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ABSTRACT

THE EXAMINATION OF THE EFFECT OF POLARIZATION
ON THE RADIATION LOSSES OF BENT OPTICAL FIBERS

Suleyman Gokhun Tanyer
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Ayhan Altintag
July 1990

It has long been recognized that the bending losses in weakly guiding optical
fibers, is independent of the polarization for large bend radius. We showed this
fact using the volume equivalent current method. The procedure is then applied
to a helically bent fiber, and it is shown that the radiation from the helical fiber

is also independent of the polarization as long as the fiber is weakly guiding.
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OZET

BUKULMUS OPTIK FIBERLERDE POLARIZASYONUN
BUKULME KAYIPLARINA ETKISININ INCELENMESI

Stleyman Gokhun Tanyer
Elektrik ve Elektronik Mihendisligi Bolumu Yuksek Lisans
Tez Yoneticisi: Dog. Dr. Ayhan Altintag
Temmuz 1990

Zayifca kilavuzlayan optik fiberlerde biiyik bikiilme yarigaplar: igin buktlme
kayiplarinin polarizasyona bagiml olmadigi uzun zamandir biliniyordu. Bu tez
caligmasinda biikilmilg fiberi dielektrik bir anten gibi kabul edip, bu anten-
den yayilan 1gmimin kayip glcii vermesi esasina dayanan egdeger akim yontemi
kullanarak bikilmig fiberin bikilme kaybinin polarizasvona bagimli olmadig
gosterildi. Daha sonra bu yontem zayif¢a kilavuzlayan helezon seklinde biikiilmisg

fibere de uyguland: ve ayni sonuca varildi.
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Chapter 1

INTRODUCTION

Optical waveguides that are used for communication applications, are made of
highly transparent dielectric materials. They are designed to carry electromag-
netic energy in the visible or infrared regions of frequency spectrum. Those highly
flexible dielectrics have very small loss, and high bandwidth transmission chai-
acteristics. For those reasons, they are used for transmission of voice, data, and
video signals which requires high information capacity. It is also noted that op-
tical waveguides have the potential for being used wherever twisted wire pairs or

coaxial cables are used in a communication system.

Optical waveguides, often called fibers, are generally made up of three coaxial
layers as shown in Iig. 1.1. In the center there exists a medium called the
core, surrounded by a second medium, called the cladding. The protective layer
jacket, covers the cladding medium, and is used for giving mechanical strength
to the waveguide. It also protects the inner layers from moisture, and mechanical
disturbances. Depending on the application, the refractive index profile in the
core may be uniform or non-uniform. The former case is referred to as step-profile
fibers, and the latter case is graded-profile fibers. Figures 1.2, and 1.3 show the
refractive index profile of each type of fiber. Since the idea of optical waveguides
1s to guide the electromagnetic energy along its path, the refractive index of the
core region must be greater than the refractive index of the cladding region. So
that, most of the propagating energy is captured by the core region, and only a

small portion is kept in the cladding region.
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CHAPTER 1. INTRODUCTION 3

An optical waveguide can accomodate one or more propagating modes de-
pending on the refractive index and size of the core and cladding. As the name
implies, the single-mode fiber carries only one propagating mode at the specified
frequency, and multi-mode fiber has more than one propagating modes. Multi-
mode fibers are mostly used in short distance communication applications, and in
fiber sensors. In telecommunication systems, the cladding and the core refractive
indices are designed to be very close to each other to limit the dispersion. Those
kind of waveguides are called weakly guiding fibers to which the analysis in the

thesis is restricted.

If we bend a fiber, we observe a radiation loss which is commonly referred
to as Bending Loss. Since it is an important problem in optical communication
systems, considerable amount of work has been done in the analysis of bending
losses. We may assume Marcatili’s work [1] in 1969 to be the first in this field.
He investigated the radiation effects of a dielectric slab using a rigorous method.
He had some asymptotic expansions in his solution . Shevchenko [2] generalized
the known radiation mechanism for the slab to the case of fiber. Levin [3] solved
for the approximate values of the electromagnetic field to reach a bending loss
expression. Snyder, White, and Mitchell [4] have derived the bending loss for-
mula for both the slab and the fiber cases. Marcuse [5] analyzed the bending
losses of the asymmetric slab waveguide. Chang, and Kuester [6] noted that the
results obtained previously, do not always agree and so that there exist very large
difference factors. They derived the bending loss formula by solving the approxi-
mate values of the fields of bent dielectric slab and fiber. Marcuse [7] derived the
bending loss formula by determining the coefficients of a field expansion. Those
coefficients are found by matching the field expansion in cylindrical waves to the
mode field of the straight fiber. In his work, he assumed the waveguide to be
weakly guiding. Later, Marcuse [8] analyzed the radiation loss of a helically de-
formed optical fiber. Ile considered only one turn of the helix, and derived the
bending loss formula using the same procedure that he has used in his previous
work [7]. He has neglected the optical elfect of the torsion due to the twist of
the fiber [9]. Altimntas and Love [10] used a relatively simple volume equivalent
current method to reach a power attenuation coeflicient {or helical fibers. They
noted that the helical loss could be so high that it acts as an eflective cutoff

for that mode. In this work the bending loss of a circularly bent fiber for two
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orthogonal polarizations is derived, and is proven that the loss is independent of
polarization as reported earlier [11]. Also, we have analyzed the helically bent
fiber problem, and derived the bending loss formula by including the effect of the

torsion due to the twist of fiber [12].

