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ABSTRACT

POSE SENTENCES: A NEW REPRESENTATION FOR
UNDERSTANDING HUMAN ACTIONS

Kardelen Hatun

M.S. in Computer Engineering

Supervisor: Assist. Dr. Pınar Duygulu

August, 2008

In this thesis we address the problem of human action recognition from video se-

quences. Our main contribution to the literature is the compact use of poses while

representing videos and most importantly considering actions as pose-sentences

and exploit string matching approaches for classification. We focus on single ac-

tions, where the actor performs one simple action through the video sequence. We

represent actions as documents consisting of words, where a word refers to a pose

in a frame. We think pose information is a powerful source for describing actions.

In search of a robust pose descriptor, we make use of four well-known techniques

to extract pose information, Histogram of Oriented Gradients, k-Adjacent Seg-

ments, Shape Context and Optical Flow Histograms. To represent actions, first

we generate a codebook which will act as a dictionary for our action dataset.

Action sequences are then represented using a sequence of pose-words, as pose-

sentences. The similarity between two actions are obtained using string matching

techniques. We also apply a bag-of-poses approach for comparison purposes and

show the superiority of pose-sentences. We test the efficiency of our method with

two widely used benchmark datasets, Weizmann and KTH. We show that pose is

indeed very descriptive while representing actions, and without having to exam-

ine complex dynamic characteristics of actions, one can apply simple techniques

with equally successful results.

Keywords: Human motion, action recognition, string matching, bag-of-words.
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ÖZET

POZ CÜMLELERİ: İNSAN AKTİVİTLERİNİ
ANLAMAK İÇİN YENİ BİR TANIM

Kardelen Hatun

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Pınar Duygulu

Ağustos, 2008

Bu tezde, video bilgisinden insan hareketlerini tanımaya yönelik bir çalışma

sunulmaktadır. Literatüre ana katkılarımız, videoları temsil ederken poz bil-

gisinin verimli kullanılması ve en önemlisi insan hareketlerinin poz cümleleri

olarak değerlendirilmesi ve bu cümlelerin dizgi eşleme yöntemlerinden yararla-

narak sınıflandırılmasıdır. Tek bir aktörün tek bir hareket gerçekleştirdiği video-

lar üzerine odaklanıyoruz. Her bir sözcük bir poza denk gelecek biçimde, ak-

tiviteleri sözcükler içeren dökümanlar olarak temsil ediyoruz. Poz bilgisinin

hareketi tanımlarken çok güçlü bir kaynak olduğunu düşünmekteyiz. Pozları en

iyi şekilde betimlemek için literatürde başarılı sonuçlar vermiş dört farklı yöntemi

kullanıyoruz; gradyan yön histogramları, k-bitişik kesim, şekil konteksti ve optik

akım histogramları. Hareketleri temsil etmek amacıyla, ilk önce aktivite veri-

tabanımız için sözlük niteliği taşıyacak bir kod rehberi oluşturuyoruz. Hareket-

leri poz sözcüğü dizileri, poz cümleleri olarak temsil ediyoruz. Aktiviteler arası

benzerlikeri bulurken, dizgi eşleştirme yöntemlerinden yararlanıyoruz. Ayrıca

poz kümeleri yöntemini de karşılaştırma amaçlı uygulamaktayız ve poz cümleleri

tekniğimizin üstün olduğu göstermekteyiz. Metodumuzun verimini ölçmek için

sıklıkla kullanılan iki video veritabanı, Weizmann ve KTH, üzerinde testlerimizi

gerçekleştirdik. Pozun hareket tanımında çok açıklayıcı olduğunu ve hareketlerin

karışık dinamiklerini inceleyen yöntemler yerine, daha basit tekniklerle de başarılı

sonuçlar alınabileceğini göstermekteyiz.

Anahtar sözcükler : İnsan hareketi, hareket tanıma, dizgi eşleştirme, bag-of-words.
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Chapter 1

Introduction

Understanding human motion from a video sequence is a widely studied yet still

challenging problem of computer vision. There are many application areas which

can make use of an action recognition system including security surveillance,

human computer interaction and social analysis. Considering the vast amount of

video data accumulated every day, processing hundreds hours of video by hand

is not possible. We need automated systems to aid us in this quest.

However, building automatic action recognition systems is difficult due to

many facts. First of all, the area in motion should be found as the initial step.

However, most of the current methods suffer from working only on limited con-

ditions, causing the action recognition systems to start with an imperfect input.

Secondly, even for simple actions, each person has his/her style in performing

actions resulting in large variations. Also, creating an action recognition system

robust to environmental factors; such as complex backgrounds or illumination

changes, is very challenging. Last but not least, it is an open problem to build

recognition systems that can work for everyday activities where the actions are

random and complex.

Representation of an action is a crucial point for recognition. Similar to

phonemes for speech recognition, and textons for texture analysis, one way to

represent actions is to use primitive action units. However, building of primitives,

1



CHAPTER 1. INTRODUCTION 2

and representing the actions as collection of these primitives is critical.

The use of codebook representations in object and scene recognition, which

are usually referred as visual words, also lead some studies in action recognition

to use codebooks for building primitive action units. In some recent approaches,

spatio-temporal codebooks, usually as generalization of 2D interest points, are

proposed as primitive action units.

We argue that pose is a very important cue for understanding actions. There-

fore, in this study, we used poses as the primitive action units and consider actions

as collections of poses. We use the observation that, pose is essentially a shape,

and we describe poses using shape features extracted from single action frames.

Then, we quantize these features to obtain a pose codebook. We then represent

the actions in the form of primitives from the codebook, which we refer as pose

words.

The other crucial point is how to use the collection of primitives to represent

action sequences. A recent direction is to use bag-of-words approaches, where the

action sequences are represented in an unordered collection, referred as a bag, of

primitives. However, such an approach disregards the temporal characteristics of

actions. For example, consider the actions running and walking which are very

similar in terms of poses. Even though sets of poses are similar, the sequence of

these poses would be different since they have different temporal characteristics.

If we incorporate sequence information with a good pose descriptor then we can

build a successful action recognition system which will not confuse walking and

running.

In this study, we capture the temporal characteristics by representing actions

as sequences of poses, which we refer as pose sentences. We then propose a novel

action recognition method based on the matching of pose sentences as if they are

strings.

Our overall method consists of the following steps. First we extract pose

shape information from each frame of an action, then we quantize these features
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to obtain our primitives, which are then used to code actions and obtain pose-

word representation. After converting each action to this representation, actions

are matched as strings, preserving their temporal information.

