing holes from the
C'u — Oy planes is equivalent to adding them. This symmetry can be broken by a
more elaborate copper-ocygen moddl. In this model, the removal of holes from the
copper sites produces ('ut. The energy of C'ut can be higher or lower than s, of
Cu®*. It is higher, and if oxygen’s ¢, is located between the two energies, any
additional hole will go into oxygen sites. Ouly in the opposite case, in'which =4 is
Ligher than ¢,, can the holes go into the copper sites. Spectroscopic observations
ol excess holes on oxygen sites favor the copper-oxygen model. These excess holes
are the charge carriers.

Doping supplies additional oxygens and weakens magnetic coupling. Thus
spin flipping takes place, causing local spin-parallel configurations.  This
occurrence can be seen by examining the interaction of spins S; and S2 on the

neighboring C'u®* with spin ¢ of an oxygen hole:
I =—-J(S1+8S2) 0 (1.27)

In order to minimize this energy, o prefers to be parallel (antiparallel) to both
S1 and So if J > 0 (J < 0). That is, regardless of the sign of J, S and Sz arce
preferably parallel. Morcover, since the oxygen hole is presumably located closer
to copper than the original Cu — O distance, the above energy would overcome
the antiferromagnetic energy.

The local parallel-spin conligurations created by doping stir up spin
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frustration, so that the material hecomes a quantum spin liquid. This liguid state
is insulating, but may be considered as a parent state for superconductivity. Note
that the ground state of a 1d Bethe lattice corresponds to a spin liquid. On the
other hand, Raman scattering studies® have revealed that spin fluctuations in
nonsuperconducting La,(‘uQy are characterized by an extremely high exchange
constant J ~ 1100 cmn™" = 137mcV. A similar magnitude J ~ 950 em ™! has been
found in Y Bay,CusO7_s. Thercfore energies ol order 1000 K may be involved for
pairing. Increasing the oxygen concentration causes broadening and weakening of
the spin pair peak and dilution of the spin system in the planes. That is, spins are
removed as the oxygen concentration is increased. This indicates that magnon
exchange may not be responsible for pairing. In lact, there are perovskites such
as BaPbO; that do not show any special magnetic properties, but have 7' of the
order 30 K. It is also known that the excitations from the Bethe state are not
spin waves but are quasi-fermions called spinons.

The existence of the O — Cu — O configuration before doping requires a
close examination of energy changes due to excess oxygen atoms in relation to
their motion in the C'u — O, planes. Por instance, Emery and Reiter! solved
a model in which an oxygen hole moves through a ferromagnetic copper spin
background. This model suggests that pairing ol these holes 1s mediated by
enhanced superexchange coupling.

On the other hand, noting that a metal-insulator transition is close to the
superconducting transition, Anderson' suggested that the insulating phase is
an RVDB (resonating valance band state). With suflicient doping, the magnetic
singlet pairs in the insulating state become charged superconducting pairs. His
model may be described in a simple way by starting with a half-filled Mott
insulator in a simple square lattice. This system corresponds to a Heisenberg

antiferromagnet and is represented by the Hamiltonan

1
1 =J§_“(si-sj)—I (1.28)
(i)

In terms of Hubbard’s ¢ and U the exchange constant J = 4¢2/U. The spin
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operators canbe rewritten in terns of the electron operators such that

=03 bLb (1.29)
(i)

with the local constraints njp 4+ ;) = L. lere the singlet operators b,Tj are defined

by
1
1 v .
bi; = (‘-'3|"}| - (-':rl(',tl) (1.30)

V2
It is interesting that the new Hamiltonian has the local gauge symmetry for

of

T = exp(i0)cl,. A similar gauge symmetry has been discussed for the fractional
quantum Hall effect. The spins behaving as fermions are spinons. [ an electron is
removed by doping a hole, called holon, is created. The holons do not carry spins
but only charges. The effective Hamiltonian for a doped material can be expressed
in terms of holon and spinon operators of the BCS case. At temperatures below
J ~ 1000 K, the spinons do not hop. The dominant process is tunneling of a
holon pair, which involves a virtual excitation of a spinon.

In the investigation ol unusual clectronic properties ol metal-oxide, com-
pounds it was proposed™® that the new features in the clectronic band
conduction should be included. The first is the possibility that intrinsic-hole
rather than intrinsic-clectron carriers may ply the game. The second one is
that, provided ‘intrinsic-holes’ are at work, one-particle picture of the electronic
transport is not fully adequate. BBecause the interaction between holes (repulsive
or attractive) has to be included, and the fact that hopping of holes in itself cannot
be considered as a constant and is strongly dependent upon site occupation
should be taken into account. Hence, anion network in the CuO,; plane of metal-
oxide compound is considered® as an intrinsic-hole metal with holes rather than
electrons comprising a Fermi liquid immersed in the background of negative O*~
ions. Due to the contraction of p—orbital of oxygen as a result of occupation
by a hole, hole hopping between nearest neighbor sites (¢, j) is dependent upon
opposite-spin hole occupation number. It has been proposed to consider, in the
second quantization representation, the hopping matrix element ¢;; as an operator

depending on the occupation operators n; and n; of the atomic sites R; and R;.*®
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oo
Cr

1y . B .
Ihere are three independent matrix clements fy, £, and ¢, corresponding to,

in the case of two oxygen anions

IU . ()‘_ -+ ():’- B ()f_ - ();_
o O 07 2507 10 (1.31)
Li: 0+ 07 =07 +0;

which result o

L = do(l =ni—o (L= nj—o) + tinimall =15 20) + nj—a (= ni o)) +

Lang oM —a (1.32)

The occupation dependence of the hopping can be represented in another
form:
Lj=—t+Viiorjea +W(ni-a+nj_s) (1.33)
where from Eq. (1.31)

t = —lu, V = t(, - -Hl -+ [2, I = ll - l() (l;l)

Hence, Ld version of interacting holes in an anion network is represented by
Hamiltonian including, along with the contraction interaction, the Hubbard term

H=- Z(r!’a(';ﬂ,, exp(ia) + e 4+ U Z W

1,0

+ Zc}ygciﬂla Viticattisr—a 4 W (itimo 4 nipr,—a )] explia) + h.c.(1.35)

{0

The effect of coupling term W has been considered in much detail in the
paper of Hirsch and I\'Iarsiglio,? as well as of [. O. Kulik.?%° Both types of the
contraction pairing are considered.?!