The outline of the thesis is as follows. In Chapter 2, Volume Equivalent
Current Method is described. In Chapter 3, the analysis of step-profile planar
and circular waveguides is given. The weakly guiding waveguide fields are later
derived. In Chapter 4, loss in bent optical waveguides is examined using the
previously introduced volume equivalent current method. In this analysis, the
field of bent fiber 1s assumed to be equal to the undistorted field of the straight
fiber. This approximation is good for small radiation losses. As far as the bending
radius is large compared to the core radius, as in most practical bends, this
does not bring a serious limitation. Our analysis is done for two perpendicular
polarizations to check for the effects of polarization on the radiation loss of a
circularly bent fiber. In Chapter 5, the same method 1s applied to a helically
bent optical waveguide. Since torsion is present due to twist of fiber [9], we
included that effect in the analysis, and assumed the polarization to have a slip
related to the geometrical helix parameters of the fiber. Finally, conclusions are

given in Chapter 6.

In the analysis, a sinusoidally-varying time dependence with angular frequency

w (exp(jwt)) is assumed, and suppressed.



Chapter 2

VOLUME EQUIVALENT CURRENTS

The expressions for the electric and magnetic fields in the core and the cladding
regions of optical fibers are rigorously given by the solutions of source-free Max-

well’s Equations

— o Mo 1/2 -
VX B=—j <?> kI (2.1)
60 1z
VxH:J+]<T°> k. E (2.2)
Ho
V- nlE)=0 (2.3)
V-H=0 (2.4)

where €, and p, are the permittivity and the permeability of the free-space, respec-
tively, and k, = w,/l,€,. The refractive index is denoted by n, and throughout
this thesis, the core and the cladding refractive indices will be denoted by n,,
and ng, respectively. In almost all fiber calculations, ny is assumed constant,
and graded index fibers have a variation in n. depending on application. In
this work, the core index ng 1s assumed constant; in other words, we restrict
ourselves to step index fibers to simplify the analysis. However, for fibers used
in communication systems, this does not bring a major restriction, since the dif-
ference between n. and ny must be kept small to limit the dispersion (weakly

guiding fibers).
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The idea of the volume equivalent current method is to replace an inhomoge-
neous medium with a homogeneous medium having a volume current distribution.
For an inhomogeneous medium, the field pattern is shaped by the inhomogeneity
of the medium, whereas in the homogeneous case, by the source distribution. The
equivalent current distribution yields the same field value at every point in space

as the source-free inhomogencous medium.

To obtain the volume equivalent currents, write Eq.(2.2) in core and cladding

regions as follows

V x H=jYkn¥E |, 7>p
VxH=jYknilE |, r<p

Eamne N N
E\’) ‘L\D
(@2 TN

A

where Y, = \/€,/ 1, and p is the core radius.

In order to have a homogeneous medium as the equivalent current method
offers, we should remove the core, leaving a volume current distribution. This

procedure is equal to manipulating Eq.(2.6) as follows

VxH = jYk,n’E —jY,kn}E + jYokon} E (2.7)
= Jog+ jYokon E (2.8)

where
Jog = 1Y, ko(nl, = n)E (2.9)

is the equivalent current. If £ is known or approximated, then the radiation can

be calculated by using antenna theory as described briefly below.

From Eq.(2.4) one can deduce that there exists a vector A called the magnetic

vector potential, such that
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— 1 —
H=—VxA (2.10)

We can manipulate the Maxwell’s equations to get

il —jko g 1 ry
EZW{A‘*‘WV(V'A)} (211)

where A satisfies

(VP4 A= —p,J., (2.12)

The total radiated power P,,4, is related to A as follows

21.2 12 o on -
p,,, = SHohd (i) / / | &, x A | r?sin®6 d0 d¢ (2.13)
2 Ho o Jo

where c is the speed of light, r is the radial distance (r — o0), and &, is the unit

vector along r.

The solution of Eq.(2.12) is given as

A Fo 2= —ikongr .
A= ——Me™I%nd 2.14
4dmr ¢ ( )
M= [ T (et ey (2.15)

where r’, and r are the length from the origin to the source point and to the field

point, respectively (see Fig.2.1).

We deduce from Eqgs.(2.13), (2.14) and (2.15) that
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P(r.e.90)

Y
Figure 2.1: Coordinate of the source and the field points

kgncl Lo 1/2 p2r pn . 2) .
}M:@*?)AA“MIHMWMwwﬁ (2.16)

where My and M, are the components of M in spherical coordinates, and 4, and

a, are the unit vectors parallel to the §- and ¢-axis, respectively. That is

Mo = [ Jglt?) - dgemareon ay’ (2.17)

My = / ﬁq(1*’) - fgedtnaricosy (pt (2.18)
UI
where v’ is the source region, and « is defined in Fig. 2.1.