To obtain pose shape information in the best way possible, we utilize three

shape descriptors which have shown successful results in the shape matching area,

from simple to complex: Histogram of Oriented Gradients [9], Shape Context [1],

k-Adjacent Segments [13]. Although we consider action as sequence of poses, we

think transitions between poses can also be very descriptive. To investigate this

idea, we utilize an optical flow pose descriptor[18], which describes the transitive

characteristics in-between poses.

For matching pose-word representations we utilize two string matching meth-

ods Edit Distance [24] and Longest Common Subsequence (LCS) [16]. We also

apply the bag-of-words approach for comparison purposes and present experi-

mental results regarding the effectiveness of these three methods.

We present two important contributions with this thesis; the first one is the use

of pose for representing an action. Instead of examining complex action dynamics,

we make use of shapes of poses, which is a powerful source of information for

understanding actions. Our second contribution is representation and matching

of action sequences by string matching techniques. With this method we also

use temporal information while classifying actions, which is a very important cue

when describing an action.

1.1 Organization of the Thesis

In Chapter 2 we present a literature review on action recognition. We mention

well-known studies and studies that are similar to ours.

In Chapter 3 we explain the methods we use in detail. We first give an overall

description of our system, then we explain the pose descriptor used in the system.

Finally we talk about our matching approach and give algorithms. In Chapter 4
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we present our experimental results and we conclude with a discussion in Chapter

5.

In Chapter 5 we give an overall discussion of our system and conclude the

thesis. Future work is also a part of this chapter.



Chapter 2

Related Studies

Action recognition became a very popular research topic over the last decade and

the literature on the subject is broad (see [15, 17, 22] for recent surveys). In this

chapter, we first discuss the related studies based on action representations. Then

we present the studies that use bag-of-words representation in detail. Finally, we

will review other studies that view action recognition as a sequence matching

problem.

2.1 Action Representations

The studies in action recognition can be grouped in terms of how they represent

an action: in some group of studies the entire action sequence is combined into

a single spatio-temporal representation [2, 3, 4, 26], while in another group the

actions are represented in the form of basic action units or action primitives

[5, 7, 8, 14, 20, 30].

Spatio-temporal features are used to recognize actions in many studies. In

[3], actions are recognized using spatio-temporal patterns. Bobick and Wilson

[4] presented a gesture recognition system, which makes use of a state based

method, representing gestures as strings of observation segments. [26] presents

5



CHAPTER 2. RELATED STUDIES 6

a new optical flow based motion descriptor using spatio temporal volumes. A

well-known study by Blank et al. [2] models actions as space-time volumes.

Action primitives are used to describe a temporal sequence by using few time

instances. In [14] for recognition only a few primitives are used as opposed to using

the entire sequence (possibly divided into sub-trajectories). This study focuses

on one-arm gestures. Here each primitive is classified using Mahalanobis distance

and converted into a string. The actions are represented by these collections

of strings and matched using edit distance as comparison metric. [20] presents a

data-driven method for deriving perceptual-motor action and behavior primitives

from human motion capture data. They separate the body parts into significant

kinematic substructures. The data for these substructures are then clustered,

forming action units. The action units arising from the intrinsic embedding and

clustering are generalized into action primitives using motion interpolation. Other

methods include using movemes [5], atomic movements[8], states [7] and dynamic

instants [30] as action primitives.

2.2 Bag-of-Words Approaches

The bag-of-words approach is originally introduced in information retrieval area,

to represent text documents as an unordered distribution of code-words and be-

came popular in computer vision with object [10, 32, 33] and scene categorization

area [6, 35].

In recent years the bag-of-words approach has been employed by many action

recognition studies. In the application of this approach in action recognition,

actions are represented as a collection of visual words which are the codebooks

of spatio-temporal features.

In [23] Laptev et al. introduced space-time interest points and in [31] they

used it to recognize action using Support Vector Machines (SVM). Dollar et

al. use histogram of cuboids to recognize actions [12], whereas Niebles et al.

used cuboids with probabilistic Latent Semantic Analysis (pLSA) to create a
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unsupervised system [27]. Wong et al.’s study involved a pLSA approach with an

implicit shape model to understand actions from spatio-temporal codebooks. In

[36] actions are represented as histograms of code-words, and recognized with a

novel method Semi-Latent Dirichlet Allocation (SLDA). In this study, similar to

ours, poses/frames are used as code-words unlike other studies which often use

primitives within a frame. k-medoids clustering is used for codebook generation.

Actions are converted into bag-of-words representation and classified using SLDA.

In [34], Thurau uses Histogram of Oriented Gradients (HOG) to track humans

and uses the same feature to describe poses. To classify actions, bag-of-ngrams

are used as behavior histograms.

2.3 Sequence Matching Approaches

Using sequence matching techniques in action recognition is a new technique; the

authors of these studies stress the importance of ordering in an action.

[28] proposes a subsequence mining approach which is an extension of

PrefixSpan([29]) subsequence mining algorithm with LPBoost ([11]). In this

study Dollar’s spatio-temporal detector is used to find interesting points within a

sequence [12]. The feature vector provided by this method is a 3211-dimensional

vector, which is then reduced to a 25-dimensional vector using PCA. The code

book generation is done via k-means clustering algorithm. The coded video se-

quence is then binned to overlapping subsequences. For classification LPBoost

algorithm is used to construct the classification function as a linear combination

of weak hypothesis functions. To find the maximum-gain for the hypothesis func-

tions Nowozin et al. propose a generalization of PrefixSpan called Discriminative

Prefix Span (DPrefixSpan). The methods presented in this study are sophisti-

cated methods that need to adopt optimization techniques.
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2.4 Discussion

Our approach have many advantages over similar approaches. In [36], Wang et

al. used bag-of-words representation to represent actions, but this causes the

loss of temporal characteristics. We use string matching techniques which mind

the ordering of poses. Also our classification scheme is simple, yet we obtain

satisfactory results, on the other hand Wang et al. use an adapted version of

Latent Dirichlet Allocation as the classification model.

Another similar study by Thurau [34], uses Histogram of Oriented Gradi-

ents(HoG) as the pose descriptor. For representing actions this study exploits

n-grams, and each action is described as histograms of n-grams. This is a simple

representation which can lose very important information about the action se-

quence. In our study, more complex string matching methods are used giving us

a more accurate comparison among actions. Our approach is a sequence match-

ing approach, but unlike the studies listed above, we use very simple techniques

for matching actions.



Chapter 3

Pose Sentences

In this chapter, we describe the details of our proposed approach for action recog-

nition based on a new representation for actions. In the following sections, we

first present the overview of the proposed approach and then give detailed infor-

mation about the generation of pose-words and the matching of pose-sentences

for recognition.