Our model lTamiltonian in chapter 2 will he that of Eq. (‘l.2(ij, and in chapter
3, it will be that of Eq. (1.35).

In addition to above three models there are several other models. However,
a convincing description at a finite value of doping is still lacking and the basic
mechanism is yet to be disclosed. For further reading see section 7.2 of High-

Temperature Superconductors by N. M. Plakida'® aud the reflerences therein.
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1-D HUBBARD MODEL

We consider a loop of N, lattice sites, which in lact is equivalent to a one
dimensional chain, with a total number of N, eclectrons. We will assume that
there is a magnetic flux ¢ throngh the loop. Suppose that electrons can hop
between neighboring lattice sites, and at cach site at most two electrons with
opposite spins can sit together with an interaction energy /. The Hamiltonian
for this system has the following lorm:
= -1 Z(('},a"i-kl.n‘*m + (',T-,i_l'(,(',-',,(;"“‘) + UZ NNy (2.1)
o i
where c}r,a and ¢;, are, respectively, the ercation and annihilation operators for
an clectron of spin projection o al the ¢* lattice site; ¢ is the electron hopping
amplitude; o = /“\)/—”l-(-;,': where @ = ’:— is the magnetic flux quantumg w; 4 is the
occupation number operator. The energy spectrum of /1 is invariant under the
replacement of ¢ by —1. So, we will take § = 1 in appropriate units.
The lattice sites ol the loop can be numbered from 1 to N, Hence we use the

following wave function for the system:

— I " " 1 g Al 9.
Wy = S e tmeneex e od d g0 (22)
L2y N
Here, f(z1,...,2n,) represents the amplitude in the coordinate representation

for which the down spin electrons are at sites @y, ....xar and up spin electrons

26
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8%
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Figure 2.1: Sample configuration
There are N, lattice sites on the ring which can be numbered from | to N,. The flux
& piercing the ring is produced by a solenoid inserted in the ring.

are at sites aar41,...,2n, (M is the number of electrons with spin projection
down and N, — M is the number of electrons with spin projection up). The
amplitude function has the following symmetry property: f(u 4+ Ny, 20 an,) =
(i ) = = Flpe 'Y = Floe o :
flry,za + Noovan,) = oo = flay ez can, + No) = fle, e 2n,). Using
I ot elation lor ferntions. which is [c: .. ¢f =45 -6 and the
the commutation relation [or fermions, which is [¢iq,¢; ]+ = 0,6, ,, and the
definition of occupation number operator n;, = ¢! ¢ o, the cigenvalue equation

H|¥) = E|W) leads to:

Ne ‘ )
- Zf(:v],:zrg, ot L an)e + fla, gz — Lo an e +

=1
M N.

Uud % (v — ;) f(wr,way . yan,) = I0f (e, 2,000y 2N,) (2.3)
=1 j=M+1 .

where

-~
S
I
—_
o
=
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and,
blaiyj) = { L= (2.4)
0 I £y '/lé £y
Note that, N, electrons in the non-interacting lattice (U = 0) have an energy
cigenvalue £ = —2%° cos(k; 4 a), where the momenta of the N, electrons are,
kj = %,"‘:'n,j, and nj = 1,...; N, This shows that energy of non-interacting electron

system has he/e periodicity.

2.1 Ground State Energy of Two Electrons

The wave function for two clectrons, one with spin up the other with spin down,

will be the following:

o
Ct
~—

Z (w12, |"I~_,l'0> (2.

w3

The eigenvalue equation [W) = L|W) leads to

=[(f(zr 4+ Lia) + [(or, 02+ 1)) explia) + (f(xr = 1 aa) + [(er, w9 = 1)) exp(—ia)] +

{jé.(.’b'l, ;L'z)f(.’l,'l, .'L'z) = I’;/(H , .l'z)

We can transform the above equation to momentum representation with the

[ollowing substitutions:

O(xy,22) = — Lo\p LK (e — ) (2.7)
No T
e o 2m ; -
where K = N—’Zn, n=20,1,2,...., N, — 1, and
flar,a2) L Sy i, exp(i Ky ) exp(eKopay) - (2.8)
Nyhy
where Ky = '72\,-’5711,2, mp=0,1,2,..., N, — L. Here fy, 1, is assumed to satisfy

the periodicity condition fx,42rx, = [, Kot2e = [i,,k,- Alter some calculations

we get the following simplified equation for fx, y,

. . U
(E + 2cos(Ky + ) + 2cos(Ky + @) fie, i, = N Z Ky =K, K+ K (2.9)
Na g

(2.6)
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so that
. N Z‘I\' .//\.-—I\',l\'_.-|~l\'
Jiiw, = 5 - - 2.10
PR R 1 2cos(Wy + a) + 2cos( s + ) ( )
After a second summation we get
LN~
Zf [ 5 Nk SR =K g Kyt K4y @.11)
KNi—-p, Ko+ y N p . - 2.
VimpRate = N, > I+ 2cos(Ny — p+a) +2cos(hy — p+ a)

(L P
Realizing the fact that <~ Z,\ S =g = Do isouly afunctionof Q = K+ K,

in mod 2w, we arrive at

=0 (212)

A { 1
dbo (1 - — Z . . -
N, S I+ 2cos(W) — p+ )+ 2cos(N2 + p+ a)
Hence, cither the term inside the parenthesis or @ is equal to zero.
(1) &g # 0 case.
|

1 1
—_ = = ; - > 2.13
U N5 L +2co5(h) = p+a)+2cos(Ky + p + ) ( )

or shortly

The above transcendental equation can be solved numerically and the value of
the energy I2 can be [ound. The points where S(F) intersects with Llj are the
cigenvalues £2 of the system (sce g, (2.2)). The flux dependence of the energy,
related to Eq. (2.14), is presented in IMig. (2.5).