Now, we are able to find the total power radiated from any current distribu-
tion. First to find M using I£q.(2.15), and then the radiated power using Ikq.
(2.16).



Chapter 3

ANALYSIS OF DIELECTRIC
OPTICAL WAVEGUIDES

It is known that many propagating modes may exist in a metallic waveguide.
At a metallic boundary of a microwave guide, the continuity relationships of
the tangential £ and H fields favor the existence of only the transverse electric,
TFE, or the transverse magnetic, TM, modes. along the guide. No fields can exists
outside the guide. In the dielectric waveguide, the situation is more complex
due to the boundary condition. All six components (3 for E, and 3 for [:7) can
coexists for one mode. Those modes with strong £, field compared to H, are
designated as EH modes. Likewise, those with a stronger H, are called HE modes.
Occasionally, some TE and TM modes can also exist in cylindrical and planar
dielectric waveguides. In addition to the propagating modes, there are unwanted
radiation and evanescent modes. The propagating modes are associated with

discrete eigenvalues. So, they can be indexed as metallic waveguide modes.

3.1 FIELDS OF PLANAR WAVEGUIDES

The step-profile planar waveguide has a core of uniform refractive index ng, sur-
rounded by the cladding of uniform refractive index ny (see Fig.3.1). The cladding

1s assumed to be unbounded. This assumption introduces only very little error,
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X:S

n(x)

Figure 3.1: Section of a step-profile planar waveguide which is unbounded in the y
and z directions. The core halfwidth is p, and n(z) is the refractive index profile

but simplifies the analysis considerably. The profile is described as follows

co 0 <[zl <
n(z) = { " Slef<p (3.1)
Nel p < |zl

where p is the core half-width.

The total field in the waveguide can be thought of as the sum of modes
propagating along z-axis, and each having different propagation constant /3 as

follows

Further, we can decompose those fields into two components, one parallel to
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and the other orthogonal to the propagation axis, and call them longitudinal and

transversal components, respectively. Then we get

E($77 7Z) = (Eot + Eozéz)e_jﬁz (34)
H(z,y,2) = (o + Hog)e P (3.5)

where the subscript oz and ot are for the longitudinal and the transversal com-
ponents, respectively. The above representation of the fields satisfies the homo-

geneous veclor wave equations

{Vi+n%2— B} E,= —=(Vi~jB&.)Eo+ Viinn? (3.6)
{Vi+nk2 - 52} H, = {(V,—jBa,) x H,} x Vylnn? (3.7)

where the two dimensional operator V, is as defined in Appendix A.

All terms involving V;Inn? in Eqs.(3.6), and (3.7) vanish within the core and
the cladding, and for the weakly guiding case, the cladding and core indices are
very close to each other i.e. ng = ng, so that those terms drop out. This yields

the following scalar wave equation for the longitudinal components of E, and H

{Vitn?k2 -}y =0 (3.8)

then 1t 1s possible to find the transverse components using the longitudinal com-

ponents, .

Substituting Eq.(3.1) into the above equation, and referring to Appendix A

for the vector operators, we get

2
p* {C—;i—z--}-Uz}d):O for 0 <l|z|<p (3.9)

2
pz{zl(i—z —W2}¢=0 for p < |z| (3.10)
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where U and W are the core and the cladding modal parameters defined as

U= p(kinl, — )/ (3.11)
W= p(B—kInk)'/? (3.12)

Solutions which are bounded everywhere vary as sin(U:v/b) or cos(Uz/p) in

the core and as exp(—W/|z|/p) in the cladding.

The next step is to obtain transverse components, and apply the continuity

of tangential E and H at z = +p, which lead to the eigenvalue equations

W= UtanU (3.13)
W= —tanU (3.14)
n2W = niUtanU (3.15)
n2 W= —niUcotU (3.16)

for the even TE, odd TE, even TM, and odd TM modes, respectively.

Further manipulations yield the field components for step-profile, planar waveg-
uide. Here, we will give only the electric field components for even TE modes to
give an idea about the field distribution in slab waveguide. The complete set of
modal field components both for TE and TM modes for the step-profile planar

waveguide are given in Table 12-1 of [13].

cos(%)/ cos(U) 0<]|z|<p
By = (3.17)

e~ WIBl/eW p < |z

where U, W are found using the eigenvalue equation, and each solution represents

a mode.
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Figure 3.2: Section of a step-profile circular waveguide

3.2 FIELDS OF CIRCULAR WAVEGUIDES (FIBERS)

The refractive index profile of the circular waveguide is assumed as follows

Neo 0<r<p
n(r) = (3.18)
Nl p<r

where p is the core radius (see Fig. 3.2).
We will decompose those fields into two components, one parallel to and the

other orthogonal to the propagation axis and again call them the longitudinal

and the tranversal components, respectively. Then

E(z,y,2) = (Ey + Eog)eiP2 (3.19)
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H(z,y,2) = (Hy + H,,a,)e P2 (3.20)

where the subscript oz, and ot are for the longitudinal, and transversal compo-

nents, respectively.