3.1 Approach

In our proposed representation, each frame in an action sequence is coded as a

pose-word, meaning each pose in a frame is replaced by a representative pose.

Then the entire sequence is represented as a pose-sentence formed by a sequence

of pose-words. By this way, every video sequence is represented with the same

poseword dictionary. Then each video’s coded representation, in the form of

pose sentences, is compared with the representation of a query video to find

the matching action. The overall approach is summarized in Figure 3.1. In the

following paragraph, formal overview of the process is explained.

Each video Fi = fi1, fi2, . . . , fiN is a sequence of frames fij, j ∈ {1 . . . N},
where N is the number of frames in the F th

i video. Then all frames in the set of

9
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Figure 3.1: An overall view of our system

all videos, F1, F2, . . . , FL, where L is the number of videos in the dataset, goes

through a feature extraction process to represent the poses in each frame. All of

the extracted features, that is pose descriptors, which now represent frames in

the data set are vector quantized to form a codebook of poses; P = {p1 . . . pK},
where K, is the number of clusters. The clustering algorithm is applied to a

frame-by-frame similarity matrix S. The entries of this matrix are calculated by

using the distance corresponding to each feature type. After codebook generation

each frame is coded with a pose-word ain corresponding to one of pk. The coded

sequence is then represented as Ai = ai1, ai2, . . . , aiN . Following this step every

frame in an action sequence is represented pose-word. Than the entire sequence is

represented as a pose-sentence consisting of a sequence of pose-words, which is the

coded representation of the features extracted from the frames. After obtaining

the pose-word representations for each action in the dataset, we perform matching

between pose-sentences.

The step-by-step process is illustrated in Figure 3.2.Following sections give

the details of our pose-word representation.
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Figure 3.2: The step-by-step system for action recognition

3.2 Pose Words Representation

In this section, we present our method used to represent poses. Since pose is

essentially a shape, we think pose can be represented with shape descriptors. But

also describing the transition between poses is very important, to accomplish that

we used an optical flow based descriptor.

The first three parts of this section explains the shape descriptors, from simple

to complex. The fourth part is concerned with the optical flow based features.

The last subsection explains the codebook generation process.

3.2.1 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) was reintroduced by Dalal and Triggs [9]

in their study for human detection. HOG captures the edge direction information

by histogramming orientations of gradients on the image. In our study HOG is

utilized as a pose descriptor. It is a simple feature which provides fair shape

information. Figure 3.3 summarizes the feature extraction process for HOG based

pose descriptor.

In the first step, the gradients in a frame are obtained by applying 1-D filters
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Figure 3.3: This figure shows the steps of the feature extraction process for HOG
based descriptor. First an image is divided into n spatial bins radially, and then
histogram of orientated gradients for each bin is constructed. After merging the
histograms of all bins a feature vector of length n×m is obtained.

[−1 0 1] and [−1 0 1]T (which is shown to be best in [9]) on the gray level image

of the frame to obtain x and y directions gradients, Gx and Gy for each pixel.

Then, each frame is divided into n cells using a radial grid structure. In each

cell, for m directions over the interval [−π, π], the gradient magnitudes of the

pixels in that direction are summed. Then, n histograms are attached to each

other to obtain a n×m dimensional feature vector for each frame, describing the

shape of the pose.

The similarity between HOGs are found by calculating the Euclidian distance

between feature vectors.
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Figure 3.4: In shape context a circular grid is positioned over the sample points
of an image. Sample points are obtained by randomly sampling over contour of
the pose. There are 4 radial bins and 8 orientation bins in this figure.

3.2.2 Shape Context

Shape context is introduced by Belongie et al. in [1] originally for object recogni-

tion. In this approach a shape is represented by a discrete set of points sampled

from internal or external contours on the shape. The contour information can

be obtained by an edge detector. Then a sampling algorithm is applied to the

contour, giving a set of n points: U = {α1, α2, . . . αn}, αi ∈ R2. These points

are not necessarily curvature or maxima points. The shape context is the coarse

distribution of the rest of the shape with respect to a given point, α, on the shape.

This is done by positioning α at the center of a circular grid which has r radial

bins and θ orientation bins. In Figure 3.4 an example circular grid is shown.

This circular grid covers the rest of the n−1 points, from where the distance and

direction of distance to the point α is recorded.

Matching with shape context is mainly finding the best matching αq in shape

Q for each point αw in shape W . Figure 3.5 shows application of shape context
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matching between different frames of a boxing video. In Figure 3.5(a) two dissim-

ilar frames of the video is matched, although the person’s torso and legs are in

very similar positions, the arms are positioned differently, giving a shape context

cost of 0.24. In Figure 3.5(b) the matching of two consecutive frames are shown,

the frames are very similar hence the cost is much lower; only 0.15.

The similarity between shape contexts of two poses is obtained by the sum of

distances between corresponding points of two poses.

3.2.3 k-Adjacent Segments (kAS)

k-Adjacent Segments (kAS) descriptor is introduced by Ferrari et al. in [13] and

is becoming popular in the object recognition area. kAS can directly be applied

to graylevel images, so when there is not an accurate contour information this

feature is more usable.

kAS computation has multiple steps. First edgels, edge pixels, of a gray level

image is detected using Berkeley natural boundary detector[25]. Edgels are then

chained by using closeness and orientation information. The edgel-chains are

partitioned into roughly straight contour segments. This chained structure is

used to construct a contour segment network (CSN).

A group of k segments is a kAS iff they can be ordered so that the ith segment

is connected in the CSN to the (i + 1)th one, for i ∈ {1, . . . , k − 1}. As k

grows, kAS can form more and more complex local shape structures: individual

segments for k = 1; L shapes and 2-segment T shapes for k = 2; C, Y, F,Z

shapes, 3-segment T shapes, and triangles for k = 3. In our study we used 2AS

features. To devise kAS descriptor first the k segments forming kAS is ordered

so that similar descriptor can have the same order. The ordered kAS is a list of

segments; Φ = {s1, s2, . . . sk} . Let ri = (rx
i , r

y
i ) be the vector going from midpoint

of s1 to the midpoint of si. Furthermore, let θi, li = ‖si‖ be the orientation and

length of si. The descriptor of Φ is has 4k − 2 values, in Equation 3.1 we show

the descriptor for 2AS:
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(a) Dissimilar frames are matched, cost = 0.24

(b) Similar frames are matched, cost = 0.15

Figure 3.5: Two different cases of matching with shape context, + markers rep-
resent the samples points for the first pose and o markers are for the second
pose. In (a) frames are dissimilar and cost is higher, but in (b) similar frames are
matched so cost is much lower.
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Figure 3.6: Example segments from kAS shape descriptor for actions boxing,
handclapping and running

(
rx
2

Nd

, θ1, θ2,
l1
Nd

,
l2
Nd

) (3.1)

where Nd is a distance between the two farthest midpoints used as a normalization

factor.