We can apply Poisson summation formula,

Z- f(n) Z / (n) exp(2wins) dn (2.15)

n=n\ $=—00

to LEq. (2.13) and we get

1 X2 dp exp(ipN,s) > 16
— = —— 2.16
U S=Z, /u 21 B 4 1 cos(Q/2 — p)cos(Q/2 + a) (2.16)

So S(E) becomes
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Figure 2.2: Plot ol transcendental equation for t-d Hubbard model with 2
clectrons.

The points where S(£) intersects with ¢ are the eigenvalues £ of the system. Here
N,=4,Q=0, a=0.

We can caleulate Sy(£2) in the complex plane. Let 2= ¢® then dz = iz dp,
-,i\’u"'

l 3
== ¢ dz —— - : .
) 3 f ¢ :Z(C“" + (v—z(Q-i-n)) + I+ (( (Q+a) + c—zu)

Sy(L (2.18)

This integral can be calculated with the use of the residue theorem. The poles
of the denominator are
-’ +
iy exp(=iQ/2)

(2.19)

where Ity = dcos(Q/2 + o). For I* < IF, both of the poles =z and z are on
the unit circle, while for 12 > 157 one of them is inside, the other one is outside
of the unit circle. The ouly diflerence between these two cases is that, Ss=¢ term
vanishes for £? < EZ, while the same term survives for the other one.
For both possibilities we get the [ollowing result
1 exp(i(Q/2 — k)N,) +1
= disinvcosF exp(i(Q)2 = k)Ng) — 1

S(E)
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Figure 2.3: The poles of the integral in the complex plane.
For E? < L, both of the poles arc on the unit circle, while for £? > £3, one of them
is inside, the other is outside of the unit circle.

where
Kol E? < 12 L
g=< (2.21)
[TV O Dl D
and
A=0Q/2+« (2.22)
If we denote new momenta as
(. N
by = -)z + o+ (2.23)

o |
/\’2 = _—)2' +a - (221)

we gel
sink, — sinky + 1U/2
sink) — sink, — tU/2"

exp(t (b —a)N,) =

and
: sinky — sink; + 1 U/2 5 o
exp(é (ks —a JNa) = sinky — sink; — ¢U/2 (2:26)

With the substitution _ .
sin ky 4 sin ks ..

4

A=
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Figure 2.4: Plot of the transcendental equation for U > 0
When U > 0, F? is always less than L2, The intersection of S(£) with 1/U is always
to the right of £j.

and u = U/4, the Eq¢s. (2.25) and (2.26) take the [ollowing form

sink; — .\ + ¢
explilks — a)N.) = sink; — \ 4 2u (2.

sink; — A —u

N
I
oL
-

and

sinhky — A +u
sinky — A —iu

We will see in the next section that, Iqs. (2.28) and (2.29) are identical to the

exp(i(ky — a)N,) = (2.29)

discrete Bethe Ansatz equations for two electrons.

As it is seen in Fig. (2.4), when U > 0, £? is always less than EZ. On the
other hand, for U < 0 there are two possibilities: (i) if the value of n is even,
then for all values of U, the incquality £* > E? is always satisfied; (i) if n is
odd, then E? > E? is not always satisfied. In this case, the absolute value of

U should be large enough, otherwise, just as in the case of U > 0, E? becomes
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U<0
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Figure 2.5: The plot of the transcendental equation for U/ < 0
When U < 0 £2% is not always farger than £3. ‘The intersection of S(F) with [/U is
sometimes left Lo sometimes right to £y, depending on the value ol [{/].

smaller than £2. 1t can be observed that, for odd values of n, I2% is always larger
than cos?(Q/2 — K)EZ, not L

Let us try to find out the explicit forms of Eqs. (2.25) and (2.26). Let

sinky — sinhy
=9 : 2.
R (2:30)
so that '
expli ki) = expli a ) 2 (2.31)
s — 1
Using the identity .
T ' ,
s - = —exp(—2¢ arctan s) - (2.32)
s —1

we get the following equations for &y and k,

4sinz cos
k1N, = (2n, 4+ 1)m + aN, — 2 arctan (—Sl%wb—é) (2.33)
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ko Ny = (2np+ D7+ aNy — 2 arctan (——lill—JU—(o;p—)) (2.34)

where 7; and n, are integers.

If we add the two equations, we find that (Q+2a)N, = (ny+n.+1) 2r+2a.V,.
[ence we get a relation between all n's: ny + na +1 = n (remember that
Q= fvr“— n). Subtracting the equation governing A from the first one and dividing

the result by four we get

Nyax ™ sine cos B 5 an
5 = (Il.l - II-_g) E — arctan —U_ (....3-'))
Hence, it is possible to express the cigenvalue, £, of the system as
= —lcosacos3 (2.36)
with @ determined by
) N, Isinwcos 3\° ) 37
an = -0 —— 2.
T U (2:37)
where o = +1 for odd value of n and ¢ = =1 for even value of n. Put @ = « for

L? < k2 and z = ix for £* > I, where & is a real quantity. Using above
equations, it is possible to plot the ground-state energy as a function of flux. The
results are exactly the same as those found by numerically solving Eq. (2.13) (sce
Iig. (2..)).

(2) g =0 case.

Il @ is equal Lo zero, we see from biq. (2.9) that:
(£ 4+ 2cos(N) +a) + 2cos(Ny 4 ) fiw,w. =0 (2.38)

To have ®g cqual to zevo, the sum of the [y, x,’s should be zero. But all of the
fr,.K.s can not be equal to zero, otherwise [W) becomes zero. 1t is possible to
show that we can put S p fu, -k ki €qual Lo zero only if for some two different
combinations of (K1, K3), the quantitics 2 cos( Ky + K +a)+2cos(Kz - K+a) are

equal to each other. Otherwise, all fi, x,’s should be equal to zero which in turn
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Figure 2.6: Encrgy versus flux for two clectrons.