If we substitute the field representation of Eqs.(3.19), and (3.20) into Maxwell’s
equations, and express Eot, and ﬁot in terms of F,,4,, and H,,a,, we obtain the

coupled equations for the longitudinal field components

2
{Vf + p} E,,— %V E,, - Vilnn?

1/2 |
=~ (%) ;ﬁaz  (ViH,, x Vilnn?)  (3.21)

712]\’,‘2

{vtz +P}1:oz— _p_o'thoz * Viln n?

1/2 [, 2
= <_/§_‘Z) ]\'07; ﬁéz . (vtEoz X Vt han) (322)

where

p=kn? -3 (3.23)

As is well known for metallic circular waveguides, there exist two independent
solutions, one with E,, = 0 everywhere and the other H,, = 0 everywhere. As
it is mentioned before, those solutions are called the transverse electric (TI),
and the transverse magnetic (TM), respectively. However, the V,Inn? terms are
to be kept nonzero if n., is not close enough to n., and so the Egs.(3.21), and
(3.22) relate E,,, and H,, so that we cannot have decoupled equations like we
had in the metallic circular waveguide case. Also, the modes of the diclectric
cylindrical waveguides are in general hybrid modes, that each mode has both
nonzero E,,, and H,, terms since the boundary conditions cannot be satisfied by

taking £,, = 0 solution nor by taking H,, = 0 solution individually.

To satisfy the boundary conditions at r = p, we choose the longitudinal

components as
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ABUT S P
v sin(ve)

Ku(WR) cos(vg)
A 7O _ 1< R
sin(vg)

and

BLUR { ~sin(vg) } 0<R<1

o) cos(ve)
H,, = (3.25)
B]‘;}’ Mp/‘ﬁ — sin(vé) <R
o(W) cos(ve)

where A and B are constants, R = r/p, v is a positive integer or zero,J,, and K,,,
defined in Appendix B, are the Bessél function of the first kind aud the modified
Bessel function of the second kind, respectively, and the upper term in the curly

brackets denotes the even mode where the lower term denotes the odd mode.

The transverse components can be found using the longitudinal components.
The complete set of modal field components both for TE and TM modes for step-
profile circular waveguide are given in Table 12-3 of [13]. Imposing the continuity
of the azimuthal components Fo4 and H,, at B = 1, we get two independent
equations. Using these two equations we obtain the ratio A/ B and the eigenvalue
equation of EH and HE modes for step-profile fiber. Those expressions are given
in the Appendix C.

3.3 FIELDS OF WEAKLY GUIDING FIBERS

The difference between the refractive indices of the core and the cladding re-
gions must be very small (less than %1) in practical fibers used in communica-
tions to keep the pulse dispersion small. These fibers are called weakly guiding
fibers. In a weakly guiding fiber, the index difference parameter A, defined as
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A = (n?, —n%)/2n?,, is small. Gloge [14], and Snyder et.al. [15] has shown that
in weakly guiding case, the combinations of hybrid modes have the field pattern
resembling a linearly polarized stucture at least for the lower order modes. Those
modes are named linearly polarized LP,,, modes, the fundamental HE;; mode
is named the LP,, mode, the TFE;;, TMy, and HEs; combination mode as the
LP;; mode, etc. Due to relative simplicity of this notation, it has been universally

accepted for mode designation of small A fiber.

To determine the expressions for LP modes, we will again decompose the fields

into the transverse and the longitudinal components.

E(z,y,z) = E,(z,y)e P (3.26)
= (By+ Ené,)e i (3.27)
I_{‘("Bayaz) = 40(wvy)e_jﬁz (328)
= (Hy+ H,4,)e P (3.29)

The transverse components of LP modes can be written as (transverse electric

field is chosen in y direction)

Zo[1eo 0<R<1
E, = H, (3.30)
Zo [ 1<R

Jo(UR) { cos(ve) } 0<R<1

o) sin(vo)

- L, (3.31)
worm [ o) |
Ko(W) sin(ve) -

where Z, = Y71 is the impedance of the free space, I, is the electric field strength

at the core-cladding boundary.
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The longitudinal components can be obtained from the following equations

o oI 1/n? 0<R<1
J&o Olly ‘
Ez = - /Co a—y (332)
1/71(2:1 ISR
J OF
‘ H, = _ﬁa_f (3.33)

This yields

L—’*—i——l‘]“]:(g)R sin(v + 1)¢ + L—(—lJ"j:(g)R sin(v — 1)¢

Nco Nco

.
&
N

B = okp (3.34)
%I\';{f—(—:(‘;}‘,/)@l sin(v +1)¢ — %1\«;_&—:((;‘/’_)@ sin(v — 1)¢
B Uﬂjﬁ%{g)ﬁ cos(v + 1) — UJ—"J“—UI—((I% cos(v — 1)¢
J Ly .
B 3.35
5 2k, Z,p (3.35)

WK#U,((V&?,/)R) cos(v +1)¢ + {,VK;_{—UI((;‘,’_)RI cos(v — 1)¢

The previous field values in Eq.(3.31) can be written [14] in cylindrical coor-

dinates to match the fields at the interface. We then have

Ju(UR) 0<R<«1

E Ju(U)
FE,= 7“(003(1) +1)¢ + cos(v — 1)¢) (3.36)
s <
ne 2 g < p <1
Ev v(U)
H¢:-—2Z (sin(v + 1)¢ — sin(v — 1)¢) (3.37)

n Ky(WR) 1< R

cl I\"u(w) =
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The boundary conditions on the core-cladding interface yields the following

eigenvalue equation for the linearly polarized LP,,, modes.