The dissimilarity measure D(a, b) between two 2AS Φa, Φb is as follows ([13]):

D(a, b) = wr

k∑
i=2

‖ra
i − rb

i‖+ wθ

k∑
i=1

Dθ(θ
a
i , θ

b
i ) +

k∑
i=1

| log(lai , l
b
i )| (3.2)

Here wr and wθ are weighting factor, which are chosen as 4 and 2 respectively,

these values are shown to be best in [13].

In Figure 3.6 we present some example poses. Here we drew the segments

on the edge image; darker colored segments’ strength is larger than the lighter

colored ones. The strengths are determined according to the boundary detector.

Originally in object recognition kAS is used the following way, after extracting

kAS a codebook is generated and every object is represented as a bag-of-kAS.

We exploit kAS information in a different manner.
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The similarity between two frames containing multiple kAS is calculated as

follows:

• kAS one-by-one matching: Since every pose is composed of multiple kAS we

used a one-by-one matching scheme to calculate the similarity between two

poses. Suppose pose ain is composed of ∆i number of kAS, and pose ajn is

composed of ∆j number of kAS. Then the similarity between these poses is

computed as follows: for each kAS Φiδ, δ ∈ {1 . . . ∆i} and Φjδ, δ ∈ {1 . . . ∆j}
we compute the pair wise similarity using Equation 3.2 and put it in the

similarity matrix Sij, which has dimensions of ∆i × ∆j. The similarity

between ain and ajn is not the same as the similarity between ajn and ain,

i.e. the similarity matrix of poses is not symmetric. Since our clustering

method does not work on such matrices, we took the average of ajn and

ain, and obtained symmetric matrix from these average values.

3.2.4 Optical Flow Histograms

Optical Flow Histograms is shown to be a promising pose descriptor in [18]. In

this study, we adapt this feature to code the transitions in-between the frames as

another pose descriptor.

For this descriptor first dense block based optical flow of each frame is com-

puted by matching it to the previous frame ([18]). Then orientation histograms

of optical flow values are computed. A similar approach can be found in [26].

Different from [26], here spatial (M × M grid) and directional binning (over

θ = {0, 90, 180, 270}) is used instead of the whole template. Also the smoothing

step is skipped and optical flow values are used as they are. For each ith spatial

bin i ∈ {1 . . . M ×M} the optical flow histogram κi(θ) is defined as

κi(θ) =
∑
j∈Bi

ψ(uθ · Fj) (3.3)

where Fj represents the flow value in each pixel j, Bi is the number of pixels in

the spatial bin i, uθ is the unit vector in the θ direction and ψ is defined as
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Figure 3.7: Inside each bin, the total amount of optical flow in four perpendicular
directions is used as the motion descriptor.(Image taken from [18])

ψ(x) = { 0 if x ≤ 0

x if x 0
} (3.4)

The process is illustrated in Figure 3.7.

This descriptor provides feature vectors for each pose, which are compared by

using Euclidian distance.

3.2.5 Codebook Generation

After describing the poses in each frame using one of the descriptors and con-

structing a similarity measure, we group similar poses in K centroids with a

clustering technique. We chose to use k-medoids because some pose descriptor

we use cannot be represented with a feature vector, but rather only the similarities

between points are known.

In this clustering technique, set of N objects, O = {o1, o2, . . . oN} are parti-

tioned into K clusters, where cluster centroids(medoids) P = {p1, p2, . . . pK}, pk ∈
O. The aim is to minimize the overall cost, which is described by the cost of on, i =

{1 . . . N} belonging to the group with the cluster centroid pk, k = {1 . . . K}.

The input of k-medoids algorithm is the similarity matrix S, an M × M

matrix. Every element Sij of matrix S, is the similarity between frame i and

frame j. For small datasets we use the whole dataset to form this matrix, but for
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Figure 3.8: An overview of the codebook generation process. After the obtain-
ing pose-descriptors, pose-words are generated using clustering method and a
codebook for poses is obtained.

larger datasets only a collection frames are used.

The output of this algorithm,medoid set P , is used as the codebook of pose-

words. The overview of the codebook generation process can be seen in Figure 3.8.

3.3 Pose Sequence Matching Techniques

In this section we explain the methods we used for pose sequence matching, after

representing each action in terms of pose words. Some recent approaches use

bag-of-words idea to obtain histograms of pose words. However, this causes loss

of temporal information, since the actions are represented only as a distribution

of poses . We consider pose sequences as strings and use string matching tech-

niques to compare actions. This allows us to capture the temporal characteristics

of actions and distinguish between the subtle temporal differences between two

actions.

First we explain the bag-of-poses approach for simulating the bag-of-words

approach. Then we present a novel method, which considers actions as pose

sentences and uses string matching techniques to classify actions. An overview

of matching methods can be seen in Figure 3.9.
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3.3.1 Bag-of-Poses

Bag-of-words was originally used in information retrieval and can be defined as

representing a document by an unordered collection of words. To simulate the

bag-of-words approaches in the simplest way, we represent the action sequences

as histograms of pose-words. Let Ai be an action sequence and K be the number

of pose words. In the bag-of-poses method, we represent Ai by a 1 × K bins

histogram Hi = hi1 . . . hiK , where each bin hik corresponds to the number of

frames represented with the pose word pk.

The similarity between two actions’ bag-of-poses, Hi and Hj, is defined using

the Chi-square distance as

χ2(Hi, Hj) =
1

2

∑
n

(hin − hjn)2

hin + hjn

(3.5)

where Hi and Hj are the histogram representations of Ai and Aj.

Figure 3.10 shows the bag-of-poses comparisons of actions in KTH dataset

performed by 5 different people, we used optical flow as the feature. If we look

closely to Figure 3.10(e) and Figure 3.10(f) we can see that the histograms of

these actions are quite similar, which may lead to misclassification.

3.3.2 String Matching

In order to capture the temporal characteristics of actions, we represent the ac-

tions in the form of ordered sequences rather than simply using bag-of-poses.

That is we represent an action Ai as a pose sentence ai1ai2 . . . aiN , where N = |Ai|
and each an is a pose-word pk ∈ P . Then we utilized two well known string match-

ing techniques to find the similarity of two pose sentences: namely, edit distance

and longest common subsequence. In the following we explain the details of these

methods.