If the &g = 0 case is taken into account, new branches, which are the dotted lines
for positive U, appear. This branch does not appear for negative U, since it is above
the branch of first possibility. In short the new branch corresponding to the ¢¢g =0
results in period halving for U > 0. The solution due to transcendental equation (Lq.
(2.13)) and the analytical expression (L1q. (2.3:1)) are the same. In all the above graphs
N, = 10. We present the behavior of energy for both small and large values ofU/. For
large enough |U] when U < 0, the minimum corresponding to ¢/¢¢ = 1/2 is almost
equal to the one when ® /@y = 0 or 1. But when |U| gets smaller, this property vanishes,
and the plot becomes similar to U7 = 0 case, in which there is only ¢ periodicity.

means that |¥) is zero. I the above requirement is fulfilled then the eigenvalue

of the system becomes:
E = —-2cos(q+ a) —2cos(Q — ¢+ a) (2.39)

with K; = q and K; = @ — ¢. urther consideration shows that when U > 0,
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and n is odd the minimum energy of the system becomes (see 1Mig. (2.6))

Il = —lcos % cos(g +a) (2.-10)
N, 2
It can easily be seen that if this second possibility is not included, the number
of eigenvalues is less than it should, that is the set of solutions is incomplete.
Equations (2.28) and (2.29) at a = 0 coincide with the Lieb and Wu solution®?
of 1-d lHubbard model for two electrons. The parameter o generalizes this solution
to the case of nonzero flux in the ring. Our analysis show that the Lieb and Wu
solution is incomplete, because Eq. (2.41) also determines possible values of the
energy available for two electrons in the ring. This extra solution is a dependent

and therelore it changes whence flux in the ring is changed.

2.1.1 The Dependence of Amplitude of Energy

Oscillations on the Number of Sites

We investigate AL(N) in two dilferent cases: U > 0 and U < 0.

(i) />0
It is necessary to find out the value of a, (Fig. (2.7)) in order to determine A7,
and AF,. With some simple algebra we find out the equation governing a

. R .
U N, T (.()h(()] — \—,‘) N ) T ) ™
7= ball | = Arceos | Cos S — i cos? ay — cos? — cos?(ap — —)

N, cosa N, N,

(2.11)

o~

In the bmit N, >» | l
)
2T T .
() — —— = —— (2.12)
1N, 2N,

Hence substituting this value, we find out AL, and AE; as follows,

| 7 " ,
ALY & = — 2.13
] 2/\’7(‘;.! ( )

) | 72
By N = 2.44
AL, 3N (2.44)

Both AE; and AFE, behaves like \—‘- and %l — 1 for N, > 1.
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Energy

Figure 2.7: The cnergy oscillations for 2 electrons.

~3.9971 |

Energy

-3.992 |

-3.093
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Figure 2.8: The energy oscillations for {7 > 0 for N, = 50

(i) U <0
In all the following calculations |U| is considered to be large enough. This time,

For I/ < 0 the calculations are casier, since with large N, both tanh -’y-gﬁ and
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Figure 2.9: The amplitude of oscillations for {7 < 0 with N, = 50

coth %‘A (IEq. (2.37)) quickly approaches |. We find out that in this limiting casc

| 27 v ) 15

) = ——— == —— 2.0
TAN, T 2N, (2.15)

just like in the U > 0 case.
The final results for the amplitude of energy oscillations for {7 < 0 are
_ . VUT+ 16 7

Al = Al ~ —m— — 2,16

! 2 8 .Vaz ( ))

As the number of sites increase we observe more pronounced ®4/2 periodicity,
which resembles the pairing of electrons as in the superconductivity, but the
amplitude of the energy oscillations decrease with inverse square of the number
of lattice sites. It is lound that, both for the U/ > 0 and {/ < 0, the energy
amplitude behaves as 7\,1—‘, But there is a difference between these two cases, the
amplitude of oscillations has a dependence on the value of U for U < 0, while
there is no such dependence for U > 0. .

It can be noted that for U < 0 and N, > 1
VU? + 16 cos? 3 (2.47)
4 cos -

cosh ~
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Figure 2.10: The eurrent J(®) for two electrons.

so that,

E~ —\JU? + 16 cos? 3 (2.48)

both for even and odd values of n.

The Current J
It is possible to write the current as

Jals

i 21
=5 (2.19)

(¢ = 1in dimensionless units.) For both {7 > 0 and U < 0 the behavior of current

with large number of sites is as in IMig. (2.10).
)

First let us consider U > 0. In Fig. (2.7) we have, for even values of n,

E = —1coskcos (%2— + (r) (2.50)
and, for odd value ol n,
I = —dcos NL Cos (%)— + (r) (2.51)

a
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For these two branches we get the lollowing currents for N, > 1
J =~ —la (2.52)

for even n, and,

J ==l (a - —:) (2.53)
“\rl
for odd n. Henee it is casy to lind out that
e R 2 2,54
Jim z‘V,, ( )
Next we investigate U/ < 0. ‘T'his time we have

. 4 ,

I = —1cosh k cos <_)£ + cn) (2.55)

with £ determined according to the Eqgs. (2.19) and (2.50). This time the value

of the current depending on a is as [ollows
JR VU416 a (2.56)

and,

J=VUE+ 16 <a - —F—)

N,

so we find out that
. VPTG = .
TN, .
The amplitude of the current both for 7 > 0 and U < 0 has inverse N,
dependence. As it was in the energy oscillations, the amplitude for large N,,
has a dependence on U when U is attractive, yet, as in the energy oscillations

this dependence on U disappears for positive U,

2.2 Discrete Bethe-Ansatz Equations

The exact solution to 1-d Hubbard model was found by Lieb and Wu®? in 1968.

The energy eigenvalues are given by

Ne
E=-25" cosk (2.59)
=1
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where £; are the momenta of the N, clectrons, which are determined by the

discrete Bethe-ansatz equations,?

Mo .
. | Mosink; — Ay 4+ iU/
oxp(i (k) — a)N,) = J] T—i 2o 2.6
exp(i (kj = a)Ay) 11 sink; — A, — i0/4 (2.60)
ﬁ A“ _ Sil'l kj + L([/l _ ﬁ 1\“ —_ 1\/3 + 1[[/2 5 61
joi A = sink; — 0/ T T M XTTA S 02 (2.61)

Periodic boundary conditious have been imposed to derive Egs. (2.61) and (2.62).
Here {A.} is a set of A spin repedities. The k and A values are in general complex
numbers.

These equations directly follow from section (2.1) for the case of two electrons
with M = M' = |, where we derived them using Poisson summation formula. In
this section our objective is to trace the dependence of the solution, and therefore
the energy I and the current j, in the loop for many clectrons.