A Joa ) _ s (Komr (W)
U(m-)_iw( X, ) (3.38)

If we did the above analysis taking the transverse electric field in z direction,
we would get the same eigenvalue equation. So, there are two orthogonal polar-
izations of the same mode. This is true for all LP modes, namely each LP,,, mode
has two orthogonal polarizations (degeneracy). They have the same propagation

constant, and they occur simultaneously.

Even though the eigenvalue equation for the LP,,, are obtained from the con-
tinuity of the axial field components, these axial components are small compared
to the transverse components for the weakly guiding case. So in practice all LP,,,
modes are taken as TEM modes with no axial components, but with different

propagation constants.



Chapter 4

LOSS IN BENT FIBERS

It is well understood that a bent fiber radiates energy. It has been assumed
that this radiation is independent of the polarization for large bend radius [10]
[6]. This fact can be illustrated by the equivalent current method discussed
previously. If this method is used, the problem reduces to find the radiation from
an antenna in homogeneous medium. In previous works, the field is assumed to
be linearly polarized in the direction perpendicular to the plane of the bend. In
the following, we will analyze the loss for two orthogonal polarizations, one with
polarization perpendicular to the plane of bend and the other parallel to the plane
of bend. They will be called as the perpendicular and the parallel polarization
cases, respectively. Since a bent fiber can be thought of as a segment of a ring, we
will assume the dielectric antenna to be a closed loop of radius R, for simplicity
(see Fig. 4.1). If we denote the modal power at some reference point on the axis
of the bent fiber by P(0), the modal power at a point on the axis which is L

meters away from the reference point is given as
P(L) = P(0)e* (4.1)

where v is called the power attenuation coefficient. For small power attenuation
coefficient and so for large bending radius (see Appendix D for the derivation of

the valid region for R./p and v), Eq.(4.1) approximately equals to

P(L) = P(0)(1 —yL) (4.2)

19
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so the power attenuation coeflicient is
P(0) — P(L
LP(0)
Then the power attenuation coefficient of a circularly bent fiber with a bend
radius R, can be found using
. Prad
27 R.P(0)

where the radiated power (P,.4) is assumed to be so small that the fields of the

07 (4.4)

bent fiber are approximately equal to that of the straight fiber. Obviously, this
approximation gets better as the radius of curvature of the bend (R.) increases.
To get a feeling of the validity of this approximation, we can find the value of R.
for which the radiated power is smaller than 1% of the power carried by the core.

So

Prad
Feo

where P, is the power carried by the core and it can be derived using

< 0.01 (4.5)

2 prp - . , ,
PCOZA /O(EXH)-azrda dr (4.6)
where
= . JJ(UR)
E =3, 20 cos(ve) (4.7)
- a2 9% (4.8)

a, ——
YkoneoZo Ox

where z, y, z coordinates are as defined in Iig. 3.2.

Substituting q.(4.46) into Eq.(4.5), we get

w2 (RN 2, V¥ n 4 R, AW?
—_ = 2 — —=== <0.01 4.9
32 (p) was/er”’p( 3p V2 )—00 (4.9)
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Then R, satisfies

R\ 4R, AW3\ _ 0.32 P, W32 A |
— exp | —=— < — — (4.10)
p 3p V2 a2 Z, V2 ng
and
Prad
9 < m—a‘ (411)

If we take P,,q/P., = 0.01 then the valid region bound for v is

0.01
27 R,

7 < (4.12)

To get a practical value for R, and v let us take

Neo = 1.560 A, = 850nm
neg = 1.557 p=oum

so that

V =357 U=1.857
A =0.006 W =3.055

Then we get

R. = 0.01lm
v =0.16

So, the approximation employed here introduces very little error for bend radii

down to lem.
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4.1 Perpendicular Polarization Case

To find the radiation due to an equivalent current distribution (see Fig 4.2), we
need the electric field only in the core region since the equivalent current is zero
in the cladding. For the weakly guiding straight fiber, the electric field for each

mode is given in I5q.(3.31).

If the loss is small and also the radius of the bend R, is much larger than the
core radius p, we can assume the field of the bent fiber to be approximately equal
to the core field distribution of the straight fiber (see Appendix D), so that the
field 1s

E, = F,(R)cos(la')e™ 7P (4.13)

where s is the length along the fiber, o/ is shown in Iig. 3.2, and [,(R) is defined

as

Ju(UR)
Jo(U)

F,(R) = (4.14)

Using the equivalent current method, and Eqgs.(2.9) and (4.13) we can find

the volume current distribution to be

Jog = §Yoko(n2 — n)F,(R) cos(la’)e™3P4, (4.15)

To find the radiation, we need to find the vector M, to substitute this value
into Eq.(2.16).
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Iigure 4.1: The circularly bent fiber
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!