To illustrate the advantage of pose-sentences approach, in Figure 3.11 we
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(f) Walking

Figure 3.10: Example Bag-of-Poses representations for each action in KTH
dataset, K = 200
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show similar actions being misclassified with bag-of-poses, but being correctly

classified with pose-sentences approach. Here we have three action sequences, two

of them being walk and one of them being move sideways. If we were to classify

these with bag-of-poses approach, then the walk video would be misclassified as

move sideways, since their histograms are more similar. But with pose sentences

approach, we look at the sequence information and find that, two walk sequences

are more similar.
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3.3.2.1 Edit Distance

To find the similarity of two actions Ai and Aj represented in the form of pose-

sentences, we use a very simple string matching algorithm, edit distance [24].

With the edit distance algorithm, distance between two strings is defined as the

minimum number of steps to be taken to convert Ai to Aj. The input of the

algorithm is Ai and Aj and the output is the last, i.e. mnth, entry of the dynamic

programming matrix, which is the distance between Ai and Aj(see Algorithm 1).

Input: Ai (1..m), Aj (1..n)

Output: d(m,n)

foreach k from 0 to m do
d(k,0) = k

end

foreach l from 0 to n do
d(0,l) = l

end

foreach k from 1 to m do

foreach l from 1 to n do

if Ai (k) = Aj (l) then
cost = 0

else
cost = 1

end

d(k,l) = minimum ( d[k-1, l] + 1, d[k, l-1] + 1, d[k-1, l-1] + cost)
end

end

Algorithm 1: Algorithm for Edit Distance. Computes the distance be-

tween two strings, Ai and Aj

3.3.2.2 Longest Common Subsequence (LCS)

LCS finds the longest common subsequence between two sequences, the subse-

quence doesn’t need to be contiguous ([16]). There can be wrongly interpreted

poses, which may break the substring structure; the advantage this algorithm

provides us comes from its ability to ignore these faults. (see Algorithm 2). The
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input of the algorithm is Ai and Aj and the output is the last, i.e. mnth, en-

try of the dynamic programming matrix, which is length of the longest common

subsequence between Ai and Aj. Unlike Edit Distance LCS provides us with a

similarity value not a dissimilarity value.

Input: Ai (1..m), Aj (1..n)

Output: d(m,n)

foreach k from 0 to m do
d(k,0) = 0

end

foreach l from 0 to n do
d(0,l) = 0

end

foreach k from 1 to m do

foreach l from 1 to n do

if Ai (k) = Aj (l) then
d(i,j) = d(i-1,j-1) + 1

else
d(i,j) = maximum(d(i,j-1), d(i-1,j))

end

end

end

Algorithm 2: Algorithm for Longest Common Subsequence. Gives the

length of the longest common subsequence of Ai and Aj

3.3.3 Classification

At this point we have the similarity values of action sequences. The next step is

to find the corresponding action from the training set given a query video.

In this study, we focus on representation rather than classification and there-

fore choose a very simple classification scheme, nearest neighbor classification,

to classify actions. Nearest neighbor classification is performed in the following

way: one sequence whose label is unknown is picked, then from the rest of the

sequences the least distant sequences label (i.e nearest neighbor’s label) is as-

signed to that sequence. If the picked sequence’s label is the same with the least
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distance ones then we count this as a match.



Chapter 4

Experiments

This chapter presents our experimental results and comparisons with other related

studies. We test various methods to understand how good they cohere with our

compact action representation. Also our results shed light on many weak and

strong points of the features used. In addition we compare our success rates to

well-known studies in this chapter. In the following we explain the datasets we

used, under separate sections, we will present the results of the experiments for

each dataset.

4.1 Datasets

We perform our experiments in two different datasets, Weizmann and KTH. These

are the benchmark datasets in action recognition research.

All of the experiments are done in MATLAB, without any optimization meth-

ods. We used 2.4 GHz Pentium Dual Core processor with 3Gbs of physical mem-

ory for most of the experiments.

28



CHAPTER 4. EXPERIMENTS 29

Figure 4.1: Example poses from Weizmann dataset From left to right, upper row:
bend, jump forward, gallop sideways and wave one hand, lower row: first two
wave both hands, last two walk.

4.1.1 Weizmann Dataset

Weizmann dataset is introduced by Blank et al.[2]. It consists of 9 actions: walk,

run, jump, gallop sideways, bend, one-hand wave, two-hands wave, jump in place

and jumping jack, performed by 9 different actors, a total of 81 videos. Video

sizes vary in this dataset and there are a total of 5098 frames. Example poses

can be seen in Figure 4.1.

4.1.2 KTH Dataset

KTH dataset, introduced in [31], is a more difficult dataset than Weizmann

dataset in terms of actions involved and shooting conditions. It contains six ac-

tions: boxing, hand clapping, hand waving, jogging, running and walking. These

actions are performed by 25 people in 4 different shooting conditions. In the first

shooting condition SC1 subjects perform the action on a grass background with

stable camera except for the occasional zoom. Second shooting condition SC2 is

with the same grass backgorund but there are sots from different viewpoints and

zoom effects. In third shooting condition SC3 actors carry bags or wear baggy

clothes and fourth shooting condition SC4 is indoors with varying illumination.

In our experiments we mainly used the first shooting condition. Example frames
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from KTH dataset can be seen in Figure 4.2.

4.2 Experiments on Weizmann Dataset

We performed experiments on Weizmann dataset using HOG and shape context

features as pose descriptors. In the following sections we present the detailed

experiments for choosing the parameters regarding these representations.

4.2.1 Experiments with HOG

In the following we present our experiments using HOG as a pose descriptor.

First, we analyze the performance of HOG descriptor using different parameters.

There two parameters of HOG which needs to be optimal to get successful results.

First one is n, number of pieces in the radial grid and second one is m orientation

bin size. Based on the observations it is seen that number of different action types

is best represented when K = 47 and therefore for the experiments on choosing

n and m, a fixed medoid size is set to K = 47 manually and the values of n

and m vary. We tried the following values; n = 4, 8, 12, 16, 20, 24 and m =

4, 8, 12, 16, 24, 36, a total of 36 experiments. We also tried higher values but they

gave poor success rates due to redundancy. Graphs in Figure 4.3 show the results

of these experiments for varying m and n values.

Another parameter we have to determine is the choice of K, the number of

posewords. In order to understand the choice of K in a randomly initialized k-

medoids clustering algorithm, we choose K = 30, 40, 50, 60 values, and record

the performance as shown in Figure 4.4 for fixed values m=24 and n=24. The

results show that, although the choice of K affects the performance, the results

are still in a similar level, and even with random initialization K around 50 is an

acceptable choice. Note that this result is overlapping with the manual choice for

K = 47 for representing different pose types.