Let us make the following substitutions to simplily these equations,

Q

f= N +
1’\,,;

/»'J‘ = ,’5 t+a+ua;, with Z.‘L‘J =0
=1
M

Ao =N+ A, with Z Ao =0
a=1

.:’J' = Sill/\'j - A
w=1U[]

With the above substitutions, qs. (2.61) and (2.62) take the form,

. Mo A +iu o
exp(i (k; —a)NV,) = E ~: S — . (2.62)
Ne _ .. ; Al _ o0:

] == + Ad + LN il A = Mg + ;{tt (2.63)
jo1 —F o Aa = du goi da = Ap = 2iu

If we take Eq. (2.61) for all different values of o (o = 1,2,...Af), and multiply

them, we get unity. Then, for M = M’, it [ollows

2} = —22,23= —Z1, ..., IN,-1 = —2N, (2.64)



Chapter 2. 1-D HUBBARD MODEL 42

and
A= -y , Ay = —/\_.\1_1 (2()3)

if M is odd /\%ﬂ = 0.

These results imply that,

| o—

A= —(sink; + sink,) (2.60)

S

and

o] = Jao] = ... = |oa, (2.67)
Henee, zp=z3= ... = -5y = —zy = ... =sinwcos ¥ = z. With all of these, Eq.

(2.64) for any « takes the following form,

L8]

2= Ay —tu
= Ao Fiu 4+ A —iu

+ A i)™ A = A+ 28w A = Ay + 20w
,\(,-—)\1—2iu )\a—/\_.\[—'z‘l'u,

Ao — Ay + 20u Av+ A+ 2iu

—_ - 9 AR
];‘[ Ao — A — 21w Ao + Ay — 2iu (2.68)
From Eq. (2.63), for k;’s we get,
exp[i(h — a)N,] = (1) exp [—2(.' (arctzm “ T A4 arctan 2—22 +
u u
ok Ay Y .
..... + arctan —— + arctan ——— (2.69)
u u
expli(hy — )N = (=Y exp [2/ (ar('tun 2y arctan /— 22 4
i u
L 4+ A
+ 4 arctan it + arctan * ')} (2.70)
u u

Note that, it is not necessary to consider all the other &;s, because the equations
governing every couple of kyqy and Ay are the same (1=1,2, ... ,M-1). Since
ky — ky = 2, we have

1 ) )

Z - /\1 z + )\1
+ -+ 4 arctan
(1) u

z N,
2

= g([l - L) — (arctan
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where I, and [, are integers when M is even, or hall-odd integers when M is odd.

We can take the tangent of hoth sides of the equation(2.72),

x N, s - N
tan — = tan Sie—al) = ~o(tana) (2.72)
~ /\l =z +
where ¢« = arctan =—— + -+ 4 arctan RN
u u

Next, we show how the ground state energy is dependent on ¢/d, for some
values of N,. First of all we start with N, = 2. Before, we have found the
energy eigenvalue with our formulation. But this time our aim is to arrive at the

eigenvalue equation via discrete Bethe-ansatz cquations.

221 N, =2 (1))

We directly start with the Bethe-ansatz equations for the case of two electrons.
We have N, = 2, M = Al' = 1. Irom equation (2.63) we get,

sink; — A + fu
sink; — A —iu
sinks — A + 7u

expli(ky = a) Ny) = —————— (2.74)

exp(7(by —a)N,) =

These are the same as Eqs. (2.28) and (2.29), with one exception that A is yet
unknown. There is only one A, so we let Ay = A, Eq. (2.71) and (2.75) take
the following simpler forins with the substitutions described on page 43,

o1+ tu

exp(¢(ky —a)N,) = ——— (2.75)
1= lu
_ ZoF tu o
exp(t(ky —a)N,) = —— (2.76)
' I —tu
and, . ' .
—-Z1+ tu =29+ tu o -
. — =1 (2.77)
- =t =z — i
I'rom this last equation we find out thal z; = —z,. Since z; = sink; — A and

zo = sin ky — A, it immediately follows that,

A= sin Ay -i)— sin ky (2.78)

-~
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As it is casily seen, this result is exactly the same as Eq. (2.25), which was
derived with our own formulation.
Next, letus find out the enerpy cigenvidues £ = 2(cos by 1 cos k). Using

3 ) . . .
9. (2.72) we are able to extract all the information we need,

A. - A.') : .

AN, = - arctan =+ T (f, = 1) (2.79)
1 u 2

/l' ‘i“ l\'2 r . "

;-l—\ =aN.+ S(h+1h) (2.80)

Equation (2.86) determines the relation between [y, [, and n. Hence, the energy

eigenvalues of this system are,

Il = —1 cosrcos 3 (2.31)
with the following equation for .,
. a
) N si e cos 3 (2.82)
ayg— = —g | ————— 2.82
2 u
with o = +1 for odd values of n, and o = —1 for even values of n. So, we finally

arrive al the same equations for case of two electrons.

Next we investigate, whether the Bethe-ansatz equations give the extra
eigenvalue, which was found in section 2.1. Previously, we have shown that,
if two roots were coinciding, the common value of them was one of the possible

cigenvalues for the system,
I = —1lcos(Q/2— KN)cosp3 (2.83)

where %— = &n, and N = 2. So the minimum value of £ occurs at the
Q a
minimum value of Q/2 — K. Uuless n is even, §/2 — K can never be equal to
zero, it can at least be 3. Hence, [or even values of n we may have
«

I'= —lcos 3 (2.84)
But observations show that this is not a candidate for minimum energy, since it
is not a coinciding root. For odd values of n,

E = —1cos Kﬂ;— cos /3 (2.85)

«
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This means that 2 =0 and x = /—J—a respectively. For even values of n, this energy
value is higher than other possible eigenvalues, lience it can not be a candidate
for the ground state energy. When we investigate the Bethe-ansatz equations
carefully, we find out that « = v 15 not a solution. Moreover, the equations give
a = 0 for odd values of n, which actually is impossible (for 7 > 0, it is clear that
[2* < I3, hence ) is always Targer than —1 cos ).