_ éz/J(T/)e—jkonclr'cosvd?./ (4.16)

= a, /Op /027r /OijOko(nga —n2)F,(R) cos(la)

e PR HikonaRecosy g R dg' do! (4.17)
where the primed and unprimed coordinates are for the source and field points
(see Fig. 2.1), respectively, and the relationship cosy = sinf cos(0' — 8) follows
from geometry, and the integration over R is in [0,1], because the volume cur-
rent exists only in the core region. The exponent exp(—jBR.¢') is the phase
difference of the current sources due to the transmission delay, and the exponent

exp(7kone Ko cos y) is the phase differences of the contributions of the sources at
the field point.

Integration over R and o leads to

Alz — IcRc /21r e—jﬁRc¢’+jkoncchsin0cos(¢’—¢) dd)/ (4]8)
0
where

2w
I, = jY ko (n2, — n) /p/ Fy(R)cos(la') dR do’ (4.19)
o Jo

Now, we can find M, using the definition of Bessel function

2w b 47 /
I(e) = o [T emittirees0) ug (4.20)
2mr Jo
to be equal to
M = a,2rI,R.J,(kong R, sin 0) (4.21)

with v = BR..
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X

Figure 4.2: Circular fiber, perpendicular polarization case

Now, the radiated power can be found by substituting Eq.(4.21) into Eq.(2.16),
and this leads to [11]

Py = Ky /2”/"11\/1 Psin0 do do (4.92)
rad — 327{‘2 o 0 0 g Sl [¢ [« kosd
= TRnhZ, R / Jo(konaResin0) sin®0 do (4.23)

4 0

4.2 Parallel Polarization Case

In this case, only the polarization of the field is different(see Fig. 4.3).

For the horizontal polarization case, the equivalent current is
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Figure 4.3: Chircular fiber, parallel polarization case

Jog = §Yoko(n2 — n2)F,(R) cos(la)e P4, 4.24)
q co el

where &,s is the unit vector away from the center of the curvature of the bend.

Now, in the following part, we will find My and M, to substitute them into

Eq.(2.16). Writing the equivalent current in cartesian coordinates

~~
—
8]
=t

~

j‘;q = |']—:3q| COs ¢Iél + |l]_;q' Sin ¢,éy

lead to

J_;q -y = ]J:q|(cos @' cos ¢ cos 0 + sin ¢’ sin ¢ cos §) (4.26)
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= {j;q| cos 6 cos(¢' — @) (4.27)
and
J-;q -ay = ]J_;q|(— sin ¢ cos ¢’ + cos ¢ sin ¢) (4.28)
= | J.,|sin(¢’' — @) (4.29)
So that

— 2 bog ) ] i
M = / 7r|JquRc8_JﬂRc¢'+Jk0”cchsmocos(¢/_¢)
0

(ap cos O cos(¢' — @) + a4 sin(¢’ — ¢)) d¢’  (4.30)

The approximate solution to the above integral can be found using the sta-

tionary phase method.

Let’s find the stationary phase point(s) if exist(s).

% exp(—jBR.$ — jkonaRcsinb cos(¢' — ¢)) =0 (4.31)
 sin(# = ¢) = o = /i(0) (4.32)
= cosld - 0)= 1~ (= 20 (1.33)

Then we have

- 2 . . . .
Alz/ |JEI]Rce—]ﬁRctp’—jkondRcsm0cos(¢’——¢)
Vst
0

(4905 0f:(0) + g fo(0))dd (L34)
= 27R.I.J,(z) (4.35)

where z = k,ng R, sind.
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Since My and My are known, we can {ind the radiated power to be in the form

P = —zﬂ 27, Rzﬂ/ / J2(2)(cos” OfF(0) + £3(0))sin6 d0 dg (4.36)
= —kg tZ, R212/0 JE(2)(cos® 0 f(0) + f2(0))sinf dO (4.37)
where the functions fi, and f; are defined in Eq.(4.32), and Eq.(4.33).

If we use Debye’s approximate value for the Bessel function in the integrand,

we get
_ 1 2 2 ) T Sin QQ(O) S(e) y

Froa = gKin ZoRe1? | 7= kg, st oyii2® (4.38)

where

2kongR. [ B g 3/2
AS' = — ‘.
(9) =3 o0 (LZn sin 0) (4.39)
and

Q(6) = (cos® 0 f2(0) + f2(0)) (4.40)

Now, we can search for a stationary phase point of the above integral

05(0)
— =0 1.41
90 (441)

2 1/2 2
3 P2 IH a2
S _Psin2g— . =0 (4.42
<kgnc, sin 0) ( 5 Sin 9 kit sin 0) 0 (4.42)
ﬂ2

= sin’0 = Em ] (4.43)

ocl
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Therefore the stationary phase point is very close to 7/2, so that § = /2 can
be substituted into the coeflicient function of the Bessel function in the integrand.

Then we get

Q0) = 1 (4.44)

As a result, the radiated power for the horizontal polarization is the same as

in the vertical polarization case [13].