The results suggest higher values for m and n, and show that the orientation
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(a) Outdoor, SC1, left to right: boxing, hand clapping, jogging and walking

(b) Outdoor with zoom and different viewpoints, SC2, left to right: boxing, hand waving,
running and walking

(c) Outdoor with clothing changes, SC3, left to right: boxing, hand clapping, walking
and walking

(d) Indoor, varying illumination, SC4, left to right: boxing, hand clapping, running and
walking

Figure 4.2: KTH dataset’s four different environmental settings
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(a) Different values of m,n for Bag-of-
Words approach

(b) Different values of m,n for Pose Sen-
tences approach

Figure 4.3: Determining m(orientation bin size) and n(number of pieces in the
radial grid) parameters for HOG descriptor on Weizmann dataset

Figure 4.4: Success rates for varying K values using Pose Sentences and Bag-
of-Words, these graphs show that a balanced initial set is crucial for k-medoids
algorithm
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bin size is more important. These parameters are specific to Weizmann dataset,

for different datasets these experiments are repeated and best values are deter-

mined accordingly.

In Figure 4.5, confusion tables for each of the three matching methods are

shown. The most similar actions for this dataset can be grouped as follows, A =

{move sideways, walk, run and jump forward}, B = {wave two hands, jumping

jack}. Figure 4.5(a) shows the results for bag-of-poses approach, which couldn’t

distinguish the group A actions on multiple occasion, on the other hand edit

distance (Figure 4.5(b)) managed to reach a higher accuracy. Longest Common

Subsequence failed to classify half of the jump forward videos, but successfully

classified the rest of the group A actions.

On the average 92% performance as the best result is obtained for Weizmann

dataset using HOG with edit distance.

4.2.2 Experiments with Shape Context

In addition to Histogram of Oriented Gradients we also used shape context to

understand the effects of a more powerful shape descriptor. As mentioned before,

Weizmann dataset has come with clean silhouettes which are essential for this

particular shape feature. While testing on this dataset, we used 5 radial bins and

12 orientation bins.

We also tested for different values of K for this pose descriptor, according to

our results K ≈ 100 gives the best results for shape context.

For shape context pose descriptor we have achieved 100% success rate using

LCS. Figure 4.6 shows the confusion matrices for each matching method.
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HOG SC

Bag-of-Poses 90% 95%
Edit Distance 93% 92%

LCS 89% 100%

Table 4.1: Pairings of pose descriptor - matching method on Weizmann dataset,
HOG:Histogram of Oriented Gradients, SC:Shape Context

Matching Method Success Rate
OurApproach 100%

Ikizler[19] 100%
Blank[2] 99%

Thurau[34] 87%
Niebles[27] 73%

Table 4.2: Comparison with related studies (Weizmann Dataset)

4.2.3 Comparisons

There are a number of studies which were also tested on Weizmann dataset. In

Table 4.2 comparisons of our method with these methods are shown.

Results show that using shape context on Weizmann dataset, we achieve the

perfect performance.
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4.3 Experiments on KTH Dataset

We used the 150 action videos from the first shooting condition of the KTH

dataset, which is less complex than the other three shooting condition KTH

dataset includes. We chose this part of the dataset because we had fewer irregu-

larities to worry about when evaluating results.

KTH dataset is a large dataset, sequences contain more frames and each

person performs an action different than another person which affects, so we

tried the following values to understand which is a good vocabulary size: K =

{50, 100, 200, 300, 400}. Previously Wang et al. found that 350 code-words was

best for their system [36]. For different pose descriptors the ideal value of K

changes. But from our experiments we have concluded that the value of K

should be around 200-300 for KTH dataset. Some sample clusters can be seen in

Figure 4.7.

4.3.1 Experiments with HOG

We have used n = 24 and m = 24 with HOG feature on KTH dataset. Since we

have tested with Weizmann dataset on determining m and n, we have not tested

with values smaller than 12 for both of these parameters on KTH dataset.

In Figure 4.9 the confusion matrices for classification with HOG descriptor

with each matching technique can be seen. If we look closely to each confusion

table, we can see the advantages of string matching techniques over bag-of-poses.

The results for HOG descriptor are moderately successful. For all methods mis-

classification can be considered in two chunks, hand actions = {boxing, hand-

clapping, handwaving} and feet actions = {jogging, running, walking}. The

misclassification of hand actions are mostly because the HOG descriptor is not

an accurate enough shape descriptor when trying to discriminate similar poses.

Also with hand action the actual ordering is not very important, even misleading

in this case. If we look at the confusion tables, in fact with bag-of-poses repre-

sentation we have acquired a higher success rate with hand actions. But with
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(a) Sample clusters from kAS

(b) Sample clusters from HOG

Figure 4.7: Sample clusters from KTH dataset for two different pose descriptors
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feet actions we have a different set of rules. Mainly because the actions jogging

and running are very similar. For all of the matching techniques these actions

are confused for most of the videos. But for action running and walking, which

are also considered very similar, we see that Edit Distance performs much better

than Bag-of-Poses. The same is true for LCS, although with LCS running and

jogging have lower recognition rates than edit distance. Here, even though the

success rates are not very high, the advantage of matching pose-sentences over

bag-of-poses is very clear. The overall highest succes rate for this feature is 61%

with LCS. Since this success rate is not satisfactory, thus we moved on to us-

ing shape context feature on this dataset, which gave us very good results with

Weizmann dataset.

4.3.2 Experiments with Shape Context

Since we have seen the effectiveness os shape context on Weizmann dataset, we

also used this descriptor on KTH dataset too. We used the following shape

context parameters while testing on KTH, radial bin size 5, orientation bin size

12. We chose 20 as the number of points to be sampled over the contour.

Although this descriptor gave excellent results for Weizmann dataset, the

success rates are very low for KTH dataset. As we mentioned before, shape con-

text’s accuracy is highly dependent on the silhouette information. In Figure 4.8

he silhouettes extracted from KTH dataset are shown. These silhouettes are not

accurate and this affects this descriptors performance significantly. The poor

success rates we obtained with shape context forced us to take another shape

feature, kAS, into consideration and used it to represent frames.

4.3.3 Experiments with kAS

Originally in object recognition kAS is used by constructing a kAS codebook, and

representing each object as the bag-of-words representation of that codebook[13].

In our methods, instead of using bag-of-words approach on kAS, we calculated
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Figure 4.8: A portion of KTH silhouettes, these silhouettes are not sufficient for
an accurate computation of shape context descriptor

the total distance between 2AS of two poses.

We’ve obtained ta better recognition rate on KTH dataset with kAS feature

an average performance of 74%. Although this is not successful, it is still an

indication of how well shape descriptors perform while representing actions. Also

as mentioned before, KTH is a very challenging dataset. kAS depends highly

on edge detection, which may perform poorly with complex conditions of KTH

dataset.