During our literature scarch, we have found several mistakes in certain papers.
[or example, starting directly from Bethe-ansatz equations, Nusmartsev et. al.?!
have arrived at erroncous results. The main mistake is, of course, these equations
do not give the extra cigenvalues that we have lound, and the equations also cover
@ = 0, which should actually be excluded. urthermore, people start from Iq.
(9) and Eq. (10) of Lich and Wu’s paper® and consider the integers (I, and [,)
there as independent from cach other. Actually, il the calculations are carried
out from the very beginning, it is seen that these integers have dependencies on
each other. So we conclude that there are some extra cigenvalues which can never
be obtained by Bethe-ansatz equations. Besides, some cigenvalues given by the

same equations are incorrect.

222 N, =4 (111]])

If we start directly from Lq. (2.11), we get,

2 coy2 12 :
IR AT AT (250
22— (A=) A—iu
The value of A can be calculated from the above equation,
, 2zt — P 2 7 Y on
A= — + 5 Vut + u?z? 4 (2.87)
Irom Eq. (2.70) and Eq. (2.71),
2 —=A 4 A . A oo
(ky — a)N, = =2 [ arctan + arctan + 2mny (2.88)
u u

and,

~

- ~

+ arctan

~

(k2 — a)N, = 2| arctan : + 2mwny (2.89)

U
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S0, (ki 4+ k)N, = 2aN, + 27 (n, + 12}, which means ny + ny = n. where n is the

integer in the Q = 2L 0. The cigenvalue equation is,
“
I = —3 cosu cos 4 (2.90)

with @ determined by the equation,

r N, 2 sina cos ’
tan — = -0 | -—— . _}j - (2.91)
2 u® —sin®w cos? 3 + A2
with o = +1 il n is even, otherwise o = —1.

2.2.3 N, = 6,8, 10, ...

‘or Ne =6 (M = 3) we have,

a N, vy z—=A z 4+ A
—— = —m — |arctan- + arctan — + arctan (2.92)
2 2 u u U
with A determined by,
. . . 3 . .
22— (A + iu)? A4+ iu A+ 2u (2.93)
22— (A —diu)?| XN —diu - Au -
and m is odd if n is even, it is even if n is odd
for N, =8 (M =) we have,
N, e = A z—
= —m — |arctan + arctan
2 2 u U
4+ /\2 z+ /\1 .
+ arctan + arcltan (2.94)
w u

where m is even if n is even, odd iln is odd. Also, A; and Ay are determined by,

C YT M TP VR YR VL TV U

22— (M = du)t ] A=A = 2w A A — 2w A — du B
and

22— (X + tu)? "__ A=A+ 2w M+ M+ 20w Ay + 0w (2.96)

::2-(/\2-"i'u)2’ B Ar= A= 200 Ay Ay = 2l Ay — i B
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Figure 2.11: The dependence of energy on the flux for N, = 4.

Aud the equations go on like this lor M > 4. We can summarize the result as

follows:
1) IEMisodd, M =2[+1,
&€ .-’V(,
tan — = —o(tana)’ (2.97)
where,
z - = A 4 A z+A
a = arctan ! + .-+ 4 arctan : + arctan + A + ..+ 4 arctan + A
u u u u
(2.98)
with,
I ifnis odd
o= tHoNnE (2.99)
—1 if nis even

Where the X’s are determined [rom Eq. (2.69).
it) If M is even, M = 2/,

€ A]Vu
tan l. = —o(tana)’ (2.100)
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where,
Y| ,\[ A pod } ’\l
@ carctany e e loaretan barctan =} oo arclan =------
U u u u
(2.101)
with,

+1 W is even

o = { (2.102)

-1 il s odd

Where the X's are determined from Eq. (2.69).



Chapter 3

CONTRACTION MODEL

In the introduction chapter we have described the idea of the intrinsic-hole metal
as opposed to the conventional, intrinsic-clectron metals, and introduced the new
type ol hole interaction called the ’contraction interaction’.

Intrinsic holes are not totally equivalent to the intrinsic electrons in the sense
that they can not be fully removed from the parent atom. But the external atoms
can provide a proper surrounding in which the hole may reside. The important

thing is the possibility of hole hopping between different sites (¢, )
(/l[ + holr:), AJ' = A (x‘lJ' + /wle) (3.1)

The difference between ’intrinsic-electron’ and ’intrinsic-hole’ type metals is
Hlustrated in Fig. (3.1).

Normally two oxygen atoms have strong tendency to make covalent bonding,
resulting in the formation of oxygen molecule, O,. However in a proper chemical
surrounding, this may not happen if the nearest neighbor atoms are not too
close to each other. In such a case, the other scenario will apply, reminiscent of
metallic oxygen. We may suppose that this is just what happens in the metal-
oxide superconductors. In the CuQ, plane ol the latter, due to large ionic radii
of copper, oxygen orbitals overlap between themselves almost as strongly as the
near site oxygen and copper orbitals. Then the O; molecules are not formed, and

the electrons derived from the p°® shell are to conduct. The charge carriers are

19
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O
4@

(a) (b)

Figure 3.1: Intrinsic-clectron and intrinsic-hole type metals.
(a) Cation network with the intrinsic electrons condensing to a Fermi liquid. (b) The
anion network with intrinsic lioles as a Fermi liquid of positive charge.

holes in the p© shell, propagating [rom one oxygen anion to the next nearest one
by hopping.
As we have discussed before, the Hamiltonian for the contraction model is
H=-% czac-,“'aea'p(zf(.\) F hoe.+ U ngmiy
1,0 :
! Vi —on W(n; ~ p(ia) + h.c. (3.2
+3clptiste (VR onistmo + W(nics + nisn—o) explia) + hoc. (3.2)
1,0

3.1 Bound States of Two Electrons

As in section 2.1 the wave [unction for two electrons, one with spin up the other

with spin down, can be described as:

W) = Z f(-l'l,w'.’)ci-u"lgrlo) (3.3)

Tyyb2
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The cigenvalue equation W) o E)W) leads o

=[(f(r+ Lag) + [, en+ 1)) explia)
+ (f(ry = Laa) + [(oyen = 1)) exp(—ia )]

+U6(2y, ) f2r,42)
FWA{[f (s + Laa)(0(ar,02) + 82y + 1,23))

+ Sl w2+ )00, ) + 8(wy, o + 1)) exp(ia)

+ [l = L) (8(e,e0) + (e = Ly y))
+ f(erww = D00y, w2) + 0(wy, w0 = 1)) exp(—ia)}
= [ f(a1,22) (3.4)

Changing from coordinate representation to the Fourier representation (see ligs.