Reio 2,2 [T @ .
Prad = ?konchoIc /0 ﬁ"’ — ICZ df (44:.})

2 <in2p/\1/2
n? sin® 6)Y/

The final expression of the radiated power is [13]

a2 (RN V2 on 4 R, AW?
p="_ (% AL P B (4.46)
i 32(/}) war A “P\T3 T v VAR
where
A o Dee TN (4.47)

n’CO

and V,W are the fiber and the cladding parameters respectively.

We see that the radiated powers are same for both polarizations so that we
can say that the power loss of planar bends is independent of the polarization of

the propagated field.

The power attenuation coefficient for both polarizations can be found [10]

using the calculated powers that are radiated from the equivalent currents. That

is given as follows
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2 pR._ W

2 U2
7= L () TR T | 09

where U is the core parameter, K is the modified Bessel function, and e, = 2 if

v =0, and e, =1 otherwise.



Chapter 5

LOSS IN HELICAL FIBERS

In this part, we will use the same method to examine the loss mechanism due
to nonplanar bends. As an example which is of practical interest, we consider a
helical fiber. Helical fibers are used for measurement of high intensity currents
using the Faraday rotation. In the case of helical fiber(see I'ig. 5.1), the radiation
is due to bending loss and helical loss [10]. If a multimode fiber is bent into a helix,
the radiation acts as an effective cutoff for modes [10]. In the previous analyses,
the polarization is assumed to stay parallel to a rectangular coordinate axis which
is invariant with respect to the helical path. However in reality, it is well known
that the polarization slips back due to the torsion of the helix [9]. So, one needs
to include this rotation of polarization in the radiation calculations. Here, we
perform this analysis, and observe that the total radiation is independent of the

polarization slip.

The helix considered has a pitch P, and offset @) as in Fig. 5.1. The helix
angle 0, is defined by, cos 8, = P/(P?+ (27())?)*/2. The helix axis coincides with

the z’-axis, 0, and and ¢ are the spherical angles.

Let « denote the speed of the rotation of polarization, then the equivalent

current is given by

—

Jeqg =[Gz cos ad’ + @, sin ad']p (5.1)
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Figure 5.1: Helically bent fiber

in the core region with x being the magnitude of the equivalent current.

The vector potential becomes
M = a,M, + a,M, (5.2)

where

L B . , 2m 1
Mo = #/ C_J[coso,,_kd cos ]z’ ~jkyQ smOcos(tﬁ—%f[z') C.OS(O'Z_,, z ) dz’ (33)
y -L sin(a2*2')
p

To get the radiation from a helix of infinite length, L must be taken to infinity.

Substituting

M, = —M;sing+ M,cos¢ (5.4)
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My = M;jcos¢cosl + M,sin qS sin

we obtaln

T2
P.i = 0/0 / [| M| (sin? ¢ + cos® ¢ cos® §)
0
+{ M, |*(cos® ¢ + cos® 0 sin? ¢)
+| M| | M, | sin ¢ cos ¢(cos® § — 1)} sind db d¢

Using the foilowing decompositions

27T no_ 1 jGZ—Z' _]0(2_7521
cos(apz)_z(e +e77%% ")
2 1, q2my '
Sln(alz'\ = —(°F 7 — 75
p 2

Eq.(5.3) can be written as

M:c = Alxa + be
M, = My, — My

where
. L . . .
]\/Ixtg _ %/ e_J[Espo_P—kCI cosO:{:aZI—)‘]z’e—J}chschos(zj)—-%z’)dz/
-L
and
L .
M o= ﬁ/ e_J[Jfg—p—kcz cos&:pa%;’[]z'e—jdesinOcos(d)—?;}‘z’)dzl
Vo o 27 J-L

33

(5.6)

——~
U
g

~

(55)

(5.9)
(5.10)
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Using the relation

g—izcost _ )+ 2 Z V"I (2) cos(mB) (5.13)
m==1
we have
M,s = ’2‘[ Jo(kaQsin0)F, 3 +2 5 ()" Jn(kaQsin0)F, 5] (5.14)
m=1
I ad ym :
Myg = 2][ 0( le sm@)Foz + 27;1 Jm lesnle)Fm%] (515)

L =Lk cosf+ta?l | 2
F oo = / e ][C“‘"P het cos 0 P] cos [771(@5—%2’)] dz' form >0 (5.16)

-L
(5.17)
- lejmd, /L e—-j [;%—klc050ﬂ:a2§_21g1}zldz/
2
osf+a2E — 7"'7\' '
—M/ Al s )
Using
L ., L
/ e~Jaz ClZI = 9], ‘Sln( ) (5-19)
-L al,
we have
olm 2mm
F_ o« = Lejmqb sin [L(cosa — kgcosf £ = 'y + —p—)]
m § L(;’ga— Fut cos 0 + 22z 4 )
. Sin[L —_ ]‘*cl cos ) + 0127|' 2mm ]
+ Le—deJ (cosﬁ 2 » ) (520)
L(cosa — k. cosf £+ &<t — _%ﬂ)
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FEach term has a maximum at those points where the denominator is zero.
Neglecting the cross terms, the square of each term has strong contribution for a

discrete set of values of m.