Although shape is very important descriptor as we have seen, we also tested

the optical flow based feature to see the effect of transitions. Note that the used

OF based feature does not only code the temporal information but since it uses a

grid partitioning it considers the localizations and therefore it is a spatio-temporal

feature.
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HOG SC 2AS OF

Bag-of-Poses 58% 56% 61% 89%
Edit Distance 60% 44% 70% 92%

LCS 61% 47% 74% 93%

Table 4.3: Pairings of pose descriptor - matching method on first shooting condi-
tion of KTH dataset, HOG:Histogram of Oriented Gradients, OF:Optical Flow,
2AS: 2AS matching, SC:Shape Context

4.3.4 Experiments with Optical Flow

We used the following setting for this descriptor, 5×5 block size and window size

is 3. We used L1 as the distance measure.

The recognition rate for optical flow is high, very close to best in literature.

The confusion tables are given in Figure 4.12. The first confusion table in Fig-

ure 4.12(a) belongs to the results we have obtained by bag-of-poses approach.

Compared to other tables in Figure 4.12(b) and Figure 4.12(c), the misclassifica-

tion of actions running, jogging and walking is worse. However with Edit distance

and LCS we don’t confuse the action walking with others at all. Also we only

confuse running and jogging in a few occasions, which is expected, since some of

the jogging and running videos is KTH dataset are hard to distinguish, even with

naked eye.

With optical flow feature we’ve obtained an average of 89% recognition set

over the whole KTH dataset.

4.3.5 Comparisons

In Table 4.3 show the highest results obtained with the combinations of pose

descriptors and matching methods. The values in the table are for SC1 of KTH

dataset. We obtain the highest results with optical flow - LCS combination and

a moderately successful result with 2AS - LCS. These results are discussed in

Section 4.4.
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Bag-of-Poses Edit Distance LCS
sc1 89% 92% 93%
sc2 79% 81% 84%
sc3 84% 82% 85%
sc4 90% 92% 95%

average 85.5 86.75 89.25

Table 4.4: Results for OF + Matching Methods for KTH dataset’s all shooting
conditions.

Condition Our Approach Ikizler[18] Jhuang [21]
s1 93% 98.2% 96.0%
s2 84% 90.7% 86.1%
s3 85% 88.9% 89.8%
s4 95% 98.2% 94.8%

Table 4.5: KTH dataset’s all shooting conditions, compraison with other studies.

The successful results we’ve obtained with optical flow descriptor encouraged

us into further testing with much more complex shooting conditions of KTH

dataset. The results of these experiments can be seen in Table 4.4. With simple

backgrounded videos in SC1 and SC4 we obtain very high recognition rate. As

expected when camera motion is involved in SC2 our recognition rate drops, and

for SC3 where actors carry bags or wear baggy clothes, recognition rate is not

as high as in SC1 and SC4. Table 4.5 shows our results for KTH dataset’s all

shooting conditions with other studies’. Although our results are slightly lower

than compared studies, we want to note that we use a simpler classification

scheme.

Table 4.6 presents a comparison with other studies, our OF + LCS method

is the fifth successful one on this list. This is a remarkable result since our method

is simple, yet captures the essence of the actions and classifies them successfully.

Using a shape descriptor with KTH dataset is a problematic issue due to the

dataset’s changing conditions. The results for shape features will get better if

they’re provided with more accurate silhouettes and contours.
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Matching Method Success Rate
Ikizler[18] 94%
Wang[36] 92.43%

JHuang [21] 91.7%
Wong [37] 91.6%

Our Approach 89.25%
Nowozin[28] 84.72%
Niebles[27] 81.5%
Dollar[12] 81.2%
Schuldt[31] 71.7%

Table 4.6: Comparison with related studies (KTH Dataset)

4.4 Experimental Discussion

Throughout our studies we were compelled with various challenges of action recog-

nition. Our experiments shed light on many issues regarding our approach. The

major conclusion we drew from our results is action recognition does not have

to rely on complex representations and classification techniques. Simple methods

may outperform more complex methods in terms of both success and performance.

This is also validated with experiments. We think that an action recognition sys-

tem should respect the sequence structure, ignoring temporal characteristics of an

action usually leads to misclassification of similar actions, which may be distin-

guished by their temporal property. The first part of this discussion is concerned

with how well pose descriptors worked with the datasets we used, the second part

discusses only pose descriptor in terms of their strong and weak points and the

last part discusses the pros and cons of the matching methods used.

In our study, pose descriptors had major importance. We experimented

with four features; Histogram of Oriented Gradients (HOG), k-Adjacent Seg-

ments(kAS), Shape Context and Optical Flow histograms. We had the highest

results with shape context and LCS combination on Weizmann dataset and op-

tical flow histograms and LCS combination on KTH dataset.

On Weizmann dataset our idea of representing poses in terms of their shapes
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proved to be very successful. With HOG descriptor our results were very suc-

cessful, which encoured us to move on to a more descriptive shape feature, shape

context. This feature gave us 100% recognition rate on this particular dataset.

HOG feature performed very well for Weizmann dataset, which is a homoge-

nous dataset with no illumination changes. Also the creators of this dataset

provide us with the silhouettes, which make it trivial to find tight bounding

boxes. This is not the case for KTH dataset. For this dataset we didn’t have

tight bounding boxes. Also HOG is computed over gray-level images, in KTH

dataset some of the actors tops or bottoms were nearly identical in color with

the background. This causes confusion in the following nature, when a person is

jogging, his hands move forward and backwards but still close to his body. If the

legs of a jogging person could not be described by the feature accurately, then

this action may seem like boxing. Also if we take a look at clusters when HOG

is the pose descriptor, we see that clusters mainly consist of very similar frames,

usually frames from the same video. This causes every video to be coded with

very different codewords, even if they include the same action. Mainly, HOG

descriptor was not descriptive enough to stress subtle differences in very similar

poses of KTH dataset.

Encouraged by the successful results we got from Weizmann dataset with

shape context feature, we also applied this to KTH datset. But unfortunately we

didn’t have clear silhouettes, which affected the performance for shape context.

Also the bounding box information we used to crop the person form the video was

not accurate, sometimes cropping the bottom half of the person. This also posed

a disadvantage for us since we mainly tested with shape features. Due to poor

performance of shape context, we employed another shape descriptor, k-Adjacent

Segments (kAS). kAS feature is affected by people whose clothes’ colors are very

similar to the background, in those cases Berkeley’s Edge Detector sometimes

failed to find the edges for that part of the person, which caused inconsistent

kAS information. For the KTH dataset the most successful feature was optical

flow histograms, which is calculated in small windows so it is not affected by the

fluctuations of shape. Its a fact that extracting the perfect silhouette or finding

the tightest bounding box is not always possible. In this case we need a robust
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descriptor, which will endure these imperfections. Most of the shape descriptors

rely solely on extracting a good contour of the shape, which is clearly not always

the case.