(2.7) and (2.8)), we obtain

(£ 4 2cos(I1 + o) +2¢os(Na+ Q) [, 15, = A Z Jr\ =K Kyt K

o l\
W . . . . . ,
+]—v—- Z 2 (cos(K| + ) + cos(hy + a) + cos(hy — K + a) + cos(A, + K + a)) x
a KN
X fr\ =K K+ K (3.5)
Letting ¢ = 2cos k, we get
j}\'l,l\'g =

U g W - - - -
N, ZI\’ jl\'; -N, 4K + N. Z[\’(C—l\'1+cr + SHhoytar + < N —-K+u + Cl\"_)+l\'+a)f]\"1 -N,Ka+K
l{/‘ + (51\'14—(1 + E/\'2+u)

(3.6)
For a short hand notation, let us make the following definitions

L Yo Jwi-wper = Fo(Q) - (3.7)

N“ N
and, .
— > (eki-Kta + Shath+a ) K -Kex = FL(Q) (3.8)

N“ N
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[y}
8

which are functions of only Q = A} + A, in mod 2r. After a second summation

Eq.(3.6) becomes

/
FQ) = R(Qo Y :

Ng 75 B+ (ery-pra + ERytpta)
L N —p+a + SRo+pta

T RQ)—3

0( J)JV“ ; 4+ (51\'1—;)-{-(\ + 51\'2+p+a)
% ]

+ Q)+ .

il\u ; I + (51\'1-p+-;x + 51\'2+p+a)

(3.9)

and with multiplication by s, —p4a + Shutpta followed by a summation over p

] U SN =pta T ER4p4c
I" ( — ]'“l (2 - , [ 2TPTO
l( 2) 0(_ )I\Iu ; I + (51\,1_1”‘_0 + 51\.2+p+u)

l_{_, Z (:7}\‘, —pta + SKa+pta )2
-/Vu » /"' + (51\'|—p-|-u + 5[\'2+/)+u)

""' ) ::I\ -~ pt -*_ ‘{l\"‘+ 2 gt
IN(Q)-—= 3 e et
v l\lu %‘ I + (51\‘1--,4« + 51\'2'f‘/"+|')

1(Q)

Letting |
—1r— ) " . = IS‘U(I_’:)
/\’u P I” + (‘7 Ny—=pto + ¢ Nodpta )

and,
‘_l_ " 51\'1-—p+u + \':I\'-)-fp-l—:t — q]([p)
/V,, P I’/‘ + (51\‘1—1)—{-(1 + Cv‘/\‘-_rf'/)-l-u)

and,

J. SN — o + S N 2 - .
_r_z -‘(Cl\l pta Nao+p+ x) = bg(];)
j\u » I'J + (}':I\']—p-{-n + 5/\'3+/)+u)

Egs. (3.9) and (3.10) can be written in the following form:

Fo(Q) = UFy(Q)So( ) + W Fy(Q)S)(£) + 1V Fi(Q)So( 1)

and,

F(Q) = UFNQ)S\(E) + W F(Q)S2(£) + W F(Q)S1(12)

In the matrix form
1 =USo(E) — WS (F) —WSu(L)
US\(F)+ WSy (F) -1+ WS (F)
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or,

Io(l) = I(L) =0 (3.17)

The second solution, Eq. (3.17), is possible only il the requirement, that two
roots coincide, which was presented in section (2.1), is fulfilled. In this case the

energy cigenvalue ol the system hecomes
[0 = =2cos(Ny + a) —2cos(hy + ) (3.18)

Observing the fact that,

I « EN| —ptu + SRatp+a

Si(E) No 5 B+ (R —pra F S0 4p40)
_ _1_ Z E+(cr —p+o + Extpta) _ D Z L
N, 5 IS4 (ny—ppn Febmpra)  No 57 B+ (Ex —pro + ERs4pta)
= 1= [£5:(L) (3.19)

and with a similar procedure,
Sy(£2) = —F + [2Se(£) (3.20)

From Eq. (3.16), the transcendental equation is found as follows

-0
U+ WW =2)1

The plot of this transcendental equation is presented in Fig.(3.2). Equation (3.21)
can be solved numerically and the value of the cnergy E can be found. If we set
W = 0 in this final equation, we immediately get the result in 1-d Hubbard
Model (see Eq. (2.14)). The points where Sy(L) intersects with the LHS, are
the eigenvalues E of the system (see Fig. (3.3)). In these solutions 11 has great
importance. The elfect of it can be summarized as lollows:

(i) Minimum energy is found by U—Jd)—&%“—l = Su(£) lor all even n. But il n

is odd this equation is adequate for minimum energy in the case when

W(W —=2)>0and I, > kg (3.22)
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Figure 3.2: Plot of the transcendental equation for the contraction model
In contrast to 1-d Hubbard model, there may be bound states with energ s less than
Ey for positive U, with an appropriate value of I¥. On the other hand, for U < 0, and
some values of I, eigenvalue £ can never be smaller than Eq, that is E2 < Eg.

or

WV =2)<0and £, < Ey

(3.23)
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Figure 3.3: Energy versus flux for two electrons in the contraction mechanism.
The straight lines corresponds to Eq. (3.21), the dotted one corresponds to Eq. (3.18).

where
hl (‘/ ) 4 )
L, = —m, Ly = —dcos(Q/2 = KN)cos(Q/2 + ) (3.24)
(ii) Minimum energy can be /2 = [y when n is odd and the following

conditions are satisfied,

W(W —2)>0and £, < Ly (3.25)
or .
W(W —=2) <0and I, > Iy (3.26)

With the similar calculations (from [2q. (3.21)) as in section (2.1), we get the
following result
sink; — A+ 1F/4
sink; — A —1F/4

exp(tkiN,) exp(~ia) = (3.27)
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and,
. : sinky — \ + iF/1
exp(thyNy) exp(—ia = MR 3.3
plekeNo) exp(=ia) sinky — \ =4[/ (3.23)
where,
L U+ W —-2)E
= 3.9¢
(v —1)2 (3.29)
and as hefore,
sin k4 sin A ,
A= (3.30)
Also as before the momenta of the two electrons are
(
/\'1 :%4—() —f'.l'
G
hy = -;)z +a—ux
where
woif LR < I
=4 X (3.31)
T TR DRl e
Hence the eigenvalue equation is
I = —lcosawcos 3 (3.32)

with @ determined by

Noo _U( LW = 1) sinwcos B ) (3.33)

Lan —— =
- U — 11 (W —2)cosx cos 3

<

and o = +1 for odd value and o = —1 lor even value of n.