2 .y L
|NI$|2:%—L2J3(kc1Q sin 6) [sm [A] | sin [B]}

(AP B

gy , sin?[C]  sin®[D] = sin®[E]  sin®[F]
22 S T (k@ sin 0) | P 21
s & Tatraquind) [+ B4 Sl ] s
where
A=1L ey c0s 0 — a2 5.22
= (cos 7, acosl — a » ) (5.22)
B = IL( b _ ke cos 0 + a_Zz) (5.23)
cos 0, P
2 2
C = L(———'B— — kg cosf — a4 -~-7:,—z—7£) (5.24)
cos 0, P P
D= L(—P— _ kycost + o 2% 4 20Ty (5.25)
"cos §, P P ‘
E = L(-P— — kycosd - o2F — 20T (5.26)
cos U, p P ‘
B 2r  2mw .
F= — kgcosf + a— — 5.27
L(cos 7 1cosf + a " » ) (5.27)
Since the speed « is given by [9]
a = cos(0,) (5.28)

for vanishingly small fiber thickness compared with the radius of the curvature,
some of the sinc functions will have peaks at imaginary values of 0. These con-

tributions can be neglected and |M,|? is written as

) )
LI sin”[A]
Mel* = T L5 (kaQsind) [—[A]z }
m=72na:t . Sin2 E Si112 F
+opRL? L ng(kle sin 0) [ [E§2 ] + [F][2 ]] - (5.29)

M=Mmin
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where m are values for which

Jé) a2r  2mmw
4 Om = - 5.
o8 ke cosd, + pke pke (5.30)

yields a value of 0, between 0 and w. The expression for |M,|? is exactly the

same, in other words

|M,|* = |Ma|* = |M]|* (5.31)

Substituting these in Eq.(5.6), and noting that |M;|? and |M,|? are indepen-
dent of ¢ we get

Prps = 270 / IM|?(1 + cos?8) sin 0 df (5.32)
0
Defining
{) &
g = L( LA ke cosf F e ZM) (5.33)
cos O, P p
dgs = Lkgsinf do (5.34)

The integral in Eq.(5.32) becomes

Prog = 2mop®L? ZJz (ka@ sin0,,)(1 + cos® 0 )Li
¥ sin sin’(q_ .
[ g )]
2 s z q

where z* and z~ correspond to the values of g+ when m goes from m,,;, L0 Mipas.

If we now increase L indefinitely, the integrals have value 7 ;so0

4
Proa = — = ”“ S J2 (k@ sin 0,0 )(1 + cos? 0,,) (5.36)

m

This expression is exactly the same as found in previous analyses (Eq.A17 of

[10]) which neglected the rotation of the direction of polarization.



Chapter 6

CONCLUSIONS

Using the volume equivalent current method, the bending loss in a fiber is found
to be independent of polarization for weakly guiding case. Any polarization can
be decomposed into the weighted sum of the two orthogonal polarizatious, so
one can add the individual contributions to the power radiated from the two

orthogonal components, thus the above result is valid for any polarization.

Similar to the previous studies, the bend radius is assumed to be very large
compared to the radius of the core. This assumption simplifies the analysis con-
siderably since by this way one can approximate the field distribution of the bent
fiber by that of the straight fiber. This is equivalent to taking the radiated power
small, compared to the power carried by the core. Based on this assumption, a
bound on the bend radius and the attenuation constant is derived for the validity

of the approximation.

Similarly the bending loss is found for a helically bent fiber. The polarization
slip due to the torsion is also taken into account in the analysis. It is found
that the bending loss for a helical fiber is independent of polarization even in the

presence of the polarization slip.

For further work, the above results for the helically bent fiber can be general-
1ized for multimode fiber. Also, some other practical problems can be solved, like

the design of a helical coupler using the volume equivalent current method.
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Appendix A

Scalar Operators
U = 9¥(e,y,2)

V¥ = ax%—w‘lf +ayaa—§’
SRR A YL

T or *r O

*w 9w

Jz?  Oy?

10 [ 00, 10°0

ror {a—} g

Vi

i

Vector Operators

- 04, OA
\V/ - IF 7
4 oz Oy
_ 10y 104,
= AT g
O KRR
Vt X At = Q, { ax - ay }
_j10 194,
Az {r Or(7 Ag) = r 0¢

(A.G)

(A7)

(A 8)

(A.9)

(A.10)



Appendix B

The Bessel function of the first kind is defined as

1 27 ,
In(z) = 27rjm/o e™7*<%% cos(m0)do (B.1)
. \E_ am jzcos g o3
= 27r/o e cos(m0)dl (B.2)

The modified Bessel function of the second kind is defined as

KU(Z):/O e_zc°51’tcosll(vt)clt (B.3)
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Appendix C

Eigenvalue equations for step profile circular fiber, for H E,,,, and EH,,, modes

JU) | K,(W) JW) oy KW\ (vB NV N

for T Ey,, modes

Jl(U) + I(l(I/V)
Udo(U) " WEo(W)

=0 (C.2)

and for T'My,, modes

n2 L(U)  nHK (W)
UIo(0) T WEo(W)

=0 (C.3)

where m is the m’th root.
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