At this point we employed optical flow histograms, which contain both the

spatial and temporal information. This property makes this descriptor robust and

very powerful in terms of representation. With this descriptor we have achieved

89% recognition rate for the whole KTH dataset.

During our experiments we examined the weak and strong points of the shape

descriptors we have used. HOG is a compact descriptor yet it preserves shape

data very roughly, which causes low success rates in complex contditions. Shape

Context is a silhouette based method, to extract the best information, we need

an accurate contour. Shape context performed very well with Weizmann dataset,

where clean silhouettes were available. Unfortunately for KTH dataset this was

not available. Another disadvantage of shape context is comparing two shape

contexts takes too much time, which contradicts with our initial idea of having

a simple and efficient action recognition system. kAS feature provides very good

results for the object recognition area. So we included kAS as a pose descriptor,

to see the how it will affect the results. We applied two types of similarity

measures for kAS which are explained in Section 3.2.3. kAS’ accuracy and success

is based solely on the goodness of edge detection. Although the edge detector

authors included with kAS detector is a successful one due to clothing colors or

illumination changes, some parts of the contour of the person has a lower strength

than other parts, which effects the kAS detection. This poses a problem since

we apply tresholding to kAS to decrease the numbers and eliminate background

segments; which sometimes eliminates body segments as well. But if we don’t

apply tresholding then we have to match twice as much kAS, which has very large

computational overhead. Another important reason why kAS was less successful

is because human body is too articulated for this feature. There are many poses in

an action sequence, and considering different kind of forms actions are performed

by different people, adds up to a very versatile object dataset in this case.

Another factor that has a significant effect on the recognition rate is k-medoids
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clustering algorithm. This algorithm chooses a random initial set and since par-

titioning around medoid is an NP-hard problem, it tries to find an approximate

lowest cost. But with a bad initial set, the clusters are not evenly weighted,

which causes an unhealthy representation of the action sequences. For Weizmann

dataset we were able to manually select a number of frames, which provided a

good initial set for the algorithm, but since KTH is a very large dataset we

couldn’t specify a balanced initial set.

During our experiments on each dataset we saw that we get better results with

pose-sentences approach than bag-of-poses. When we look at the actions which

are misclassified in both approaches, we saw that bag-of-words representation

particularly confuses actions walk and run. This is because we don’t include

temporal information when we’re deciding on the action label. Since the pose

information of these actions is very similar, the distribution of poses do not differ

enough to distinguish them from each other. Weizmann dataset provides a good

example of how temporal characteristics help us to make a better decision. Shape

context, which is more descriptive shape feature than HOG, gave us the best

results on this dataset. This supports our claim on shape of the pose being a very

powerful source of information in terms of describing an action and when a good

pose descriptor is used with a system which also uses temporal characteristics of

an action for discrimination results are very satisfactory.

As mentioned before we used three different algorithms to compare action

sequences. The advantages of string matching approaches over bag-of-poses are

discussed, but we should also discuss which string matching algorithm is superior.

Edit distance is one of the most simple string matching algorithms in the liter-

ature. It strictly uses sequence information meaning even if two pose-sentences

are very similar, it does not oversee a few pose-words which may be coded differ-

ently and considers them as discontinuities distancing the compared sequences.

On the other hand Longest Common Subsequence(LCS) hops over these faulty

coded poses and continues with the next matching pose-word, adding it to the

common subsequence list. What may seem as LCS’ flexibility also fails this algo-

rithm in some cases. Because it may find that a jump forward action may have a

longer subsequence with a run action than another jump forward action, which
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is a misclassification.

Experimental results presented in this thesis show that pose is a powerful

primitive for actions and temporal information is a crucial part of action recog-

nition. Further conclusions we drew from our studies will be discussed in Chaper

5.



Chapter 5

Summary and Conclusions

In this chapter we will first summarize our contributions and then state the

conclusion we have drawn from our study.

5.1 Summary of Contributions

In this thesis we presented another aspect on how to understand human motion

in videos. We proposed a novel approach for representing actions, pose sentences.

This representation is beneficial in various angles, first of all it provides a compact

representation of data, and secondly it makes use of sequential information which

preserves the temporal characteristics of actions.

Our other main contribution is the use of pose information. We utilize shape

and shape transition information of the pose as action primitives. Through our

results we have shown that pose information is indeed very appropriate for rep-

resenting actions.

Overall we have presented an action recognition system, which offers a novel

and simple action representation scheme. We have reached a 100% percent suc-

cess rate on Weizmann dataset and 89% success rate on KTH dataset. Our results

52
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show that for successful action recognition complex systems are not needed, sim-

ple yet effective techniques can give the same recognition results also.

5.2 Discussion Summary

While constructing our system, we have been challenged by various problems.

Some points regarding these and generally action recognition are:

• Bag-of-words representations are not sufficient for representing action se-

quences, they lose temporal information.

• Although pose is a very good primitive for actions, it is not easy to extract

pose information.

• Pose transition information is as important as pose shape information.

• HOG is a fair pose descriptor, although when shooting conditions get more

complex it fails to extract pose information effectively.

• kAS descriptor, despite being successful in object recognition, did not match

our expectations. This descriptor works better with objects which always

have the same shape, human body is too articulated for kAS to capture

characteristics of poses fully.

• Shape Context is a powerful shape descriptor if the data is very noise free.

Since it solely relies on good contour data, this feature may not be very

desirable with cases where extracting a good contour is not possible.

• Optical flow descriptor is successful at capturing pose transitions and robust

to shooting conditions.
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5.3 Future Work

The study we presented in this thesis is the starting point of our approach. In

the future we plan to bring the following improvements:

• Using more complex classification schemes is very important. We mainly

focused on the representation aspect of the system and used a very simple

classification technique. We plan to utilize SVM as a starting point.

• The pose descriptors we used in this thesis gave us a great insight on the

weak and strong points of shape features. Using this knowledge we plan to

propose a new descriptor.

• In this thesis we performed single action recognition, in the future we will

improve our system for recognizing composite actions.

• We plan to utilize substring matching approaches to extend our system to

a searching mechanism which takes a video as a query and brings up the

similar ones.

• Hidden Markov Models or Dynamic Time Warping can also be an option

while examining sequence information, in the future we plan to exploit this

technique for classification.
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