3.2 The Overlap Integral
To have an idea about the occupation dependent hopping, we investigate the
anion network in the CuO; plane as in Fig. (3.1). The hopping integral between

oXygens is

t = / U (F) (V(7) = Va(7)) Ua(F)dV (3.34)
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Figure 3.4: The C'uO, network.

(1}
-1

The functions, ¥; and W, are very rapidly decaying with increasing r. \While,

V(F) = V. (7) is a rather slow one. Hence, we can approximately write,
~ Ly =V /\p )V (3.35)

where

W12(rr2) = sinly 2 cos 1,2 R(ry 2) (3.36)

A proper reference can be the one in Fig.(3.4). In this reference frame we write
the above wave functions in terms ol new coordinates. After some geometrical

transformations, the wave functions take the following forms

¥, = bi sinf(cos ¢ — sin o) R(r) (3.37)
V 37

3 rsin@{coso +sino) +a o e
v, = [ e kel d g, (3.35)

P

and,

where

p= \ﬂ.z + 2arsin @ sin o + a? (3.39)
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Figure 3.5: Overlapping orbitals of the oxygen atoms.

and « is the spacing between the oxygen atoms (see Iig. (3.5)).
Next we numerically calculate the overlap integral ;. We calculate the

integral as follows,
/V W, PdV — Z Z Z \Dl(l"', ()J', O )Wa(r;, UJ‘, &k lf Arsin ()J' A0 Ao (310)
ik
We calculate the integrals for the lollowing O atoms

to: Of—}-()f'——f();-"—-i—O;
4 : O;+03_ :O;’" -:-OJ'
Ly O;+OJ<_=>O,-—+OJ'

We use the Herman-Skilmann** program to determine the radial parts of the
wave functions. But this program is not very suitable for negative ions, and
does not give very precise results, especially for the O*~ case. We believe that
if it was possible to find a better computer programn or a better procedure, the
overlap integrals corresponding to (o and ¢, would be grater. The results of the

integrations are discussed in the following section.
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Figure 3.6: Lnergy versus {lux with the results of overlap integration.

3.2.1 Interpretation of the Results
We found that ¢ = 0.222 and ¢, = 0.161. With the definitions (I2q. (1.31))
= —ly = —0.222 (3.11)
and,
W =1t -t =-0.053 (3.12)

If we let t =1 then W = 0.26. That is, W/ is in the range [0,2]. In this region, to
have bound states, F.. should be smaller than £y. For positive U, E,, is always

larger than 0, hence E. > Ey. In the case of negative U both are possible.



Chapter 3. CONTRACTION MODLL 60

Depending on the value of U/, £, may cither he larger or smaller than [y,
With this value of W, we do not get much new thing for U > 0. We still have
no period halving for the situation when Eq. (3.17) is not taken into account (just
as in the 1-d Hubbard model). But for U < 0, we get a totally different picture.
FFor some values of negative U, the ground state energy of the system becomes
larger, and a periodic behavior, which is similar to the one for 1-d Hubbard model

with U > 0 appears.



Chapter 4

CONCLUSION

We have studied the strongly correlated models of electron systems. The major
objective was to search for a mechanism of high 'T'. superconductivity. The other
objective was Lo see the effect ol quantum phenomena in mesoscopic structures.
The key method for the possibility ol superconductivity is to look at the flux
dependence of the energy and the amplitude of the nondecaying current. This
current is nominated as persistent current in small systems and supercurrent in
larger systems. We have worked on Hubbard model with attractive interaction,
Hubbard model with repulsive interaction and contraction model, which takes
the occupation at the sites into account.

In case of Hubbard model, by using the Poisson summation method, we
derived the Bethe-ansatz equations for attractive and repulsive interaction for two
clectrons with a magnetic flux ® applied. For ¢ = 0 our results have reduced to
the Bethe-ansatz equations. However, we have found that Bethe-ansatz equations
give incomplete solutions.

We have found that the oscillation of the energy has amplitude proportional
to inverse square of N, for repulsive /. But it was not a supercurrent, it was
rather a behavior do to the mesoscopic nature of the system. Ior attractive U the
amplitude of oscillations are much larger than the repulsive U case. When strong
electron interactions are considered, |{//{]| becomes larger and the amplitude of

oscillations depend on this value. We have also found the f{lux dependence of

61
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energy for the model with more than two clectrons.

We [ound the analytical solution to contraction mechanism for two electrons.
The solutions do not depend on V, however they heavily depend on 1. In
contrast to 1-d Hubbard model, there may be bound states with energies less
than Ep for positive U (intersection points to the left of £y in Fig. (3.2)), with
an appropriate value of V. Still unlike the I-d Hubbard Model, for U < 0, and
some certain values of 117, £2 is always smaller than E2 (in 1-d Hubbard model,
for U < 0, £* was always larger than £3).

We performed some numerical calculations, to get an intuitive idea for the
values of ¢ and W. With the calculated values of 1V and ¢, we did not get
much new thing for {7 > 0. We still have no period halving unless Eq. (3.17)
is taken into account (just as in the l-d Hubbard model). But for U < 0, we
got a completely different behavior. For small absolute values of negative U, the
ground state cnergy ol the system becomes larger, and a periodic behavior, which
shows similar characteristics as the 1-d Hubbard model with U > 0 appears, that
is period halving appears only il the solution corresponding to Eq. (3.17) is taken

into account.
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